An Algebraic Approach to XQuery View Maintenance

J. Nathan Foster

University of Pennsylvania
jnfoster@cis.upenn.edu

Abstract

View maintenance is a problem in data management that arises
whenever a view is materialized over a source that changes over
time. When the source is large, or when the source and view reside
on different hosts, it is not practical to recompute the view and
retransmit it over the network each time the source is updated. A
better idea, commonly used in systems built with view maintenance
in mind, is to translate source updates to ones that can be applied
to the view directly. The cost of calculating, transmitting, and
applying a translated update is typically dramatically less than the
cost of recomputing and retransmitting the entire view.

This paper addresses the problem of maintaining XQuery views
over XML data. The core algorithm translates updates through
queries as expressed in the tree algebra used internally in the Galax
engine. This algorithm extends previous work on maintenance for
relational views, although there are significant complications due
to the data model, which is both ordered and nested. To overcome
these obstacles, we propose a scheme for storing auxiliary data that
guides the translation of updates in this more complicated setting.
A novel aspect of our approach compared to previous work is that
the amount and content of annotations can be controlled by users,
making it possible to balance the tradeoffs between the size of the
auxiliary data and the quality of translated updates.

We have built a prototype implementation to test these ideas.
Our system extends Galax, and handles a core set of operators
and built-in functions capable of expressing many typical first-
order queries. Its design is fully compositional, so it can easily
be extended to new operators. We present preliminary results of
experiments run on benchmark queries from the XMark suite.

Categories and Subject Descriptors H.2.4 [Information Sys-
tems]: Database Management—Query Processing

General Terms Algorithms, Languages, Performance

Keywords XML, XQuery, materialized views, incremental main-
tenance, tree algebra

1. Introduction

There is a well-known story about Carl Gauss. His schoolteacher
set an apparently lengthy arithmetic problem—add up the numbers
from 1 to 100—but Gauss derived the formula > 7 = w and
determined the answer instantly. The story usually ends there. But
imagine that Gauss’s teacher had then asked the class to recompute
the sum, but to omit the number 50 from the input sequence. Even a
much less clever student would realize that maintaining the answer
already computed, by subtracting 50, is simpler than recomputing
the whole thing from scratch.

Copyright is held by the author/owner(s).
ACM SIGPLAN Workshop on Programming Languages Technologies for XML
9 January 2008, San Francisco, U.S.A.

Ravi Konuru

Jérdme Siméon Lionel Villard

IBM TJ Watson Research Center
{rkonuru,simeon,lvillard} @us.ibm.com

An analogous problem arises in data management whenever
a view is materialized over a source that changes over time. In
these situations, incrementally maintaining the view, by translat-
ing source updates to view updates, is often much cheaper than
recomputing the entire view. This paper addresses the problem of
maintaining XQuery views over XML data.

XQuery is a W3C-recommended language for querying, trans-
forming, and (in recent extensions) updating XML data [1, 3].
XQuery views arise in a variety of real-world settings; the follow-
ing list describes just a few characteristic use cases:

¢ In an online auction site, the web page for a single item can be
generated as a view over an XML source that contains the data
for the items, buyers, and sellers registered with the site.

e In a web-based employee record application, access restric-
tions to sensitive personal data such as social security numbers,
salaries, and performance evaluations, can be enforced using
security views.

e In a scientific application, a legacy tool can be retrofitted to
work with data in new formats using a view that transforms
data in the new format back to the old one. As a concrete exam-
ple, the UniProtKB protein sequence database is represented in
XML, but many tools expect data in the original ASCII format.

A common feature to all these use-case scenarios is that the views
are materialized and not virtual: the web pages generated for the
auction site and employee record application are serialized onto
the network and displayed in a client’s web browser, and the ASCII
view of the protein sequence database is written out to the filesys-
tem and handed off to the legacy tool. Views have to be materialized
when the source and view reside on different hosts—e.g., in web
applications. Another common use of materialized views is to op-
timize the performance of query answering: when several queries
need to be posed over the same view, it is usually more efficient
to cache a copy of the view. However, despite these advantages,
materialized views also come with complications: because data is
replicated in several places, whenever the source is updated, the
view also needs to be refreshed to keep the data consistent.

A simple way to refresh the view is to recompute the query on
the updated source. However this strategy is impractical when the
size of the source is large compared to the view, and in settings
where the source and view are stored on difference hosts (in the
latter case, the cost of transmitting the updated view over the
network can be prohibitive.) A better strategy, which addresses
both of these issues, is to incrementally maintain the view by
translating source updates to corresponding view updates—i.e.,
such that updating the source and recomputing the view yields the
same result as applying the translated update to the view. Figure 1
depicts the architecture of a system built on this idea. (Note that
for some queries and updates, the only option is to reevaluate the
query on the update source; thus, sometimes the translated update
must access the updated source.) Using this picture, the essential

Source Qu‘ery View
g N

v

Source
Update ~

Figure 1. Correct update translation.

correctness condition for a view maintenance system can be stated
as follows: the translation of an update is correct if the diagram
commutes.

One reason that incremental maintenance works well in practice
is that often, the effect of a source update on a view can be deter-
mined without accessing the source at all. As a concrete example,
in the relational setting, if the query is a selection and the source up-
date inserts a tuple, then the translated update either needs to insert
the same tuple into the view (if it satisfies the selection predicate) or
perform a no-op (if it does not). In either case, the translated update
can be calculated independently of the source. Because the size of
the source is usually large compared to the view, this is a huge win.
Another reason that maintenance is effective is that, even when the
translated update depends on the source, it can often be rewritten
to only access certain relevant parts of the source. Finally, since the
translation produces updates and not whole views, the problem of
transmitting large views over the network is often avoided.

The problem of maintaining relational views has been well stud-
ied (see Section 7), but rather less work has focused on maintaining
views of XML data. In this paper, we describe a system for main-
taining views defined in the language XQuery. The main compo-
nent is an update translator, which takes as inputs a source update,
a query, and annotation hints generated from the source, and calcu-
lates an corresponding view update. Rather than working on queries
expressed in XQuery’s surface syntax, the update translator oper-
ates on the intermediate algebraic representation of queries used in
Galax. This algebra combines operators from the relational alge-
bra (interpreted with ordered semantics), with additional operators
for manipulating and iterating over XML trees and sequences [22].
Working with the algebraic representation has several advantages.
Unlike the surface syntax, which is complex and monolithic, the
algebraic operators are simple, orthogonal, and composable. Sim-
plicity streamlines the update translation function. Orthogonality
exposes which operators are easy to maintain, and those that are
more challenging. Compositionality makes our system easily ex-
tensible to new algebraic operators and built-in functions, and fa-
cilitates straightforward reasoning about correctness.

The main challenge in a solution to view update based on update
translation is that many of the operators compute and discard in-
termediate data that is needed to translate updates. As an example,
consider an update u and the query If(p1){p2, ps }, which evaluates
p1 to obtain a sequence of items, and selects po if that sequence is
non-empty, or p3 otherwise. Translating u through p; yields an up-
date u; that applies to the sequence of items generated by p;. The
correct translation for the view is obtained either by translating w
through po—if the sequence generated by p; was not empty and
u1 does not make it empty—or by translating it through p;—if the

sequence was empty and »; does not make it non-empty, or by dis-
carding the view entirely and recomputing the whole query from
scratch—if the update has the effect of changing which branch is
selected by the conditional. Unfortunately, the information needed
to distinguish these three cases—namely, the sequence produced
by p1—is not available in the view. Similar issues arising from lost
intermediate data occur with several other algebraic operators.

