Rupiah: Towards an Expressive Static Type System for Java

by

John N. Foster

A Thesis
Submitted in partial fulfillment of
of the requirements for the Degree of Bachelor of Arts with Honors
in Computer Science

WILLIAMS COLLEGE
Williamstown, Massachusetts
May 20, 2001

Abstract

Despite Java’s popularity, several practical limitations imposed by the language’s type sys-
tem have become increasingly apparent in recent years. A particularly glaring omission is
the lack of a generic mechanism. As a result of this shortcoming, many recent projects
have extended Java to support polymorphism in the style of C4++ templates or Ada gener-
ics. Ome project, GJ [BOSWO98], adds F-bounded parametric polymorphism [CCH'89] to
Java via a homogeneous translation (such that only one class file results from each com-
piled source file), and produces bytecode that is compatible with the standard Java Virtual
Machine. However while GJ’s simple translation based on erasure allows for maximum
interaction with existing Java code, the new parameterized types that it supports do not
operate consistently with Java’s semantics for lightweight reflection (i.e., checked type-casts
and instanceof operations).

We present Rupiah, a language based on features adapted from LOOM [BFP97], a
provably type-safe language, and implemented by a translation based on GJ. However its
translation differs from GJ’s in that it harnesses Java’s built-in reflection to store infor-
mation about parameterized types. The resulting bytecode correctly executes checked cast
and instanceof expressions because it has access to the necessary type information at
run-time. We also add a ThisType construct, which solves many of the problems that arise
when binary methods are mixed with inheritance, and we replace subtyping with a different
relation, matching. Finally, we add exact types, an inheritable virtual constructor mech-
anism: ThisClass, and compiler features to allow separate compilation of Rupiah source
files. These features are implemented in a modified javac compiler. Bytecode emitted by
our compiler runs on any Java 1.2 VM. Thus, the Rupiah project contributes a complete
implementation of an extension of Java with a more expressive type system that maintains
a close fit with existing Java semantics and philosophies.

Acknowledgements

This thesis would have been impossible to complete without the guidance of one person.
It’s hard to imagine an advisor with a better mix of knowledge, encouragement, and patience
than Kim Bruce. Thank you Kim for pushing me to take on this project and for having the
patience to help me through it.

This work directly builds on the efforts of Jon Burstein. His research tackled a large
portion of the challenges of specifying and implementing Rupiah. Every day that I worked
on this project, I benefited from Jon’s previous efforts.

I also would like to thank Tom Murtagh who as my second reader provided invaluable
advice and insights along the way. I'd like to thank Jay Sachs for teaching such an excellent
course in the spring of 1999 that first got me interested in programming languages. Also
thank you to Barbara Lerner, Williams’ resident object-oriented design guru, for helping me
to work through some difficult program designs as well as volunteering (!) to read drafts.

Thanks to everyone who made the many long days and nights in Schow and the UNIX
lab fun, especially Art Munson 01, Jesse Davis '02, Chris Kelley 03, Shimon Rura ’03,
Sean Sandys ’94, and Duane and Mary Bailey.

Finally, thank you to my friends and family for their continued love and support. Es-
pecially thanks to my parents in Ann Arbor, Phil and Sharon, and in Seattle, Kent and
Susanne, as well as my sisters: Clare, Mollie, and Ella. Lastly, thanks to my close friends
for putting up with me this year: especially Cristie, Abhaya, Alex, Daren, John, JJ, Krzys,
Lynn, Pete, and Xavi.

Contents

Introduction
1.1 Type Systems in Programming Languages
1.2 Problems With Type Systems
1.3 Type System issues in Object-Oriented Languages
1.4 Imitial Goals L
1.5 Acknowledgements
1.6 Thesis Overview e
Motivations
2.1 Genericityo
2.2 Adding Genericity with Parametric Polymorphism
2.2.1 Parametric Polymorphism Syntax and Semantics
2.2.2 Parametric Polymorphism Summary
2.3 Binary Methods L
2.4 Adding ThisType to support Binary Methods
2.4.1 Matching e
2.5 Exact Types. o o o e
Other Extensions of Java
3.1 Pizza and GJ: Exploring Translations to Bytecode
3.1.1 Heterogeneous Translation
3.1.2 Homogeneous Translation
3.1.3 Bridge Methods
3.1.4 Retrofitting in GJ
3.1.5 Problems with GJ
3.2 NextGen: Hybrid Translation
3.3 Other Proposals e
3.4 Evaluating Proposals
3.5 Revised Goals e

ii

L O i W W = =

11
11
14
14
17
18
21

CONTENTS

4 Introduction to Rupiah

4.1

4.2

4.3

4.4
4.5

Run-time Support For Parameterized Types
4.1.1 instanceof Expressions o oL
4.1.2 Type Conversion Expressions
Exact Types. o o
4.2.1 instanceof with Exact Types
4.2.2 Type Conversion Expressions with Exact Types.
ThisType e e
4.3.1 Type Erasure and Exact Interface Types.
4.3.2 Run-Time Support for ThisType
4.3.3 Type Conversion Expressions
Array Typesin Rupiah L
LM: Increasing Homogeneous Translation Efficiency
4.5.1 Evaluating LM Lo

5 New Language Features

5.1

5.2

5.3

Complete Parametric Polymorphism
5.1.1 Motivation: Complete Parametric Polymorphism
5.1.2 Implementation: Complete Parametric Polymorphism
ThisClass Constructors
5.2.1 Motivation: ThisClass Constructors
5.2.2 Implementation: ThisClass Constructors
Type-caching Class Files
5.3.1 Motivation: Type-caching Class Files
5.3.2 Implementation: Type-caching Class Files

6 Proposal Evaluations

6.1
6.2

6.3

Evaluation Criteria L Lo
Language Comparisons o e

6.2.1 GJ . .
6.2.2 NextGen o s,
6.2.3 Rupiah

Overall Evaluation e
6.3.1 Sun Microsystems Proposal

7 Future Work

7.1
7.2
7.3
7.4

The Array Problem
Efficiency Issues. o
All Roads Lead tothe JVM
Miscellaneous Features

iii

41
41
42
48
49
ol
54
o4
54
61
64
64
65
67

68
68
68
72
76
76
80
85
85
89

91
91
94
94
96
96
97
98

CONTENTS

75 Wrapup

A Rupiah Grammar

A.1 Generic Types
A.2 Polymorphic Methods
A.3 Constructors

B Sample Rupiah Programs

B.1 Lists in Rupiah
B.2 An Extensible Interpreter . . .

C Array Proposal

C.1 Proposed Solution
C.2 instanceof expressions
C.3 Arrays as instantiations
C.4 Multi-dimensional arrays

C.5 Static Array Initializer Expressions

C6 TypeRules

C.7 Evaluating the Array Proposal

D Compiler Information

v

102

106
106
107
108

109
109
114

119
119
123
123
126
128
129
130

131

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Separate list for String L oL
Separate list for Integer L L oL
List with element type Object
Removing elements from List defined in Figure 2.3
List<T> using parametric polymorphism
Adding bounds to type parameters
Definition of Db1Node<T> oot i
Defining Db1Node<T>’s setNext method
Linked-list nodes using ThisType
Generic List<T, N> o o e e
Homogeneous list nodes
Homogeneous List<T,N> i

Erasure examples
OrderedList<T, N> definition
GJ translation of List<T, N>
GJ translation of OrderedList<T, N> o v v v v v v .
Retrofitting Vector in GJ L
NextGen translation of Vector<T>

Java definition of PolyClass
Adding type parameter arguments to constructors
Initializing PolyClass objects for constructor calls to List<T>
Adding $instance0f$ methods to classes
PolyClass.$instance0f$ method L.
instanceof translation for polymorphic types.
Relationship between instanceof and explicit cast expressions
Validity checks for casts in Rupiah
instanceof translations for exact class types

10
11
12
13
16
16
19
20
22
23

LIST OF FIGURES vi

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

6.1

C.1
C.2
C.3
C4
C.5
C.6
C.7
C.8

Revised PolyClass.$instance0f$ method for exact class types. 52
PolyClass.hasExImp method 53
Final revision of PolyClass $instance0f$ method for exact interface types 55
Checking instanceof with an exact interface 56
Translation of casts to exact types 57
Synthesizing exact interfaces, adding casts to the translation for ThisType . 59
Method binding problems with ThisType 60
Synthesized $instance0f$ThisType methods in classes 62
Translating instanceof ThisType in a class with type parameters 63
Casts involving ThisType 64
Complex List<T> Usage v v v vt e e e e e e 66
ListEnumeration definition for List<T> 70
ListMapEnumeration<U> definition for List<T>. 71
A map method for List<T> 73
Unsafe covariant bound change 75
Illegal List<T, N> e e e 77
Illegal assignment to ThisType 78
ThisClass constructor for Node<T> 79
ThisClass constructor for Node<T> 80
Type-safe List<T, N> definition 81
T$$ThisClass method Lo 84
this$$ThisClass constructor method 86
Rupiah source for List<T> 87
Rupiah translation of List<T> 88
Rupiah Signature attribute L L. 90
Comparing Language Features, 95
Definition of RupiahArray Lo 120
Initializing $$ThisType fieldsinaclass. 122
Translation of instanceof for Rupiah arrays 123
Translation of casts for Rupiah arrays 124
Translation of instanceof T[] 124
Translation of instanceof ThisTypel]l 125
RupiahArray makeArrayClass method 126
RupiahArray multiArray method 127

Chapter 1

Introduction

gramming itself is still often an error-prone task. Over time, issues of safety and

confidence in the correctness of programs have become more important to pro-
grammers. Typed languages come with a guarantee that certain type errors will not occur in
legal programs. For example, in an object-oriented language, a type system can guarantee
that a type-checked method call will never fail because the method is not defined. In this
thesis, we identify some limitations in the type system of the Java' programming language
[GJS96]. We propose several new type abstractions that address these problems and allow
for a greater degree of protection for programmers. The incorporation of these new features
allows early detection of errors for more programs, and greater safety for programmers.

While programming languages have evolved towards higher-level languages, pro-

1.1 Type Systems in Programming Languages

Programming language designers develop type systems to protect and aid programmers.
Over time, programmers have embraced high-level languages that contain stronger and
more expressive type systems because of the advantages they provide. Additional structure
beyond the syntax of a language allows a higher degree of confidence in the correctness
of a program written in the language. Most modern programming languages are strongly
typed, meaning that every expression in the language has a type that is checked by the type
checker. Many are also statically typed, meaning that the type checking happens at compile
time. Alternatively, a strongly typed language may be dynamically typed, meaning the type
checking happens when programs are run. In this thesis, we are primarily concerned with

!Java is a trademark of Sun Microsystems.

CHAPTER 1. INTRODUCTION 2

statically typed languages.

Static type systems are useful because they alert the programmer at an early stage in
the development cycle to the possibility of undesirable behavior in a program. For example,
in object-oriented languages we would like to have the guarantee that a method call, if type
checked, can always be safely invoked at run-time. Instance methods are always invoked on
objects so we must ensure that the method is defined for each object that it is called on.
A type system can provide such a guarantee. For example, consider the following method
(written in Java syntax):

public static Integer add(Integer il, Integer i2) {
int ilval il.intValue();
int i2val = i2.intValue();
return new Integer(ilval + i2val);

}

This method adds the numeric values of two Integer objects, and returns an Integer
object that contains their sum. Inside the body of this method, we invoke the method
intValue() on both arguments. Therefore, we would like to be sure that these methods
can actually be called on the actual parameters at run-time.

In a language with no type system, we could ignore the declared argument types and
call add with any two objects as arguments. For example, we could invoke add with one
parameter of type Integer and one of type String as follows:

add(new Integer(1l), ‘‘foo’’);

However, in executing that invocation, an error occurs in the body of add when we try to
invoke the method intValue() on ¢ ‘foo’’ because the intValue() method is undefined
for objects of type String. Thus, an error occurs in the program at run-time.

In contrast, a language with a type system can ensure that any object passed to add will
have an intValue() method defined. The error illustrated above does not occur because
the type system does not allow a String to be passed as the second argument to ¢ ‘foo’’. A
type system therefore protects the programmer from running a program with such undesired
effects. It provides a guarantee that any program accepted by the type system will not suffer
from certain catastrophic blowups.

Static type systems provide a strong assurance of protection for the programmer because
type checking happens at compile time. Because the type checking is done before the
program is run, errors are detected earlier rather than later. More importantly, a program
can only be compiled if it is a legal program according to the type-checking rules. In order to
implement a static type system, the compiler includes a type checking phase that analyzes
each statement in a source program and emits an error if the statement is not type safe
according to the information available to the compiler.

CHAPTER 1. INTRODUCTION 3

As noted earlier, an alternative to a static type system is a dynamic one. In a language
with dynamic type checking, statements are not checked at compile time, but instead as they
execute. A statement which fails to pass the type checker results in a run-time exception.
Dynamic type systems provide a different kind of type safety because errors may not become
evident until long after compilation.

1.2 Problems With Type Systems

The evolution of strong yet expressive type systems for programming languages has not
proceeded without difficulty. Type systems are restrictive by design; a type system disallows
programs that would otherwise be accepted by the grammar of the language. Thus a
programming language that includes a type system has fewer legal programs than the
language generated by the grammar alone. An optimal type system for a language is
one that only makes erroneous programs illegal yet still provides a very strong guarantee
of safety for the programs it accepts. The expressiveness of a type system characterizes
the degree to which abstract concepts can be represented within the bounds of the system.
Usually, increasing the expressiveness of a type system, by making it capable of representing
more complex concepts, increases the number of useful programs that are legal.

Often type systems are flawed because they are too weak or too rigid, or simply not
expressive enough to write many useful programs. Pascal is a language with an inflexible
type system. Because Pascal’s type system is very strong, it provides a strong measure
of confidence in the programs that it accepts. However, Pascal’s type system is not very
expressive. Many useful programs are impossible to write because the type system is so
rigid.

The C and C™" programming languages have more flexible type systems than Pascal
because they allow the programmer to override a declared type by inserting a cast. Still,
the static type systems of C and CT* are not expressive enough, frequently forcing the
programmer to circumvent the type system with type casts. Thus while they have strong,
static type systems, C' and C" do little in practice to protect programmers. Any practical
benefit gained from the presence of a type system is negated by the fact that in most
programs, the system must be circumvented.

1.3 Type System issues in Object-Oriented Languages

Object-oriented languages have experienced great success in recent history. One of the
reasons for their success is the increased potential for code reuse in the object-oriented
paradigm. Java [GJS96] improves on other popular languages such as C** by incorporat-
ing concepts such as automatic memory management via garbage collection, cross-platform
compatibility, and a powerful security model for programs distributed over networks. How-

CHAPTER 1. INTRODUCTION 4

ever, like many object-oriented languages, Java’s type system suffers from many problems
that have been solved in traditional imperative and functional languages languages. Object-
oriented languages have been slow in general, to adopt recent advances such as polymor-
phism and static error detection [Car96]. We identify two main weaknesses in Java as
particularly troublesome: lack of a generic mechanism and problems with binary methods,
both described in detail in Chapter 2.

1.4 Initial Goals

The top-level goal of the Rupiah project is to increase the expressiveness of Java’s type
system. Our hope is that with a more expressive type system, many more programs can be
written safely within the bounds of the static type system. Thus, we present a preliminary
set of goals for this thesis. Not all of these properties are simultaneously achievable, instead
this list provides a set of optimal properties of our language. A more detailed set of goals
are described in Section 3.5.

e New Expressive Features: We wish to add features to significantly increase the ex-
pressiveness of Java. These include: parametric polymorphism (Section 2.2), ThisType
(Section 2.4), and ThisClass constructors (Section 5.2).

e Java Compatibility: Any existing Java source programs should be legal Rupiah
programs. Compiled Rupiah class files should execute on the existing Java virtual
machine (JVM). Also, existing compiled classes should be usable by Rupiah classes.

e Transparent Translation: The design of the language should be completely inde-
pendent of the translation to bytecode. That is, the programmer should not be aware
of the translation when writing Rupiah programs.

e Run-Time Types, Reflection: Type expressions in the bytecode generated by the
Rupiah compiler should operate correctly in Java’s introspective operations. These
include:

— instanceof expressions
— cast, expressions
— new array expressions

— Java’s reflection API.

e Reasonable Efficiency: Our implementation should have the property that stan-
dard Java programs compiled with our compiler are as efficient as if they were compiled
with javac. Secondly, the extra performance and space requirements for programs
that use new features should be minimal (some discussion of what is reasonable is
given in Section 3.5).

CHAPTER 1. INTRODUCTION)

1.5 Acknowledgements

Many of the ideas presented in this thesis are adapted from the work of others. A series
of languages developed at Williams College under Kim Bruce: TOOPLE[Bru93], TOIL
[BvG93], PolyTOIL [BSvG95], and LOOM [BFP97] provided the concepts for many
of the type system features we propose adding to Java. A paper by Bruce [Bru97] first
proposed adding match-bounded parametric polymorphism, ThisType, and exact types to
the language. These features were the subject of an honors thesis by Jon Burstein ’98
[Bur98] and most of them were implemented in a compiler. Thus, this work directly builds
on the results of several preceding languages and projects.

1.6 Thesis Overview

The first section of this thesis provides some background, introduction, and motivations for
the new features included in Rupiah. Chapter 2 describes some type problems with object-
oriented programming languages, including Java. The two main problems are the lack of a
generic mechanism, and problems with binary methods. It also proposes some solutions to
those problems: parametric polymorphism, and ThisType respectively. Chapter 3 describes
some other extensions of Java that have explored various ways to translated advanced type
system features to Java bytecode. We primarily look at GJ [BOSW98] and NextGen [CS98].

The second section describes Rupiah. Chapter 4 gives a detailed look at the imple-
mentation of core Rupiah features: parametric polymorphism, ThisType, and exact types.
Chapter 5 describes the new features that we add in this thesis: polymorphic methods
and inner-classes, a ThisClass constructor, and bytecode attributes to support separate
compilation.

The final section begins with Chapter 6 which compares and evaluates the various pro-
posals for adding new type system features to Java. We consider both the expressiveness
gained from these features, and the implementation of each language. Chapter 7 describes
some ideas for future work in the Rupiah project. In the appendices, we give a grammar for
Rupiah, some sample programs implemented in Rupiah, and some practical details about
the Rupiah compiler.

Chapter 2

Motivations

Rupiah. Firstly, the lack of a generic mechanism in Java makes many programs

difficult to write within the static type system. Secondly, binary methods — meth-
ods that take a parameter of the same type as the object that they are invoked on — cause
problems in languages with inheritance. We describe these problems using a list data struc-
ture as an example and propose type-system solutions to them: parametric polymorphism,
ThisType, and exact types.

H ere we describe two problems in Java that have motivated the development of

2.1 Genericity

Java’s type system’s most oft-cited weakness is the lack of a generic mechanism. Generic
types are an important language feature, especially for programming certain structures
known as container classes. A container class is a structure such as a list, stack, or queue
that holds collections of values in an organized way. The difficulty of writing container
classes in Java stems from the fact the language lacks a mechanism to write code where the
types of objects stored in the container are abstracted.

Suppose that we wish to hold some integers and strings in separate list-like structures
in a Java program. For our example, we’ll consider a list to be a structure that supports
the following four operations:

e new List() — initializes an empty list

e add(data) — adds data to the beginning of the list

CHAPTER 2. MOTIVATIONS 7

e remove () — removes the first element of the list and returns it. If the list is empty,
throw an exception.

e empty() — returns true if the list is empty, false otherwise.

A standard way to implement this kind of list is to construct it out of list nodes. A list
node is a simple structure that contains fields representing the data stored in that node and
a link to the next node in the list.

A naive approach to the problem is to write two distinct classes: one a list of integers,
and one a list of strings as shown in Figures 2.1 and 2.2. This solution satisfies the bare
requirements of the problem, but is less than ideal because it requires duplication of code.
The source definitions and programming logic for each are identical except for the instances
of String and Integer. One could create the IntegerList class from the StringList class
definition simply by doing a manual replacement of String with Integer and IntegerList
with StringList. This needless duplication of code is undesirable both for the increased
initial effort and much greater cost of maintaining the code. Further, future code-reuse is
severely hindered with this approach.

Another way to solve the problem is to write a more generic List that can hold any
data type we might need to store. This technique for programming container classes holds
objects of the most generic type that the language supports. In C or C*, this corresponds
to list elements of type *void, in Java the element types are Object. An example using
this technique is shown in Figure 2.3. This implementation of List takes advantage of
subtype polymorphism — a feature common to most object-oriented languages. Subtype
polymorphism in Java simply means that an object may be assigned to, or used as a formal
parameter whose declared type is a supertype.! In our List example, by declaring the
storage type as Object, we allow any object type to be stored in the list, as all objects in
Java are subtypes of Object.

This technique seems to accomplish what we want: a container class that can store
values of any type without needless duplication of code. Because the storage type of the
List’s elements is Object, the compiler easily determines that any object type can be stored
in the list. However, because the return type of remove () is statically declared as Object,
the only type information available at compile time about elements removed from the list
is that their type is Object. This is problematic because explicit type conversions (casts)
must be inserted, as shown in Figure 2.4, whenever an element is removed from the list in
order to pass the type checker. The act of adding and then removing an object from the
list loses all static type information about that object.

Using a cast to correct this problem is highly undesirable for several reasons. First, it
requires extra program code which can lead to errors and increase the cost of maintaining
the program. Secondly, a cast is actually a circumvention of the static type system; thus

'See the footnote in Section 2.4 on why Java does not truly support subtype polymorphism.

CHAPTER 2. MOTIVATIONS

public class EmptyListException extends Exception { }

public class StringNode {
protected String data;
protected StringNode next;

public StringNode(String data, StringNode next) {
this.data = data;
this.next = next;

}

public String getData() { return data; }

public StringNode getNext() { return next; }

public void setNext(StringNode newNext) { next = newNext; }

public class StringList {
protected StringNode head;

public StringList() { head = null; }

public void add(String data) {
head = new StringNode(data, head);

}

//pre: list is not empty

public String remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
StringNode oldHead = head;
head = head.getNext();
oldHead.setNext (null);
return oldHead.getData();

}

public boolean empty() { return (head == null); }

Figure 2.1: Separate list for String

CHAPTER 2. MOTIVATIONS

public class IntegerNode {
protected Integer data;
protected IntegerNode next;

public IntegerNode(Integer data, IntegerNode next) {
this.data = data;
this.next = next;

}

public Integer getData() { return data; 7}

public IntegerNode getNext() { return next; }

public void setNext(IntegerNode newNext) { next = newNext; }

public class IntegerList {
protected IntegerNode head;

public IntegerList() { head = null; }

public void add(Integer data) {
head = new IntegerNode(data, head);

}

//pre: list is not empty

public Integer remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
IntegerNode oldHead = head;
head = head.getNext();
oldHead.setNext (null) ;
return oldHead.getData();

}

public boolean empty() { return (head == null); }

Figure 2.2: Separate list for Integer

CHAPTER 2. MOTIVATIONS

public class Node {
protected Object data;
protected Node next;

public

this.

this
X
public
public
public

Node (Object data, Node next) {
data = data;

.next = next;

Object getData() { return data; }
Node getNext() { return next; }
void setNext(Node newNext) { next = newNext; }

public class List {
protected Node head;

public
public

List() { head = null; }
void add(Object data) {

head = new Node(data, head);

}
//pre:
public

list is not empty
Object remove() throws EmptyListException {

if (empty()) { throw new EmptyListException(); }

Node
head

oldHead = head;
= head.getNext();

oldHead.setNext (null) ;
return oldHead.getData();

b
public

boolean empty() { return (head == null); }

Figure 2.3: List with element type Object

10

CHAPTER 2. MOTIVATIONS 11

List intList
List strList

new List(); //List of Integers
new List(); //List of Strings

intList.add(new Integer(42));
strList.add(‘‘Java’’);

Integer i = (Integer) intList.remove();
(String) strlList.remove();

String s
Figure 2.4: Removing elements from List defined in Figure 2.3

the nice properties of static type safety for the statement that calls remove () are lost. In
Java, a cast passes the static type checker except when it can be proved that the cast
can never succeed (e.g., a cast from unrelated types such as Integer to String) [GJS96].
Therefore, by using a cast in Java, the programmer loses some certainty of the correctness
of their program because they circumvent the static type system and defer some of the type
checking until run-time. Lastly, type casts in this context are undesirable in a broader sense
because homogeneous lists can be enforced with a more expressive type system. That is,
we’d like the ability to specify that intList may only store Integers and strList may
only store Strings. Then, storing a String in a intList or an Integer in a strlLst is a
compile-time error. Also, if we retrieve an element from intList we know that the element
must have type at least Integer and similarly String for strList. However, this kind of
behavior is not possible within the bounds of Java’s static type system unless we use the
technique of Figure 2.1 and 2.2.

2.2 Adding Genericity with Parametric Polymorphism

A solution to the problems illustrated above is parametric polymorphism — a type system
feature that allows types to be passed as parameters. With parametric polymorphism, type
variables and parameterized types may be used in any type expression. This abstraction
is a powerful tool that allows container classes to be easily written in a generic way that
solves the problems described previously.

2.2.1 Parametric Polymorphism Syntax and Semantics

In Figure 2.5, we define a parameterized class List<T>. First we introduce a type variable T
that stands for the type of the elements in the list. We declare type variables for a class with
the <> brackets, syntax borrowed from C™*. We may then use T as a valid type anywhere
inside the class. We can also use parameterized types, such as Node<T>, inside the class.

