
An Algebraic Approach to
XQuery View Maintenance

J. Nathan Foster (Penn)
Ravi Konuru (IBM)

Jérôme Siméon (IBM)
Lionel Villard (IBM)

PLAN-X ’08

Source ViewQuery

Source
Update

View
Update

Update
Translation

Quick!
1 + 2 + · · · + 99 + 100 = ???

1 + 2 + · · · + 99 + 100
= (1 + 100) + (2 + 99) + . . . (50 + 51)
= 101× 50
= 5050

Rewritings like this are
often used to optimize
the initial evaluation of a
query.

But sometimes we want
to maintain a view over a
source that changes over
time.

Introduction

1 + 2 + · · ·+ 99 + 100
= (1 + 100) + (2 + 99) + . . . (50 + 51)
= 101× 50
= 5050

Rewritings like this are often used to optimize the
initial evaluation of a query.

But sometimes we want to maintain a view over a
source that changes over time.

Introduction

1 + 2 + · · ·+ 99 + 100
= (1 + 100) + (2 + 99) + . . . (50 + 51)
= 101× 50
= 5050

Rewritings like this are often used to optimize the
initial evaluation of a query.

But sometimes we want to maintain a view over a
source that changes over time.

View Maintenance

(1+2+· · ·+99+100)

−50

= 5050

−50

View Maintenance

(1+2+· · ·+99+100)−50 = 5050−50

View Maintenance

Source ViewQuery

View Maintenance

Source ViewQuery

Source
Update

View Maintenance

Source ViewQuery

Source
Update

View
Update

Update
Translation

View Maintenance

Source ViewQuery

Source
Update

View
Update

Update
Translation

View Maintenance

Source ViewQuery

Source
Update

View
Update

Update
Translation

This talk: maintenance of views defined in XQuery.

Why Maintain?

Sometimes source is very large compared to the view:

I e.g., web page for a single item on eBay.

Source

ViewQuery

Many source updates are irrelevant to the view.

Why Maintain?

Sometimes view and source reside on different hosts:

I e.g., in an AJAX-style web application.

Source ViewQuery

Source
Update

View
Update

Update
Translation

Cheaper to send an update than the whole view.

XQuery: Surface Syntax

XQuery: W3C-recommended query language

I XPath for navigation.

I FLWOR-blocks for iterating, pruning, grouping.

XQuery: Surface Syntax

XQuery: W3C-recommended query language

I XPath for navigation.

I FLWOR-blocks for iterating, pruning, grouping.

Example: simple join

for $x in $d/self::a/text(),
$y in $d/self::b/text()

where $x = $y
return <c>{ $x }</c>

<a>1</><a>2</><a>3</>
2</>3</>4</>

<c>2</><c>3</>

XQuery: Surface Syntax

XQuery: W3C-recommended query language

I XPath for navigation.

I FLWOR-blocks for iterating, pruning, grouping.

Example: simple join

for $x in $d/self::a/text(),
$y in $d/self::b/text()

where $x = $y
return <c>{ $x }</c>

<a>1</><a>2</><a>3</>
2</>3</>4</>

<c>2</><c>3</>

XQuery surface syntax is quite complex...

XQuery: Engine Architecture

Parser NormalizerAST Type
CheckerCore

Query
Compiler

Annotated
Core

Optimizer Algebraic
Plan

Code
Selection

Optimized
Algebraic

Plan

Engine

Physical
Plan

XQuery
Program

Galax

XML

XQuery: Compilation

for $x in $d/self::a/text(),
$y in $d/self::b/text()

where $x = $y
return <c>{ $x }</c>

Map{Elem[c](#x)}

(Select {eq(#x,#y) }
(Product

(Map{[x : ID]} (TreeJoin[self ::a/text()](#d)),
(Map{[y : ID]} (TreeJoin[self ::b/text()](#d)))))

XQuery Algebra: Advantages

Simpler than surface syntax:

I FLWOR blocks broken down into simple operators.

I Variables translated into tuple operations;

Compositional semantics:

I Facilitates straightforward, inductive proof of correctness;

I Easily extended to new operators and built-in functions.

Exposes fundamental issues:

I Constants, tree constructors, and maps simple;

I Navigation, grouping, and selecting challenging.

Connects to previous work on view maintenance:

I Relations and bags.

I Complex values.

XQuery Algebra Syntax

p ::= ID (identity)
| Empty() (empty sequence)
| Elem[qn](p1) (element)
| Seq(p1, p2) (sequence)
| If(p1){p2, p3} (conditional)
| TreeJoin[s](p1) (navigation)
| #x (tuple access)
| [x : p1] (tuple construction)
| Map{p1}(p2) (dependent map)
| MapConcat{p1}(p2) (concatenating map)
| Select{p1}(p2) (selection)
| Product(p1, p2) (product)

s ::= ax ::nt (navigation step)

Update Language Syntax

Atomic updates + forms for nodes, tuples, sequences, tables.

u ::= UNop (no op)
| UDel (deletion)
| UIns(p) (insertion)
| URepl(p) (replacement)
| UNode(qno, u) (node update)
| USeq(ul) (sequence update)
| UTup(um) (tuple update)
| UTab(ul) (table update)

qno ::= None | Some qn (optional name)
ul ::= [] | (i , u)::ul (update list)

um ::= {} | {x 7→ u}++um (update map)

Can express effect of any update to an XML value.