One way to address this problem would be to cache every in-
termediate view. For example, the conditional operator could store
both the sequence produced by p; and the actual view produced by
p2 or p3. However this solution would require caching (and there-
fore maintaining!) a massive amount of auxiliary and potentially
redundant data. Instead, we propose a sparse annotation scheme
in which only fragments of these intermediate views are retained.
These hints are stored in an annotation file that is provided to the
translation function.

The idea of using auxiliary data to guide update translation
is not new. However, a novel feature of our approach is that the
amount of auxiliary data can be controlled as an external parameter
to the system. With less auxiliary data, the translation function falls
back to recomputation in more cases, but the annotation files are
compact; with more data the update translator produces “better”
updates, but the annotation files are larger.

To summarize, the contributions of this paper are as follows:

e The design of a view maintenance system for XQuery, using a
translation of updates through algebraic operators.

e An adjustable annotation scheme for managing auxiliary data
used during update translation.

¢ A prototype implementation built on Galax that handles a core
set of operators and built-in functions.

e Preliminary results from experiments run on simple bench-
marks queries.

In outline, the rest of the paper proceeds as follows. Sec-
tions 2 and 3 review XQuery, the tree algebra, and the update
language used in our system. Section 4 describes the annotation
scheme and update translation function. Sections 5 and 6 give an
overview to our implementation and the results of several timing
experiments. Sections 7 and 8 discusses related and future work.
We conclude in Section 9.

2. XQuery Syntax and Algebra

In this section, we briefly review the XQuery language and sketch
its compilation to a tree algebra. We assume familiarity with XPath,
XQuery and their data model [4, 1, 9].

As described in the introduction, our system works on queries
as represented in a tree algebra rather than the surface syntax of
XQuery. Compiling XQuery programs to this algebra breaks down
complicated features such as iteration, navigation, variable bind-
ing, selection, grouping, and reordering, expressed as monolithic
FLOWR blocks, into simple operators with compositional seman-
tics. Working with queries in this more primitive representation has
many advantages, which have also been noticed by the designers
of other view maintenance systems [15, 6]. First, it streamlines the
update translation algorithm—it can be formulated as a recursive
function on algebraic queries (and a corresponding correctness the-
orem can be proved by induction). Second, since the operators have
compositional semantics, the algorithm can be easily extended to
handle new operators just by filling in the additional cases. Lastly,
since the tree algebra contains operators from the relational alge-
bra, the relationship to previous work on view maintenance in the
relational setting is clearly exposed.

The main building blocks of XQuery programs are XPath ex-
pressions, used to navigate in trees, and FLWOR blocks, used to

iterate over and manipulate sequences of values. As a simple ex-
ample, consider the following program, which computes a join:

for $x in $d/self::a/text(),
$y in $d/self::b/text()

where $x = $y

return <c> { $x } </c>

Informally, the evaluation of this query goes as follows. The for
clause iterates over the value denoted by $d, and binds variables
$x and $y to the values obtained by navigating along the XPath ex-
pressions $d/self: :a/text () and $d/self: :b/text () respec-
tively. Next, the where clause selects out pairs $x and $y where
$x equals $y. The return clause constructs a new element c con-
taining $x. The final result is the sequence composed of all such
elements. For example, when this query is evaluated in a context
where $d is bound to the sequence

<a>1<a>2<a>3234
it computes a result:
<c>2</c><e>3</c>

A naive implementation of the semantics uses many nested
iterations. For this reason, most serious XQuery implementations
instead compile queries to algebraic plans similar to those used in
relational engines.' This change of perspective makes it possible to
apply standard optimizations—in particular, unnestings—and has
been shown to improve the efficiency of query engines by several
orders of magnitude [22]. Returning to our example, the following
is an equivalent algebraic plan:

Map{Elem[c](#x)}
(Select
{eq(#z/text(), #y/text())}
(Product
(Map{[x : ID]}(TreeJoin[self :: a](#d)),
Map{[y : ID]}(TreeJoin[self ::b](#d)))))

The operators in this plan manipulate XML values as well as
tables of tuples—i.e., records with fields mapping to XML values.
(A type algebra and typing rules for each operator are given in
Appendix A.) To illustrate the semantics, let us trace its evaluation
on a table representing the same source sequence as above. Assume
that the input is a table containing a single tuple whose only field d
maps to this sequence. The operators at the leaves:

Map{[z : ID]}(TreeJoin[self ::a](#d))

Map{[y : ID]}(TreeJoin[self :: b](#d))

each construct a new table by accessing this sequence and ap-
plying a navigation step. Let us examine the first in detail. It
accesses the sequence (#d) and navigates along the self axis
(TreeJoin[self :: a]), which produces a sequence of elements:
<a>1<a>2<a>3. The next operator, Map, iterates
over this sequence and places each item into a newly constructed
tuple ([x : ID]). During the evaluation of this Map, the identity
plan (ID) represents the dependent input—i.e., the a elements. Thus,
the table produced by the first plan contains tuples with a field x
mapping to elements named a. Likewise, the table produced by
the second plan contains tuples with a field y mapping to elements
named b. Moving up a level, the next operator, Product, computes
the Cartesian product of these two tables. Next, the Select operator
prunes this table, retaining only those tuples with identical x and y

'In fact, some XQuery engines go a step further—they “shred” XML into
relations, and translate programs to relational queries that operate on data
in this encoding [2].

fields. At the top of the plan, the Map iterates over this table, ac-
cesses the z field from each tuple, and constructs an element named
c (Elem[c](#x)); these elements comprise the result sequence.

Figure 2 lists the algebraic operators we consider in this paper.
They are sufficient for expressing many first-order XQuery pro-
grams. The full algebra used in Galax has several additional opera-
tors as well as recursive functions [22], and is rich enough to serve
as a compilation target for the full XQuery 1.0 language.

Each operator, when fully applied to parameters, denotes a func-
tion of appropriate type. We use several notational conventions
when writing the parameters to an operator Op[z]{p1 }(p2). Pa-
rameters enclosed in square brackets like x are static; parameters
enclosed in parentheses like p2 are independent—i.e., do not de-
pend on the results computed by other subplans; and parameters
enclosed in curly braces like p; are dependent. The semantics, writ-
ten A[-Js:, is given in Figure 2. The variable $¢ represents the in-
put. For simplicity, and to keep the discussion moving, we give the
semantics by translation back to the familiar surface syntax. Equiv-
alent operational [7] and denotational (by translation to Nested Re-
lational Calculus) [11] semantics can also be defined.

The compilation from XQuery programs to algebraic plans is
described in detail in previously published papers [22, 11]. We
refer the reader to those papers and only sketch the compilation
at a high level here. The compilation of a FLOWR-block produces
a plan in which bindings and uses of variables are transformed into
operations on tables. For example, for $x in e compiles to a plan
that uses Map to construct a tuple with a single field « for each
value in the sequence produced by (the compilation of) e. Likewise,
a let-binding for $y compiles to a plan that uses MapConcat
to extend each tuple with an additional field y. A where-clause
compiles to a Select. Sequence constructors, element constructors,
and XPath navigation all compile to the corresponding algebraic
plans, and variables compile to tuple accesses.