CHAPTER 2. MOTIVATIONS

public class Node<T> {
protected T data;
protected Node<T> next;

public Node(T data, Node<T> next) {
this.data = data;
this.next next;

}

public T getData() { return data; }

public Node<T> getNext() { return next; }

public void setNext(Node<T> newNext) { next = newNext; }

public class List<T> {
protected Node<T> head;

public List() { head = null; }
public void add(T data) {
head = new Node<T>(data, head);
}
//pre: list is not empty
public T remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
Node<T> oldHead = head;
head = head.getNext();
oldHead.setNext (null);
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 2.5: List<T> using parametric polymorphism

12

CHAPTER 2. MOTIVATIONS 13

public interface Comparable<T> {
public int compareTo(T other);

}

public class SortableList<T extends Comparable<T>> extends List<T> {
public SortableList(T head, SortableList<T> tail);
public void sort() { ... }

}

Figure 2.6: Adding bounds to type parameters

When a polymorphic class is used, its type parameters must be instantiated with actual
types. For example, to create a list of strings we instantiate the type parameter T with the
actual type String. We write:

List<String> 1ist0fString = new List<String>();

Instantiating a type variable T with a specific type means that each type T now has the type
of its instantiation. For example, if 1ist0fString is declared as above, then the expression:

1ist0fString.remove ()

has type String because remove has declared type T, and T is instantiated with String.
We can also catch errors such as inserting a String into a List<Integer>, because add
takes a parameter of type T, which is Integer for List<Integer>.

Thus, implementing the list structure in a language with a more expressive type system
that includes parametric polymorphism allows the programmer to write container classes
that can store elements of any type and eliminates the need for casts when accessing ele-
ments. This is possible because the compiler is able to statically analyze the instantiations
of type parameters.

As declared in Figure 2.5, T may be instantiated with any object type. Most flavors of
polymorphism allow the programmer to restrict the types that may be used to instantiate
a type variable. The bound of a type parameter constrains the types that may be used
to instantiate it. In a Java-like language that supports parametric polymorphism, we can
declare a sortable list as shown in Figure 2.6 by setting a bound on the type variable and
adding a sort() method. Bounds on type parameters are specified with the extends (or
implements) keyword.

We constrain the element types that can be used to instantiate a SortableList<T> by
bounding T with Comparable<T>. Any type which is used to instantiate SortableList<T>
must satisfy the bound Comparable<T> — that is, it must extend or implement Comparable<T>.
The bound on T makes the following declaration illegal:

CHAPTER 2. MOTIVATIONS 14

SortableList<Object> slo = new SortableList<Object>(null, null);

because Object does not satisfy the bound Comparable<T>. The constraint ensures that
each element has a compareTo method, and thus that some ordering can be used to sort
the list elements.

F-bounded Polymorphism

F-bounded polymorphism [CCH™'89] refers to a specific kind of parametric polymorphism
that allows type variables to be used in the specification of bounds for other type variables.
For example, we might declare a list that is generic in both the types of elements that it
holds and the nodes used to represent the elements. We write the declaration for this class
as:

public class List<T, N extends Node<T>>

Note in particular that T is used in the declaration of the bound of N — Node<T>. F-bounded
polymorphism is a powerful feature that allows type variables to be constrained with very
specific types. Problems with binary methods, discussed in Section 2.3 prevent us from
writing List<T, N> with simple F-bounded polymorphism. Only once these problems are
resolved can we write them safely. Thus, the definition of List<T, N> is postponed until
Section 2.4.

2.2.2 Parametric Polymorphism Summary

Problems writing container classes in Java have suggested that a generic mechanism should
be added to the language. Parametric polymorphism, a technique developed in many other
procedural, functional, and even object-oriented languages, is a standard solution to the
problem and fits cleanly with Java.

2.3 Binary Methods

A second set of problems with Java’s type system are the complications that stem from
binary methods. A binary method is a method that takes a parameter of the same type
as the receiver of the method call. Problems with binary methods are common to many
object-oriented languages and are explored in detail in [BCCT95].

In general, the difficulty is that binary methods cause problems in a language with
inheritance (i.e., most object-oriented languages). When a binary method is inherited by
a subclass, the type of the parameter remains the type of the class that originally declared
it. The programmer would like the inherited method to still behave like a binary method.
However in Java, the method ceases to be a true binary method in the subclass because it

CHAPTER 2. MOTIVATIONS 15

accepts arguments whose type differs from its own. Most object-oriented type systems do
not explicitly support the concept of binary methods. However binary methods naturally
occur in many programs, including most recursive data structures. Therefore, a truly
expressive type system must be able to express binary methods.

Extending our List<T> example to work with doubly-linked nodes illustrates the binary
method problem directly. In writing Db1lNode<T>, we would like to inherit some of the code
from Node<T> because the programming logic of the common methods is essentially the
same. For example, we should not have to rewrite the getData() method. Thus, we define
DblNode<T> as shown in Figure 2.7. However, this causes problems with the type system.
The method setNext in Node<T> is a binary method — that is, it takes a parameter of type
Node<T>. Because of the way that we defined DblNode<T>, as well as having a setNext
method with declaration:

public void setNext(DblNode<T> newNext)

it inherits the setNext method from Node<T> that takes a parameter of type Node<T>.
This is problematic because we can call setNext to set the next link of a doubly-linked
node to a singly-linked node. However, we do not wish to insert a Node<T> into a chain of
DblNode<T>, because we expect to be able to call setPrev on the nodes in a doubly-linked
list.

A related problem is that getNext () has return type Node<T>, while for a doubly-linked
node it should have return type DblNode<T>. This problem with return-types is actually
somewhat unique to Java. Many object-oriented languages allow methods in subclasses to
override methods while making covariant changes in return types. However, Java does not
allow this kind of change, even though it is type-safe. Still, this problem is related to the
binary method problem, because it illustrates the difficulties in expressing a type that is
the same as the type of this.

The crux of the binary method problem in this example is that the setNext method
which only took a parameter of the same type as the object that it is invoked on, does not
have that property when inherited by a subclass. Of course, we can write Db1lNode<T> and
Node<T> as unrelated classes, but then we must re-write much of the code for Db1Node<T>.
Alternatively, we can override the method with signature

void setNext (Node<T>)

in Db1lNode<T> so that it throws an exception if called with a parameter of type Node<T> as
shown in Figure 2.8, but then we lose static type safety, because we depend on exceptions
to compensate for a weakness in the type system.

CHAPTER 2. MOTIVATIONS

public class DblNode<T> extends Node<T> {
protected DblNode<T> prev;

public DblNode(T data, DblNode<T> next, DblNode<T> prev) {
super (data, next);
this.prev = prev;
}
public void setNext(DblNode<T> newNext) {
next = newNext;
if (newNext != null) newNext.prev = this;
}
public void setPrev(DblNode<T> newPrev) {
prev = newPrev;
if (newPrev !'= null) newPrev.next = this;
}
public DblNode<T> getPrev() { return prev; }

Figure 2.7: Definition of DblNode<T>

void setNext (Node<T> newNext) {
if (!(newNext instanceof DblNode<T>))
throw new RuntimeException(‘‘newNext not a DblNode<T>’’);
else
setNext ((DblNode<T>) newNext) ;

Figure 2.8: Defining Db1lNode<T>’s setNext method

CHAPTER 2. MOTIVATIONS 17

2.4 Adding ThisType to support Binary Methods

In Java, the keyword this is a reference to the currently executing object. Therefore, a
this expression in a method can actually refer to a different class than the one that defined
it if the method is inherited by a subclass. However, while Java provides a this expression
that changes reference in subclasses, it does not provide a type that changes meaning
in a parallel fashion. ThisType gives exactly this functionality. It essentially provides
a mechanism for referring to the interface type of this. The key feature of ThisType
is that it changes meaning when program code containing a ThisType type expression is
inherited by subclasses. Thus, if a method in a class C contains an expression with type
ThisType, then that expression has the type of C’s interface when executed by an instance
of C. However, if the method is inherited by a subclass, D, then the same expression with
type ThisType, has the type of D’s interface.

This solution to the binary method problem in object-oriented languages is described
in [BCC'95] and implemented in TOOPLE? [Bru93], PolyTOIL [BSv(G95], and LOOM
[BFP97]. ThisType solves the binary method problem by supporting the naming of the
type of this in the type system. A ThisType-like construct also exists in the Eiffel [Mey92]
and Trellis/Owl [SCB'86] languages.

Using ThisType, we can easily redefine our node implementations so that setNext is
truly a binary method, as shown in Figure 2.9. Rather than using class types for the types
of parameters in binary methods, we can use ThisType to avoid the problems introduced
with mixing binary methods and inheritance. Because the meaning of ThisType changes
when code is inherited to a subclass, we can specify that a method must always takes a
parameter of the same type as the receiver of the method. Our setNext method as defined
with a parameter of type ThisType can only be invoked on objects with the same type
as this. Thus, the behavior of ThisType is exactly what is needed to write setNext in
a statically type safe way. Even when the method is inherited by a subclass, the method
continues to be a binary method because of the implicit type change that ThisType allows.

With proper support for binary methods in the nodes, we can define a list that is generic
in the type of data that it stores and the type of node used to represent the list structure.
The definition for List<T, N> is shown in Figure 2.10. By making the types of nodes
generic, we can use either node implementation internally in our list. For example, a list
that uses DblNode<T> internally can be declared:

List<T, DblNode<T>> dblList = new List<T, DblNode<T>>();

There is one problem with our implementation of List<T, N>. The assignment state-
ment in add:

head = new Node<T>(newData, head);

*ThisType is called MyType in TOOPLE and LOOM

CHAPTER 2. MOTIVATIONS 18

is illegal because head has type N, while the new instance expression on the right has type
Node<T>. If N is actually instantiated with DblNode<T> for example, this would cause a
problem as this statement assigns a superclass, Node<T>, to an expression whose type is a
actually a subclass, Db1Node<T>. A full description of the problems of constructing objects
whose type is a parameter, as well as a solution, are explored in Chapter 5.

2.4.1 Matching

Unfortunately, the addition of ThisType introduces a possible hole into our type system.
In a language with a ThisType-like construct, subclasses do not always generate subtypes.
Informally, a subtype is a type that may be used anywhere that a supertype is expected.
The following method demonstrates why Db1lNode<T> is not a subtype of Node<T>:

void breakit (Node<T> nodel, Node<T> node2) {
nodel.setNext (node2) ;
}

If we assume that subclasses always generate subtypes, and invoke breakit with an argu-
ment of type DblNode<T> as the first parameter and a Node<T> as the second parameter,
then a type error occurs. Because nodel has type DblNode<T>, its setNext method — that
has a single parameter of type ThisType — may only be passed a parameter that has the
interface type of Db1Node<T>. Passing setNext an argument of type Node<T>, as in this ex-
ample, results in a type error. Therefore, we can not use a Db1lNode<T> wherever a Node<T>
is legal — that is, it is not a subtype of Node<T>.

To solve this problem, we replace subtyping based on subclasses by a slightly weaker
relation, “matching,” as defined in [BFP97]. In LOOM an interface type J matches another
interface type I if and only if for every method defined in I, a method with the same name
and type signature exists in J, treating ThisType as the same type in the two interfaces.
However, because Java does not in general define relationships between types based on
structural properties, we revise this relation slightly. Thus we say that an interface type J
matches I if and only if one of the following is true:

e JisI
e J extends I
e J extends K and K matches I

Note that this is essentially identical to LOOM'’s rule, only that we insist that J be related
to I in the declared interface hierarchy.

For two class types, we simply consider the implicit interface type of that class (an
interface that contains the signatures of all of its public methods) and consider matching

CHAPTER 2. MOTIVATIONS

public class Node<T> {
protected T data;
protected ThisType next;

public Node(T
this.data =
this.next

3

data, ThisType next) {
data;
next;

public T getData() { return data; }
public ThisType getNext() { return next; }
public void setNext(ThisType newNext) { next = newNext; }

public class DblNode<T> extends Node<T> {
protected ThisType prev;

public DblNode(T data, ThisType next, ThisType prev) {

super (data,
this.prev =

}

next) ;
prev;

public void setNext(ThisType newNext) {
next = newNext;

if (newNext

}

!= null) newNext.prev = this;

public void setPrev(TypeType newPrev) {
prev = newPrev;
if (newPrev != null) newPrev.next = this;

3

public ThisType getPrev() { return prev; }

Figure 2.9: Linked-list nodes using ThisType

19

CHAPTER 2. MOTIVATIONS 20

public class List<T, N extends Node<T>> {
protected N head;

public List() { head = null; }
public void add(T data) {
head = new Node<T>(data, head); //actually illegal!
}
//pre: list is not empty
public T remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
N oldHead = head;
head = head.getNext();
oldHead.setNext (null);
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 2.10: Generic List<T, N>

based on those implicit interface types. Following from this rule, a class type can only
match another class type that is higher up on the inheritance tree. A class type C matches
an interface type I if the implicit interface type of C matches I. Finally, interface types
never match class types.

Quite simply, matching tells us which methods can be called on an object with a par-
ticular type. Thus, it is very similar in most cases to the regular Java rules for subtype
polymorphism.?® In fact, for classes that do not contain any ThisType expressions, matching
corresponds exactly to the normal Java rules for subtyping. Thus, we can almost always
consider matching as equivalent to the relationship defined by the extends keyword in Java.
WEe’ll see in the next section how to resolve the problem in the breakit example above.

3Java does not truly support subtype polymorphism because of problems with the conditional operator.
In Java, in an expression of the form b ? E1 : E2, b must have type boolean, and E1 and E2 must be
compatible types (i.e., one of E1 or E2 extends the other, possibly indirectly). This is problematic because
if E1 has type T extends U and E2 has type S extends Uthenb ? E1 : E2 is not typeable even though
it would be if one of E1 or E2 had static type U. Therefore, a well-typed expression that is written with a
type U may not always be well-typed if we replace it with an object of type T, a subtype of U. However, Java
does support a limited form of subtype polymorphism for actual parameters and assignments to variables.

CHAPTER 2. MOTIVATIONS 21

2.5 Exact Types

We still have not directly addressed the problem illustrated previously in breakit. This
hole can be fixed by requiring that the type of the receiver of a binary method must be
known exactly. If we know the type of the object exactly, then we can statically determine
if the method call is safe — that is, if the parameter is of the same type as the object that
the method is invoked on.

Thus, we introduce exact types. If a type expression is declared exactly, then it may
only be the receiver of values whose type is identical to it. An exact type is declared by
prefacing the type expression with the @ character. If a method has an argument of type
@C, then the formal parameter to that argument must have type exactly C — not a subclass
of C. Thus, exact types can be used to limit subtype polymorphism.

Our problem illustrated previously in breakit is easily fixed by making the types of both
parameters exact types (strictly speaking the rule only requires that the first parameter be
exact, as it is the receiver of the binary method, though in practice, both parameters would
be exact because setNext takes a parameter of type @ThisType).

void noBreakit(@Node<T> listl, @Node<T> list2) {
listl.setTail(1list2);
}

Exact types are clearly needed to safely statically type-check classes that use ThisType.
Thus, that is our main motivation for adding them to the type system. However another
motivation is that they increase the language’s expressiveness by explicitly supporting ho-
mogeneous data structures. A homogeneous data structure is one where all of the elements
are of the same type. For example, to produce a homogeneous list, we declare the element
types of our list to be @T rather than T. A homogeneous list is shown in Figure 2.12 with
nodes in Figure 2.11. The problem with constructing a new head node in HomList<T, N>’s
add method is discussed in Section 5.2.

CHAPTER 2. MOTIVATIONS 22

public class HomNode<T> {
protected QT data;
protected @ThisType next;

public
this.
this.
b
public
public
public

HomNode (@T data, @ThisType next) {
data = data;
next = next;

QT getData() { return data; }
Q@ThisType getNext() { return next; }
void setNext(@ThisType newNext) { next = newNext; }

public class HomDblNode<T> extends Node<T> {
protected QThisType prev;

public

HomDblNode (T data, @ThisType next, @ThisType prev) {

super(data, next);

this.prev = prev;
}
void setNext (@ThisType newNext) {
next = newNext;
if (newNext != null) newNext.prev = this;
}
void setPrev(@ThisType newPrev) {
prev = newPrev;
if (newPrev != null) newPrev.next = this;

}

@ThisType getPrev() { return prev; }

Figure 2.11: Homogeneous list nodes

CHAPTER 2. MOTIVATIONS 23

class HomList<T, N extends HomNode<T>> {
protected ON head; //N is exact because List<T, N>
//is homogeneous in the node types
//(and N is indirectly the receiver
//of binary method calls)
public HomList() { head = null; }
public void add(T data) {
head = new HomNode<T>(data, head); //actually illegal!
}
//pre: list is not empty
public QT remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
ON oldHead = head;
head = head.getNext();
oldHead.setNext (null);
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 2.12: Homogeneous List<T,N>

Chapter 3

Other Extensions of Java

we present a summary of related work to extend Java with parametric polymorphism.

The projects that are the most closely related to Rupiah include Pizza [ORWI7], GJ
[BOSWO8], and NextGen [CS98]. They all share the common goal of adding F-bounded
[CCHTR9] parametric polymorphism to Java while retaining compatibility with the Java
platform. They achieve this goal with varying success and by quite different translation
strategies.

E xtending a language to support additional features is not an easy task. In this chapter,

3.1 Pizza and GJ: Exploring Translations to Bytecode

Pizza and GJ are two closely related languages that support parametric polymorphism
by translation to Java bytecode. Pizza was implemented first, and supports higher or-
der functions and algebraic data types in addition to parametric polymorphism. However,
Pizza’s main contribution is the exploration of two different methods of translating para-
metric polymorphism to Java. Both of these translation techniques, a heterogeneous and
homogeneous translation, are implemented in the Pizza compiler. Pizza’s successor, GJ,
takes the most useful feature from Pizza — parametric polymorphism — and supports it in a
language more closely related to Java. GJ uses the homogeneous translation exclusively to
convert GJ-level source programs to bytecode. In addition to parametric polymorphism, GJ
puts a strong emphasis on compatibility with existing Java libraries by providing a simple
migration method for using existing Java classes seamlessly with GJ.

24

CHAPTER 3. OTHER EXTENSIONS OF JAVA 25

3.1.1 Heterogeneous Translation

The first technique introduced in Pizza, the heterogeneous translation, translates polymor-
phism to standard Java by producing a different compiled class for each instantiation of a
parametric class. An analysis of the program source code determines which instantiations of
a class are needed, and synthesizes a separate class for each one. For example, if a List<T>
is defined as in Figure 2.5, and the only instantiations of that class are:

List<Integer>
List<String>

then the heterogenous translation that is implemented in Pizza compiles classes named
List_$String $ and List_$Integer_$ and replaces all polymorphic types with these trans-
lated monomorphic ones. These classes are structurally identical to the StringList and
IntegerList classes defined in Figures 2.1 and 2.2. This translation is simple to implement
as we just replace a parameterized type with the synthesized monomorphic class represent-
ing that specific instantiation. Further, because each instantiation of a class is represented
by a different class, the full type information of each object is implicitly carried along with it.
Therefore, operations which require run-time type information including casts, instanceof,
and array creation are able to execute correctly in the heterogeneous translation. However,
several problems exist with the translation. First, the space requirements are significant
because, for each source class, multiple binary class files are produced. Secondly, because
each new instantiation may generate new class files, we must have access to the source code
for a parameterized class in order to use new instantiations of it.! Thus a pure hetero-
geneous translation may not be a good option for authors of library code, as they must
provide source code for their implementation in order to allow each possible instantiation
to be translated.

3.1.2 Homogeneous Translation

The second translation introduced in Pizza, and used in GJ, is the homogeneous transla-
tion. This technique only generates one compiled class per source level class for any number
of distinct instantiations of the parametric class. The basic strategy is to translate poly-
morphic classes into a single generic representation of the class. Then, whenever different
instantiations of the class are used, the appropriate type conversions are added as needed.
The translation of the List<T> class produces a class structurally identical to the code in
Figure 2.3 — the List class with element type Object. Additionally, the compiler inserts

'Depending on the implementation of a heterogeneous translation, it may be possible to generate the
heterogeneous classes without having access to the source file — that is, if extra type information is stored in
compiled classes. However, the traditional implementation of a heterogeneous translation does not support
this feature.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 26

//Pizza/GJ Type //Erased Type
C<T extends Bound, U> C

T Bound

U Object

Figure 3.1: Erasure examples

casts whenever instantiations of parameterized classes are used, as in Figure 2.4. These
casts overcome the discrepancy between types in the generic representation of a polymor-
phic class and types in specific instantiations. Although casts are used in the translation,
type safety can be ensured statically as the concept of parametric polymorphism is sup-
ported directly in the type system. In fact, GJ provides a “cast-iron” guarantee that any
cast inserted by the compiler will always succeed — it is only inserted to satisfy the JVM
verifier.

The homogeneous translation uses a technique called erasure to replace parameterized
types with more general types. A parameterized type is replaced with its base type, where
the base type of C<T, U> is simply C. Inside a class with type parameters, a type expression
that is a type variable is replaced with the bound of that variable. Examples of type erasure
are given in Figure 3.1. For example, T is erased to Bound. An unbounded type variable
such as U in the same figure is replaced with its implicit bound, Object. Thus the code
that is obtained by compiling a parameterized class using the homogeneous translation is
identical to what a programmer would write if hand-coding the list in standard Java.

Translating types to their erased versions is easy; the more complicated part of the
process is inserting the appropriate casts to convert erased types to their more specific
instantiation types. For example, if the return type of a method is U, an unbounded type
variable, then its erased type is Object. Any call to that method in GJ expects the return
type of the method to have the type of U’s instantiation, not Object. The compiler must
insert this cast in order to convert the erased type Object to the type of the instantiation.
Because the compiler maintains information about instantiations of parameterized classes
internally, it can statically determine where casts are needed.

Additional Typing Rules

Two additional restrictions are made in GJ’s type system.

First, class type variables may not be used in any static class members.? GJ takes the
position that it is illegal to use type parameters in static methods because the method is
not tied to a particular instance of a class. Thus, the instantiations of type parameters
for a static member are undefined. Similarly, a static instance variable is not tied to any

2A member refers to a method, instance variable, or inner class.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 27

instance of a class so declaring static variables whose type involves a type variable such as
List<T> is not allowed.

This rule differs from the heterogeneous translation which supports per instantiation
static instance variables. The heterogeneous translation generates a different compiled
class file for each instantiation of a parameterized class. In this translation, static instance
variables are represented by a different static instance variable in each instantiation. As
a result, a static member of a class that has a parameterized type is not shared across all
instantiations of the base class, but only among instantiations with identical types. Note
that if the class has more than one type parameter, a static member which only involves
a single type parameter is not shared across all of the instantiations of that single variable
with the same type. It is shared only among objects with identical instantiations of all of
the type parameters. For example in the following class:

class C<T,U> {
static List<T> myList;
b

C<Integer, String> ci;
C<Integer, String> c2;
C<Integer, Integer> c3;

myList is shared between c1 and c2 but not c1 and c3. It is not clear which approach to
parameterized types in static members is most consistent with the Java language.
Secondly, a class may not simultaneously implement a parameterized interface with dif-
ferent types for the same type variable. For example, suppose a class indirectly implements
both I<String> and I<Integer>. If I<T> has a method with return type T, allowing mul-
tiple interface instantiations introduces method binding difficulties. In order to implement
both instantiations of the interface, the translated class has to define two methods with
identical signatures except for the return types. However, Java does not allow methods to
differ only in their return types (though this restriction is not strictly necessary for a safe
static type system). It is difficult to both avoid these method binding problems and retain
close compatibility with standard Java. Therefore, it is illegal for a class to simultaneously
implement an interface with different instantiations of the same type parameter.