Update Translation

Source ViewQuery

Source
Update

View
Update

Update
Translation

Strategy: propagate an update u from bottom to top through

the operators in an algebraic query p: u
p
 u′.

Update Translation: Easy Operators

The first few cases are easy:

I If p = ID

then u
p
 u.

I If p = Empty()

then u
p
 UNop.

I If p = Elem[qn](p1) and u
p1 u1

then u
p
 UNode(None, u1).

Update Translation: Conditional

But other algebraic operators compute, and then discard,
intermediate views.

p1 : t → {Item} p2, p3 : t → t ′

If(p1){p2, p3} : t → t ′

Intermediate view: sequence computed by p1.

If u
p1 u1 then...

To finish the job, need to know:

I which of the branches (p2 or p3) was selected

I and whether the u1 affects that choice!

Update Translation: Annotations

We could cache every intermediate view, but this would
require a lot of redundant storage...

...so instead, we use a sparse annotation scheme that records:

I n the length of the sequence computed by p1,

I x1 the annotation for p1,

I xb the annotation for the selected branch.

To finish the job, let u
p1 u1. Then use a conservative analysis

to test if u1 changes branch selected.

I If “no”, then u
p
 u′, where u

pb u′.

I If “yes”, then u
p
 URepl(pb).

I If “maybe”, then u
p
 URepl(p).

Update Translation: Annotations

We could cache every intermediate view, but this would
require a lot of redundant storage...

...so instead, we use a sparse annotation scheme that records:

I n the length of the sequence computed by p1,

I x1 the annotation for p1,

I xb the annotation for the selected branch.

To finish the job, let u
p1 u1. Then use a conservative analysis

to test if u1 changes branch selected.

I If “no”, then u
p
 u′, where u

pb u′.

I If “yes”, then u
p
 URepl(pb).

I If “maybe”, then u
p
 URepl(p).

Update Translation: Sequences

A similar issue comes up with operators that merge sequences
of values.

p1, p2 : t → {t ′}
Seq(p1, p2) : t → {t ′}

If u
p1 u1 and u

p2 u2 then...

To finish the job, need to know how to merge u1 and u2 into
an update that applies to the concatenated sequence.

We use an annotation that records the lengths of the
sequences computed by p1 and p2.

Update Translation: Other Operators

Annotations record:

I XPath Navigation: paths to nodes in the view.

I Maps: lengths of sequences produced for each iteration.

I Tuple Operators: lengths of sequences

I Relational Operators: “fingerprint” and lengths of
sequences of tuples.

See paper for many fiddly details...

Prototype

Built on top of the Galax XQuery engine.

2,500 lines of OCaml code

I Update Compiler: translates update language into
XQuery! algebraic plans.

I Query Instrumentor: translates queries into instrumented
plans that compute annotation files.

I Update Translator: takes as inputs a source update, a
query, and an annotation, and calculates a view update.

Currently handles a core set of operators and built-in functions
expressive enough to handle some simple XMark benchmarks;
falls back to recomputation as needed.

Final Architecture

Update
Translator

Annotation

Instrumented
Plan

Annotation
Update

Source ViewQuery

Source
Update

View
Update

Experiments: Running Time (XMark Q1)

0 5 10 15 20 25 30
Source Size (MB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Ru

nn
in

g
Ti

m
e

(s
ec

)

Recompute
Translate

XMark Q1

Experiments: Running Time (XMark Q5a)

0 5 10 15 20 25 30
Source Size (MB)

0

1

2

3

4

5
Ru

nn
in

g
Ti

m
e

(s
ec

)
Recompute
Translate

XMark Q5a

Experiments: Running Time (XMark Q5b)

0 2 4 6 8 10 12
Source Size (MB)

0

1

2

3

4
Ru

nn
in

g
Ti

m
e

(s
ec

)
Recompute
Translate

XMark Q5b

Experiments: Running Time (XMark Q5b)

0 5 10 15 20 25 30
Source Size (MB)

0

2

4

6

8

10

12

14

Ru
nn

in
g

Ti
m

e
(s

ec
)

Recompute
Translate

XMark Q5b

Related Work

[Libkin + Griffin ’96]: Relations and bags. Championed
algebraic approach, notion of “minimal” updates.

[Zhuge + Garcia-Molina ’97]: Graph-structured views. Early
use of annotations.

[Liefke + Davidson ’00]: Maintenance for simple queries over
semi-structured data satisfying nice “distributive” properties.

[Sawires et. al. ’05]: Maintenance for XPath views. Size of
annotations only depends on the view–not the source.

[Rudensteiner et.al.’02-05]: Closest work to ours.

I Operates on XAT tree algebra; uses auxiliary data.

I Uses node identities to handle ordering.

Summary

Developed a maintenance system for XQuery views over XML.

Based on a compositional translation of simple updates
through algebraic operators.

Uses annotations to guide update translation.

Prototype implemented on top of Galax.

Experimental results validate approach.

Future Work

Add support for complete set of algebraic operators, built-in
functions. (Simple, since operators are fully compositional.)

Investigate maintenance of recursive queries.

Explore query rewritings motivated by maintainability.

Harness type information to reduce annotations, guide
translation.

Measure effect of varying annotations on practical examples.

Hybrid approach using provenance metadata.

Thank you!