3. Update Language

Next we describe the update language used internally in our system.
To avoid complicating the translation algorithm, this language is
intentionally simple: it does not contain conditionals, navigation
operators, or iteration. It is rich enough, however, to express the
effect of any update on a given data model value. Thus, although
our system only manipulates these simple updates internally, it can
be used to propagate source updates expressed in any formalism—
e.g., XQuery! [12] or the recent draft proposal from the W3C [3].
(To use our system with these more expressive update languages,
one would first evaluate the high-level update on the actual source
value, obtaining a set of “atomic” updates along fixed paths, and
encode these updates in our language.)

The update language is defined in Figure 3. Updates UNop,
UDel, Ulns, and URepl have the obvious semantics: respectively
they leave the value unchanged, delete it, insert a value at the be-
ginning of a sequence or table, and replace the entire value. Note
that Ulns and URepl carry algebraic plans, which are evaluated on
the updated source to obtain the value to insert or to use for re-
placement. An update UNode optionally renames node and applies
the encapsulated update to its children. A sequenced update con-
sists of a list of updates, each indexed by an integer offset: when
(,u) appears in this list, u is used to update the ith element of the
sequence (if the same offset appears twice, the updates are applied
in sequence). Tuple and table updates do not apply to data model
values directly but are used internally during update translation. A
tuple updates consists of a finite map wm from labels to updates; it
applies um(x) to the field x of the tuple. A table update is analo-
gous to a sequence update.

We assume that that update lists are non-empty and that UNop
and USeq do not appear immediately below other USeqs and sim-

pu= A[ID]s¢ =$t
ID (identity) A[Empty()]s¢ =0
Empty() (empty sequence) A[Elem[gn](p1)]s¢ =element gn {A[p1]ls:}
Elem[gn](p1) (element) A[Seq(p1,p2)]se = (Alp1]st, Allp=]se)
Seq(p1,p2) (sequence) A[TreeJoin[s](p1)]s: =for $t; in A[p1]ls: return $t1 /s
TreeJoin[s](p1) (navigation) A[lf (p1){p2, p3 st =if (A[p1]ls¢) then A[p2]ls: else Alps]s:
If (p1){p2, ps} (conditional) Al#z;]se =$t.x;
#r (tuple access) Allz : p1]]st =[xz = Alp1lst]
[z : p1] (tuple construction) A[Map{p1 }(p2)]s =for $t» in A[p2]Js: return A[p1]s:,
Map{p1 }(p2) (dependent map) A[MapConcat{p1 }(p2)]s: = for $t2 in A[p2]s:
MapConcat{p: } (p2) (concatenating map) for $t1 in A[p1]st, return $t1++$io
Select{p1 }(p2) (selection) A[Select{p1 }(p2)]s¢ =for $t2 in A[pz]s: return
Product(p1,p2) (product) if (A[p1]st,) then $ts else ()
az ::= self | child | descendant (axis) A[Product(p1,p2)]st =for $t; in A[p:1]s: return
su=ar:nt (navigation step) for $t2 in A[p1]s¢ return
nti=a | * (node test) $t1++$t2
Figure 2. XQuery algebra.
U[UNop]st 5o =0
U[VIns(p)]st, s = insert node A[p]s: before $z
un= U[UDel] st 32 =delete node $z
| UNop (no-op) U[URepl(p)]st,s= =replace node $x with A[p]s:
| UDel (deletion) U[UNode(None, u)]st,sx = 1let $z’:=$x/* return U[ulls: ./
| Ulns(p) (insertion) U[UNode(Some gn, u)]st,s» = (rename node $z as gn,
| URepl(p) (replacement) let $z’:=$x/* return U[ulls; g0/)
| UNode(gno, u) (node update) UUSeq(ul)]st,3 =1let $z1:=$z[i1],..., $xr :=$z[ix] return
| USeq(ul) (sequence update) UTurllst,sors - - - Uurllse ser)
| UTup(um) (tuple update) where ul = [(41,u1), ..., (ik, ur)]
| UTab(ul) (table update) UUTup(um)]st sz =1let $xyy :=$z.l1,...,$7, :=$2.lx Teturn
gno ::= None | Some gn (optional name) (UTwi, Jst,821s - - - Uwig, st,82,)
ul= (]| (d,u): :ul (update list) where um = {l1 — w1, ...,k — ug
um := {} | {z — u}++um (update map) U[UTab(ul)]st,s2 =1let $z1:=$z[i1],..., $xr :=$z[ix] return
UTurlst sy s - - - Uur]se sey)
where ul = [(i1,u1), ..., (i, uk)]

Figure 3. Update language.

ilarly for update maps. These conventions can be enforced using
constructors that flatten and simplify sequence, tuple, and table up-
dates. We often define update lists using the notation ::7_; (0;, u;)
and @], 1;. The first denotes the list [(01,u1),..., (0n,un)] Ob-
tained by consing the (0;,u;)s, and the second denotes the list
(l1@...Ql,) obtained by appending the I;s.

The semantics of updates, written U[[-[s¢,s, is defined in Fig-
ure 3. The $t parameter specifies the value to be used as the source
when evaluating the algebraic plans in insertions and replacements;
$x specifies the value on which the update is executed.

4. Update Translation

Now we turn to the two central pieces of our view maintenance
system—the update translation algorithm, and our scheme for rep-
resenting auxiliary data in annotation files. We do not discuss the
maintenance of auxiliary data in this paper; it can be performed
using an extension of the algorithm discussed here.

The update translation algorithm is formulated as a recursive
algorithm that propagates updates from bottom to top through the
tree of nested operators that make up the algebraic query plan. For
some operators the translation is simple. For example, the seman-
tics of the identity plan maps any source to itself, so every update
has the same effect on the source and view. Other operators, how-

ever, compute intermediate data that is not included in the view but
is needed to rewrite source updates to view updates. For example,
as described in the introduction, the conditional operator selects a
branch using a sequence of items that it computes and then dis-
cards the information about which branch was picked. Other ex-
amples of operators that discard intermediate data are the sequence
and map operators, which concatenate several sequences into one,
forgetting the positions marking the boundaries of the original se-
quences, and the select operator, which discards tuples that do not
satisfy the selection predicate, forgetting the positions and values
of the discarded tuples. To correctly propagate updates to views de-
fined using these operators, the translation algorithm needs access
to the forgotten data. For example, with the conditional operator,
the algorithm needs to determine which branch was selected, and
whether the source update affects that choice. For the sequence and
map operators, it needs to know the boundaries of the original se-
quences so that it can merge updates to each sequence into a single
update that applies to the concatenated sequence. For the selection
operator, it needs to take an update to the original table and rewrite
it to one that applies to tuples retained in the view.

One way to make this information available to the algorithm
would be to cache all of the intermediate data that is computed
during the evaluation of a query. However, this strategy requires
storing a huge amount of redundant data. To avoid this problem we

instead store only some of the intermediate information for each
operator. This reduces the amount of auxiliary storage that needed,
and also allows us to tune the amount and content of data that is
stored in creative ways. When more auxiliary data is available, the
update translator produces “better” updates, but the annotation files
are large; when less auxiliary data is available, it falls back to re-
computation in more cases, but the annotation files are small. As
a concrete example, the auxiliary data for the conditional operator
could either be the entire intermediate sequence, or just the boolean
value it encodes. If we store the whole sequence, then we can com-
pute the effect of a source update on the branch selected exactly
and obtain, in some sense, an optimal translation. If we only store
the boolean value, then the annotation is more compact, but the
algorithm has to rely on a conservative analysis to determine the
effect of the update on the intermediate sequence. In the limit, we
could keep no annotation data at all. In this case, update transla-
tion falls back to recomputation in most cases, which sounds bad.
However, if the conditional appears below a map operator, then the
recomputation will only need to access the items in the source di-
rectly affected by the source update. Thus, keeping no annotations
for some operators may be a reasonable strategy for some queries.
Our approach allows programmers balance these tradeoffs.