3.1.3 Bridge Methods

The simple homogeneous translation described previously is not correct for all parameterized
classes. Method binding complications arise when a subclass changes the bound on a type
variable or instantiates a superclass’s parameter with a fixed type. To illustrate these
problems, consider a subclass of List<T, N> (as defined in Figures 2.11 and 2.12) that

CHAPTER 3. OTHER EXTENSIONS OF JAVA 28

public interface Comparable<T> {
public int compareTo(T other);

}

public class OrderedList<T extends Comparable, N extends Node<T>>
extends List<T, N> {
public void add(T data) {
N finger = head;
N prev = null;
if (head == null) {
head = new Node<T> (data, head); //actually illegal!
} else {
while ((finger != null) &&
&& (finger.getData().compareTo(data) < 0)) {
prev = finger;
finger = finger.getNext();
}
prev.setNext (new Node<T> (data, finger)); //actually illegal!
}
}
}

Figure 3.2: OrderedList<T, N> definition

implements an ordered list, shown in 3.2. OrderedList<T, N> overrides the add method
so that new elements are inserted into the list so that the list maintains the order specified
by compareTo. List<T, N> includes a method add that is translated as:

public void add(Object data) { ... }

OrderedList<T, N> overrides this method with a different body. However, because T is
bounded by Comparable<T>, the type signature for the translation of add is different:

public void add(Comparable data) { ... }

The full translations for List<T, N> and OrderedList<T, N> are shown in Figures 3.3 and
3.4 respectively. This discrepancy between the source language, where the add method
is overridden in OrderedList<T, N>, and the translation, where add is overloaded in
OrderedList<T, N> causes method binding problems when an OrderedList<T, N> is as-
signed to an object with static type List<T, N>.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 29

public class List {
protected Node head;

public List() { head = null; }

public void add(Object data) {
head = new Node(data, head);

}

public Object remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
Node oldHead = head;
head = head.getNext();
return oldHead.getData();

}

public boolean empty() { return (head == null); }

Figure 3.3: GJ translation of List<T, N>

Java combines static and dynamic method binding in the following way: the Java com-
piler determines at compile-time the exact signature of each method it will call. However
the selection of the actual method called is deferred until run-time. This implements a
feature for instance (i.e. non-static) methods known as dynamic method invocation. The
“dynamic” refers to the fact that this decision about which method to call is deferred until
runtime, when the actual type of the object is known. The problems with the homoge-
neous translation arise when the static type of an expression is less specific than the actual
run-time type. Consider the following program fragment:

List<Integer, Node<Integer>> ol =

new OrderedList<Integer, Node<Integer>>(0, null);
Integer i = new Integer(42);
ol.add(i); //want to call OrderedlList’s add

The statically declared type of ol is List<Integer, Node<Integer>>. However, we assign
an object with type OrderedList<Integer, Node<Integer>> to ol. Because of Java’s
method binding, the method expression ol.add(i) is bound statically to a method with
signature

public void add(Object data)

because ol has type List<Integer, Node<Integer>> which only has one method named
add (with that signature). However, ol has run-time type

CHAPTER 3. OTHER EXTENSIONS OF JAVA

interface Comparable {
int compareTo (Object other);

}

class OrderedList extends List {
public void add(Comparable data) {
Node finger = head;
Node prev = null;

if (head == null) {
head = new Node(data, head);
} else {

while ((finger != null) &&
&& (((Comparable)finger.getData()).compareTo(newData) < 0))
{
prev = finger;
finger = finger.getNext();
}
prev.setNext (new Node(data, finger));
}
}
}

Figure 3.4: GJ translation of OrderedList<T, N>

CHAPTER 3. OTHER EXTENSIONS OF JAVA 31

OrderedList<Integer, Node<Integer>>

The method expression ol.add (i) should call the overridden method in OrderedList<T,
N> that inserts the element in order, not simply at the front of the list. However, as the only
method with the statically determined signature is the one inherited from List<Integer,
Node<Integer>>, the incorrect method will be invoked.

This is problematic because at the GJ source level, the method definition for void add(T
data) is overridden in OrderedList<T, N> by a method with an identical signature:

public void add(T data)

The translation should reflect this override. However, the overridden method in the source
language becomes an overloaded method in the translation. While the program source
for OrderedList<T, N> declares only one method, with signature void add(T data), the
translated version has two.

The solution to this problem is to add a bridge method for these problematic methods.
In general, three conditions must be met for a method to require a bridge:

e the method overrides a method from a superclass,
e the method signature contains a type variable, or a parameterized type, and

e the bound on the type variable has been changed (tightened) from the declared bound
in the superclass or instantiated with a fixed type.

A bridge method overrides the inherited method, and calls the correct definition (the
overloaded version) in the subclass. The net effect is that the definition that was translated
as an overloaded method definition is always eventually called — operational semantics equiv-
alent to overriding. In the above example GJ inserts a bridge method in OrderedList<T,
N> that overrides the method inherited from List<T, N> with the following definition:

public void add(Object data) {
add(data); //calls add(Comparable data)
}

This solves the method binding issue by ensuring that the method with signature
public void add(Comparable data)

is always called whenever add () is called on an object with run-time type OrderedList<T,
N>,

The definition of this bridge method appears troublesome because it is not actually
legal Java source code. First, we have defined two methods that only differ in their return
types, which Java does not normally allow. However, while Java makes this restriction, the

CHAPTER 3. OTHER EXTENSIONS OF JAVA 32

JVM is able to distinguish between methods that differ solely on their return types. GJ’s
translation exploits this discrepancy between the Java language and the JVM bytecode
language, and allow methods to differ only in return types when the compiler synthesizes a
bridge method. Thus while the emitted code is not legal Java, it still runs correctly on the
JVM.

Second, the call to add(data) in the bridge method seems ambiguous, because two
methods named add are defined for OrderedList<T, N>. However, recall that each method
is bound to a specific signature at compile time. The GJ compiler never binds a method
call to a bridge method. Thus when the compiler binds the call for

add(data)
it always chooses the method with signature
add (Comparable data)

because the method with parameter type Object is flagged internally as a bridge method.
However, the bridge method may be called by dynamic invocation (as in the previously
described example that illustrated the problem with ol.add(i)). Because the JVM can
distinguish between methods that differ only in return types, there is no ambiguity about
which method to call.

Bridge methods complete the homogeneous translation by solving method binding com-
plications that can result when type variable bounds change in subclasses.

3.1.4 Retrofitting in GJ

GJ provides a simple mechanism for retrofitting existing Java code with type parameters.
The translation of GJ classes is often identical to what a Java programmer would write.
Therefore, the compiler provides an option to treat non-GJ classes as if they were polymor-
phic classes. For example, the standard library class java.util.Vector may be treated as
a parameterized class Vector<T> in GJ by defining the parameterized interface for the class,
as partially shown in Figure 3.5. With the information in this interface, GJ can statically
type check the use of Vector<T> and automatically insert the necessary casts between the
pre-existing Vector class and user code.

3.1.5 Problems with GJ

GJ has several critical limitations, stemming from its simple homogeneous translation. In
general, these problems arise in situations where type information about parametrized types
is needed at runtime. As types are erased to their simpler types in compilation, full type
information is not available at runtime. In particular, array creation, instanceof expres-
sions, and type conversions (casts) do not have the same meaning for GJ types as for Java

CHAPTER 3. OTHER EXTENSIONS OF JAVA 33

public class Vector<T>
implements Cloneable, Serializeable {

private T[] elementData; //unchecked

public void setElementAt (T newValue, int index);
public T elementAt(int index);
public boolean contains(T element);

Figure 3.5: Retrofitting Vector in GJ

types because of this loss of information. Also, new array expressions of type variables
are problematic in GJ because the actual type of array that should be created can not be
determined until T is instantiated. The instanceof operator similarly needs detailed type
information to check the runtime type of an expression for equality with another object
type. Standard casts in Java are partially type checked statically, but an additional run-
time check is also performed. All three of these operations cause problems in GJ because
information about parameterized types does not exist at runtime.

Array Creation Problems

The translation of new array expressions involving type parameters causes problems in GJ.
For example, the expression

new T[5];

can not be translated correctly if T is a type parameter. This code fragment should create
an array with elements of type T. However, in the translation, there is no way to determine
the type of T dynamically. Thus, the expression can only be translated as:

new Object[5];

However, this solution is not correct because one can store objects of an incompatible type
in the array. Consider the following code snippit:

public class C<T> {
protected Object[] oArray;
void breakArray() {
oArray = new T[5];

CHAPTER 3. OTHER EXTENSIONS OF JAVA 34

oArray[0] = ¢‘broken’’;
}
}

This code should throw an ArrayStoreException if breakArray is invoked and T is instan-
tiated with a type other than String. Java allows array types to masquerade as subtypes if
their element types are subtypes. This introduces a hole in the static type system and thus
requires a run-time check whenever an element is stored in the array. If the element type of
the array is incompatible with the object being stored, the exception is thrown. However,
because the above snippit would be translated as:

public class C {
protected Object[] oArray;
void breakArray() {
oArray = new Object[5];
oArray[0] = ¢ ‘broken’’;
}

no exception is ever thrown.

Because of this problem, a programmer may not write an expression new T[...] in GJ.
However, GJ offers two solutions to this problem. First, the programmer may choose to
leave the new array expression unchecked. This means that the array will be created with
the element type of its bound, leading to possible type errors. Alternatively, rather than
writing new T[...] directly, a “factory” class gj.lang.reflect.Array may be used that
provides a static method for creating arrays whose element type is a type variable.

Even in the absence of Java’s unsafe covariant array subtyping rule, problems still arise
in GJ with other operations that require run-time type information. For example, casts
and instanceof expressions cause problems with array types with generic or parameterized
element types (discussed in the next two sections).

instanceof Problems

The problem with instanceof expressions in GJ is that erasure loses type information.
It is impossible for the JVM to check if an object is an instance of a parameterized type
using its built-in instanceof operator, because the erasure of the type being checked does
not contain information about the type parameters. For example, the following two type
declarations:

anObjectl instanceof List<Integer, Node<Integer>>
anObject2 instanceof List<String, Node<String>>

would erase to

CHAPTER 3. OTHER EXTENSIONS OF JAVA 35

anObjectl instanceof List
anObject2 instanceof List

The translated versions of these instanceof tests would have value true if anObjectl and
anObject2 contained any List. However, the tests should only be true for List<Integer,
Node<Integer>> and List<String, Node<String>> respectively.

Similarly, type parameters to a parameterized class are erased to their bound. The
following expression:

anObject3 instanceof T
where T is an unbounded type parameter, would erase to
anObject3 instanceof Object

The translation of this instanceof test would always be true because any object type is
an instance of Object. It should however, be false in all cases except when anObject3 is
really an instance of T’s instantiated type.

GJ does not allow instanceof expressions involving type parameters because of these
problems. Instead, it allows the programmer to perform the checks using a “raw type” —
the erased type of a parameterized class. Therefore, it is illegal to write

an0Object instanceof List<Integer, Node<Integer>>
anObject instanceof T

but legal to write

an0Object instanceof List
an0Object instanceof Object

if List is a parameterized class and T is a type variable.

Type Cast Problems

Type cast issues in GJ are almost identical to the problems associated with instanceof.
The Java Language Specification [GJS96] states that a cast generates a compile-time error if
it can be proved that it will never succeed. The JVM also performs a run-time validity check
for each explicit cast. A cast that fails the run-time check throws a ClassCastException.
The difficulties with casts in GJ occur when a cast expression involves a type variable.
Consider the translations of the following casts in a class where T is a type parameter:

(List<Integer, Node<Integer>>) anObjectl;
(List<T, Node<T>>) anObject2; //T is a type parameter
(T) anObject3; //T is a type parameter

CHAPTER 3. OTHER EXTENSIONS OF JAVA 36

These expressions would be translated to

(List) anObjectl;
(List) anObject2;
(Object) anObject3;

However, these run-time checks for these translated cast expressions would succeed in many
situations where they should throw an exception instead. For example, suppose that these
three casts were declared in a class where T was instantiated with Integer. Also suppose
that variables anObjectl and anObject2 had type List<String, Node<String>>, and
anObject3 had type String. Then all three casts should throw exceptions. However,
in this translation, all three would incorrectly succeed at runtime. As a result of this
problem, as with instanceof expressions, GJ does not allow cast expressions that involve
type variables because it can not execute them correctly at run-time. However, raw types
may be used in cast expressions.

3.2 NextGen: Hybrid Translation

NextGen [CS98] seeks to improve on GJ’s implementation of parametric polymorphism
by providing support for run-time compatible types. The NextGen translation is based
on a hybrid translation that is in part both homogeneous and heterogeneous. For each
parameterized class, a homogeneous base class is compiled much in the same manner as GJ.
Each instantiation of a polymorphic class also results in two additional generated class files:
a wrapper interface and a wrapper class. These wrapper interfaces are used to represent
the types of actual instantiations while the wrapper classes are used to create instances of
parameterized classes. The constructors for wrapper classes simply forward their arguments
to the constructors for the base class.

By storing most compiled code in one homogeneous base class, NextGen limits the
amount of redundant, bloated code that is traditionally associated with a pure heteroge-
neous translation. However, it harnesses the ability of the heterogeneous translation to
provide access to run-time type information. The partial translation for a class Vector<T>,
instantiated once with Integer, is given in Figure 3.6.

The wrapper classes defined for each instantiation of a class implicitly carry full type
information about parameterized types. Thus, NextGen solves GJ’s problems with dynamic
type operations. As well as supporting instanceof and type cast expressions with parame-
terized types, NextGen allows expressions such as new T[] and new T(), where T is a type
parameter. For example the expression

object instanceof Vector<Integer>

is trivially translated to an instanceof expression that compares object with the wrapper
interface.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 37

//NextGen code
public class Vector<T> {
private T[] elts;

public Vector(int initCapacity) { ... }
public T elemenAt(int index) { ... }
public void setElementAt(T newValue,
int index) { ... }
}
Vector<Integer> vi = new Vector<Integer>(7);
//translation

public abstract class Vector {
private Object[] elts;

public Vector(int initCapacity) { ... %}

public Object elementAt(int index) { ... }

public void setElementAt(Object newValue,
int index) { ... }

public interface $Vector$_Integer_$ {}

public class $$Vector$_Integer_$ extends Vector
implements $Vector$_Integer_$ {
public $$Vector$_Integer_$(int initCapacity) {
super (initCapacity) ;

+
}

$Vector$_Integer_$ vi =
new $$Vector$_Integer_$(7);

Figure 3.6: NextGen translation of Vector<T>

CHAPTER 3. OTHER EXTENSIONS OF JAVA 38

object instanceof $Vector$_Integer_$

Similarly, as the instantiation of T is known in each heterogeneous wrapper class, an ex-
pression of the form

object instanceof T
can be translated
object instanceof Integer

in $$Vector$_Integer_$ and similarly in other instantiations of Vector<T>.

However, NextGen still suffers from many of the inefficiencies of heterogeneous trans-
lations. While it avoids much of the code bloat traditionally associated with it, NextGen
still produces a separate (though admittedly tiny) compiled class and interface for each
instantiation of a parameterized class. Thus, it causes similar problems as the pure hetero-
geneous translation when used in software libraries. NextGen is also not yet implemented
in a compiler, making it more difficult to evaluate fully.

3.3 Other Proposals

In addition to these three techniques, several other projects have explored solutions to the
problem of adding parametric polymorphism to Java. PolyJ [MBLI7], supports constrained
polymorphism. However unlike most forms of bounded parametric polymorphism in Java,
PolyJ uses constraints specified by structural properties (“where” clauses). Another project,
[AFM97] adds run-time compatible parameterized types to Java, but requires a modified
ClassLoader. A third proposal [SA98] implements homogeneous translation based on re-
flection that requires modifications to the JVM. Finally, LM [VNOO] improves the run-time
efficiency of a purely reflective solution by caching the results of most reflective calls in
static instance variables.

3.4 Evaluating Proposals

The number of proposed extensions to Java suggests that key changes to the type system
are needed as the language evolves. However, the priorities of each proposal are each slightly
different and illustrate the many possible directions that the language could go in the future.

The heterogeneous and homogeneous translations each have advantages and disadvan-
tages. The heterogeneous translation is conceptually simpler, because it is equivalent to
macro expansion, and the classes it produces work as well at runtime as standard Java
classes. However, it has the disadvantage of producing different classes for each instanti-
ation of a parameterized class. This is wasteful both in space and, more problematically,
compilation efficiency.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 39

The homogeneous translation is more complex than the heterogeneous translation, as
casts must be inserted when the translated class is used. Bridge methods must also be
added to make the translation work correctly with Java’s method binding. Type erasure
also causes problems in operations that require run-time type information. Despite these
limitations, the homogeneous translation is a closer fit with Java’s compilation semantics
because only one class is compiled for each parameterized source-level class definition. This
major advantage, coupled with major space and compilation efficiency benefits, make it our
preferred translation technique for Rupiah.

One implementation of the homogeneous translation, GJ, holds compatibility and smooth
interaction with existing Java code as its highest priority. In some ways, GJ is the language
most closely related to Java, which is reflected in the simplicity of its translation. Impor-
tantly, GJ only compiles one class per source class. Also, it provides an easy way to retrofit
existing Java classes with type parameters. The close relationship afforded to existing
pre-compiled code is a major selling point of GJ.

A hybrid approach, NextGen, aims to solve the problems associated with a pure homo-
geneous translation by providing support for runtime operations on parameterized types.
It accomplishes this by utilizing a lightweight heterogeneous translation that makes the
runtime types of parameterized classes available at runtime. However, many of the prob-
lems with a heterogeneous translation also arise. Space efficiency is less of an issue because
the wrapper classes are lightweight. Still, efficiency of compilation is a major concern be-
cause many classes must be recompiled whenever a change is made in a class with type
parameters. A second concern is that the translation itself is much more complex than
either Pizza or GJ. As a result, NextGen’s retrofitting mechanism is not as simple as GJ’s.
Overall NextGen does a good job of optimizing time and space complexity while still pro-
viding runtime support for parameterized types at the cost of a very complex language and
translation.

These proposals all share the same fundamental goal: adding genericity to Java while
retaining maximum compatibility with existing Java code and semantics. They differ how-
ever, in the method to reach that goal, and the degree to which they achieve it. Our main
complaint about GJ is that the run-time semantics of some operations (casts, instanceof,
and new array expressions) are not correct for all types in the language. NextGen does not
have these problems, but suffers from serious space and compilation inefficiencies.

In this thesis, we focus on adding language features to Rupiah. Our goal is to make
the type system more expressive to allow object-oriented programming in a statically type
safe way. Thus we do not limit our focus to parametric polymorphism. These additional
features are explored in Chapters 4 and 5.

CHAPTER 3. OTHER EXTENSIONS OF JAVA 40

3.5 Revised Goals

In Section 1.4, we described some preliminary goals for the Rupiah project. Having shown
some other extensions of Java, we now present more specific goals for the Rupiah project.

e New Expressive Features: Java’s type system has poor support for generic pro-
gramming and binary methods. Parametric polymorphism and ThisType provide type
system solutions to these problems. Exact types are also a useful feature, and needed
to support ThisType in the type system. Finally, as illustrated in Chapter 2, creating
objects whose type is a type parameter is difficult. ThisClass, described in Chapter
5 provides a solution to this problem. Thus, we propose adding these features to Java.

e Compatibility with Java: We chose to implement our language by translating
these features to standard bytecode. The features of GJ which allow both backward
(existing source files can be compiled with their compiler) and excellent forward com-
patibility (existing class files can be used, and even retrofitted in GJ programs) are
our model for compatibility.

¢ Run-time Types, Reflection: Despite GJ’s close compatibility with Java, we be-
lieve that any translation of new type system features must satisfy existing semantics
for the run-time behavior of type expressions in operations. Thus, instanceof, type
casts, and new array expressions should all operate correctly for new type abstrac-
tions. Full reflection for extended types does not seem reasonable for any efficient
translation. However, a translation that includes JVM changes could easily support
reflection with relatively few changes to the standard reflection classes. In this project
however, we do not consider translations that include JVM changes.

e Reasonable Efficiency: GJ has the nice property that it is very efficient both in
terms of space and run-time execution. Polymorphic classes are compiled to a single
representation, thus, there is no code bloat for classes compiled by GJ. There is a
small amount of overhead because dynamically checked casts and bridge methods are
inserted into class files but these slowdowns are essentially the same as would exist
in a hand-coded program. Thus, they are within the acceptable range for execution
efficiency. In contrast, the heterogeneous translation has excellent run-time efficiency
but it suffers from severe space efficiency problems because a different class (either a
complete heterogeneous class, or a lightweight wrapper class in NextGen) is compiled
for each instantiation. In this project, we wish to use a homogeneous translation
because of its nice space and compilation properties. However, we will balance this
with our desire for types that are compatible with introspection operations.

Chapter 4

Introduction to Rupiah

a homogeneous translation to bytecode. It also supports a ThisType construct and
exact types. Support for parametric polymorphism in Rupiah closely follows the im-
plementation technique developed with GJ. However, unlike GJ, type expressions produced
by the Rupiah compiler are valid in cast and instanceof expressions. In this chapter, we
describe the implementation of the language’s core features including parametric polymor-
phism, ThisType, and exact types.
The implementation described in this chapter is due to Burstein [Bur98]. However,
many of the specific translations have been updated.

R upiah [Bur98] is an extension to Java that supports parametric polymorphism via

4.1 Run-time Support For Parameterized Types

The main advantage of Rupiah’s translation over GJ’s is that new abstracted types can be
used in exactly the same way as regular Java types. As shown in Section 3.1 the use of
erasure alone in GJ means that operations such as type casts and instanceof no longer
work as expected because the extended type information is lost at compile time. This
problem is fixed in Rupiah by making type information about type parameters available to
classes at run-time. The strategy with this approach is to store a representation of its full
parameterized type with every polymorphic class. Then, we translate each operation which
needs run-time type information using the stored representation of parameterized types as
needed.

To accomplish this goal, we define the PolyClass class, to represent polymorphic types.
Just as a Class object represents types at run-time in standard Java, a PolyClass object

41

CHAPTER 4. INTRODUCTION TO RUPIAH 42

represents a type in Rupiah. However, a type in Rupiah need not be a simple class type.
Because Rupiah supports parametric polymorphism, the type may be an instantiation of a
parameterized class. Thus, our representation of types in Rupiah must be able to represent
these more complicated types. The important elements of the PolyClass object are the
base class — for example List is the base type of List<T>, and an array of PolyClass
objects that hold the instantiations of type parameters (i.e., when a type variable is itself
instantiated with a parameterized type). The partial source code for PolyClass is shown
in Figure 4.1.

For each type parameter declared in a class, a corresponding private instance variable
of type PolyClass is inserted to store the run-time type of that type parameter. For
example, if a class has a type parameter T, then the following declaration:

private EDU.williams.rupiah.PolyClass T$$class;

is added to the class.

PolyClass objects are initialized in constructors for parameterized classes. For each
type parameter of a class, an extra argument of type PolyClass is inserted by the Rupiah
compiler into constructors for the class. An assignment is performed in the body of the
constructor of arguments to corresponding PolyClass instance variables. This technique is
shown in Figure 4.2.

Calls to constructors for parameterized classes are also modified to include PolyClass
objects, as illustrated in Figure 4.3. These objects may be already existing PolyClass
objects, or objects whose initialization statement is synthesized by the compiler. As Figure
4.3 illustrates, constructing a parameterized class outside of that class’s definition results
in the creation of a new PolyClass object. In a parameterized class, the existing type
parameters of that class may be reused in the creation of other parameterized classes. For
example, in the new List<T>() expression, the PolyClass object T$$class representing T’s
run-time type is reused and passed to the constructor for List. Because any instantiation of
List already has a PolyClass representing T, no new PolyClass object need be constructed.
Inside constructors, the compiler also passes PolyClass objects to super() or this()
expressions. This ensures that the private PolyClass objects of polymorphic superclasses
are properly initialized.

4.1.1 instanceof Expressions

With the addition of information about type variables to Rupiah classes, we can now
distinguish between two different instantiations of a class such as List<Integer> and
List<String> at run-time. Thus, the instanceof operator can be translated to have
the correct behavior. Rupiah extends the instanceof operator for parameterized types
into a two-step process.

CHAPTER 4. INTRODUCTION TO RUPIAH 43

public final class PolyClass {
private Class base; // Class object for the base class
private PolyClass[] params; // Our actual parameters

public PolyClass(Class base, PolyClass[] params) {
this.base = base;
if (params != null) {
this.params = new PolyClass[params.length];
System.arraycopy(params, O, this.params, O, params.length);
} else { this.params = new PolyClass[0]; }
X
public PolyClass(Class base) { this(base, null); }

public boolean equals(Object o) {

if (o instanceof PolyClass) {
PolyClass p = (PolyClass)o;
if (!base.equals(p.base)) return false;
if (params.length != p.params.length) return false;
for (int i = 0; i < params.length; i++) {

if (!params[i].equals(p.params[i])) return false;

}
return true;

}

return false;

Figure 4.1: Java definition of PolyClass

CHAPTER 4. INTRODUCTION TO RUPIAH 44

/* Rupiah Version */ /* Translated Version */
public class List<T> { public class List {
private PolyClass T$$class;
protected Node<T> head; protected Node head;
public List() { public List(PolyClass T$$class$) {
T$$class = T$$class$;
head = null; head = null;

} }

} }

Figure 4.2: Adding type parameter arguments to constructors

/* Rupiah Versions */

List<Integer> 1i = new List<Integer>();
List<String> ls = new List<String>();
List<List<String>> 1lls = new List<List<String>>();
List<T> 1tn = new List<T>();

/* Translated Versions */
List 1i = new List(new PolyClass(Integer.class));
List 1s = new List(new PolyClass(String.class))
List 1ls = new List(new PolyClass(List.class,
new PolyClass[] { new PolyClass(String.class) }));
List ltn = new List(T$$class);

Figure 4.3: Initializing PolyClass objects for constructor calls to List<T>

CHAPTER 4. INTRODUCTION TO RUPIAH 45

The instanceof operator for parameterized classes has the following semantics. An
object of type C<T> is an instanceof D<U> if C is a subtype of D, and C’s instantiation of
D’s parameter is U. While instantiations of type variables must be invariant, a class need
not actually have the same type variables as another class in order to be an extension of
that class. Consider this example:

class C<T> { ... }
class D extends C<String> { ... }

Even though D does not have a type variable, D is an extension of C<String> because it
instantiates C’s type parameter T with fixed type String. To evaluate an expression of the
form

anObject instanceof List<Integer>

We first check that anObject is an instanceof the base type, List. Then we check that
anObject’s instantiation of List’s type parameter is Integer.

The check of the base type is easy to do using the existing instanceof operator. The
erasure of a parameterized type is its base type. Thus, any object that was originally a
List<T> will be a List in the translation. However, checking the run-time instantiations
of type parameters is more difficult. To aid these checks, the compiler adds a synthe-
sized method for each parameterized class. For a class (or interface) C, a method named
$instance0f$C method is added. This method takes the same number of PolyClass argu-
ments as type parameters to that class. The body of this method checks whether the passed
arguments are equal to the instance variables representing the instantiated type parameters.
For example, the $instance0f$List (PolyClass other) method of List<T> checks if the
passed PolyClass is equal to the PolyClass representing T — T$$class. Additionally, a
class defines $instance0f$I methods for any interfaces that it implements. Examples of
synthesized $instance0f$ methods are shown in Figure 4.4 for two class declarations. Note
that an $instance0f$C method is not required in D because it is inherited from C while
$instance0f$I must be defined because I is an interface and thus can not itself define the
body of the method.

With these synthesized methods we can check the run-time values of instantiations of
type parameters in a class. The instanceof operator for parameterized types becomes:

e check that the object is an instance of the base type, and

e check instantiations of type parameters by casting the object to the base type, and
invoking the appropriate $instance0f$ method.

Some examples of the full translation of instanceof for parameterized types are shown in
Figure 4.6. Note that checking if an object is an instance of a type parameter requires a
purely reflective solution because we do not statically know the base type of an instantiation
of a type parameter. The method with signature

CHAPTER 4. INTRODUCTION TO RUPIAH 46

/* Rupiah Version */
public class D<X, Y> extends C<X> implements I<Integer> { ... }

/* Translated version */
public class D extends C implements I {

public boolean $instance0f$D(PolyClass a, PolyClass b) {
return X$$class.equals(a) && Y$$class.equals(b);

}
public boolean $instance0f$I(PolyClass a) {
return a.getBase() == Integer.class;
}
}

Figure 4.4: Adding $instance0f$ methods to classes

boolean $instance0f$(0Object other)

in PolyClass (shown in Figure 4.5) performs the reflective call and returns true if other is
an instanceof the instantiation of the type parameter at run-time.

Side Effects

The instanceof operator in Rupiah is translated as a two-step process, performing the
checks described above. Thus, the expression being checked must be evaluated multiple
times. If the expression represented by object is an identifier expression, then this is no
problem. However, if the expression has side effects, then this translation will evaluate the
expression (and the side effects) multiple times. To compensate for this possible problem,
we introduce a synthetic variable into the translation. This variable is assigned the value
of the expression in the first step of the translation of instanceof. Then the synthetic
variable is used in the additional portions of the translation so that the actual expression
being checked is only evaluated once.
For example, in Figure 4.6, the test for

if (object instanceof List<String>) { ... }
translates to

Object $synth_0$;
if ((($synth_0$ = object) == null)

CHAPTER 4. INTRODUCTION TO RUPIAH

public boolean $instance0f$(0bject other) {
//check base type
if (!base.isInstance(other)) return false;

//check param types
if (params.length == 0) { return true; }
Class[] methTypes = new Class[params.length];
for (int i=0; i < params.length; i++)
methTypes[i] = PolyClass.class;
try {
Method m = base.getMethod(‘‘$instance0f$’’ + getShortName(base),
methTypes) ;
Boolean b = (Boolean) m.invoke(other, params);
return b.booleanValue();
} catch (Exception e) { return false; }

public String getShortName(Class c) {
//returns the unqualified name (without package information) of c

}

Figure 4.5: PolyClass.$instance0f$ method

47

CHAPTER 4. INTRODUCTION TO RUPIAH 48

// Rupiah versions

if (objectl instanceof List<String>) { ... }
if (object2 instanceof List<T>) { ... } //T is a type parameter
if (object3 instanceof T) { ... } //T is a type parameter

// Translated versions
Object $synth_1$;
if ((($synth_1$ = objectl) == null)
[l (($synth_1$ instanceof List)
&& ((List)$synth_1%).$instance0f$List (new PolyClass(String.class)))) { ... }

Object $synth_2$;
if ((($synth_2$ = object2) == null)
|| (($synth_2$ instanceof List)
&% ((List)$synth_23%).$instance0f$List (T$$class))) { ... }

T$$class.$instance0f$(object3d) { ... }

Figure 4.6: instanceof translation for polymorphic types

|l (($synth_0$ instanceof List)
&% ((List)$synth_0%).$instance0f$List (new PolyClass(String.class))))

Full translations for other instanceof expressions are shown in Figure 4.6.

4.1.2 Type Conversion Expressions

Rupiah also supports type casts that contain parameterized types. Recall from Section
3.1.5 that a cast that fails at run-time should throw a ClassCastException. GJ would
have problems throwing these exceptions for cast expressions involving type parameters.
For instance in GJ one would expect that the cast expression

(List<Integer>) anObject;
would erase to
(List) anObject;

and thus would succeed (improperly) if anObject is any instantiation of List. As a result
of this problem, GJ only allows cast expressions involving “raw types” — that is, List not
List<Integer>.

CHAPTER 4. INTRODUCTION TO RUPIAH 49

//checked cast expression

((C)anObject)

//semantically equivalent expression
//in a language without checked casts
//(ie (C)anObject is not dynamically checked)

Object $synth_0$;

((($synth_0$ = anObject) instanceof C)
7?7 (C)$synth_0$: throw new ClassCastException())

Figure 4.7: Relationship between instanceof and explicit cast expressions

Rupiah properly supports checked type casts by using a similar technique as is used
to support the instanceof operator. In general, if a language has an instanceof opera-
tor, then dynamically checked casts can be simulated using the code shown in Figure 4.7.
Rupiah is able to determine the value of instanceof expressions involving type parameters.
Thus the extended instanceof operator can be used to execute dynamically checked casts.
Examples of the translation of checked casts in Rupiah are given in Figure 4.8.

This technique completes the type cast only after the run-time validity check has been
performed, using the extended instanceof operator. As with instanceof expressions,
synthetic variables are inserted as needed so that casts of expressions with side effects are
only evaluated once.

4.2 Exact Types

Rupiah supports ezxact types. Exact types allow the programmer to specify types more
precisely as well as being a necessary addition to support the translation of ThisType, de-
scribed in Section 4.3. Exact types are translated to unexact types; that is, @T erases to
T. The type-checking for exact types is done at compile time. For example, if a method
parameter is declared with type @T, then the compiler only allows that method to be in-
voked with an actual parameter that is also declared to have type @T. However, operations
such as instanceof and casts which make use of run-time type information require more
complicated run-time checks.

CHAPTER 4. INTRODUCTION TO RUPIAH 50

//Rupiah versions
List<Integer> 1i = (List<Integer>) objectl;
List<T> 1t = (List<T>) object2; // T is a type parameter

Tt

(T)object3; // T is a type parameter
// with bound B

// Translated versions
Object $synth_18;
List 11 = ((($synth_1$ = objectl) == null)

I
((List)$synth_1$) .$instance0f$List (new PolyClass(Integer.class)))
? (List)$synth_1$
: throw new ClassCastException();

Object $synth_2$;
List 1t = ((($synth_2$ = object2) == null)

I
((List)$synth_2$) .$instanceOf$List (T$$class))
? (List)$synth_2$
: throw new ClassCastException();

Object $synth_3$;

Bt

(T$$class.$instance0f$($synth_3$ = object3))
? (B)$synth_3$
: throw new ClassCastException();

Figure 4.8: Validity checks for casts in Rupiah

CHAPTER 4. INTRODUCTION TO RUPIAH o1

//Rupiah

anObjectl instanceof @C
anObject2 instanceof @D<T>
anObject3 instanceof QT

//Translation
Object $synth_1$;
((($synth_1$ = anObjectl) == null)
[l ($synth_1$.getClass() == C.class))

Object $synth_2$;
((($synth_2$ = anObject2) == null)
[l (($synth_2%.getClass() == D.class)
&& (((D)$synth_2%) .$instance0f$D(T$$class)))

T$$class.$instance0f$(anObject3, true)

Figure 4.9: instanceof translations for exact class types

4.2.1 instanceof with Exact Types

Rupiah correctly supports the instanceof operator for expressions involving exact types.
An object is an instance of an exact class type if it really is an instantiation of that class. The
JVM only creates one Class object to represent each class at run-time. Thus, if the right
side of an instanceof expression is an exact class type, then the Class object representing
the expression being checked can be compared with the Class object representing the right
side’s type. For example, the translation of object instanceof @C is:

object.getClass() == C.class

If the target is a parameterized class type, for example C<T>, then we must also check
the instantiations of type parameters. We use the $instanceof$C methods, introduced in
Section 4.1.1, to check instantiations. Examples of these translations are shown in Figure
4.9.

If the type being checked is an exact parameter type, then a reflective solution is used.
We modify the $instance0f$ method of PolyClass so that it can handle exact types
properly. A boolean instance variable indicates if the check should be performed exactly
or not. This revised method is shown in Figure 4.10.

If the target of an instanceof expression is an exact interface type, then a more complex
translation is needed. The run-time type of an object in Java is never an interface type

CHAPTER 4. INTRODUCTION TO RUPIAH 52

public boolean $instance0f$(0Object other, boolean exact) {
//check base type
if (exact) {
if (!(base == other.getClass())) return false;
} else {
if ('base.isInstance(other)) return false;

¥

//check param types
if (params.length == 0) { return true; }
Class[] methTypes = new Class[params.length];
for (int i=0; i < params.length; i++)
methTypes[i] = PolyClass.class;
try {
Method m = base.getMethod(‘‘$instance0f$’’ + getShortName(base),
methTypes) ;
Boolean b = (Boolean) m.invoke(other, params);
return b.booleanValue();
} catch (Exception e) { return false; }

Figure 4.10: Revised PolyClass.$instance0f$ method for exact class types

CHAPTER 4. INTRODUCTION TO RUPIAH 93

static boolean hasExImp(Field[] fields) {
if (fields == null) return false;
for (int i = 0; i < fields.length; i++) {
if (fields[i].getName() .equals("$$ExImp")) {
return true;
}
}
return false;

}

Figure 4.11: PolyClass.hasExImp method

(as an interface can not be constructed) so we can not simply compare Class objects for
equality at run-time. For exact interfaces, we introduce the idea of an exact interface
implementation. A class in Rupiah may implement an interface exactly, which means that
the public methods of the class are identical to the interface’s public members. A class
may only implement one interface exactly. If it were allowed to implement multiple exact
interfaces, the interfaces would be structurally identical, only differing in name. Because
Java does not support structural type relationships, we are forced to impose this limit on
exact interface implementation to avoid complications in our translation.

Using the concept of exact interface implementation, instanceof operations involving
exact types can be performed correctly. To check if an object is an instance of an exact
interface @I, the following two conditions must hold:

e object has an exact interface implementation.
e object’s exact interface is I

In order to check the first condition, Java’s reflection API is used. The Rupiah compiler
inserts a private boolean instance variable named $$ExImp for each class that implements
an exact interface. To check that a class has an exact interface the compiler synthesizes an
expression that checks if a variable with this name is declared for the class. The method
Class.getDeclaredFields() is used to obtain an array of java.lang.reflect.Field
objects. If the class implements an exact interface, then this array contains the $$ExImp
instance variable. The static method PolyClass.hasExImp, shown in Figure 4.11, checks
whether an array of Field objects contains an element named $$ExImp.

Additionally, the exact interface is placed in the first element of the interfaces array
for that object (ahead of other non-exact interfaces that the class might implement). Thus
if a class implements an interface exactly, it will be the first element in the expression
getInterfaces(), which returns an array of Class objects. To check the second condition,

CHAPTER 4. INTRODUCTION TO RUPIAH o4

we compare the Class object in the first slot of the interfaces array with the Class object

of the interface being checked, shown in Figure 4.13. If the interface is parameterized, then

the same checks from Section 4.1.1 are used to check the instantiations of type parameters.
Finally, we must reconsider (for the last time) the translation for

object instanceof QT

where T is a type parameter. Recall that instanceof expressions are performed using
reflection because T’s instantiation type is not known statically. Thus, we must extend
our reflective solution to be able to handle exact interface types. As before, this solution
catches any exceptions that the reflective calls throw internally and returns false for the
instanceof expression. This is correct because any exceptions that might be thrown by
evaluating the object are raised before the method is invoked. We revise the $instance0f$
method of PolyClass as shown in Figure 4.12.

4.2.2 Type Conversion Expressions with Exact Types

Support for type conversion expressions involving exact types utilizes the translation for
instanceof. We have already seen, in Figure 4.7, how checked casts can be simulated
with a correct instanceof operator. Thus, to support a cast to an exact type, we simply
perform the same tests that we perform for instanceof, if the tests return false, we throw
a ClassCastException. Examples of the translations for casts to exact types are shown in
Figure 4.14.

4.3 ThisType

Rupiah also adds a keyword, ThisType that stands for the interface type of this (ThisType
is described in Chapter 2). ThisType is based on a construct borrowed from LOOM. The
strategy used to translate ThisType is similar to that used for parametric polymorphism,
making use of type erasure, synthesized casts and bridge methods.

4.3.1 Type Erasure and Exact Interface Types

Unlike the translations for parametric polymorphism, the erasure for ThisType is not im-
mediately clear. Recall that ThisType stands for the interface type of this. Importantly,
it is not the type of the class where it is declared, but rather the public interface of that
type.

In Rupiah, in order to ensure that a representation for ThisType exists, the compiler
requires that every class that uses ThisType exactly implement an interface. The program-
mer may specify an exact interface, or the compiler can synthesize one for them. For a
class C, the synthesized exact interface, if needed, has the name $$CIfc. The synthesized

CHAPTER 4. INTRODUCTION TO RUPIAH 95

public boolean $instance0f$(0Object other, boolean exact) {
boolean baseOkay = false;
//check base types
if (exact && base.isInterface()) {
baseOkay = hasExImp(other.getDeclaredFields())
&& other.getClass().interfaces() [0] == base;
}
else if (exact) { baseOkay = (other.getClass() == base); }
else { baseOkay = base.isInstance(other); }

if (!baselkay) return false;

//check param types
if (params.length == 0) { return true; }
Class[] methTypes = new Class[params.length];
for (int i=0; i < params.length; i++) methTypes[i] = PolyClass.class;
try {
Method m = base.getMethod(‘‘$instance0f$’’ + getShortName(base),
methTypes) ;
Boolean b = (Boolean) m.invoke(other, params);
return b.booleanValue();
} catch (Exception e) { return false; }

Figure 4.12: Final revision of PolyClass $instance0f$ method for exact interface types

CHAPTER 4. INTRODUCTION TO RUPIAH 56

/* Rupiah Version */

anObjectl instanceof @I //I is an interface

anObject2 instanceof Q@IKT> //T is a type parameter

anObject3 instanceof QT //T is a type parameter, possibly instantiated
//with an interface type

/* Translated Version */

Object $synth_1$;

((($synth_1$ = anObjectl) == null)

|| ((PolyClass.hasExImp($synth_1$.getClass() .getDeclaredFields()))
&% ($synth_1$.getClass() .getInterfaces() [0] == I.class)))

Object $synth_2$;

((($synth_2$ = anObject2) == null)

|l ((PolyClass.hasExImp($synth_2$.getClass() .getDeclaredFields()))
&% ($synth_2$.getClass.getInterfaces() [0] == I.class)
&& (((I)$synth_2$) .$instance0f$(TE$class))))

T$$class.$instance0f$(anObject3, true);

Figure 4.13: Checking instanceof with an exact interface

CHAPTER 4. INTRODUCTION TO RUPIAH o7

/* Rupiah Versions */

(@C) objectl //C is a class

(@C<T>) object2 //T is a type parameter

(@T) object3 //T is a type parameter with bound B
(QI<T>) object4 //I is an interface, T is a type parameter

/* Translated Versions */
Object $synth_1$;
((($synth_1$ = objectl) == null)
|l ($synth_1$.getClass() == C.class))
? (C)$synth_1$
: throw new ClassCastException())

Object $synth_2$;
((($synth_2$ = object2) == null)
[l (($synth_2$.getClass() == C.class)
&& ((C)$synth_23) .$instance0f$C(T$$class))))
7 (C)$synth_2%
: throw new ClassCastException()

Object $synth_3$;
T$$class.$instance0f$($synth_3% = object3)
? (B) $synth_3%
: throw new ClassCastException()

Object $synth_4$;
((($synth_4$ = objectd) == null)
|| ((PolyClass.hasExImp($synth_4$.getDeclaredFields())
&% ($synth_4$.getInterfaces()[0] == I.class)
&& ((I)$synth_43) .$instance0f$I(T$$class)))
? (I) $synth_4$
: throw new ClassCastException()

Figure 4.14: Translation of casts to exact types

CHAPTER 4. INTRODUCTION TO RUPIAH o8

interface extends any other interfaces that C implements as well as the exact interfaces of a
possible superclass, if it exists. An example using synthesized interfaces is given in Figure
4.15. In this example, the synthesized interface for C only contains C’s one public member,
cMethod (). However D’s synthesized interface is not as simple. Note in particular that
$$DIfc extends the exact interface, $$CIfc of D’s superclass C. Also, $$DIfc extends each
interface that D implements, namely A.

A class’s exact interface, either synthesized or explicitly declared, must contain exactly
the public, non-constructor members of the class. ThisType expressions are translated to
the exact interface of the class. This translation of ThisType to exact interfaces is intuitive
because the exact interface by definition represents the public interface of a class and thus
is equivalent to ThisType.

One additional rule is required to support this translation of ThisType. The actual type
referred to by an expression of type ThisType changes in subclasses. Thus, the erasure of
ThisType in a subclass must be related to the erased version of ThisType for its superclass.
Therefore, if a class implements an exact interface, that interface must extend the exact
interface of its superclass, if it exists.

In general, it is wise not to mix synthesized and declared exact interfaces. If a class
D uses ThisType and is declared with exact interface DExIfc, but D’s superclass C, which
also uses ThisType, does not declare an exact interface then a problem will likely occur.
Though C does not declare an exact interface in the source file, the compiler automatically
synthesizes an exact interface, $$CIfc. Thus when D is compiled, an error occurs because
D’s exact interface does not extend the exact interface of its superclass. It is easiest for
programmers who choose to use ThisType in Rupiah programs to always use declared
interface types, not class types, in type expressions. Many object-oriented languages require
that programmers separate interface from implementation in this fashion [Wal96]. However,
should programmers wish to use ThisType without considering interface types, the synthetic
interfaces are provided. Mixing the two approaches, however, is not recommended.

Like the translations for parametric polymorphism, the simple erasure of extended types
is not enough. Often casts are needed to bridge the gap between generalized erased versions
of type expressions and more specific types. Consider the code shown in Figure 4.15. In
that example, cMethod (), which has return type ThisType, is inherited by D from C. The
return type for the method in the translation is $$CIfc — C’s exact implementation which
represents the type of ThisType in C. As D is a subclass of C, the meaning of ThisType
should change for any methods or instance variables inherited from C. Thus a return type
$$CIfc for a method inherited from C might require a cast to $$DIfc if it is invoked on
an object of type D. The compiler inserts casts as necessary to correctly reflect ThisType’s
change in type in subclasses.

Still, this translation is not complete. In some cases, bridge methods must be added
for methods that contain ThisType in their type signature. Suppose that D overrides
cMethod (). The method cMethod (), that was defined in C to return type $$CIfc has return

CHAPTER 4. INTRODUCTION TO RUPIAH 99

/* Rupiah Version */ /* Translated Version */
public class C { public interface $$CIfc {
ThisType cMethod() { ... } $$CIfc cMethod();
e }
} public class C implements $$CIfc {
$$CIfc cMethod() { ... }
}
public class D extends C public interface $$DIfc
implements A { extends $$CIfc, A {
ThisType dMethod() { ... } $$DIfc dMethod();
}

ThisType tt = cMethod();
.. public class D extends C implements $$DIfc {
b $$DIfc dMethod() { ... }

$$DIfc tt = ($$DIfc) cMethod();

Figure 4.15: Synthesizing exact interfaces, adding casts to the translation for ThisType

CHAPTER 4. INTRODUCTION TO RUPIAH 60

public class C {
ThisType cMethod() {

}
}

public class D extends C {
ThisType cMethod() {

}

C myC = new DQ);

ThisType tt = myC.cMethod(); //want to call D’s overriden method
//but as myC has static type C, method
//call is bound to C’s cMethod()

Figure 4.16: Method binding problems with ThisType

type $$DIfc in D. This kind of change in a return type, which is normally not allowed in
standard Java, is allowed when ThisType is used as a return type. Further, because the
JVM is less restrictive than the Java language, there is no problem in allowing a covariant
change in return types in the translation. Like the translation for parametric polymor-
phism however, a method binding problem arises because two different method definitions
for cMethod () exist in the translation of D while only one existed in the source class.

As in the example for the add method described in Section 3.1.3, D’s version of cMethod
should always be called, even if a D is assigned to an object with static type C. An illustration
of this problem is shown in Figure 4.16. Because Java statically binds the method call to a
particular signature, the compiler binds the call myC.cMethod () to C’s definition.

The problem stems from the fact that D overrides cMethod but also inherits a definition
with a different type signature from C. Thus, while D had only one cMethod defined in the
source language, the translation effectively has two methods named cMethod:

$$CIfc cMethod() { ... } //inherited
$$DIfc cMethod() { ... } //overloaded

Only the method with signature

$$DIfc cMethod()

CHAPTER 4. INTRODUCTION TO RUPIAH 61

should ever be invoked on an object with run-time type D because cMethod is overridden
by D in the source language.

In order to make sure that the correct method is always invoked, the compiler inserts a
bridge method in D:

$$CIfc cMethod() { return cMethod(); } //calls $$DIfc cMethod()

This bridge method ensures that the correct definition of cMethod () is called even if method
binding is not correct at compile time. As in Section 3.1.3, even though this bridge method
is not legal Java code because two methods are defined that differ only in their return types,
the JVM can distinguish between the two. Also, as with bridge methods in GJ, the compiler
never statically binds a method call to a bridge method. Therefore, the apparent infinite
loop in the definition of the bridge method is in fact, not an issue.

4.3.2 Run-Time Support for ThisType

In Rupiah, ThisType expressions evaluate correctly in type casts and instanceof expres-
sions. As the type of ThisType changes meaning in subclasses, we have to be careful that
our translations of instanceof ThisType and casts to (ThisType) are correct for code
that is inherited.

instanceof Expressions

To check an instanceof ThisType expression correctly, we need to check if the object is
an instance of the class’s fully instantiated exact interface. However, as ThisType changes
meaning in subclasses, we do not wish to check a specific exact interface. If a class has
exact interface I, for example, we can not invoke $instance0f$I directly because the
instanceof code would not be correct when inherited by a subclass with a different exact
interface. Thus we wrap up the exact interface checked in a method and use Java’s dynamic
method invocation in order to call the method that checks the correct interface. Each class
that uses ThisType has a method added to the class file with signature:

public boolean $instance0f$ThisType(Object other, boolean exact)

This method is overridden by each subclass and checks that object is an instance of their
exact interface. A sample synthesized $instance0f$ThisType method is shown in Figure
4.17. If the $instance0f$ThisType method is called with exact equal to true, then the
method performs the check for exact interface types as described in Figure 4.13. Figure
4.18 shows the translation of instanceof ThisType.

CHAPTER 4. INTRODUCTION TO RUPIAH 62

class C<X> implements QI<X, Integer> {
PolyClass ThisType;
PolyClass X$$class;

public boolean $instance0f$ThisType(Object other, boolean exact) {
if (other == null) { return true; }

if (exact) {

if (! ((PolyClass.hasExImp(other.getClass().getDeclaredFields()))

&% (other.getClass.getInterfaces() [0] == I.class)))
{ return false; }

} else {

if (! (other instanceof I)) { return false; }
}
return ((I)other).$instance0f$I(X$$class,

new PolyClass(Integer.class));

Figure 4.17: Synthesized $instance0f$ThisType methods in classes

CHAPTER 4. INTRODUCTION TO RUPIAH

/* Rupiah Version */
class C<T> implements QI<T> {

objectl instanceof ThisType

object2 instanceof QThisType
b

/* Translated Version */
class C implements I {

public boolean $instanceO0f$I(PolyClass t) { ... }
public boolean $instanceof$ThisType(Object other) { ... }

$instance0f$ThisType(objectl, false)

$instance0f$ThisType (object2, true)
}

Figure 4.18: Translating instanceof ThisType in a class with type parameters

63

CHAPTER 4. INTRODUCTION TO RUPIAH 64

/* Rupiah Version */
class C<T> implements QI<T> {

(ThisType) objectl

(@ThisType) object2
}

/* Translated Version */
class C implements I {

public boolean $instance0f$I(PolyClass t) { ... }
public boolean $instanceof$ThisType(Object other) { ... }

Object $synth_1$;

($instance0f$ThisType (($synth_1$ = objectl), false))
? (I)$synth_1$
: throw new ClassCastException()

Object $synth_2%;

($instance0f$ThisType (($synth_2$ = object2), true))
? (I)$synth_2%
: throw new ClassCastException()

Figure 4.19: Casts involving ThisType

4.3.3 Type Conversion Expressions

The translation for type casts involving ThisType follows the strategy illustrated in Figure
4.7. Namely, the $instanceof$ThisType methods are called, and a ClassCastException
is thrown if the check fails. Examples of the translation of casts to ThisType and @ThisType
are illustrated in Figure 4.19.