In the remainder of this section, we describe the annotation
scheme and update translation algorithm in detail. When p is a
query and s is a source, we write annot(p, s) for the annotation
computed from p and s. Additionally, when w is an update, and
x = annot(p, s), we write u ~>, v’ to indicate that v translates to
u’ (with respect to p and).

Together, the update translation and annotation functions satisfy
the following correctness theorem:

Theorem 4.1 (Correct Update Translation). Let s, s’, p, u, and v,
withv = A[plls, s’ = U[u]s,s, = = annot(p, s) and u Lol
Then Alpllss = U[u'] s 4.

which just states formally that the diagram in Figure 1 commutes.
The proof goes by induction on p.

In the remainder of this section, we give the recursive definitions
of these two functions, examining each case in detail. To lighten the
description of the algorithm, we leave some cases undefined and
adopt the convention that we fall back to recomputation in these
cases. Formally, this convention is modeled by a “catch-all” rule

no other rule applies
u ~% URepl(p)

(note that the annotation is missing). In our implementation, anno-
tations are represented as XML values and the translation function
produces a URepl update when it needs some auxiliary data but the
annotation is empty.

Identity The identity operator, p = ID, maps every source to
itself. Since updates affect the source and view in exactly the same
way, they are translated exactly. No auxiliary data is needed.

annot(p,s) = O u s u

Empty Sequence The operator p = Empty() maps every source
to the empty sequence. Since the semantics is a constant function,
source updates do not affect the view. Accordingly, updates are
translated to no-ops. Again, no auxiliary data is needed.

annot(p, s) = () u ~» UNop

Element Constructor The operator p = Elem[gn](p1) con-
structs an element node with name gn and children obtained by p; .
As with the empty operator, part of the view—the name—is con-
stant, so a source update can only affect the children of the view.

Source updates are recursively translated through pi, and wrapped
a UNode update that leaves the name unchanged. No additional
auxiliary data is needed; the annotation just records annot(p1, $):

P1
U~z Ul

u >, UNode(None, u1)

annot(p, s) = annot(p1, s)

Sequence Constructor The operator for constructing sequences
p = Seq(p1,p2) applies the subplans p; and p2 to the source,
yielding two sequences, and then concatenates (and flattens) these
into a single sequence. Recursively translating a source update
through p; and p» yields updates that apply to the original pair
of sequences. To finish the job, we need to rewrite these updates
so that they apply to the appropriate portions of the concatenated
sequence. The annotation for a sequence stores the lengths n; and
ng of the original sequences needed to do this rewriting (it also
stores the annotations x1 and x2 generated for p; and p2 from s):

<Seq>
<p1>x1</pl><p2>x2</p2>
<ns>ni no</ns>

</Seq>

annot(p, s) =

The update translation rule uses a helper function flatten that takes
an update u, an offset o, and a length n, and calculates an update
list—i.e., of pairs of indices and updates—that, when wrapped in
a USeq update, describes the update that applies u to the n items
from position o. The definition of flatten is as follows (the helper
function mk__list(o, n, u) constructs an list where w is paired with
every index from o to o + n inclusive)

flatten(o, n, UNop) =
flatten(o, n, Ulns(p1)) = [(0, Ulns(p1)]
flatten(o, n, URepl(p1)) =

(0, URepl(p1)) :: (mk_list(o + 1,n — 1, UDel))
flatten(o, n, UDel) = mk_list(o, n, UDel)
flatten(o, _, UNode(gno,u11) = [(o0, 1, UNode(gno, u11))]

flatten(o, _, USeq(ul) = lu:l‘l (0f,u})

where o] = 0; + o and u; = u;
The interesting cases are URepl, which produces a list of indexed
updates whose head is the replacement and tail contains n — 1
deletions; UNode, which can only be validly applied to a sequence
of length one, and is therefore flattened to a singleton list; and
USeq, which shifts the index of each member of its update list by
o. Using flatten, the update translation rule for sequences is:

U &xl U1 I, = flatten(1,n1,u1)
u 'I‘j’ng U2 lo = flatten(n1 + 1, n2, uz)

u «?»z USeq(ll@lg)

Updates translated using this rule have the effect stated above: u
is applied to the first n; items in the view, and u2 to the subsequent
no items. (To keep the presentation of the rules simple, we access
annotations such as the x;s and n;s by name instead of navigating
to them from « using an XPath expressions.)

In our implementation, we handle some other cases as optimiza-
tions. For example, the rule

u ., URepl(py) u*3,, URepl(p3)

calculates an equivalent, but more compact update in the case
where u; and u2 are both replacements.

Navigation The navigation operator p = TreeJoin[az :: nt](p1)
first maps the source to a sequence using p1, and then returns the
sequence obtained by retaining the items along the paths specified

by the navigation step az :: nt. In this section we focus on the
child axis; translations for other axes are discussed below. In-
tuitively, maintaining a view defined by navigating in this way is
simple: first calculate the update to the intermediate sequence ob-
tained from p1, then symbolically interpret the navigation step on
the update. In practice, however, this second step requires precise
information about the paths in the intermediate sequence that pro-
duced items in the result. We store this data in the annotation. Let
(e1,...,ex) = Afp1]s. Define n;; = 1 if the jth child of e; is
included in the view and 0 otherwise for every such ¢ and j. Also,
let 1 = annot(p1, s). The annotation is as follows:

<TreeJoin>
<pil>zi1</pl>
<ns>niiy . ..ng</ns>

</TreeJoin>

annot(p, s) =

To shorten the description below, we abbreviate the total number of
items in the view obtained from e; as t; = > . n;j.

The update translation rule uses two helper functions. The first,
rwkid, takes as arguments ¢, t, and u, which, when invoked from the
other helper function rw, represent the index of an item e;, the count
ti, and an update u that applies to the children of e;. It rewrites u
to an update that just applies to the children in the view.

rwkid(_, ,UNop) = UNop
rwkid(_, _, Ulns(p!)) = Ulns(TreeJoin[self :: nt](p}))
erId(i, ,URepl (p1)) =

Ulns(TreeJoin[self::nt](p})) ift=0
URepl(TreeJoin[self:nt](p})) ift>0
rwkid(_, ¢, UNode(gno, u1)) =
UNop 1f (t > 0 A gno = None)
t>0/\qno—S0me gn A qn = nt)
V (t =0 A gno = Some qn A qn [~ nt)
UDel if (t > 0 A gno = Some qn A qn [~ nt)
rwkid (i USeq ul)) —USeq(Sk 1 (0, uf))
Where of =1+ 1 trandu) = rwkld(z7 Nij, Uj)

The notation gn = nt indicates that gn satisfies the condition
expressed by nt. It is shorthand for nt = * or nt = ¢n.