4.4 Array Types in Rupiah

Recall that Rupiah stores PolyClass objects with each parameterized class or method.
These PolyClass objects are used in operations that require full type information at run-
time. The PolyClass objects are created and passed along to constructors for polymorphic

CHAPTER 4. INTRODUCTION TO RUPIAH 65

classes. Arrays are also objects in Java. However, they are not constructed by calling a
constructor, but by bytecode instructions. Indeed JVMs have much flexibility in how they
implement these instructions. Each array object has the following members:

e a final integer length field
e a (shallow) clone method
e all of the methods inherited from Object

Additionally, the Class object for an array type may be obtained by writing the type fol-
lowed by “.class” (used in reflection). Thus an array is an object but is not constructed
by any constructor. This presents a problem for the Rupiah project because it does not
allow our general technique of storing PolyClass objects with polymorphic classes by pass-
ing them to constructors to be implemented for arrays. Because all array operations are
implemented by bytecode instructions, we have no way to store a PolyClass object with
an array. Thus, we have no way to correctly perform instanceof, casts, or new array ex-
pressions for arrays with element types that are parameterized types, type parameters, or
ThisType.

A solution to this problem is proposed in Section C. However, this proposal is not yet
implemented in the Rupiah compiler and has several drawbacks including breaking source
compatibility with some Java programs.

4.5 LM: Increasing Homogeneous Translation Efficiency

Rupiah solves many of GJ’s problems with operations that require run-time type information
while staying within the paradigm of the homogeneous translation. However, because it
uses reflection to access information about run-time types, the translation is less efficient
than either GJ or NextGen. One recent proposal, LM, [VNO0O] suggests that an approach
based solely on reflection can be optimized by resolving many of of the instantiations of
parameterized classes at load time. In this section, rather than discuss the specifics of LM’s
translation, we describe the key concepts as they would work if extended to Rupiah.

The JVM only creates one Class file for each class used in a program no matter how
many instantiations of that class are actually constructed. Rupiah uses PolyClass objects
to represent parameterized types but constructs a new PolyClass object every time that
a polymorphic class is instantiated. This introduces a significant slowdown because new
PolyClass objects are created each time that a polymorphic class is instantiated. We would
like behavior for PolyClass objects that is similar to Class objects — namely, that only
one PolyClass object is ever created to represent a given type. A complicated declaration
such as

List<List<List<List<List<List<Integer>>>>>>

CHAPTER 4. INTRODUCTION TO RUPIAH 66

public class ListTester
public static void useLists()
List<Integer> 1li = new List<Integer>(new Integer(0), null);
List<Integer> 1i2 = new List<Integer>(new Integer(0), null);
List<String> 1s = new List<String>(‘‘’’, null);
List<List<Integer>> 1li = new List<List<Integer>>(1li, null);
List<List<String>> 1ls = new List<List<String>>(ls, null);

Figure 4.20: Complex List<T> Usage

illustrates the acute nature of the problem: each of List<Integer>, List<List<Integer>>
etc, are constructed separately each time that the expression is encountered.

Also recall that PolyClass objects are often tested for equality in Rupiah’s translations
for instanceof and casts for parameterized types. However, unlike Class objects, which
can be tested for equality with the inexpensive == operator, PolyClass must be compared
using a more costly structural equality test (the equals method).

The optimization introduced in LM is to use a separate class, PolyClassLoader to
handle all creation and access to PolyClass objects. The PolyClassLoader contains a static
Hashtable that stores each distinct PolyClass object. Classes obtain their PolyClass
objects from this loader class, which has static methods and thus does not have to be
instantiated itself. The Hashtable is also static, thus, all PolyClass objects are shared
between all classes that use a PolyClassLoader.

The PolyClassLoader operates as follows. The first time that a PolyClass is needed,
the PolyClassLoader constructs the object and returns it. Additional requests to the
PolyClassLoader for the same polymorphic type simply return the already created object
stored in the Hashtable. This optimization reduces the number of PolyClass objects that
are created. It also allows PolyClass objects obtained through the PolyClassLoader to
be tested for equality using the == operator because only one PolyClass is ever created for
a given type.

This solution is much improved over the pure reflective solution, but can be further op-
timized. Consider a class that contains the following code, shown in Figure 4.20, and
a polymorphic List<T> as defined in Figure 2.5. Introducing a PolyClassLoader re-
duces the number of instantiations of PolyClass objects in the translation greatly. How-
ever, using the same parameterized type multiple times requires multiple method calls to
the PolyClassLoader. For example, in the above example, the PolyClass representing
List<Integer> is used three times. Borrowing an optimization used with Class objects,
we can reduce the number of method calls to the PolyClass loader by caching PolyClass

CHAPTER 4. INTRODUCTION TO RUPIAH 67

objects in static fields. Thus, we declare a field in the class ListTester:
private static PolyClass List$$Integer$$;

and replace all accesses of the PolyClass representing List<Integer> with the following
expression (assuming the PolyClassLoader has a method get which takes a String and
returns the PolyClass object representing that type):

(List$$Integer$$ == null)
7 (List$$Integer = PolyClassLoader.get(‘‘List<Integer>’’))
: List$$Integers

This optimization reduces the number of method calls that must be performed, and replaces
them with static field references. However, note that if the type contains any type variables,
this optimization may not be used. For example, to obtain the PolyClass for List<T>, we
must know T’s run-time type. Caching the value of List<T> in a static field, would mean
that different instantiations of T use the same PolyClass representing List<T> — clearly
an error. Thus we only use this last optimization for type expressions that do not contain
type variables.

4.5.1 Evaluating LM

LM’s main focus is improving the efficiency of a Rupiah-like language by reducing the degree
of reflection needed to implement the translation. It moves much more of the translation
to compile time, so that run-time efficiency is greatly improved. However, it does not add
any expressiveness to the type system beyond GJ, NextGen, or Rupiah and thus is of less
direct interest to this thesis.

Chapter 5

New Language Features

in Chapter 4, we have strong motivations for introducing a few additional constructs

into the Rupiah language. First, the description of Rupiah in the previous chapter
only defines parametric polymorphism for top-level classes. We propose adding support for
inner class and method-level type parameters as well. Second, constructing objects whose
type is explicitly ThisType or a type variable is almost impossible to do within the bounds of
the static type system. ThisClass virtual constructors provide a constructor that can safely
construct objects of these types. Finally, the Rupiah compiler does not support separate
compilation of class files. Though this is not related to the expressiveness of the language,
it is a practical nuisance. By adding bytecode attributes to store full type information
for a class’s members, we can overcome this limitation.

E ven with the expressiveness gained by adding the new type system features described

5.1 Complete Parametric Polymorphism

Earlier versions of the Rupiah compiler only supported class-level type parameters. This
restriction is easily eliminated by extending our existing implementation to support poly-
morphic inner classes and methods.

5.1.1 Motivation: Complete Parametric Polymorphism

The concept of parametric polymorphism is fairly general. However in Chapter 4, we
have only defined parametric polymorphism for top-level classes and interfaces. Obviously
supporting parametric polymorphism for top-level classes but not for inner classes is incon-

68

CHAPTER 5. NEW LANGUAGE FEATURES 69

sistent. Additionally, the concept can be generalized to allow passing types as parameters
to methods as well. A number of languages, including ML, PolyTOIL, LOOM, Pizza,
and GJ support polymorphic methods. We wish to extend Rupiah so that it supports
parametric polymorphism both in inner classes and methods.

Inner Classes

There are strong motivations for adding support for polymorphic inner classes. The first
reason is simply that implementing parametric polymorphism for top-level classes, while
not doing so for inner classes, is an unnecessary and arbitrary restriction. Polymorphic
inner classes are so similar to polymorphic classes that it should be easy to extend our
implementation.

A second, perhaps more compelling reason is that several programming techniques de-
pend on their inclusion in the language. For example, in Java programmers often define an
Enumeration as an inner class. An Enumeration<T> provides access to the elements of a
data structure through the following interface:

public inteface Enumeration<T> {
public boolean hasMoreElements();
public T nextElement();

}

We would like to be able to define a ListEnumeration as shown in Figure 5.1. In this
example, we use List<T>’s T internally in defining ListEnumeration. We do not need to
declare a separate type parameter for ListEnumeration because T is already defined for
any instantiation of List<T>. However, the original Rupiah language did not allow type
parameters from the enclosing class to be used in an inner class. Thus, ListEnumeration<T>
would have to be a top-level class. While no functionality is lost by making it a top-level
class, a common Java technique is to define an Enumeration as an inner class. Thus, it
would be unfortunate if the polymorphic version of Enumeration<T> could not be defined
similarly.

Inner classes should also be able to define their own type parameters. Consider a
variation of the ListEnumeration class shown above, ListMapEnumeration<U>, that maps
a function over each element before in the enumerations before returning it. The mapping
function, defined by an interface Mapper:

public interface Mapper<T, U> {
U func(T t);
}

declares a method, func, that given an element of type T returns an element of type U.
Thus, in order to define our ListMapEnumeration<U>, we need a way to specify the types

CHAPTER 5. NEW LANGUAGE FEATURES

public class NoSuchElementException extends RuntimeException {}
public class List<T> {

public class ListEnumeration implements Enumeration<T> {
Node<T> finger;
public ListEnumeration() {
finger = head;

}

public boolean hasMoreElements() {
return (finger == null);

+

public T nextElement() {
if (!(hasMoreElements())) {
throw new NoSuchElementException() ;
}
T data = finger.getData();
finger = finger.next();
return data;

}

}

public Enumeration<T> elements() {
return new ListEnumeration();

¥

Figure 5.1: ListEnumeration definition for List<T>

70

CHAPTER 5. NEW LANGUAGE FEATURES 71

public class List<T> {

public class ListMapEnumeration<U> implements Enumeration<U> {
Node<T> finger;
Mapper<T, U> m;
public ListMapEnumeration(Mapper<T, U> m) {
this.m = m;

finger = head;

}

public boolean hasMoreElements() {
return (finger == null);

}

public U nextElement() {
if (!(hasMoreElements())) {
throw new NoSuchElementException();
}
T data = finger.getData();
finger = finger.next();
return m.func(data);

Figure 5.2: ListMapEnumeration<U> definition for List<T>

of T and U. T is already specified by the type parameter of the enclosing class, but U can not
be declared without support for polymorphic inner classes. With language support for type
parameters to inner classes, we can write ListMapEnumeration<U> as shown in Figure 5.2.
Extending Rupiah’s support for parametric polymorphism to inner classes makes the
language more expressive, and is useful in several applications. Moreover, it makes our im-
plementation of parametric polymorphism more consistent by supporting parametric poly-
morphism for any class or interface, not only for top-level classes and interfaces.

Methods

Our motivations for extending our implementation of parametric polymorphism to support
polymorphic methods are similar to those for supporting polymorphic inner classes. First,
the concept of parametric polymorphism is a good fit with methods. Thus, our implemen-

CHAPTER 5. NEW LANGUAGE FEATURES 72

tation of parametric polymorphism is more consistent if we allow type parameters to be
declared for methods rather than restricting their use only to classes. Second, some im-
portant programming techniques can only be programmed in a statically type safe way if
polymorphic methods are supported by the language.

For example, by extending Rupiah to support polymorphic methods, we can define a
simpler map method for List<T>. The map method takes a function from T to U defined by
Mapper<T, U>, aList<T>, and returns the List<U> that is obtained by calling func on each
element of the original list. This is analogous to ML’s map function with type signature:

fn : (’a -> ’b) -> ’a list -> ’b list

A polymorphic map method in Rupiah is shown in Figure 5.3. Type variables and bounds
for a method are declared in <> brackets just after the modifiers but before the return type
declaration. Thus the method declaration for map is:

public <U> List<U> map(Mapper<T, U> m)

The syntax for polymorphic method invocation is similar. We specify instantiations of
type variables in <> brackets before the method name. For example to invoke map with a
Mapper<String, Integer>, we write:

List<String> alList = ...
Mapper<String, Integer> m = ...

List<Integer> lu = alist.<Integer>map(m);

Unlike GJ, Rupiah does not support inference of instantiations of method type variables.
They must always be explicitly stated.

A second example that illustrates why polymorphic methods are useful involves pro-
gramming an extensible interpreter for a simple language. The source code for such an
interpreter as well as commentary on why type system features such as polymorphic meth-
ods are needed for static type safety are given in Appendix B.

5.1.2 Implementation: Complete Parametric Polymorphism

Extending our implementation of parametric polymorphism is quite simple. As we already
have an existing framework supporting class level type parameters, relatively few changes
need to be made. In fact, most of the changes made to support polymorphic inner classes
and methods reside in the parser (a grammar for the Rupiah language is given in Appendix
A). However, a few substantial changes to the internal compiler representation of type
parameters and to type checking rules for method overloading and overriding are needed to
support these new features.

CHAPTER 5. NEW LANGUAGE FEATURES 73

class List<T> {

public <U> List<U> map(Mapper<T, U> m) {

List<U> listu = new List<U>();

Node<T> finger = head;

while (finger != null) {
U data = m.func(finger.getData());
listu.add(data);
finger = finger.getNext();

}

return listu;

Figure 5.3: A map method for List<T>

Inner Classes

Our main concern in supporting type parameters for inner classes is the issue of scoping.
Scoping rules for type variables follows from Java’s scoping rules for variables. A non-static
nested class may refer to all of the type variables defined by the enclosing class. If both the
enclosing and nested classes define a type variable T then inside of the nested class a type
expression involving T always refers to the nested class’s variable.

Early versions of the Rupiah compiler stored information about type parameters and
bounds during compilation by associating a data structure with each source class. Looking
up a type variable simply involved checking the structure stored in the source class. How-
ever, because we now allow local type variables in nested members of classes, we redesigned
this implementation. Instead, the internal compiler representation of type variables and
bounds is stored in an environment. At each nested level, the environment is updated with
any newly declared type variables. Looking up a type variable during type-checking involves
searching through the chain of nested environments until a match is found. Thus, type vari-
ables can be declared at any level — not just for classes. Nested structures can access the
type variables defined by enclosing structures. Also, Java’s standard static scoping rules for
variables apply when a type variable is declared with the same name in both a nested and
top-level class.

The basic translation for inner classes is identical to the translation for top-level classes.
We translate complicated type expressions to their erased versions and insert casts and
bridge methods as necessary. PolyClass objects representing the types of instantiations

CHAPTER 5. NEW LANGUAGE FEATURES 74

are declared in polymorphic inner classes, and initialized by constructors exactly as with
top-level classes. If a nested class and enclosing class both declare a type variable T, then
a PolyClass object with name T$$class is defined for both classes. Java’s scoping rules
ensure that operations that make use of T$$class always access the PolyClass object
representing the correct T.

Methods

As with inner classes, support for polymorphic methods closely follows the technique de-
scribed in Chapter 4. Scoping rules for type variables are identical to those for variables
in standard Java. Inside of a method, local type variables hide class type parameters of
the same name. However class type variables are always accessible for non-static meth-
ods. For example, the expression this.T, if T is a class level type parameter, refers to the
class’s T. During the static type checking phase, the compiler steps up through the chain of
environments (as described for inner class type parameters) to resolve identifiers to types.

We translate polymorphic methods and classes similarly. For each type variable declared
by a class, an argument of type PolyClass is added to the method’s parameter list for each
local type variable. For example, the method definition:

public void <S8, T>foo() {

3

translates to

public void foo(PolyClass S$$class, PolyClass T$$class) {

}

The scope of the type variable is limited to the body of the method, thus, we do not need
to store the passed PolyClass object in a variable. Having it declared as an argument
sufficiently implements the scoping rules for T as represented by T$$class.

Run-time operations that require full type information are translated exactly as before.
Inside the body of a method with a local type variable, the PolyClass argument hides the
PolyClass instance variable representing the class’s type parameter of the same name, if it
exists. However, if inside of a method a programmer writes a type expression this.T, then
we reference this.T$$class — the class’s run-time representation of T.

Type Checking Rules We must carefully define overriding and overloading for polymor-
phic methods. First, our translation is based on erasure. Therefore, any two methods that
erase to the same signature must have one method that overrides the other. For instance,

CHAPTER 5. NEW LANGUAGE FEATURES 75

public class C {
void foo<T>(T t) { ... }
}

public class D extends C {
void foo<T extends Number>(T t) { //illegal change in bound
t.compareTo(new Integer(17));
}
3

C myC = new DQ);
myC.foo<0bject>(new Object()); //causes error when compareTo
//invoked on the new Object()

Figure 5.4: Unsafe covariant bound change

one can not define multiple methods with the same name, parameter types, and number
of type variables that differ only in the bounds of some type variables in the same class.
These methods would all erase to the same representation, and thus we would have no way
to distinguish them in the translation.

If a superclass contains a polymorphic method, then a subclass may override it by
providing a new definition for the method body. However, the bounds on the method’s
type variables must remain invariant. Suppose that the bounds could be narrowed by a
subclass. The example in Figure 5.4 illustrates the problem that would result if bounds
were allowed to change covariantly. Because T is unbounded in C’s foo method, we can
instantiate it with any type. In D, foo is bounded by Number. The problem occurs when
we assign an object of type D to myC. This assignment is legal because D matches C. If we
instantiate the type variable for myC.foo with Object an error occurs when we invoke foo
with an argument of type Object. As shown in the example an error occurs because D’s
foo expects objects that match Number. Because myC actually has run-time type D, this
method will be called. However, because myC has static type C, the type checker allows
T to be instantiated with any object type. It would be type-safe to allow contravariant
(widening) bounds on type parameters to methods. However, this technique is rarely useful.
It is unlikely that a programmer would need to widen the bound on a method level type
variable. Thus, Rupiah implements the consistent rule that bounds on type variables must
remain invariant in subclasses.

Rupiah allows method overloading for two methods with the same name that differ only
in the number of type variables. Because we add a PolyClass object to the parameter list
of the method’s signature for each local type variable, the translation of the two methods

CHAPTER 5. NEW LANGUAGE FEATURES 76
is different, unlike the situation in GJ.

5.2 ThisClass Constructors

Rupiah increases the expressiveness of Java’s static type system with parametric polymor-
phism, ThisType, and exact types. However, while these new type abstractions can be
statically type checked, actually constructing objects of their type is often impossible (in
the static type system at least). In this section, we describe a “virtual constructor” for
Rupiah that addresses these problems.

5.2.1 Motivation: ThisClass Constructors

Recall from Chapter 2 that constructing objects whose type is a type variable is in general
difficult to do in Rupiah. The instantiation of the variable is unknown at compile time so
assigning any specific constructor call to an expression whose type is a parameter is illegal.
The List<T, N> class, reproduced in Figure 5.5 contains an illegal statement:

ON head;

head = new Node<T>(data, head); //illegal

because head has type @N. This assignment fails to statically type check because it causes
problems if N is instantiated with a type more specific than Node<T>. In fact, assigning
a specific constructor to an object whose type is a type variable is never allowed because
we could always instantiate that variable with a more specific type than the type of object
created by the constructor that would make the assignment fail. Thus, we have no way to
construct objects whose type is a type variable. In our List<T, N> we would like the ability
to write an expression like new N(...) that constructs an object of type N at run-time.
However, new N(...) can not be translated in any reasonable fashion because Java con-
structors do not factor into subtyping. Thus, even though Node<T> defines a two-argument
constructor, there is no guarantee that any subclass defines the same constructor. While
in Rupiah we have a run-time representation of N in the N$$class instance variable, we do
not have a way to statically ensure that N’s actual instantiation will define a constructor
with the given argument types.

To safely write List<T, N> in a language like GJ, we would have to redefine add so
that it takes a parameter of type N — the node type — instead of T. This is undesirable
because we’d like our list to operate on data, not nodes. There are alternative approaches
that would allow us to construct something of type N inside of the add method, but none
solve the problem completely. First, we could use reflection on N to create an object of
the correct type. One could imagine a small set of Rupiah reflection methods for type

CHAPTER 5. NEW LANGUAGE FEATURES 77

public class List<T, N extends Node<T>> {
protected @N head;

public List() { head = null; }
public void add(T data) {
head = new Node<T>(data, head); //actually illegal!
}
//pre: list is not empty
public T remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
ON oldHead = head;
head = head.getNext();
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 5.5: Illegal List<T, N>

variables that could be used to create an object of type N (by using standard Java reflection
on N$$class.getBase()). Alternatively, we could clone head and then update the fields
appropriately. With the addition of ThisType to our language, we can write Cloneable as
follows:

interface Cloneable {
@ThisType clone();
}

Thus, the result of a clone method does not need to be cast. However, defining the body
of clone for any class that implements Cloneable, or more generally, for any method that
returns ThisType, is impossible to do without resorting to casts, as shown below.

Problems constructing objects of type ThisType illustrate the broad nature of the prob-
lem. As with expressions whose type is a type variable, it is very difficult to create objects
whose type is ThisType. Because ThisType changes meaning in subclasses, we can not as-
sign the result of any specific constructor to an expression of type ThisType. The example
in Figure 5.6 illustrates why this assignment is illegal. If the assignment statement

ThisType tt = new CQ);

is executed by a C there are no problems. Because ThisType is equivalent to @I, and C
implements @I, the assignment of a new C() to tt is safe. However, when foo () is inherited

CHAPTER 5. NEW LANGUAGE FEATURES 78

public class C implements @I {
void foo() {
ThisType tt = new C(); //okay in C, problems
} //when called by D
}

public class D extends C implements @J {
void bar() {
foo(); //assignment of new C() to tt fails
}
}

Figure 5.6: Illegal assignment to ThisType

and invoked by D, tt has type equivalent to @J. Thus in D the assignment statement is
equivalent to

@J tt = new C(Q);

which is illegal because ThisType means @J in D and C is not a subtype of J. Thus, a specific
constructor call may not be assigned to an object of type ThisType in Rupiah. We can not
define the body of the clone method as it is declared in Cloneable above without including
a cast to type @ThisType. This limitation makes many programs, including List<T, N>
difficult to write safely.

These problems with constructing objects are frustrating because the language provides
us with new type abstractions such as parametric polymorphism and ThisType, but provides
no way to construct objects of those types.

Introducing ThisClass

If we could write a method that always returned an object of the same type as itself, then
the problems described in the previous section would be solved. For example, suppose that
objects could define an inheritable method create with return type @ThisType. This would
effectively implement an “inheritable constructor” for that object. With this functionality,
we could safely create objects of type @T, a type variable, by invoking the create method
of the instantiation of a type parameter (given a reasonable mechanism to do so). Similarly,
objects of type ThisType could be created by calling the create method of this. Even
though ThisType changes meaning in subclasses, the inheritable constructor would also
change in a parallel fashion (this also changes which object it refers to in subclasses so
this.create() would dynamically call the correct method).

CHAPTER 5. NEW LANGUAGE FEATURES 79

public class Node<T> {
protected T data;
protected Q@QThisType next;

public ThisClass(T data, @ThisType next) {
this.data = data;
this.next = next;

}

Figure 5.7: ThisClass constructor for Node<T>

With this concept mind, we introduce ThisClass constructors. The idea of a constructor
that always creates an object whose type is the same as this is due to Bill Joy. We believe
that Rupiah is the first extension of Java to support this kind of constructor. ThisClass
constructors are identical to Java constructors, except that they must be overridden by each
subclass. Thus, they provide a guarantee that each subclass has at least the ThisClass
constructors as its superclass. A ThisClass constructor has the behavior that it always
creates an object whose type is the exactly the same as the type of this. They provide
equivalent functionality to an inheritable constructor, and can be used to safely initialize
expressions whose type is either a type parameter T, or ThisType.

ThisClass constructors are declared by writing a constructor with name ThisClass.
A sample ThisClass constructor for Node<T> is shown in Figure 5.7. Because Node<T>
defines a ThisClass constructor, its subclass DblNode<T> must also define a constructor
with the same argument types, shown in Figure 5.8. Additionally, DblNode<T> defines an
additional three-argument constructor that initializes the data and both the next and prev
links. Db1Node<T>’s two-argument constructor, which overrides the ThisClass constructor
in Node<T>, invokes the three-argument ThisClass constructor using the thisThisClass()
keyword. The keywords thisThisClass() and superThisClass() are analogous to stan-
dard Java keywords this () and super (), except that they always call ThisClass construc-
tors, not standard ones.

With ThisClass constructors defined for our list nodes, we can finally write List<T,
N> safely. As shown in Figure 5.9, constructing a new object of type N is implemented by a
new instance call:

new N.ThisClass(data,head)

This expression always invokes the correct constructor whether N is instantiated with

CHAPTER 5. NEW LANGUAGE FEATURES 80

public class DblNode<T> extends Node<T> {
protected Q@QThisType prev;

public ThisClass(T data, Q@ThisType next) {
thisThisClass(data, next, null);
}

public ThisClass(T data, @ThisType next, @ThisType prev) {
superThisClass(data, next);
this.prev = prev;

}

Figure 5.8: ThisClass constructor for Node<T>

Node<T>, Db1lNode<T>, or any other valid instantiation. Note that as ThisClass construc-
tors are invoked by referring to static class types (as opposed to being invoked on instances
of classes), we need not worry that Node<T>’s ThisClass constructor is a binary method.
The “receiver” of the binary method in this case is not a particular object but a type vari-
able N. N is effectively an exact type because it is the type of its instantiation and never a
subclass. Thus, the compiler allows binary method calls for ThisClass constructors.

5.2.2 Implementation: ThisClass Constructors

We have two main concerns in implementing ThisClass constructors. First, we wish to
distinguish between ThisClass constructors and standard Java constructors (both their
definitions and use in creating new instances). Second, ThisClass constructor calls must
be translated to expressions that evaluate correctly even if the code is inherited to a subclass
or type parameters are instantiated with different types.

Translating ThisClass definitions

In translating ThisClass constructor definitions, we wish to avoid introducing any confusion
with Java constructors. That is, one should never accidentally invoke a standard constructor
from a new ThisClass call or override a standard constructor with a ThisClass definition
(or vice versa). A ThisClass constructor is translated to a standard Java constructor. In
order to distinguish between the translation of a ThisClass and a standard constructor
with identical argument types, the type signature of the ThisClass constructor is mangled

CHAPTER 5. NEW LANGUAGE FEATURES 81

class List<T, N extends Node<T>> {
protected @N head;

public List() { head = null; }
public void add(T data) {
head = new N.ThisClass(data, head);
}
//pre: list is not empty
public T remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
ON oldHead = head;
head = head.getNext();
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 5.9: Type-safe List<T, N> definition

by adding an argument of type $$MangleClass to the end of the parameter list. This
ensures that the two are not confused. For example, one can define a constructor C() and a
constructor ThisClass () inside of a class C and guarantee that the translations of the two
are distinct. The static type checker also checks that each class overrides the ThisClass
constructors of its superclass.

Expressions thisThisClass() and superThisClass() are translated to this() and
super () respectively. However, an argument of type $$MangleClass is added to ensure
that the constructor corresponding to ThisClass is always called.

Translating new ThisClass Expressions

Translating ThisClass constructor definitions is relatively simple but handling new instance
expressions is more complex. There are four legal forms of new ThisClass expressions:

e new C.ThisClass(...)
e new C<T>.ThisClass(...)
e new T.ThisClass(...) //T is a type variable

e new ThisClass(...)

CHAPTER 5. NEW LANGUAGE FEATURES 82

In particular, ThisClass constructors may not be invoked on objects; instead they are
invoked on fully instantiated types, or the implicit fully instantiated type of this for new
ThisClass(...).

These four forms have respective return types:

e @C
e QC<T>
e QT

e @ThisType or C<T> or I<T> if called in a class C<T> that implements I<T>

new C.ThisClass(...)

This new instance expression is the easiest to translate. The type of the object being created
is known statically, so we can simply bind the call to the specific ThisClass constructor
called. Thus, we simply call C’s constructor and add an argument of type $$MangleClass
to the end of the parameter list.

new C<T>.ThisClass()

This new instance expression is also simple to translate. Again, the base type of the
object being created is statically known, so we can bind the call to one of C’s constructors.
Then we simply add the PolyClass representing T, T$$class, and an argument of type
$$MangleClass to the parameter list.

new T.ThisClass(...)

Translating new ThisClass expressions where the type being constructed is a type variable
is more complex. As we do not know what type will be used to instantiate T, we can not bind
the call to a specific constructor as in the previous cases. Indeed, like our translations for
other run-time operations (such as instanceof and casts) that involve T, a type variable,
we must use a reflective solution to invoke the correct constructor at run-time. For each
ThisClass constructor call of the form new T.ThisClass(...) that is called in the body
of a class, the compiler inserts a synthetic method to handle the reflective call to the
constructor.

This method has name T$$ThisClass for a type variable T of a class C; a sample method
is shown in Figure 5.10. The T$$ThisClass method simply looks up the constructor with the
correct arguments from the base Class of T$$class. Thisis T’s ThisClass constructor. The
correct argument types are then passed as arguments to the constructor call: the PolyClass
objects representing T’s instantiations — obtained by calling T$$class.getParams(), and

CHAPTER 5. NEW LANGUAGE FEATURES 83

an argument of type $$MangleClass. Primitive types are boxed up in their object equiv-
alents before being passed to the newInstance method (the reflection API unboxes them
automatically). With this method, we can translate

new T.ThisClass(...)
to a method call
(B)T$$ThisClass (..., T$$class)

The cast to B converts the result to T’s bound (also T’s erasure).

A few notes of explanation are needed for this translation. First, we pass the PolyClass
T$$class to the T$$ThisClass method rather than just using the instance variable of the
same name because the expression

new T.ThisClass(...)

may occur in a method with a local type parameter named T. In this case, T’s type is
not stored in the instance variable, but in the method argument named T$$class. T’s
type is always represented by the identifier expression T$$class, thus we pass it to the
wrapper method. Secondly, the return type of T$$ThisClass is declared as Object because
a method and a class may both declare a type variable T with different bounds that contain
a ThisClass constructor with identical arguments. We can use the same T$$ThisClass
method to perform the reflective call (their bodies would be identical if we implemented
them in separate methods), but the actual returned types might be incompatible types in
the translation depending on the bounds of type variables. Thus, we must define the return
type as the most general type — Object.

new ThisClass(...)

The last kind of legal new ThisClass expression is new ThisClass(...). This constructor
invokes the ThisClass constructor with the specified argument types in the currently ex-
ecuting object. As a result, it can not be bound to a specific constructor because the new
instance call might be part of a method that is inherited by a subclass. In that case, we
wish to call the subclass’s ThisClass constructor, not the superclass’s. Thus, we introduce
an instance method named this$$ThisClass for each ThisClass constructor definition
in a class. The body of each this$$ThisClass method calls the corresponding translated
ThisClass constructor, passing along the PolyClass objects representing the instantiations
of type parameters of the enclosing object. A sample this$$ThisClass method is shown
in Figure 5.11. By wrapping the actual constructor called in a method, we hide both the
actual constructor called and the instantiations of type parameters. Thus, we can replace
an expression

CHAPTER 5. NEW LANGUAGE FEATURES

//T is a type parameter with bound B
//B contains a constructor with signature
// ThisClass(Object, int)
private Object T$$ThisClass(Object o, int i, PolyClass T$$class) {
//assemble array of Class types, args for constructor
Class[] types = new Class[3 + T$$class.getParams().length];
Object[] args = new Object[types.length];
types[0] = Object.class;
args[0] = o;
types[1] = Integer.TYPE;
args[1] = new Integer(i);
for (int i = 0; i < T$$class.getParams().length; i++) {
Class[i + 2] = PolyClass.class;
args[i + 2] = T$$class.getParams() [i];
}
types[types.length - 1] = $$MangleClass.class;
args[types.length - 1] = null;

try {
//1look up constructor
Constructor c = T$$class.getBase().getConstructor(types);
//invoke it
return c.newInstance(args);
} catch (Exception e) {
throw new ThisClassException();

Figure 5.10: T$$ThisClass method

84

CHAPTER 5. NEW LANGUAGE FEATURES 85

new ThisClass(...)
with a method call to this$$ThisClass
(C)this$$ThisClass(...)

Even if this expression is inherited by a subclass, the right constructor is always called
because the correct this$$ThisClass method is invoked by dynamic dispatch. For example,
if the above new ThisClass(...) call occurs in a class C<T, U>, then the returned object
has type @C<T, U>. However, when a subclass D<V> executes the inherited method call, the
overridden this$$ThisClass method invokes D’s constructor. Thus, the returned object
has type @D<V>.

The declared return type of this$$ThisClass methods is Object. However, the com-
piler inserts a cast to the correct type when the method is actually called. If a ThisClass
constructor includes a parameter whose type is a type variable T or ThisType, then a
bridge method may have to be inserted for the this$$ThisClass method. The procedure
for inserting the bridge method follows exactly from the techniques illustrated previously.

5.3 Type-caching Class Files

The final new platform feature added in this thesis is support for type-caching class files.
This is not related to the expressiveness of the type system in Rupiah but rather is a simple
feature to support separate compilation. Erasure is a lossy operation, thus, compiled class
files do not contain the full type information for a class. Therefore, we store the necessary
type information in a bytecode Signature attribute field so that the Rupiah compiler can
reconstruct type information from binary class files. This feature allows separate compila-
tion of Rupiah class files.

5.3.1 Motivation: Type-caching Class Files

While the basic motivation for adding bytecode attributes is accurately described above,
it makes sense to illustrate the problem that is addressed by adding attributes more
explicitly. The Rupiah compiler depends on having certain kinds of information available
when compiling classes. It internally maintains information about type variables and their
bounds, parameterized class types, exact types, and ThisType expressions. Consider the
translation of the List<T> (we revert to this simpler list rather than using List<T, N>
for this example), shown in Figures 5.12 and 5.13. The source file contains information
about type variables and bounds, while the translated version doesn’t contain either. If
another class uses List<T>, the compiler can not determine which types were originally
parameterized types or type variables. For example, the remove() method, which had
return type T in the source file, has return type Object in the translation. The compiler

CHAPTER 5. NEW LANGUAGE FEATURES

//Rupiah version
public class C<T, U> {
public ThisClass(int i, Object o) {

}

//Translated version

public class C {
private PolyClass T$$class;
private PolyClass U$$class;

public C(int i, Object o, PolyClass T$$class$,
PolyClass U$$class$, $$MangleClass m) {

private Object this$$ThisClass(int i, Object o) {
return new C(i, o, T$$class, U$$Sclass, ($$MangleClass)null);
}

Figure 5.11: this$$ThisClass constructor method

86

CHAPTER 5. NEW LANGUAGE FEATURES 87

public class List<T> {
protected Node<T> head;

public List() { head = null; }
public void add(T data) {
head = new Node<T>(data, head);
}
//pre: list is not empty
public T remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
Node<T> oldHead = head;
head = head.getNext();
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 5.12: Rupiah source for List<T>

has no mechanism for determining which types were originally Rupiah types. Information
about type parameters, bounds, exact types, and ThisType are lost in the translation. Thus,
without bytecode Signature attributes, Rupiah source files must be compiled together.

Storing extra type information in attribute fields in the class file solves this problem.
This technique is borrowed from GJ, and is described fully in [GBW98]|. The GJ compiler
stores extra information about extended types in each class file that it produces so that it
can reconstruct complete class definitions from binary class files. The Java Virtual Machine
Specification [LY96] allows attribute fields in the class file format:

Compilers for Java source code are permitted to define and emit class files con-
taining new attributes in the attributes tables of class file structures. Java
Virtual Machine implementations are permitted to recognize and use new at-
tributes found in the attributes tables of class file structures ... Java Virtual
Machine implementations are required to silently ignore attributes they do not
recognize.

Thus, a compiler such as the GJ compiler may insert extra attribute fields into the class
files it generates that are ignored by other compilers and JVMs. GJ inserts type infor-
mation about classes and members (instance variables, static members, and methods) in a
“Signature” attribute field. Separate compilation of source files is then possible because full
type information can be reconstructed from the Signature attributes in binary class files.

CHAPTER 5. NEW LANGUAGE FEATURES

public class List {
private PolyClass T$$class;
protected Node head;

public List(T$$class$) {
T$$class = T$$class$;
head = null;
}
public void add(Object data) {
head = new Node(data, head, T$$class);
}
//pre: list is not empty
public Object remove() throws EmptyListException {
if (empty()) { throw new EmptyListException(); }
Node oldHead = head;
head = head.getNext();
return oldHead.getData();
}
public boolean empty() { return (head == null); }

Figure 5.13: Rupiah translation of List<T>

88

CHAPTER 5. NEW LANGUAGE FEATURES 89

5.3.2 Implementation: Type-caching Class Files

The implementation of bytecode attributes in Rupiah is straight-forward. When the
compiler writes out bytecode for a source class, it stores the attribute fields in the class file.
When a binary class file is accessed by the compiler, the information stored in attribute
fields is immediately read and stored with the appropriate internal compiler structures.
The structure of the Signature attribute used in Rupiah is a modification of the Signa-
tures defined for GJ classes. A specification of the Signature attribute is given in Figure
5.14. GJ’s existing attribute syntax is extended to also represent exact types, ThisType
and the exact interface of a class. Thus, from signature attributes, the compiler can
reconstruct full type information about class members. Note that Signature attributes
must only be stored for class members. Type information about local method variables
is not needed because other classes can only interact with top-level members. Only type
expressions that are accessible to other classes have Signature attributes stored with them.

CHAPTER 5. NEW LANGUAGE FEATURES

MethodOrFieldSignature ::

ClassSignature

ExactIntefaceSignature ::

TypeSignatures

TypeSignature

ClassTypeSignature

ExactTypeSignature
MethodTypeSignature
ThisTypeSignature
TypeVariableSignature
TypeArguments
ParameterPart

ParameterSignatures

ParameterSignature

90

TypeSignature

ParameterPartOpt super_TypeSignature
ExactInterfaceSignatureOpt
interface_TypeSignatures

’@Ifc’ ClassTypeSignature
TypeSignatures TypeSignature
ClassTypeSignature
MethodTypeSignature
TypeVariableSignature
ThisTypeSignature

ExactTypeSignature

’L’> Ident TypeArgumentsOpt ’;’
ClassTypeSignature ’.’ Ident ’;’ TypeArgumentsOpt

’Q@’ TypeSignature

TypeArgumentsOpt ’(’ TypeSignatures ’)’ TypeSignature
’ThisType’

T’ Ident ’;°

’<’ TypeSignature TypeSignatures ’>’

’<’ ParameterSignature ParameterSignatures ’>’

ParameterSignatures ParameterSignature

Ident ’:’ bound_TypeSignature

Figure 5.14: Rupiah Signature attribute

Chapter 6

Proposal Evaluations

features. Yet each proposal presents different motivations, goals, and results. Indeed,

because the projects start out with such varying end-goals, it is often more useful to
judge the projects on the features that they hold most useful than on the actual implemen-
tations themselves. In this chapter, we offer a comparative evaluation of the strengths and
weaknesses of GJ, NextGen, and Rupiah.

S ince Java’s initial release, many have proposed extending Java with new expressive

6.1 FEvaluation Criteria

Previous chapters have illustrated some of the challenges of translating an extension of Java
to bytecode. Many varying techniques have been suggested, yet each has a different focus.
In this section we present a list of features that various projects have identified as important
features for an extension of Java.

e Homogeneous Translation: The homogeneous translation compiles a single binary
class file for each source file. This style of translation is important because it maintains
Java’s behavior for compiling, locating, and loading classes. Specifically, because only
one class is generated to represent each parameterized class, the programmer and user
of compiled programs can continue to organize and distribute classes in the same way
as with Java programs.

The homogeneous translation also has near-optimal storage efficiency because the
compiled classes are essentially identical to what a Java programmer would write if

91

CHAPTER 6. PROPOSAL EVALUATIONS 92

they hand-coded the same class. The only extra methods that might be needed are
the bridge methods.

Finally, the pure homogeneous translation has run-time efficiency similar to a stan-
dard Java program with the same functionality. Though it relies on casts, which
require a dynamic check in Java, to bridge the gap between generic representations
of parameterized classes and specific instantiations, the number of casts inserted is
no more than the number that would be needed in a hand-coded program. Further,
these casts are proven to succeed by the extended static type system. Thus, future
JVM implementations could eliminate the run-time checks for compiler-inserted casts
such as these.

e Heterogeneous Translation: The heterogeneous translation differs from the homo-
geneous translation in that it compiles many classes from each source class. Rather
than compiling a single generic class to represent a polymorphic class, the hetero-
geneous translation compiles many specific classes to represent each distinct instan-
tiation. This results in a somewhat simpler translation (CT* templates use a het-
erogeneous translation that is as simple as macro expansion), but comes at the cost
of greatly increased space and compilation efficiency. More space is needed because
each instantiation of a parameterized class must be compiled to its own class. More-
over, each heterogeneous class is virtually identical (except for the internally declared
types). Thus, the code bloat associated with this technique is high.

However, despite these concerns, the heterogeneous translation is very efficient at
run-time because it requires no casts. Additionally, run-time type operations execute
correctly (discussed next).

e Run-time Type Operations: Some Java operations require full type information
to execute correctly. Whether or not a project correctly translates these operations is
often a quality that distinguishes it from other projects.

— instanceof: The instanceof operator in Java allows the programmer to dy-
namically compare the run-time type of an object with a type. Unless parameter-
ized classes carry some information about their actual instantiations at run-time,
the instanceof operator can not operate correctly.

— Type Casts: Correctly translating type casts involves similar issues as with
instanceof expressions. Casts in Java are dynamically checked, and throw a
ClassCastException if they fail at run-time. Thus, type casts for parameterized
classes can not be translated correctly unless information about type variable
instantiations is available at run-time.

— Array Types: Similarly, new array expressions such as new T[5], where T is a
parameter must have access to the run-time type of T in order to create an array

CHAPTER 6. PROPOSAL EVALUATIONS 93

of the correct element type. Also, arrays with parameterized element types must
be able to access run-time type information about the element types to be able
to execute instanceof and type casts correctly.

— Full reflection for polymorphic types: Java supports a reflection API. Thus,
programmers can write classes that dynamically lookup and invoke methods,
modify variables, and call constructors. Similar functionality for generic types
requires run-time type information about type variables as well as a mechanism
for performing reflection calls (perhaps using Java’s built-in reflection).

e Efficiency: Evaluations of the run-time efficiency of translations are closely tied to
the translation technique employed. Yet, at least two properties are desirable:

— Programs that do not make use of parametric polymorphism should run as effi-
ciently as standard Java programs.

— Those that do use generic types should run as efficiently as programs with iden-
tical functionality written in pure Java.

e Compatibility: Issues of compatibility with Java are an important consideration for
any extension of Java.

— Binary Compatibility: Java programs are executed using a platform-independent
virtual machine. Therefore, the translation for generic types should produce class
files that can execute on the existing Java platform.

— Backward Compatibility: Additionally, all Java programs should be legal
programs in the new language and accepted by the compiler. Also, existing
compiled classes should be usable by new code.

— Forward Compatibility: Finally, retrofitting for existing code would be desir-
able. That is, we should be able to use an existing class without parameters by
specifying a polymorphic interface for that class.

e Primitive Types as Type Parameters: It may be desirable to use the primi-
tive types: boolean, byte, char, double, float, int, long, short as instan-
tiations of type parameters.

e Per-Instantiation Static Variables: Static fields in some implementations can be
declared with parameterized or generic types. The semantics of these fields is that one
object is shared between all identical instantiations of the class (rather than between
all instances of the base class).

e Constructors for Generic Types: Some mechanism should be provided for con-
structing objects whose type is a parameter.

CHAPTER 6. PROPOSAL EVALUATIONS 94

e Additional Type System Constructs: While generic types greatly increase the
expressiveness of the type system, more features can be helpful in order to represent
the concepts that many programs require.

— ThisType: Binary methods occur naturally in many programs. However, pro-
gramming them safely in Java is very difficult because inheritance causes prob-
lems when a binary method is executed by a subclass. ThisType offers a solution
by incorporating the concept of a type that is the same as that of this in the
type system.

— Exact Types Exact types are necessary to support a ThisType construct safely.
They are also useful for explicitly programming homogeneous structures.

6.2 Language Comparisons

In this section, we evaluate GJ, NextGen, and Rupiah under the criteria defined above.
Figure 6.1 illustrates the key features of each language in a side-by-side comparison.

6.2.1 GJ

The GJ language adds generics to Java via a pure homogeneous translation. GJ places an
emphasis on compatibility with the Java language. Thus, every legal Java program is a legal
GJ program, compiled GJ programs run on standard JVMs, and a mechanism is provided
for outfitting existing Java classes with generic types. The homogeneous translation used
in GJ is very efficient in both run-time and space efficiency. GJ does not allow primitive
types as instantiations of type variables. However, Pizza, GJ’s predecessor, did provide this
functionality so it is reasonable to think that it could easily be extended to GJ if desired.

The biggest issue with GJ’s translation is that almost all operations that require full run-
time information are illegal in GJ because it uses erasure — an inherently lossy operation.
The only casts and instanceof tests involving parameterized types that are legal in GJ are
those that can be completely determined statically. Thus, they lose the ability to do any
reflective operations on parameterized types. While GJ provides “raw types” as a substitute
— that is one can use the erasure of a generic type in an introspective operation — no ability
is provided to obtain any information about type variables and their instantiations at run-
time. Additionally, no mechanism is provided for constructing objects whose type is a type
variable.

While GJ provides a solid implementation of an extension of Java with generic types,
it suffers from a complete lack of support for operations that require run-time type infor-
mation. However, the close compatibility (binary, source, and retrofitting) that GJ enjoys
with Java is an important and useful feature.

CHAPTER 6. PROPOSAL EVALUATIONS

\ GJ \ NextGen ‘ Rupiah ‘

Translation Technique
Homogeneous vV vV
Heterogeneous

Supported Run-time Operations
instanceof

Type Casts

new Array Expressions
Reflection for Generic Types

< << =
S <<

Efficiency

Run-Time
Space
Compilation

<

Compatibility
Binary
Backward
Forward

<= [lree=
<<
S e

Miscellaneous Features

Primitive types as Instantiations

Per-Instantiation Static Variables vV

Constructors for Generic Types Ve vV
ThisType V
Exact Types Vv

“Not supported in the current compiler, see Appendix C for more details.
’The proposal in Appendix C would break source compatibility for some Java programs.
‘It is unclear how new T(), where T is a type variable, is statically checked in NextGen.

Figure 6.1: Comparing Language Features

CHAPTER 6. PROPOSAL EVALUATIONS 96

6.2.2 NextGen

The NextGen language aims to correct the limitations of GJ in operations that require
run-time type information. The solution used in NextGen is a hybrid translation that
uses aspects of the homogeneous and heterogeneous translations. NextGen harnesses the
nice space properties of the homogeneous translation, by compiling a base class containing
the bulk of the program code and wrapper classes to represent run-time instantiations of
parameterized classes. The result is a language where all types are compatible with Java
semantics for operations that require run-time type information. Type casts, instanceof,
and new array expressions all operate correctly in NextGen because the full type information
is implicitly carried in the heterogeneous class. NextGen does not define a reflection API
for parameterized types. However, one could be devised from the specified translation as
the full run-time information about instantiations is present.

However, though the hybrid translation cuts down on code bloat, it still compiles many
different classes for each source — differing from Java’s normal compilation behavior. In par-
ticular, using an instantiation for the first time results in a new compiled class. Additionally,
though the space efficiency of NextGen is much improved over a pure heterogeneous trans-
lation, the number of classes generated for a commonly used class can result in a significant
amount of required space. Finally, though NextGen has minimal support for constructors
of the form new T(), constructor calls for generic types that include arguments are not
supported.

6.2.3 Rupiah

Rupiah supports parametric polymorphism by a homogeneous translation that is similar to
GJ. However, it also uses Java’s reflection API to associate information about type variable
instantiations with polymorphic classes. With this information, Rupiah is able to gener-
ate code that properly executes Java’s introspective operations: instanceof, type casts,
and new array expressions.! Additionally, Rupiah adds several new language features that
significantly increase the expressiveness of the language. These features include ThisType,
exact types, and ThisClass constructors. The other languages evaluated here do not ex-
plore other expressive features beyond generic types. We feel that added expressiveness is
important — while generic types go a long way to making static type safety possible for
some programs, they are not enough in many situations. Because Rupiah supports these
features, many more programs can be written within the bounds of its static type system.

While Rupiah uses a homogeneous translation that is very efficient in space and com-
pilation efficiency, support for run-time type operations uses Java’s reflection to access
the instantiations of generic types. Thus, the run-time efficiency of Rupiah programs is
somewhat less than a pure Java program. However, because Rupiah provides additional

'Not yet implemented, see Appendix C.

CHAPTER 6. PROPOSAL EVALUATIONS 97

functionality, including stronger guarantees of type safety and the ability to perform intro-
spective operations on generic types, some decreased efficiency is expected. However, the
programmer does not pay a large price in run-time performance unless they use the new
features. If the programmer avoids costly statements like object instanceof T, where T
is a type parameter, then the expected performance is similar to GJ. The only overhead is
creating and assigning PolyClass objects.

Rupiah is binary-compatible with the Java platform. That is, compiled classes run on a
standard JVM. Java source programs in the current implementation are also legal Rupiah
programs. However, the implementation of the array proposal in Appendix C would break
compatibility with Java programs that use the unsafe covariant array subtyping rule. This
unfortunate fact illustrates the long-term effects that a hole in the static type system can
cause. Though Java patches this hole with a run-time check, it causes serious problems for
the Rupiah project. Retrofitting is not possible with Rupiah programs essentially because
constructors can not be retrofitted with extra PolyClass arguments. We could conceivably
allow retrofitting in the manner that GJ does, however we would lose our guarantees that
run-time type information is always available for operations that require it. This problem
stems from the fact that we can not insert PolyClass instance variables into a pre-compiled
classes such as Vector, nor can we add helper methods like instanceof$Vector. Thus,
we tradeoff ease of migration for more consistent run-time semantics. Rupiah does not
currently support instantiations of type variables with primitive types nor does it support
per-instantiation static variables. Rupiah’s ThisClass constructors provide a robust mech-
anism in for creating objects whose type is a type variable or ThisType.

6.3 Overall Evaluation

No single project implements all of the desirable features described in Section 6.1. Thus, to
evaluate them we must examine some of the tradeoffs implicit in each approach. We prefer
Rupiah to the other two languages both for its closer adherence to Java philosophies and for
the additional expressiveness gained from the features beyond parametric polymorphism.