Let us examine several of the cases in detail. Insertions are
rewritten using navigation along the self axis. This ensures that
the values satisfy the condition expressed by the node test. Replace-
ments use an analogous rewriting; additionally, when ¢ is 0, then
the old child was not contained in the view, so the replacement is
actually an insertion. For UNode updates that do not change the
condition expressed by the node test, the effect on the view is a no-
op. Otherwise, if t > 0 and the UNode renames the element to one
that does not satisty the node test, then the child is deleted. Note
that the case for ¢ = 0 and gno = Some gn and gn |= nt is not
defined. This represents the situation where an item that was previ-
ously omitted needs to be inserted into the view. The inserted item
could be obtained by applying the encapsulated update in UNop
to the omitted item if it were available. Unfortunately, because our
annotation is sparse, it is not. Thus, we leave the case undefined
and (by the convention introduced previously) fall back to recom-
putation. An annotation scheme that cached all the children could
handle this case better, at the cost of larger annotation files. The
final case for rwkid handles sequenced updates: it applies rwkid to
the positions mentioned in its update list, and uses the n;;s to track
the offsets of children in the view.

The second helper, rw, translates the update calculated for the
sequence returned by p; to a corresponding view update. It takes as

arguments the index of an item e; and the source update.

rw(_, UNop) = UNop
rw(_, Ulns(p})) = Ulns(TreeJoin[child ::nt](p}))
rw(_, URepl(p})) = URepl(TreeJoin[child ::nt](p}))
rw(_, UDel) = UDel
rw(i, UNode(Juil)) = rwkid(z, t,,ull)
wi(_ USeq(ul)) = USeq(::" (0}, u}))

where o = 1+ 32770 ¢y, and u; = rw(j, u;)

The important cases are UNode, which invokes rwkid on the update
to the children, and USeq, which handles the bookkeeping needed
to rewrite the indices on updates using the counts from the annota-
tion data. The final translation of updates is as follows:

w(l,u1) =u

P /
U~~~ U

P1
U~z Ul

These rules handle updates to views defined by navigation along
the child axis. The self axis can be handled similarly (in fact,
the rules are simpler, since the navigation is at the same level). The
descendant axis, however, is more complicated—the view con-
sists of all the items matching the node test at any depth in the tree,
in document order. One option is to generalize the annotations and
rwkid and rw, storing auxiliary data about every descendant. How-
ever, this approach is very complicated and produces huge annota-
tions. Section 8 discusses an alternative approach for descendant
that we believe has promise.

Conditional The conditional operator If (p1){p2,ps} evaluates
the subplan p; to select p2 or ps3, and then evaluates that branch.
As discussed in previous sections, we have some freedom in the
amount of annotation data that is stored for conditional. Here we
discuss a scheme that stores three pieces of data: the annotation
x1 = annot(p1, $), an annotation xp, which is either annot(p2, s)
if po was selected or annot(ps, s) otherwise, and the length n of
the sequence computed by p;.

<If>
<p1>x1</pl><pb>x,</pb>
<ns>n</ns>

</If>

annot(p, s) =

The update translation rule uses a conservative static analysis to de-
termine whether the source update affects the selection of a branch.
We formulate this analysis using several auxiliary predicates. The
predicate pre+(u) holds when u can be statically determined to
preserve non-emptiness. For example, pre+(Ulns(p)) holds since
inserting any value into a non-empty sequence yields a non-empty
sequence. Similarly, the predicate chg(u) holds when u can be
statically determined to change an empty sequence into a non-
empty one. The predicates pre | (u) and chg, (u) are dual. Finally,
predicates empty(p) and nonempty(p) are true of algebraic plans
that can be statically determined to produce the empty or non-
empty sequences respectively. We give definitions for pre| only;
the others are similar:

nonempty(p)

pre+(UNop) prer(Ulns(_)) pre+ (URepl(p))
prer(ui) (0i ui) € ul
pre-(UNode(_,)) pre— (USeq(ul))

Using these predicates, the translation of an update through a con-
ditional is defined by the several rules. We give the rules where the

annotation data n satisfies n > 0; the case for n = 0 is similar.

P1 P2 /
U M3z UL n>0

pre () w3, u
P 7
U~ U
u%wl Uy n>0 chg | (u1)

u By URepl(ps)

Note that the static analyses are conservative, so when n > 0 and
neither pre+(u1) nor chg, (u1), by convention the algorithm falls
back to recomputation.

Tuple Access A tuple access p = #x returns the sequence
of items obtained by projecting x from each tuple of the input
table. As with the sequence operator, the lengths of the sequence
produced by each tuple are needed to rewrite an update to the input
table to one that operates on the appropriate parts of the view. Let n;
be the length of every such sequence. The annotation is as follows:

annot(p, s) = <Access>n; ...ny</Access>

The translation of source updates uses a helper function to rewrite
update, which we again call rw.

rw(UNop) = UNop

rw(Ulns(p})) = Ulns(Map{#z}(p1))
rw(URepl(p1)) = URepl(Map{#z}(p1))
rw(UDel) = UDel

rw(UTup(um)) = um(x)

rw(UTab(ul)) = UTab(@I))

where I; = flatten(1 + 327" n, nj, rw(uy))

The interesting cases are UTup, which accesses the x field from
the tuple map um and UTab, which rewrites table updates using
the n;s and the helper function flatten, defined previously, to apply
each update to the correct portion of the view. The update transla-
tion rule just invokes rw:

rw(u) = u’
u oy u
Tuple Constructor The operator p = [z : p1] constructs a tuple
with a single field = leading to the value obtained by p;. Updates
are recursively translated through pi, placed in a finite map, and
wrapped in a UTup constructor. The annotation only stores the
annotation for the subplan:
u '{J’i’x Ui

annot(p, s) = annot(p1, s
((P1,9) u %, UTup({z — u1})

Maps A mapping operator, such as p = Map{p1}(p2), ex-
presses iteration. We will focus on the simpler Map operator in
the case where p> produces a table and p; transforms each tuple
into a sequence of items; the rules for Map at other types, as well
as the MapConcat operator are similar.

Intuitively, the benefits of maintaining views versus recomput-
ing them should be especially evident with maps—when the source
update only affects a few tuples in the table, then only a few items
in the view will need to be updated. This intuition is essentially cor-
rect, although some bookkeeping is needed to determine the parts
of the view to update. The Map operator first evaluates p2 to obtain
a table, then iterates over this table, applying p1 to each tuple and
concatenating the resulting items into a single sequence. As with
sequences, the annotation for a Map needs to store the lengths of
the sequences computed for each tuple. Let z2 = annot(p2, s) and
let (t1,...,tx) = A[p2]s be the table computed by p;. Also let
x1; = annot(p1, t;) be the annotation for p1, as computed on the

input ¢;, and n; be the length of the sequence A[p1]+,. Then the
annotation for Map is the following.