Evaluating how closely a language fits with Java is a subjective task. GJ proponents
argue that their implementation, which provides the closest compatibility of any other
language, makes it the most consistent with Java philosophies. The natural rejoinder to
that assertion is that GJ’s inconsistencies with Java semantics for operations that require
run-time type information result in a significant gap between the languages.

Similarly, NextGen supporters argue that their language is a close fit with Java because
they both support retrofitting and run-time compatible types. However, the fact that their
language is compiled heterogeneously causes compatibility issues because programmers lose
the property that one source file is represented by one compiled class file.

Rupiah achieves compatibility with Java semantics for run-time operations such as

CHAPTER 6. PROPOSAL EVALUATIONS 98

instanceof and checked casts while remaining a homogeneous translation. We argue that
it is in fact more closely tied to Java philosophies than either GJ or NextGen. While the
retrofitting features that GJ offers are important — certainly providing a migration mecha-
nism is an important feature to help a language gain adoption — it does not affect the core
of the language itself. Thus, the properties that we find lacking in GJ are more significant
in our eyes than the smooth forward compatibility track that they provide.

Finally, Rupiah’s other type system features should not be ignored. ThisType incorpo-
rates a concept that allows programs to be expressed that simply could not be written safely
with F-bounded polymorphism alone. Binary methods occur often enough that supporting
them in the type system offers great benefits to the programmer. Our sample programs in
Appendix B serve as examples as to how beneficial it can be to write programs with the
features included in Rupiah. Finally, ThisClass constructors address a real problem with
parametric polymorphism — namely that constructing generic types is difficult to do with-
out escaping the static type system. Thus, we hold that Rupiah affords the most practical
safety to programmers.

6.3.1 Sun Microsystems Proposal

Recently, Sun Microsystems has formally explored the possibility of adding generics to Java.
A paper published by the expert group [BCK 01| indicates that generics will most likely
be incorporated into Java in the near future. The direction that Sun is taking seems to
be closely related to the GJ project. Indeed, the current 1.3 javac is based on Odersky’s
GJ compiler (with support for generic types removed). Though we are concerned about
GJ’s lack of support for operations that require run-time type information, we are very
pleased to see generics entering the language in the near future. Allowing programmers to
get comfortable programming with generic types is an important step in the right direction.
Importantly, the proposal is open-ended enough that future developments, for example a
modified JVM, could be implemented to fix some of the current limitations with GJ.

Chapter 7

Future Work

this thesis, a direct translation to bytecode for the Rupiah project seems thor-

oughly explored. It is clear that such a translation is feasible, yet some concerns
with the run-time efficiency of the language and with array types have led us to suggest a
different style of translation based on a modified JVM. A translation that includes JVM
modifications, as well as some proposed additional language features provide significant
opportunities for future work.

We present some suggestions for future directions for the Rupiah project. With

7.1 The Array Problem

A portion of Rupiah that leaves us feeling uneasy is the support for arrays in the language.
The fact that arrays are objects created by the JVM rather than by constructors means
that the standard Rupiah technique of associating PolyClass objects with each polymorphic
object can not be performed for arrays. The solution described in Appendix C is not yet
implemented, and is unsettling because it breaks source compatibility with Java programs
that make use of Java’s unsafe covariant array subtyping rule. Further, because it involves
storing arrays in wrapper classes, it raises major concerns about run-time efficiency.

7.2 Efficiency Issues

A second related concern is that the Rupiah translation, which is based on erasure, is not
very run-time efficient. Some parts of the translation, including most operations involv-
ing type parameters, unavoidably rely on reflection to operate correctly. However, there

99

CHAPTER 7. FUTURE WORK 100

are some simple solutions that can be used to greatly increase the efficiency of Rupiah
programs. Implementing the PolyClassLoader proposal [VNOO], described in Section 4.5,
would greatly reduce the number of PolyClass objects created for Rupiah programs as
well as making equality checks for PolyClass objects much more efficient. It is a relatively
simple solution, thus we think that it should be implemented in the Rupiah compiler soon.

7.3 All Roads Lead to the JVM

Our homogeneous translation based on reflection might be inherently better served with a
few small changes to the JVM. Some projects, including [SA98], have implemented small
JVM changes that greatly simplify translating polymorphic programs. The simplest JVM
change that would help to support parametric polymorphism would be to modify the Class
file so that it contained information about type parameters. This would allow all generic
types including array types, to carry their instantiation information at run-time. Also,
it would make implementing a reflection API for polymorphic types as easy as extending
the current implementation in a few key places to be aware of type parameters. Even
retrofitting could be easily supported because we no longer need to pass PolyClass ob-
jects to constructors for run-time type compatibility. Recall that Rupiah can not support
retrofitting because we do not have a mechanism for inserting PolyClass objects into the
argument lists of constructors for pre-compiled classes. With a modified JVM, the inter-
preter could manage the implicit type parameters for retrofitted classes instead. Finally,
the representation of type parameters would be managed by the JVM so we could expect
significant speedups over the Rupiah translation. Rather than needing complicated trans-
lations for instanceof, casts, et cetera, we could simply use the built in Java bytecode
instructions.

The gains of being able to properly support arrays with generic element types may be
enough to merit moving towards JVM modifications. While the proposal in Appendix C is
plausible, the sacrifices made to support arrays in this fashion are great. JVM modifications
would simplify our translation greatly, especially for arrays, as well as restoring full source
compatibility with Java. Therefore, we think that it has significant merit.

7.4 Miscellaneous Features

Several features that we would like to support are not currently implemented in the Rupiah
language.

e Prove Type Safety of ThisClass: While most of the features in Rupiah have been
proven type safe, either in GJ or LOOM, we would like to also give a proof that
ThisClass is sound. Experience has shown us that even proving simple concepts can

CHAPTER 7. FUTURE WORK 101

lead to much broader revelations; and that even proofs that appear trivial on the
surface can in fact require much effort. The novel concept of ThisClass constructors
needs formalization in order to use it with real confidence.

e Better support for static members: With the addition of method-level type
parameters, we no longer need to restrict the use of class type variables to non-static
members.

Instead we can translate static methods as if they had a local type variable for each
type parameter to the enclosing class. Thus, the a method void foo() in a class
C<T> could be translated to

static void <T> foo();
Whenever foo() is invoked, in an expression like
C<Integer>.foo();

the full instantiated type of C is specified, thus T is known and can be translated
appropriately. For example, the above method call would become:

C.<Integer>foo();

This, to support the use of type variables in static methods, we could translate class
type variables to local method type variables.

Similarly, we should implement per-instantiation static variables as suggested by
Burstein [Bur98]. Following his suggestion, we would use a hashtable to store a
common object for each instantiation of a class. For each static field in a class, we
would add get and set methods to access the field, passing the instantiation of type
variables as a key to the hashtable. This would allow static variables that involve type
parameters that are shared between like instantiations.

e Support for more Expressive Bounds: The type parameter declaration <T extends
ClassType, U extends T> isnot currently supported in Rupiah or GJ because bounds
must be reference types. The rationale is that bounding U by T is no different from
constraining it with ClassType. However, we can imagine an application where being
able to specify a type parameter that must be at least as specific as another type
parameter could be useful. In the current implementation of Rupiah for example, if
T and U were both bounded by ClassType, then T might be instantiated with a more
specific type than U. No mechanism currently exists that U must be no more general
than T.

CHAPTER 7. FUTURE WORK 102

A second feature we would like to see implemented in Rupiah is the ability to specify
an interface type as a bound that can only be instantiated with a class type. This
feature should be relatively easy to support because it only involves a simple type-
checking rule. We propose that the extends keyword in bound declarations continue
to indicate that any type that matches the bound may be used to instantiate it. The
implements keyword meanwhile may only be used with bounds that are interface
types and specifies that only a matching class type may be used to instantiate that
variable. This functionality would also allow us to support ThisClass declarations in
interfaces. Currently, ThisClass declarations may not appear in interfaces because
that interface can not be constructed. Thus, if one wishes to construct an object
whose type is a type variable, the bound of that type variable must be a class type
that contains a ThisClass constructor. However, if interfaces could be used as bounds
that can only be instantiated by class types, then it might be reasonable to allow
ThisClass declarations in interfaces so that they can be used in bounds.

7.5 Wrapup

The Rupiah project incorporates several important features to the Java programming lan-
guage. Match-bounded parametric polymorphism, exact types, ThisType, and ThisClass
constructors all increase the expressiveness of the static type system and allow many more
programs to be written safely than in standard Java. This increased measure of safety that
can be ascertained for Rupiah programs provides significant benefit to the programmer
because her programs are less likely to suffer from run-time errors.

Implementing these features has been an interesting and challenging research project.
Following the lead of other related projects, we have explored a translation to bytecode.
The homogeneous translation used in Rupiah has many nice properties including consistency
with Java semantics for compilation, optimal space requirements, and reasonable run-time
efficiency. However, translating in such a fashion that operations that require run-time type
information operate consistently for generic types has proven more difficult.

Bibliography

[AFM97]

[Baios]

[BCCT95]

[BCK™01]

[BFP97]

[BOSW9S]

[Bru93]

[Bru97]

Ole Ageson, Stephen Freund, and John C. Mitchell. Adding parameterized
types to Java. In ACM Symposium on Object-Oriented programming: System,
Languages, and Applications, page to appear, 1997. 38

Duane A. Bailey. Java Structures: Data structures in Java for the principled
programmer. McGraw-Hill, 1998. 109

Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and Prac-
tice of Object Systems, 1(3):221-242, 1995. 14, 17

Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Martin Oder-
sky, Sven-FEric Panitz, David Stautamire, Kresten Thorup, and Philip Wadler.
Adding Generics to the Java Programming Language: Participant Draft Speci-
fication. Draft Paper, April 2001. 98

Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good
“match” for object-oriented languages. In FCOOP 97, pages 104-127. LNCS
1241, Springer-Verlag, 1997. i, 5, 17, 18

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java programming
language. In Object-Oriented Programming: Systems, Languages, Applications
(OOPSLA), Vancouver, October 1998. ACM. i, 5, 24

K. Bruce. Safe type checking in a statically typed object-oriented programming
language. In Proc. ACM Symp. on Principles of Programming Languages, pages
285-298, 1993. 5, 17

Kim B. Bruce. Increasing Java’s expressiveness with ThisType and match-
bounded polymorphism. Technical report, Williams College, 1997. 5

103

BIBLIOGRAPHY 104

[Bru9s]

[BSvG95]

[Bur9s]

[BvG93]

[Car96]

[Car97]

[CCH*89]

[CS98]

[GBWOS]

[GJS96]

[GRIV94]

[LY96]

[MBL97]

[Mey92]

Kim B. Bruce. Building an Extensible Interpreter for a Simple Functional
Language. Message to Java-generics electronic mail list, August, 1998. 114

Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe
polymorphic object-oriented language, extended abstract. In ECOOP 95, pages
27-51. LNCS 952, Springer-Verlag, 1995. 5, 17

Jon Burstein. Rupiah: An extension to Java supporting match-bounded paramet-
ric polymorphism, ThisType, and exact typing. Williams College Senior Honors
Thesis, 1998. 5, 41, 101

Kim B. Bruce and Robert van Gent. TOIL: A new type-safe object-oriented
imperative language. Technical report, Williams College, 1993. 5

L. Cardelli. Bad engineering properties of object-oriented languages. ACM
Computing Surveys, 28(4es):150, December 1996. 4

Robert Cartwright. Challenge to build an extensible interpreter. Message to
Java-generics electronic mail list, 1997. 114

P. Canning, W. Cook, W. Hill, J. Mitchell, and W. Olthoff. F-bounded quan-
tification for object-oriented programming. In Functional Prog. and Computer
Architecture, pages 273-280, 1989. i, 14, 24

R. Cartwright and G. Steele, Jr. Compatible genericity with run-time types for
the Java programming language, 1998. 5, 24, 36

David Stoutamire Gilad Bracha, Martin Odersky and Philip Wadler. GJ spec-
ification. draft paper, May 1998. 87, 106

James Gosling, Bill Joy, and Guy Steele, Jr. The Java Language Specification.
Addison Wesley, 1996. 1, 3, 11, 35, 106

E. Gamma, R.Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstraction
and reuse of object-oriented designs. Addison-Wesley, 1994. 115

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996. 87

Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized types
for Java. In ACM Symposium on the Principles of Programming Languages,
pages 132-145. ACM, 1997. 38

B. Meyer. FEiffel: the language. Prentice-Hall, 1992. 17

BIBLIOGRAPHY 105

[ORW97]

[SAS]

[SCB+86]

[VNOO]

[Wal96]

Martin Odersky, Enno Runne, and Philip Wadler. Two ways to bake your
pizza — translating parameterised types into Java. Technical Report CIS-97-
016, University of South Australia, 1997. 24

Jose H. Soloranzo and Suad Alagi¢. Parametric polymorphism for Java: A
reflective solution. In Object-Oriented Programming: Systems, Languages, Ap-
plications (OOPSLA), Vancouver, October 1998. ACM. 38, 100

C. Schaffert, T. Cooper, B. Bullis, M. Kilian, and C. Wilpolt. An introduc-
tion to Trellis/Owl. In OOPSLA ’86 Proceedings, pages 9-16. ACM SIGPLAN
Notices,21(11), November 1986. 17

Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: an ap-
proach to translation based on reflective features. In Object-Oriented Pro-
gramming: Systems, Languages, Applications (OOPSLA), Minneapolis, Octo-
ber 2000. ACM. 38, 65, 100

James Waldo. Interface and implementation [Java]. UNIX review, 14(13):81-82,
85-86, December 1996. 58

Appendix A

Rupiah Grammar

a grammar for Rupiah, based on a modification of GJ’s grammar, as defined in

grammar defines the syntax and parsing for a programming language. We give
1 &[GBVVQS]. Section numbers correspond to those in [GJS96].

A.1 Generic Types

§4.3 Reference Types and Values

ReferenceType ::= NonExactType

| ExactType
NonExactType ::= ClassOrInterfaceType

| ArrayType

| TypeVariable

| ThisType
ExactType ::= @ NonExactType
TypeVariable ::= Identifier
ClassOrInterfaceType ::= Name

| Name < ReferenceTypeListl

ReferenceTypelListl ::= ReferenceTypel
| ReferenceTypeList , ReferenceTypel

106

APPENDIX A. RUPIAH GRAMMAR 107

ReferenceTypel ::= ReferenceType >
| Name < ReferenceTypeList2

ReferenceTypelList2 ::= ReferenceType2
| ReferenceTypelist , ReferenceType2

ReferenceType2 ::= ReferenceType >>
| Name < ReferenceTypeList3

ReferenceTypelList3 ::= ReferenceType3
| ReferenceTypelList , ReferenceType3

ReferenceType3 ::= ReferenceType >>>

TypeParametersList ::= TypeParamterList , TypeParameter
| TypeParameter

TypeParameters ::= < TypeParameterListl

TypeParameterListl ::= TypeParameterl

| TypeParameterListl , TypeParameterl

TypeParameterl ::= TypeParameter >
| TypeVariable extends ReferenceType2

TypeParameter ::= TypeVariable TypeBoundOpt

TypeBound extends ClassOrInterfaceType

§8.1, 9.1 Class and Interface Declarations

ClassDeclaration ModifiersOpt class Identifer

TypeParametersOpt SuperOpt InterfacesOpt ClassBody

InterfaceDeclaration ModifiersOpt interface Identifier TypeParametersOpt

ExtendsInterfacesOpt InterfaceBody

A.2 Polymorphic Methods
§8.4 Method Declarations

MethodHeader ::= ModifiersOpt TypeParametersOpt Type

APPENDIX A. RUPIAH GRAMMAR 108

MethodDeclarator ThrowsOpt
ModifiersOpt TypeParametersOpt void
MethodDeclarator ThrowsOpt

§15.12 Method Invocation Expressions

MethodInvocation

MethodExpr

MethodId

A.3 Constructors
§8.8 Constructor Declarations

ConstructorDeclaration

ConstructorDeclarator

MethodExpr (ArgumentListOpt)

::= MethodId

Primary . MethodId
super . MethodId

::= TypeArgumentsOpt MethodName

::= ModifiersOpt ConstructorDeclarator

ThrowsOpt ConstructorBody

::= SimpleTypeName (FormalParameterListOpt)

ThisClass (FormalParameterListOpt)

§8.8.5.1 Explicit Constructor Invocations

ExplicitConstructorInvocation :

§15.9 Class Creation Expressions

ClassInstanceCreationsExpression :

:= this (ArgumentListOpt) ;

super (ArgumentListOpt) ;
superThisClass (ArgumentListOpt) ;
thisThisClass (ArgumentListOpt) ;
Primary . super (ArgumentListOpt) ;

:= new Name TypeArgumentsOpt (ArgumentListOpt)

| new ThisClass (ArgumentListOpt)

| new TypeVariable . ThisClass (ArgumentListOpt)
| new ClassType . ThisClass (ArgumentListOpt)

Appendix B

Sample Rupiah Programs

code for several useful Rupiah programs. It is our hope that by seeing some of the
expressive features as used in real programs, the benefits of these new features will
become clear.

L anguage features are often best motivated by examples. Here we give the source

B.1 Lists in Rupiah

These lists are motivated by the structures package [Bai98]. We give the full definitions for
doubly and singly linked lists, as well as all of the relevant interfaces. The features demon-
strated in these programs are bounded parametric polymorphism, exact types, ThisType,
and ThisClass constructors. Besides the added type safety gained by using these con-
structs, we are also able to reuse much more code.

/KK ok Kok KKK ok K oK KoK Kok K oK K KKK ok Kok KoK KK Kok K oK KoK Kok KoK KoK Kk Kok KKk Kok ok
public interface Store {

public int size();

public boolean isEmpty();

public void clear();
}
[k ok Kok KK Kok KoK KoK Kok KoK K oK KK ok Kok KoK K Kok ok ok K ok Kok KoK Kk Kok KKKk Kok ok
public interface Collection<T> extends Store {

public boolean contains(T value);

public void add(T value);

public T remove(T value);

public Iterator<T> elements();

109

APPENDIX B. SAMPLE RUPIAH PROGRAMS 110

}
/KKK KKK oK K KKK KoK K oK K KKK ok KoK KoK KK KoK K oK KK Kok Kok KoK KR Kok kKR Kok ok
public interface List<T> extends Collection<T> {

public void addToHead(T value);

public void addToTail(T value);

public T peek();

public T tailPeek();

public T removeFromHead() ;

public T removeFromTail();

}
KKK A KKK KKK KK KooK oK KKK oK K ok K ok ok oK KoK ok oK ok ok oK KoK ok Kok ok ok KoK ok Kok ok
public interface Enumeration<T> {

public boolean hasMoreElements();

public T nextElement();

}
[/ skskokokok sk sk ok sk ok ok sk ok sk ok ok sk sk sk ok sk sk sk ok ok sk ok ok sksksk ok sk sksk sk ok sk sksk sk ke sk sk sk sk ok sk sk sk sk ok ok /
public interface Iterator<T> extends Enumeration<T> {
public void reset();
public T value();
}

[/ kokokokok sk sk sk sksksk sk sk ok sk ok sk s ke ko ok ok sk sk sk sksksk sk sk sk sk sk sk sk ok ke kokok ok sk sk sk sk sk sk sk sk sk sk sk sk ko okok /
public class Node<T> {

protected T data;

protected Q@ThisType nextElement;

public ThisClass(T v, @ThisType next) {
data = v;
nextElement = next;
}
public ThisClass(T v) { thisThisClass(v, null); }

public @ThisType right() { return nextElement; }
protected void setNext(Q@ThisType next) { nextElement = next; }
public void setRight(@ThisType right) { setNext(right); }
public T value() { return data; }
public void setValue(T value) { data = value; }

}

//kokokokok sk sk skt sksk ok ok ook o s sk ok ko ok ok sk sk sk sk sk sk sk sk sk s sk sk sk ok ok feok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ke kok /
public class DblNode<T> extends Node<T> {
protected Q@ThisType previousElement;

public ThisClass(T v, @ThisType next, @ThisType previous) {
superThisClass (v, next);
setLeft (previous) ;

APPENDIX B. SAMPLE RUPIAH PROGRAMS 111

public ThisClass(T v, @ThisType next) { thisThisClass(v, next, null); }
public ThisClass(T v) { thisThisClass(v, null); }

public @ThisType left() { return previousElement; }
protected void setRight(@ThisType right) {
setNext (right) ;
if (right != null) right.setPrevious(this);
¥
protected void setPrevious(@ThisType prev) {
previousElement = prev;
}
public void setLeft(@ThisType previous) {
if (previous != null) previous.setRight(this);
else setPrevious(null);
}
}
[Kok ok ok ok ok ok o sk o ok ok ok ok oK o sk ok ok ok o oK oK ok ok ok o ok o ok o oK ok oK ok oK sk ok ok oK K ok K ok ok oK ok Kok ok
public class EmptyListException extends Exception { }
[k Kok Kok Kok Kok Kok KoK o Kok K ok oK KK ok Kok Kok K Kok Kok oK K ok Kok KoK Kok Kok oK KKk Kok ok
public class LinkedList<T, N extends Node<T>> implements List<T> {
protected int count;
protected @ON head;
protected @N tail;

public LinkedList() {
head = tail = null;
count = 0;

}

public void add(T value) { addToHead(value); }
public void addToHead(T value) {
head = new N.ThisClass(value, head);
if (tail == null) tail = head;
count++;
¥
public T removeFromHead() throws EmptyListException {
if (empty()) throw new EmptyListException();
ON temp = head;
head = head.right();
if (head == null) tail = null;
temp.setRight (null);
count-—;
return temp.value();
}
public void addToTail(T value) {

APPENDIX B. SAMPLE RUPIAH PROGRAMS 112

@N 0ldTail = tail;
tail = new N.ThisClass(value);
if (head == null) head = tail;
else {
0ldTail.setNext(tail);
}
count++;
¥
public T removeFromTail() throws EmptyListException {
if (empty()) throw new EmptyListException();
ON o0ldTail = tail;
if (size() == 1) head = tail = null;
else {
ON newTail = head;
for(; newTail.right() != oldTail; newTail = newTail.right());
tail = newTail;
tail.setNext (null);
}
count--;
return oldTail.value();
}
public T peek() throws EmptyListException {
if (empty()) throw new EmptyListException();
return head.value();
}
public T tailPeek() throws EmptyListException {
if (empty()) throw new EmptyListException();
return tail.value();
¥
public boolean contains(T value) {
ON finger = head;
while (finger != null && !finger.value().equals(value)) {
finger = finger.right();
¥
return finger !'= null;
}
public T remove(T value) {
ON finger = head;
ON previous = null;
while (finger != null && !finger.value().equals(value)) {
previous = finger;
finger = finger.right();
}
if (finger !'= null) {
if (previous != null) previous.setRight(finger.right());

APPENDIX B. SAMPLE RUPIAH PROGRAMS 113

else head = finger.right();

if (tail == finger) tail = previous;
finger.setRight (null);
count--;
return finger.value();
}
return null; //no element equal to value

¥
public int size() { return count; }
public boolean isEmpty() { return size() == 0; }
public void clear() {
head = tail = null;
count = O;
}
public Iterator<T> elements() {
return new LinkedListIterator<T, N>(head);
}
}

[/ sk sk ok ok sk sk ok s ok ok sk ok sk o ok sk sk ok o ok sk sk sk s ok ok sk sk ok o ok sk ok o sk sk sk ok o sk sk sk ok ke sk sk sk sk sk sk ok sk sk ok k /

public class LinkedListIterator<T, N extends Node<T>> implements Iterator<T> {
protected @N current;
protected @ON head;

public LinkedListIterator(@N t) {
head = t;
reset();

}

public void reset() { current = head; }
public boolean hasMoreElements() { return current !'= null; }
public T nextElement() {
T temp = current.value();
current = current.right();
return temp;
}
public T value() { return current.value(); }

}

[/ srsrokok ki sk ok ok sk sk sk ok ok sksksk sk ok sk sk sk ok ok skskosk ok skskosk ok sk sksk sk sk skskok ok skskok ok sk skok sk ok ok /
public class DblLinkedList<T, N extends DblNode<T>>
extends LinkedList<T, N> {
public DblLinkedList() {
head = tail = null;
count = 0;

APPENDIX B. SAMPLE RUPIAH PROGRAMS

public T removeFromHead() {
T retVal = super.removeFromHead() ;
head.setLeft(null);
return retVal;
}
public void addToTail(T value) {
tail = new N.ThisClass(value, null, tail);
if (head == null) head = tail;
count++;
}
public T removeFromTail() {
if (empty()) throw new EmptyListException();
ON temp = tail;
tail = tail.left();
if (tail == null) head = null;
else tail.setRight(null);
count--;
return temp.value();
}
public Interator<T> reverseElements() {
return new LinkedListReverselterator<T, N>(head);
}
}

[/ kskskok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ke kok /
public class LinkedListReverselterator<T, N extends DblNode<T>>
extends LinkedListIterator<T, N> {

public LinkedListIterator(@N t) {
head = t;
reset();

}

public T nextElement() {
T temp = current.value();
current = current.left();
return temp;

B.2 An Extensible Interpreter

114

In [Bru98], Bruce describes a technique for programming an extensible interpreter. This
technique is based on a suggestion by Cartwright [Car97]. Under this scheme, one can
write an interpreter for a language, and have the ability to add new language constructs

APPENDIX B. SAMPLE RUPIAH PROGRAMS 115

without re-writing any of the existing code. A new interpreter can be implemented by
simply providing functionality for the new concepts. The design is based on the Visitor
pattern [GRJV94].