<Map>
<p2>r2</p2>
<pil>z11</pl>...<pl>x1;</pl>
<ns>ni ...np</ns>

</Map>

annot(p, s) =

Note that there are k& annotations for pi, one for each tuple. The
update translation rule uses a helper function, also named rw. It
takes arguments ¢, the index of a tuple ¢;, p; a plan that computes
the ¢;, and an update u, and computes a view update that applies to
the items in the view affected by w:

rw(_, _,UNop) = UNop
mw(_,pi,Ulns(ps)) = Ulns(pz[pi/ID])
rw(_,pi, URepl(p3)) = URepl(ps[pi/ID])
w(_, ,UDel) — UDel
rw(i, pi, UTup(um)) = u'[p;/ID]

p1 /

where UTup(um) ~54,; u
w(_,pi,UTab(ul)) = UTab(@}"!1))
where [; = flatten(1 + 3721 ne, ny, rw(4, pi[j], u;))

The case for UTup rewrites u to u’ using p;. This yields an update
that applies to the view. However, if u’ contains replacements or in-
sertions, then the inputs to those plans needs to be replaced with the
portion of the source that produced the tuple. This is accomplished
by substituting p; for the input ID. The other interesting case is
for UTab. It first rewrites each sequenced update using a recursive
call to rw, passing p; [j]—a plan that generates the jth tuple. In this
way, even if the translation of the update through p; triggers a re-
computation, it is limited to only a part of the input. To finish the
case, it then rewrites the update to apply to the appropriate portion
of the view using flatten. Using rw, the translation is as follows:

P2 1 oy
U~ g, Uz rw(l, p2,u2) = u

D /
U~y U

Relational Operators The translations of updates through the
operators Select and Project are similar to ones developed for
relational data models. However, the updates need to additionally
respect the order of tuples in the view. To illustrate how we handle
this new challenge, we give the update translation rules for Select;
Project is a similar generalization to ordered data.

The operator p = Select{p: }(p2) first evaluates ps on the
source to obtain a table, and then applies p: to each tuple in
the table, retaining only those tuples that produce a non-empty
sequence of values. The main challenge in maintaining these views
is that the intermediate table is not available. Thus, when an update
is recursively translated through pa, it is not possible to determine
which tuples in the are affected by the update it expresses. Let
2 = annot(pz,s) and let (t1,...,tx) = A[pz]s be the table
computed by p1. Also let z1; = annot(p1, t;) be the annotation
for p1, as computed on the input ¢;, and n; = 1 if Afp1]s, is
non-empty, and n; = 0 otherwise. The annotation for Select is the
following.

<Select>
<p2>x2</p2>
<pl>x11</pl>...<pl>x1x</pl>
<ns>ni ...np</ns>

</Select>

annot(p, s) =

Updates are translated using a helper function rw which takes as
arguments the index ¢ of a ¢;, p; a plan that produces that tuple, and

an update. It is defined as follows.

rw(_, _,UNop) = UNop

w(_, Ulns(ph)) = Ulns(Select{p:}(p}))

rw(_, ,URepl(p3)) = URepl(Select{p:}(p2))

rw(_, _,UDel) = UDel

I’W(’L',pi7 UTup(um)) =
UNop ifn; =1 Aprer(u') Vn; =0Apre, (u)
UDel ifn; = 1 Achg, (u)

URepl(p’) otherwise with p’ = Select{p1 }(p;)

where UTup(um) %5, v’

rw(_,pi,UTab(ul)) = UTab(::[" (0}, u}))
where 0j =1+ Zf;ll ny, and uj = rw(g, p[5], u)
The UTup case has several interesting subcases. First, if the tuple
is in the view and the update u’ obtained by translating through
p1 preserves the non-emptiness of the sequence computed by p1,
or if the tuple was not in the view and ' changes the sequence to
empty, then the update is translated to a no-op. The second subcase
handles situations where the tuple was in the view and the update
removes it. In the third case, since the annotation does not contain
the tuples that were not included in the view, the translated update
is a replacement. However, we calculate the replacement using p;,
will often be a smaller table than ps.
Using rw, the update translation rule is the following:

P2 1 !
U NSy U rw(l,p2,uz2) = u

P /
U~y U

5. Implementation

To test these ideas, we have implemented a prototype system as an
extension of the Galax engine. It consists of approximately 2,500
lines of OCaml code, and has functionality spread across three
modules: an update compiler, a query instrumentor, and the update
translator itself.

Update Compiler The compiler translates expressions in the
update language to query plans that can be executed in Galax. It
implements the semantics defined in Figure 3.

Query Instrumentor The instrumentor takes a source query and
rewrites it to one that computes the auxiliary data needed during
update translation. All of the auxiliary data that goes into the an-
notation files is known during the initial evaluation of the query.
Thus, in principle, one could replace the instrumentor with a mod-
ified engine that calculates annotations “for free” as it evaluates
the view. Doing so however, would require deep changes to the
back-end—i.e., to the implementations of the physical operators.
To avoid these complications, we use a simpler approach: the in-
strumentor rewrites algebraic plans to ones that, when applied to
the source, calculate the auxiliary data instead of the view. To make
it easy to access this data, we represent the annotations as XML (a
serious implementation would use a more compact representation.)

The instrumentor uses several simple optimizations to reduce
the sizes of annotation files. For example, with a Map operator
that iterates over a sequence and constructs a single tuple from
each item, the annotation storing the number of tuples produced
by each iteration is not needed. Additionally, as discussed in pre-
vious sections, the amount and content of annotation files can be
controlled by the user of the view maintenance system. Concretely,
these controls are specified as parameters to the query instrumentor.
We provide two mechanisms for controlling the size of annotation
files. First, it is possible to limit the amount of auxiliary data gen-
erated by only constructing the annotations for operators up to a
fixed depth in the tree of nested operators. Second, the content of
the annotations for several operators can be controlled individually.

For example, the conditional operator can either cache the entire
sequence produced by its first plan, the length of this sequence, or
nothing at all. The update translator is engineered to use whatever
annotation data is available in the file, and to gracefully fall back to
recomputation when the auxiliary data is missing.

Update Translator The final component of our system is the up-
date translator itself. It is formulated as a simple, recursive function
that traverses the query and propagates updates from bottom to top.
In addition to the core set of operators described in this paper, the
implementation handles some built-in functions that appear in the
algebraic query plans produced by the Galax compiler.

6. Experiments

Using our prototype implementation, we have run timing exper-
iments on some simple queries to test its performance. We use
queries form the XMark suite [24], which includes a collection of
“typical” XQuery programs and a utility for generating XML doc-
uments of varying size populated with pseudo-random values.

We ran the experiments on a 1.4GHz Intel Pentium III machine
equipped with 2GB of memory and running the SuSE operating
system with Linux kernel version 2.6.18. We ran each experiment
five times on inputs varying in size from a few dozen kilobytes up
to a few dozen megabytes and calculated an average time by dis-
carding the shortest and longest time and computing the arithmetic
mean of the remaining values. We collected the wall-clock times
using POSIX system calls.

For each experiment, we measured the time needed to sequen-
tially update the source and then recompute the query as well as
the time to translate and apply the update on the view. To simu-
late an online view maintenance system, in which the source and
view are kept in memory, we pre-loaded all of the documents and
only counted time spent actually translating and applying updates
or evaluating queries. Thus, our experiments did not directly mea-
sure the time needed to calculate the annotations or materialize any
of the structures.

The first experiment uses the XMark Q1 query, which is an
XPath expression that selects out a single item from an XML
document that represents data for an online auction site. We applied
an update that modified a portion of the document along a different
path than the one used for the query. Thus, the update was irrelevant
to the view. Irrelevant updates are a simple case, but they are
common (e.g., in the online auction site updates to the source
posted by other clients will usually not affect the web page for the
item being viewed) and it is critical that they be detected. Using
the annotations—in particular the numeric counts stored for the
TreeJoin operator—our implementation correctly detects that the
update is irrelevant and translates the source update to a no-op.

The second experiment uses the XMark QS5 query, which selects
values from closed auctions where the selling price is greater than
40.00. For the source update, we deleted the element representing
the first closed auction. Thus, the view update will either be a no-
op, if the price of the deleted element was less than or equal to
40.00, or a delete otherwise. The pseudo-random data tests both
cases, and our implementation correctly produces both updates.

The third experiment also uses the Q5 query, but updates the
source by inserting a value instead. In this case, the translated
update recomputes most of the view—only a few nodes at the top
of the view are maintained. We included this experiment to measure
the overhead in a case where the update replaces most of the view.

The results of these experiments are given in Figure 4 and the
following table:

.......... Recompute XMark Q1 eeacensess Recompite
Transiate Transiate

T

T
T

T

Running Time (sec)
T

Running Time (sec)

T

XMarkQSa | [eeeeeeeneeeene Recompute XMark Qb

Transiate

Running Time (sec)

15 20
Source Size (MB)

Figure 4. Experimental results.

[Src(MB) | Recomp(sec) Trans(sec) [Annot(kB) |
l [Q1 [Q5a [Q5b [Q1 [Q5a [Q5b [Ql [Q5]
.1 0.2 0.2 0.2 0.1 0.1 0.2 2 4
5 0.2 0.2 0.2 0.1 0.1 0.2 11 18
1 0.2 0.2 0.3 0.1 0.1 0.3 21 39
10 0.4 0.8 0.9 0.1 0.2 1.1 190 329
22 0.9 2.3 2.4 0.2 0.2 53 419.1 729
33 1.2 3.6 3.7 0.2 0.2 14 628.2 1091

As they show, an approach based on update translation can
achieve huge performance gains over the naive maintenance strat-
egy, using a relatively simple annotation scheme, but there is some
overhead when the view must be recomputed. We believe that the
steep curve for translation in the third experiment results from lim-
itations in the physical representation of data model values—in its
current version, our tool stores the original source and view and
updated source and view in memory simultaneously.

These preliminary experiments only scratch the surface. In the
future, we hope to design a more comprehensive evaluation by
measuring the performance of our system on complex queries, with
only partial auxiliary data, and in settings where the source and
view live on different hosts.

7. Related Work

View maintenance has been studied in a variety of settings. Early
work on maintaining materialized relational views focused on tech-
niques for detecting irrelevant updates and algorithms for propagat-
ing “deltas”—simple transactions consisting of insertions and dele-
tions of tuples—from source to view. The survey article and collec-
tion edited by Gupta and Mumick describe this early work [16, 17].
They also developed algorithms for recursive views [18]. Qian
and Wiederhold developed an algorithm that works on algebraic
queries, like the approach used in this work [21]. This algorithm
was later corrected by Griffin, Libkin, and Trickey, and extended to
bags and deferred maintenance [15, 14, 5].

Early results on maintenance of views over graph-structured
data was described by Zhuge and Garcia-Molina [27]. They ob-
served that auxiliary data can be used to improve update propaga-
tion. Suciu showed how query decomposition can be used to main-
tain views over graph- and tree-structured data [25]. The mainte-
nance of views over semi-structured data was studied by Liefke
and Davidson [19]. They worked with an unordered data model
and a restricted query language in which distributivity of queries
over updates holds. This restriction simplifies update translation,
but limits the expressiveness of the query language. In particular,
queries must be monotonic with respect to updates. Sawires et al.
developed maintenance techniques for views specified as arbitrary
XPath expressions [23]. Their system also uses annotations, but the
size of the annotation is bounded by the size of the query and the
view. It operates in two phases, first identifying portions of the tree
directly affected by an update, and then calculating the nodes af-
fected indirectly. Villard et al. and Onizuka et al. each describe

maintenance systems for insertions and deletions into views speci-
fied in XSLT [26, 20] using an analysis of path expressions.

The closest related work to our system is the view maintenance
system for XQuery developed for the Rainbow system by Ruden-
steiner et al. [8, 6]. Like this work, they translate updates through
operators in a tree algebra, XAT, using auxiliary data as needed.
The first version of their system cached all intermediate data and
did not handle ordering. In subsequent work, however, they showed
how to extend the basic system to handle ordering using a clever
labeling scheme to encode node identity. There are several key dif-
ferences between their system and ours. First, while the labeling
scheme simplifies the translation rules for some operators by identi-
fying the value affected by an update, it is not a panacea. Operators
that change the order of items require additional annotations—e.g.,
the sequence operator, which can place items in the view in arbi-
trary order, has to store additional labels tracking the “overriding
order”. Thus, much of the same data about positions that is cached
in our simple annotation scheme is ultimately tracked in their la-
beling scheme as well. Second, the maintenance scheme uses node
identities. This works well when such identities are available. How-
ever, in systems where the source and view live on different hosts,
this means that the identities need to be transmitted to the view. By
contrast, our updates only assume a functional data model, with no
additional metadata. Third, unlike our system which allows annota-
tions to be tuned and selectively omitted, auxiliary data in their sys-
tem cannot be omitted—the semantics of the evaluation and main-
tenance engines depend on it being present. Fourth, replacements
and insertions in their update language carries data model values,
not algebraic plans. This means that as an update is propagated
through their system, the source must be immediately queried on
every replacement. In ours, a URepl update carries an algebraic
plan, which can be rewritten as it percolates up through the tree.
Lastly, although XAT has similar expressive power to the tree alge-
bra considered here, only the latter was designed with completeness
in mind and it is being used as the compilation target for a reference
implementation of XQuery 1.0.

8. Current and Future Work

Our work is ongoing. Most of our current efforts are focused on
extending our prototype to handle a more complete set of operators.
The biggest challenge in this area is developing annotation schemes
and translation rules for the large number of built-in functions.
However, since our system is compositional, extending the system
only requires adding cases for the new operators. We are also
exploring new alternatives for tuning annotation files.

There are also several areas where we would like to focus our
efforts in the future. The first area is query rewritings. In most
systems, rewritings are used to make query evaluation go fast.
In view maintenance systems, the total cost of maintaining the
view often far outweighs the initial cost of evaluating the query.
We plan to explore query rewritings motivated with maintainabil-

ity in mind. Second, our system currently only handles first-order
queries; it would be interesting to investigate maintenance for re-
cursive XQuery views. Third, we would like to explore extending
our update language to carry metadata describing the values they
apply to. For example, a node update could carry the name of the
node that it applies to. This would simplify the maintenance of nav-
igation operators, since the symbolic interpretation of a navigation
step could be performed without fewer annotations (although prop-
agating this metadata also complicates other rules.) A related idea
is to investigate applications of provenance metadata to view main-
tenance [13, 10]. Fourth, we would like to optimize the queries that
our update translator produces. Our update translator often pro-
duces queries of the form p[], which access the ith item from a
sequence in the source (e.g., in Map), but the current implementa-
tion does not exploit this fact to streamline access to the source.

9. Conclusions

We have described a view maintenance system for XQuery. The
system translates source updates through queries expressed as al-
gebraic operators using auxiliary data as needed to guide the trans-
lation. Our approach is fully compositional and therefore easily ex-
tensible to new operators. Moreover, the amount of auxiliary data
can be tuned by users. We have implemented a prototype and run
experiments to confirm that our approach outperforms naive main-
tenance on simple examples.