Here, we show the interpreter suggested by Bruce as implemented in Rupiah. The (basi-
cally functional) source language to be interpreted is defined by LangProcessor<Result>,
which supports four kinds of expressions:

e constCase — constants

e varCase — variables

e lamCase — lambda expressions
e appCase — function application

The extended language is defined by ExtLangProcessor<Result> and includes additional
support for plusCase — simple arithmetic addition expressions.

Note that polymorphic methods, ThisType and ThisClass constructors are needed to
implement this solution.

This code is not meant to demonstrate a robust, industry-strength interpreter but rather
serve as a proof-of-concept that an extensible interpreter could be easily programmed using
the features introduced in Rupiah.

//any values
interface Val { }

//an environment -- binds identifiers to values
interface Env {

Env nullEnv();

Env extend(String var, Val value);

Val lookup(String var);
}

//original language constructs

interface LangProcessor<Result> {
Result constCase(ConstForm cf);
Result varCase(VarForm vf);
Result lamCase(LamForm 1f);
Result appCase(AppForm af);

}

//extended language construct
interface ExtLangProcessor<Result>
extends LangProcessor<Result> {

APPENDIX B. SAMPLE RUPIAH PROGRAMS 116

Result plusCase(PlusForm pf);
}

//abstract syntax for languages
interface Form <Processor extends LangProcessor> {
<Result, Visitor extends Processor<Result>> Result process(Visitor 1lp);

}
[KK o KoK KK K ok KoK KoK Kok oK oK K oK KK Kok K oK KK Kok Kok KoK K R Kok Kok K Kok Kok KoK ok ok Kok ok Kok ok ok /
class IntVal implements Val {
int value;
IntVal(int value) { this.value = value; }
}
class Closure implements Val {
Env env;
LamForm fun;
Closure(LamForm fun, Env env) {
this.fun = fun; this.env = env; }
}
[k ok Kok Kk o oK ok Kok KoK Kok Kok KoK KK ok Kok KoK K Kok Kok oK K ok Kok KoK Kok Kok KKKk Kok ok
class ConstForm implements Form<LangProcessor> {
int value;
ConstForm(int value) { this.value = value; }
<Result, Visitor extends LangProcessor<Result>> Result process(Visitor 1lp) {
return lp.constCase(this); }
}
class VarForm implements Form<LangProcessor> {
String name;
VarForm(String name) { this.name = name; }
<Result, Visitor extends LangProcessor<Result>> Result process(Visitor 1lp) {
return lp.varCase(this); }
}
class LamForm implements Form<LangProcessor> {
String var;
Form body;
LamForm(String var, Form body) {
this.var = var; this.body = body;}
<Result, Visitor extends LangProcessor<Result>> Result process(Visitor 1lp) {
return lp.lamCase(this); }
}
class AppForm implements Form<LangProcessor> {
Form fun, arg;
AppForm(Form fun, Form arg) { this.fun = fun; this.arg = arg; };
<Result, Visitor extends LangProcessor<Result>> Result process(Visitor 1lp) {
return lp.appCase(this); }

APPENDIX B. SAMPLE RUPIAH PROGRAMS 117

/ kokokokok ok sk sk ske sk sk sk sk oo o o o ok ok ok sk sk sk sk skl sk sk sk o s s ke ke ok ok ok sk sk sk sk sk sk sk sk ok sk ke kok /
// interpreter for original language
class Interp implements LangProcessor<Val> {

Env env;

ThisClass (Env env) { this.env = env; }

Val constCase(ConstForm, cf) { return new IntVal(cf.value); }
Val varCase(VarForm vf) { return env.lookup(vf.name); }
Val lamCase(LamForm 1f) { return new Closure(lf,env); }
Val appCase(AppForm af) {
return apply(af.fun.<Val,ThisType>process(this),
af.arg.<Val,ThisType>process(this));
}
Val apply(Val rator, Val rand) {
if (rator instanceof Closure) {
Closure clos = (Closure) rator;
LamForm 1f = clos.fun;
Env newenv = clos.env.extend(1lf.var,rand);
return 1f.body.<Val,ThisType>process(new ThisClass(newenv)) ;
}
else throw
throw ApplicationException("non-function " + rator +
" used as function");
}
}

// additional construct in extended language
class PlusForm implements Form<ExtLangProcessor> {

Form 1lhs, rhs;

PlusForm(Form lhs, Form rhs) {

this.lhs = lhs; this.rhs = rhs; }
<Result, Visitor extends ExtLangProcessor<Result>> Result process(Visitor 1lp) {
return lp.plusCase(this); }

3
[/ skskskok ok sk sk ok sk ok ok sk ok ok ok skok sk ok sk sk sk s ok ok sk sk ok sksk sk ek sk sk ok sk ok sk sk sk ke sk sk sk sk ek sk sk ok sk ok ok /
// interpreter for extended language
class ExtInterp extends Interp implements ExtLangProcessor<Val> {

ThisClass (Env env) { super(env); }

Val plusCase(PlusForm pf) {
Val lval = pf.lhs.<Val,ThisType>process(this);
Val rval = pf.rhs.<Val,ThisType>process(this);
if ((lval instanceof IntVal) && (rval instanceof IntVal))

APPENDIX B. SAMPLE RUPIAH PROGRAMS 118

return new IntVal(((IntVal) 1lval).value + ((IntVal) rval).value);
else
throw new PlusException("plus operator applied to " + lval + " and " +
rval);
}
}
/R rsrokokokokskskosk ook sk sk sk ok sksk sk sk ok sksksk sk ok skskosk ok skeskok ok sk sksk sk ok skskok ok skskok sk ok sk sk sk sk ok /
class ApplicationException extends RunTimeException {
ApplicationException(String s) { super(s); }
}

class PlusException extends RuntimeException {
PlusException(String s) { super(s); }
3

/**/

Appendix C

Array Proposal

type, or ThisType cause problems in Rupiah. Recall from Chapter 4 that Rupiah

stores a PolyClass object with each parameterized class. These PolyClass objects
are used in operations that require full type information at run-time. The PolyClass
objects are created and passed along to constructors for polymorphic classes. Arrays are also
objects in Java. However, they are not constructed by calling a constructor, but by bytecode
instructions. Because all array operations are implemented by bytecode instructions, we
have no way to store a PolyClass object with an array. Thus, we have no way to correctly
perform instanceof, casts, or new array expressions for arrays with the problematic element

types.

D eclarations of arrays whose element type contains a type variable, parameterized

C.1 Proposed Solution

Unfortunately, no clean solution is apparent for this issue. In this section, we propose a
solution to the problem that allows us to properly translate array types by storing certain
arrays in wrapper classes. However, the change results in some drastic changes to the type
checking rules for array types, and means that some Java code — namely code that makes
use of Java’s unsafe covariant array subtyping rule — is not compatible with Rupiah. We
have not yet implemented this solution in our compiler. However, we provide a casual
description of the translation here to illustrate that the technique could work.

The proposed solution is to wrap each array in a separate class which stores the actual
array and a PolyClass object representing the element type. All arrays with element types
that are “Rupiah types” (parameterized types, type parameters, or ThisType) are replaced

119

APPENDIX C. ARRAY PROPOSAL 120

package EDU.williams.rupiah;

public final class RupiahArray {
public final Object[] data;
public final int length;
private PolyClass elemType;

public RupiahArray(Object[] data, PolyClass elemType) {
this.data = data;
this.elemType = elemType;
this.length = data.length; //this works: constructors can
//initialize final fields

//does a shallow clone of the array.
//we just reuse the PolyClass
public Object clone() {
return new RupiahArray(data.clone(), elemType);

3

public boolean $instanceO0f$(Object other) {
return (other instanceof RupiahArray
&& ((RupiahArray)other).elemType.equals(elemType));

Figure C.1: Definition of RupiahArray

with instantiations of this wrapper class. Operations such as instanceof and type casts
use the PolyClass object stored with the object. The wrapper class is named RupiahArray
and is defined in Figure C.1.

Each new array expression involving a Rupiah type is wrapped in a RupiahArray. For
example, the declaration:

List<T>[] 1ltarray = new List<T>[5];
becomes

RupiahArray ltarray = new RupiahArray(new List[5],
new PolyClass(List.class,
new PolyClass[] { T$$classl}));

APPENDIX C. ARRAY PROPOSAL 121

or
T[] tarray = new T[5]
becomes

RupiahArray tarray = new RupiahArray(
java.reflect.Array.newInstance(T$$class.getBase(),
new int[] { 5 }),
T$$class)

In order to be able to create arrays with element type ThisType, we need a run-time
representation of ThisType that changes meaning in subclasses parallel to ThisType itself.
To accomplish this, we store the type of ThisType in a PolyClass instance variable. For
each class with an expression of type ThisType, a field with declaration

protected PolyClass $$ThisType;

is added to the class. The $$ThisType field is initialized in each constructor with a
PolyClass object representing the exact interface that the class implements as shown in
Figure C.2. This field is protected and not private, and thus is inherited by any subclasses.
With this information, we can always create arrays of type ThisType[] by accessing the
type stored in $$ThisType. Therefore, the expression

List<ThisType>[] lttarray = new List<ThisType>[5];
becomes

RupiahArray lttarray = new RupiahArray(new List[5],
new PolyClass(List.class,
new PolyClass[] { $$ThisTypel}));

or

ThisTypel]l ttarray = new ThisType[5]

becomes

RupiahArray tarray = new RupiahArray(
java.reflect.Array.newInstance ($$ThisType.getBase(),
new int[]l { 5 }),
$$ThisType)

Accessing an element of a RupiahArray translates as an access to the data field of
RupiahArray. For example the statement

APPENDIX C. ARRAY PROPOSAL 122

/* Rupiah Version */ /* Trsanslated Version */
public class C { public interface $$CIfc {}
ThisType tt; public class C implements $$CIfc {
} protected PolyClass $$ThisType;
public CO {
super () ;
$$ThisType = new PolyClass($$CIfc.class);
}

public class D extends C { public interface $$DIfc extends $$CIfc {3}
} public class D implements $$DIfc {
public DO {
super(); // calls CQ)
$$ThisType = new PolyClass($$DIfc.class);
}
}

Figure C.2: Initializing $$ThisType fields in a class

ltarray[0] = new List<T>(null, null);
translates to:
ltarray.datal[0] = new List(null, null, T$$class);

If we access an array element, we almost always have to insert a cast because the data
instance variable has static type Object[]. However, data will always be an array of the
correct type, so this cast never fails.

List<T> myList = new List<T>(null, ltarray[0]);
is translated to
List myList = new List(null, ((List[])ltarray).datal[0], T$$class);

In this example, we insert a cast to List[] because ltarray.data has declared type
Object[].

Because the length field and clone methods are already defined in RupiahArray, they
do not require any additional translation. However, the Class object for an array with
an element type that is a “Rupiah type” is not correct. Because arrays are wrapped up
in RupiahArray classes, the Class object won’t be an array type, the Class represent-
ing RupiahArray. Further, the element type is not accurately represented in the Class

APPENDIX C. ARRAY PROPOSAL 123

//Rupiah code
object instanceof List<T>[]

//translation
(($synth_0$ = object) == null
I
(($synth_0$% instanceof RupiahArray)
&& ((RupiahArray)$synth_0$) .$instance0f$(new PolyClass(List.class,
new PolyClass[] {T$$class})))

Figure C.3: Translation of instanceof for Rupiah arrays

object. However, this change only causes a problem for a programmer who makes use of
reflection (full reflection is not currently supported in Rupiah). Notably, the fact that all
Rupiah arrays are translated to the same type (RupiahArray) does not cause a problem for
the Rupiah compiler. It maintains their declared type internally and all type checking is
performed based on the declared type, not RupiahArray.

C.2 instanceof expressions

By storing extra type information with arrays, we can translate instanceof and casts
involving Rupiah types as follows. For instanceof, we check that the object is an instance
of RupiahArray, and that the element types are equivalent. Casts are translated similarly,
and throw a ClassCastException if the run-time validity check fails. An example of the
translation for instanceof is shown in Figure C.3 and for casts in Figure C.4. As with the
other translations for these operations, synthetic variables are inserted as necessary.

Casts and instanceof expressions for arrays of type T, a type parameter, or ThisType
are translated similarly. Recall that a representation of the run-time type of T is stored in
the instance variable T$$class. Thus, to check if an object is an instanceof T[], we pass
T$$class to the $instance0f$ method as illustrated in Figure C.5. Similarly, to check
if an object is an instanceof ThisTypel], we use the $$ThisType instance variable as
shown in Figure C.6.

C.3 Arrays as instantiations

Array types may also be used as instantiations of type variables. Thus, we must be able
to handle operations such as instanceof and casts when a type variable T is instantiated
with an array type. That is, if a type variable T is instantiated with Integer[] then an

APPENDIX C. ARRAY PROPOSAL

//Rupiah code
(List<T>[])object

//translation
($synth_0$ = object) == null
[
(($synth_0$ instanceof RupiahArray)

&% ((RupiahArray)$synth_0$).$instance0f$(new
PolyClass(List.class,

new PolyClass[]

{T$$class})))
7 (RupiahArray)object
: throw new ClassCastException()

Figure C.4: Translation of casts for Rupiah arrays

//Rupiah code
object instanceof T[]

//translation
($synth_0% = object) == null
|l
(($synth_0$ instanceof RupiahArray)
&& ((RupiahArray)$synth_0$%) .$instance0f$(T$$class))

Figure C.5: Translation of instanceof T[]

124

APPENDIX C. ARRAY PROPOSAL 125

//Rupiah code
new ThisType[5]
object instanceof ThisTypel[]

//translation
new RupiahArray(

java.reflect.Array.newInstance(T$$class.getBase(),

new int[] { 5 }), $$ThisType)

($synth_0$ = object) == null

I
(($synth_0$ instanceof RupiahArray)

&& ((RupiahArray)$synth_0$) .$instance0f$($$ThisType))

Figure C.6: Translation of instanceof ThisType[]

object of type T is an instance of Integer[]. When we create the PolyClass object for an
array type as an instantiation, we store the Class object representing an array of the base
type in the base field of the PolyClass object. Therefore, our translation for

List<Integer[]> lia = new List<Integer[]1>Q);
is
List lia = new List(new PolyClass(Integer[].class));

Then the existing translation for instanceof T, where T is a type variable, that is based
on reflection works correctly because the fact that T is actually instantiated with an array
type is represented in the base member of T$$class.

However, if an array whose element type is a type variable is used as an instantiation,
then a more complicated translation is needed. In order to help with this translation,
a helper method, makeClassArray, in RupiahArray is provided to obtain Class objects
representing array types given a Class object representing the element types. For exam-
ple, to create the array T[] [][], where T is a type variable, we require the Class object
representing a three dimensional array of T’s base type. We write:

makeArrayClass(T$$class.getBase(), 3)

The makeArrayClass method is shown in Figure C.7.

To translate instantiations of type parameters with arrays of type variables, we create a
new PolyClass object where base is the Class object representing an array of T’s base type.
Then we reuse T’s existing parameters for the PolyClass representing T[]. For example,
the expression

APPENDIX C. ARRAY PROPOSAL 126

//given a Class c, return Class object representing
//cl]...[] (where number of dims is specified by dims)
public static Class makeArrayClass(Class c, int dims) {
if (dims <=0) {
return c;
}
else {
Class cl = makeArrayClass(c, dims -1);
return java.lang.reflect.Array.newlInstance(cl, 0).getClass();

}
}

Figure C.7: RupiahArray makeArrayClass method

List<T[]1> 1lta = new List<T[1>();
translates as

List 1lta =
new List(new PolyClass(makeArrayClass(T$$class, 1),
T$$class.getParams())) ;

Instantiations of type variables with arrays of type ThisType are translated similarly, using
the same $$ThisType instance variable as in Figure C.6.

C.4 Multi-dimensional arrays

Multi-dimensional arrays of Rupiah types are translated as arrays of RupiahArray. Only
the final dimension is created with the actual element type. To help with this translation,
we provide a static helper method in RupiahArray named multiArray that handles the
creation of multi-dimensional arrays, shown in Figure C.8.

The two-dimensional new array expression:

new List<T>[5] [4]
becomes

RupiahArray.multiArray(new PolyClass(
List.class, new PolyClass[] { T$$class }),
2, new int[] { 5, 4 })

APPENDIX C. ARRAY PROPOSAL 127

public static RupiahArray multiArray(PolyClass type,
int dims, int[] dimSizes) {
if (dims == 0)
return new RupiahArray(
java.lang.reflect.Array.newInstance(type.getBase(),
new dimSizes[dimSizes.length]),
type);
}
else {
RupiahArray data =
new RupiahArray(new RupiahArray[dimSizes[dimSizes.length - dims]],
new PolyClass(makeArrayClass(type.getBase(), dims),
type.getParams()));
for(int i = 0; i < data.length; i++) {
data[i] = multiArray(type, dims - 1, dimSizes);

}
return data;
}
}

Figure C.8: RupiahArray multiArray method

APPENDIX C. ARRAY PROPOSAL 128

Each dimension except for the final one is a RupiahArray[]. This allows us to correctly
execute casts and instanceof expressions for multi-dimensional arrays of Rupiah types.
Thus, we can translate expressions such as

object instanceof List<Integer>[][]
in a straight forward manner:

Object $synth_0$;
((($synth_0$ = object) == null)
I
(($synth_0$ instanceof RupiahArray)
&& ($synth_0$.instanceOf (new PolyClass(List[].class,
new PolyClass[] {Integer.class})))))

Casts to multi-dimensional array types are translated similarly.

C.5 Static Array Initializer Expressions

In Java, one may declare and initialize a new array in a single expression. For example, the
expression

new int[] { 1, 2, 3, 4}

initializes an integer array of length 4 with values 1, 2, 3, 4. One dimensional new
static array initializers like this one are easy to translate for most types. For example, the
expression

new List<T> { null, null, null }
translates to
new RupiahArray(new List[] { null, null, null }, T$$class)

If the element type is a type variable, then the situation is more difficult. Because the
element type is not known statically, we introduce another helper method in RupiahArray
to perform the actual initialization. Reflection is used to create the array with the correct
element type (stored in a PolyClass object), then the supplied initial values are copied into
this array.

public static RupiahArray staticArray(Object[] data, PolyClass type) {
Object[] newData =
java.lang.reflect.Array.newInstance(type.getBase(), data.length);
System.arraycopy(data, O, newData, O, data.length);
return new RupiahArray(newData, type);

}

APPENDIX C. ARRAY PROPOSAL 129

Thus the expression
new T[] { null, null}
becomes
staticArray(new Object[] { null, null}, T$$class);

Multi-dimensional static array initializers can be reduced to nested single dimension static
array initializers. For example, the expression

new T[1[] { new T[] { null }, new T[] { null}}
translates as

staticArray(new Object[] { staticArray (new Object[] { null }, T$$class),
staticArray (new Object[] { null }, T$$class)’,
T$$class)

C.6 Type Rules

A consequence of this translation is that the Java rule that allows array types to be subtypes
if their element types are subtypes is not allowed for Rupiah programs. Array types are
only subtypes if their element types are identical. This fixes a well known hole in the static
type system, illustrated by the following code:

//D is a subtype of C
C[] cArray = new D[10];
cArray[0] = new CQ; //throws ArrayStoreException

However, it means that the operational semantics for some code changes in Rupiah.
Consider the following code, compiled with a standard Java compiler:

void foo(Object o) {
if (o instanceof Object[])
//side-effect
}

foo should execute its side-effect for any o which is an array of objects. However because
arrays made up of Rupiah types are wrapped in RupiahArray objects, the instanceof test
fails for any RupiahArray that is passed as the actual value of o.

Therefore, for consistency we eliminate the covariant subtyping rule for array types. No
expressiveness is lost by making this change: we have a generic types so any code that was
written making use of this rule can be written instead with with T[], where T is a type

APPENDIX C. ARRAY PROPOSAL 130

variable, and eliminate the need both this unsafe rule and any run-time checks. Thus, we
also don’t need to worry about throwing an ArrayStoreException (we’ll never have to for
code that passes the type checker). However, we lose compatibility with pre-compiled Java
code which makes use of this unsafe rule.

If the programmer must absolutely use the covariant array subtyping rule, they may pass
an —unsafe-arrays flag to the compiler which means that for non-Rupiah type arrays, the
standard Java rule is used. However, any Rupiah array is still not a subtype of Object[].
Also, Rupiah arrays are never subtypes unless their element types are identical, even with
the —unsafe-arrays flag.

C.7 Evaluating the Array Proposal

This solution, which involves boxing and unboxing, is not ideal. An obvious drawback is
the overhead of storing each array inside of another object. Further, as most accesses to an
array require a cast, we introduce new dynamic checks in our translation of arrays. However,
efficiency problems are not our foremost concern. Instead, the fact that this translation
breaks compatibility with existing Java code is the more troubling issue. We would like
to be able to compile any existing Java source code, and call any pre-compiled code from
Rupiah programs. However, our translation of arrays in Rupiah forces us to eliminate the
rule that array types are subtypes if their element types are subtypes. This does not make
our language any less expressive: a class Array<T> can easily be written using parametric
polymorphism. However, it does increase the distance between the Rupiah programming
language and Java. Unfortunately, we see no other practical solution that both allows array
types in Rupiah to be valid in operations like casts and instanceof and does not require
changes to the JVM. Ultimately, the problem of properly supporting arrays in Rupiah may
be the factor which drives the project towards a translation based in part on a modified
JVM.

Appendix D

Compiler Information

tation, binaries and source code are linked from the project web page. The Rupiah

compiler itself is based on Sun Microsystems javac compiler. The version of javac
used in project was 1.2.2. The binary distribution of Rupiah is the rupiah.jar file. The
compiler can be executed with the command:

O ur distribution of the Rupiah compiler is available electronically. Latest documen-

java -jar rupiah.jar [options] <source files>
or alternatively
java EDU.williams.tools. javac.Main [options] <source files>

As the Rupiah compiler is based on javac, the command line options are identical. The
set of classes (PolyClass, $$MangleClass, etc.) that are needed to run Rupiah programs
are also distributed as a separate archive, rupiahrt. jar.

The URL for the Rupiah project webpage is:

http://www.cs.williams.edu/ kim/rupiah/

131

	1 Introduction
	1.1 Type Systems in Programming Languages
	1.2 Problems With Type Systems
	1.3 Type System issues in Object-Oriented Languages
	1.4 Initial Goals
	1.5 Acknowledgements
	1.6 Thesis Overview

	2 Motivations
	2.1 Genericity
	2.2 Adding Genericity with Parametric Polymorphism
	2.2.1 Parametric Polymorphism Syntax and Semantics
	2.2.2 Parametric Polymorphism Summary

	2.3 Binary Methods
	2.4 Adding ThisType to support Binary Methods
	2.4.1 Matching

	2.5 Exact Types

	3 Other Extensions of Java
	3.1 Pizza and GJ: Exploring Translations to Bytecode
	3.1.1 Heterogeneous Translation
	3.1.2 Homogeneous Translation
	3.1.3 Bridge Methods
	3.1.4 Retrofitting in GJ
	3.1.5 Problems with GJ

	3.2 NextGen: Hybrid Translation
	3.3 Other Proposals
	3.4 Evaluating Proposals
	3.5 Revised Goals

	4 Introduction to Rupiah
	4.1 Run-time Support For Parameterized Types
	4.1.1 instanceof Expressions
	4.1.2 Type Conversion Expressions

	4.2 Exact Types
	4.2.1 instanceof with Exact Types
	4.2.2 Type Conversion Expressions with Exact Types

	4.3 ThisType
	4.3.1 Type Erasure and Exact Interface Types
	4.3.2 Run-Time Support for ThisType
	4.3.3 Type Conversion Expressions

	4.4 Array Types in Rupiah
	4.5 LM: Increasing Homogeneous Translation Efficiency
	4.5.1 Evaluating LM

	5 New Language Features
	5.1 Complete Parametric Polymorphism
	5.1.1 Motivation: Complete Parametric Polymorphism
	5.1.2 Implementation: Complete Parametric Polymorphism

	5.2 ThisClass Constructors
	5.2.1 Motivation: ThisClass Constructors
	5.2.2 Implementation: ThisClass Constructors

	5.3 Type-caching Class Files
	5.3.1 Motivation: Type-caching Class Files
	5.3.2 Implementation: Type-caching Class Files

	6 Proposal Evaluations
	6.1 Evaluation Criteria
	6.2 Language Comparisons
	6.2.1 GJ
	6.2.2 NextGen
	6.2.3 Rupiah

	6.3 Overall Evaluation
	6.3.1 Sun Microsystems Proposal

	7 Future Work
	7.1 The Array Problem
	7.2 Efficiency Issues
	7.3 All Roads Lead to the JVM
	7.4 Miscellaneous Features
	7.5 Wrapup

	A Rupiah Grammar
	A.1 Generic Types
	A.2 Polymorphic Methods
	A.3 Constructors

	B Sample Rupiah Programs
	B.1 Lists in Rupiah
	B.2 An Extensible Interpreter

	C Array Proposal
	C.1 Proposed Solution
	C.2 instanceof expressions
	C.3 Arrays as instantiations
	C.4 Multi-dimensional arrays
	C.5 Static Array Initializer Expressions
	C.6 Type Rules
	C.7 Evaluating the Array Proposal

	D Compiler Information