Acknowledgements The authors wish to thank the anonymous
referees and Dimitrios Vytiniotis for many helpful comments. This
work was performed during Nathan Foster’s summer internship.

References

[1] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and
J. Siméon. XQuery 1.0: An XML Query Language. W3C, Jan. 2007.
Available from http://www.w3.org/TR/xquery.

[2

—

P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and
J. Teubner. MonetDB/XQuery: A Fast XQuery Processor Powered
by a Relational Engine. In SIGMOD Conference, Chicago, IL, USA,
June 2006.

D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility.
W3C, July 2006. Available from http://www.w3.org/TR/
xqupdate.

J. Clark and S. DeRose. XML Path Language (XPath). W3C, Nov.
1999. Available from http://www.w3.org/TR/xpath/.

L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey.
Algorithms for deferred view maintenance. In SIGMOD Conference,
pages 469480, 1996.

K. Dimitrova, M. El-Sayed, and E. A. Rundensteiner. Order-sensitive
view maintenance of materialized xquery views. In International
Conference on Conceptual Modeling (ER), Chicago, IL, volume 2813
of Lecture Notes in Computer Science, pages 144—157. Springer,
2003.

D. Draper, P. Fankhauser, M. F. Fernandez, A. Malhotra, K. Rose,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3C, Jan. 2007.

M. El-Sayed, L. Wang, L. Ding, and E. A. Rundensteiner. An
algebraic approach for incremental maintenance of materialized
XQuery views. In International Workshop on Web Information and
Data Management (WIDM), McLean, VA, pages 88-91, 2002.

M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh.
XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C, Jan. 2007.
Available from http://www.w3.org/TR/xpath-datamodel.

,_
(98]
—_

[4

[l

[5

=

[6

—

[7

—

[8

[9

[10] J. N. Foster and G. Karvounarakis. Provenance and data synchroniza-
tion. IEEE Data Engineering Bulletin, Dec. 2007. Invited paper for
special issue on provenance. To appear after revision.

[11] G. Ghelli, N. Onose, K. H. Rose, and J. Siméon. A Better
Semantics for XQuery with Side-Effects. In Workshop on Database
Programming Languages (DBPL), Vienna, Austria, volume 4797 of
Lecture Notes in Computer Science, pages 81-96. Springer, Aug.
2007.

[12] G. Ghelli, C. Re, and J. Siméon. XQuery!: An XML Query Language
with Side Effects. In Workshop on Database Technologies for
Handling XML Information on the Web (DataX), Munich, Germany,
volume 4254 of Lecture Notes in Computer Science, pages 178—191.
Springer, Mar. 2006.

[13] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update
exchange with mappings and provenance. 2007.

[14] T. Griffin and L. Libkin. Incremental maintenance of views with
duplicates. In SIGMOD Conference, pages 328-339, 1995.

[15] T. Griffin, L. Libkin, and H. Trickey. An improved algorithm for
the incremental recomputation of active relational expressions. IEEE
Transactions on Knowledge and Data Engineering, 9(3):508-511,
1997.

[16] A. Gupta and I. S. Mumick. Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Engineering
Bulletin, 18(2):3-18, 1995.

[17] A. Gupta and I. S. Mumick, editors. Materialized views: Techniques,
Implementations, and Applications. MIT Press, Cambridge, MA,
USA, 1999.

[18] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In SIGMOD Conference, pages 157-166, 1993.

[19] H. Liefke and S. B. Davidson. View maintenance for hierarchical
semistructured data. In International Conference on Data Warehous-
ing and Knowledge Discovery (DaWaK), London, UK, volume 1874
of Lecture Notes in Computer Science, pages 114-125. Springer,
2000.

[20] M. Onizuka, F. Y. Chan, R. Michigami, and T. Honishi. Incremental
maintenance for materialized XPath/XSLT views. In International
World Wide Web Conference (WWW), Chiba, Japan, pages 671-681.
ACM, 2005.

[21] X. Qian and G. Wiederhold. Incremental recomputation of active
relational expressions. IEEE Transactions on Knowledge and Data
Engineering, 3(3):337-341, 1991.

[22] C. Re, J. Siméon, and M. F. Fernandez. A Complete and Efficient
Algebraic Compiler for XQuery. In International Conference on
Data Engineering (ICDE), Atlanta, GA, page 14. IEEE Computer
Society, 2006.

[23] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan.
Incremental maintenance of path expression views. In International
Conference on Management of Data (SIGMOD), Baltimore, MD,
pages 443-454. ACM, 2005.

[24] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and
R. Busse. XMark: A Benchmark for XML Data Management. In
International Conference on Very Large Data Bases (VLDB), Hong
Kong, China, pages 974-985. Morgan Kaufmann, 2002.

[25] D. Suciu. Query decomposition and view maintenance for query
languages for unstructured data. In International Conference on Very
Large Data Bases (VLDB), Mumbai, India, pages 227-238. Morgan
Kaufmann, Sept. 1996.

[26] L. Villard and N. Layaida. An incremental XSLT transformation
processor for XML document manipulation. In International World
Wide Web Conference (WWW), Honolulu, HI, pages 474-485. ACM,
2002.

[27] Y. Zhuge and H. Garcia-Molina. Graph structured views and their
incremental maintenance. In International Conference on Data
Engineering (ICDE), Orlando, FL, pages 116-125. IEEE Computer
Society, 1998.

A. XQuery Algebra Typing

XQuery types are as follows:

t u=tt |t (types)

xt = {tt} | Item (data model types)
roou=x1 i thy .. Tty (tuple types)

tt = {at} | [r] (table types)

A type t either describes a set of data model values (¢t) or tables
(zt). A data model type it describes a set of sequences ({¢t}) or
items ([tem). For simplicity, we do not distinguish between the
various sorts of items (elements, attributes, text nodes, etc.). Table
types describe tables ({xzt})—i.e., ordered sequences of tuples—
or individual tuples ([r]). Tuple types are written as finite lists of
pairs of field names x; and data model types t¢; and describe tuples
that have a field x; that leads to a value belonging to ¢t; for every
i. The fields mentioned in a tuple type must have distinct field
names; when there are repeated names, the type is undefined. Tuple
types are equivalent up to reordering of fields. We write [ri;72]
for the tuple type with the union of fields from [ri] and [r2] (it is
undefined if the intersection of the set of field names in [ri] and
[r2] is non-empty). Finally, the type constructor for sequences and
tables is idempotent: i.e., for every type ¢ the types {{¢}} and {¢}
are equivalent. The typing relation for the XQuery algebra is given
by the following set of inference rules.

ID:t—t Empty() : t — Item
p1:t — {Item} pi : t — {Item}
Elem[gn](p1) : t — {Item} Seq(p1,p2) : t — {Item}

p1:t — {Item}
TreeJoin[s|(p1) : t — {Item}

p1:t — {Item} poit—t psit—t
f(p1){p2,ps} : t — '

#; 0 [x1: b .. xk s TEk] — s pr:t— tt

#x; it — t [z:p1] it — [z tt]

p2 it — {t2} p1:te — {t1}
Map{p1}(p2) : t — {t:}

p2:t —A{[r2]} p1:fre] = {[m]}
MapConcat{p1 }(p2) : t — {[r2; 1]}

p2:t—A{[r]} pi:[r] — {ltem}
Select{p1}(p2) : t — {[r]}

pi it — {[ri]}
Product(p1,p2) : t — {[r1;72]}

