
Updatable Security Views

Nate Foster
Benjamin Pierce
Steve Zdancewic

University of Pennsylvania

IBM PLDay ’09

2

2

“Pennsylvania yanks voter site after data leak”

“Passport applicant finds massive privacy breach”

“Privacy issue complicates push to link medical data”

3

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

✗ No separate specification of confidentiality policy

4

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

✗ No separate specification of confidentiality policy

4

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

✗ No separate specification of confidentiality policy
4

Updatable Security Views

 S V

Updated
V

Confidential
source

Regraded
view

update

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

✗ No separate specification of confidentiality policy
4

Updatable Security Views

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

✗ No separate specification of confidentiality policy
4

This Talk

A generic framework for building updatable security views.

• Extends previous work on lenses.

• New non-interference laws provide additional guarantees about
confidentiality and integrity.

A concrete instantiation of these ideas in Boomerang, a language
for writing lenses on strings.

• Annotated regular expressions express confidentiality and
integrity policies.

5

Lenses

Bidirectional Transformations

For a view to be updatable, the program that defines it needs to
be bidirectional.

7

Lenses

In recent years, we have developed a number of bidirectional pro-
gramming languages for describing certain well-behaved transfor-
mations called lenses.

lens

7

Lenses: Terminology

In recent years, we have developed a number of bidirectional pro-
gramming languages for describing certain well-behaved transfor-
mations called lenses.

get

7

Lenses: Terminology

In recent years, we have developed a number of bidirectional pro-
gramming languages for describing certain well-behaved transfor-
mations called lenses.

put

7

Semantics

A lens l mapping between a set S of sources and V of view is a
pair of total functions

l .get ∈ S → V

l .put ∈ V → S → S

obeying “round-tripping” laws

l .get (l .put v s) = v (PutGet)

l .put (l .get s) s = s (GetPut)

for every s ∈ S and v ∈ V .

8

Boomerang

strings

Data model: strings

Computation model: based on finite-state transducers

Types: regular expressions
9

Example: Redacting Calendars (Get)

10

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Calendars (Update)

11

08:30 BUSY

12:15 PLClub

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Calendars (Put)

12

*08:30 Coffee with Sara (Starbucks)

12:15 PLClub (Seminar room)

*15:00 Workout (Gym)

16:00 Meeting (Unknown)

08:30 BUSY

12:15 PLClub

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Secure Lenses

Requirements

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

1. Confidentiality: get does not leak secret data

2. Integrity: put does not taint endorsed data

14

Example: Redacting Calendars (Get)

15

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Calendars (Update II)

16

08:30 Meeting

12:15 PLClub

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Calendars (Put II)

Observe that propagating the update to the view back to the
source forces put to modify a lot of hidden source data:

• The entire appointment at 3pm.

• The description and location of the appointment at 8:30am.

17

08:30 Meeting (Unknown)

12:15 PLClub (Seminar room)

08:30 Meeting

12:15 PLClub

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Integrity

Question: should the (potentially untrusted) user of the view be
allowed to modify hidden (potentially confidential) source data?

Answer: It depends → we need to be able to formulate and
choose between integrity policies like

• “These appointments in the source may be altered”

• “These appointments in the source may not be altered (and so
the view must not be modified in certain ways)”

18

Non-interference

Both requirements can both be formulated as non-interference.

Low

High High

Low

A transformation is non-interfering if the low-security parts of the
output do not depend on the high-security parts of the input.

19

Non-interference

Both requirements can both be formulated as non-interference.

Low

High High

Low

A transformation is non-interfering if the low-security parts of the
output do not depend on the high-security parts of the input.

E.g., if the data contains “tainted” and “endorsed” portions

Endorsed

Tainted Tainted

Endorsed

then non-interference says that the tainted parts of the input do
not affect the endorsed parts of the output.

19

Non-interference

Both requirements can both be formulated as non-interference.

Low

High High

Low

A transformation is non-interfering if the low-security parts of the
output do not depend on the high-security parts of the input.

E.g., if the data contains both “secret” and “public” portions

Public

Secret Secret

Public

then non-interference says that the secret parts of the input do
not affect the public parts of the output.

19

Secure Lenses

Public

Secret Secret

Public

Tainted

Endorsed Endorsed

Tainted

20

Secure Lenses

Public

Secret
Public

Tainted

Endorsed
Tainted

20

Semantics of Secure Lenses

Fix a family of equivalence relations on S and V

• ∼k — “agree on k-public data”

• ≈k — “agree on k-endorsed data”

that capture notions of high and low-security data.

A secure lens obeys refined behavioral laws:

s ∼k s ′

l .get s ∼k l .get s ′ (GetNoLeak)

v ≈k (l .get s)

l .put v s ≈k s
(GetPut)

(as well as the original PutGet law).

21

Semantics of Secure Lenses

Fix a family of equivalence relations on S and V

• ∼k — “agree on k-public data”

• ≈k — “agree on k-endorsed data”

that capture notions of high and low-security data.

A secure lens obeys refined behavioral laws:

s ∼k s ′

l .get s ∼k l .get s ′ (GetNoLeak)

v ≈k (l .get s)

l .put v s ≈k s
(GetPut)

(as well as the original PutGet law).

21

Protocol for Using a Secure Lens

Before the owner of the source allows the user of the view to
propagate an update using put, they check that the old and new
views agree on endorsed data.

The GetPut law

v ≈k (l .get s)

l .put v s ≈k s

ensures that endorsed data in the source is preserved.

Enforces high-level integrity policies such as

• “These appointments in the source may be altered”

• “These appointments in the source may not be altered...”

22

For Experts: the PutPut Law

The following law can be derived.

v ′ ≈k v ≈k (l .get s)

l .put v ′ (l .put v s) ≈k l .put v ′ s

It says that the put function must have no “side-effects” on
endorsed source data.

It relaxes the “constant complement” condition, which is the
gold standard for correct view update in databases.

23

Syntax for Secure Lenses

In Boomerang, we describe the ∼k and ≈k equivalence relations
using annotated regular expressions.

R ::= ∅ | u | R·R | R|R | R∗ | R :k

The relations are based on an intuitive notion of “erasing”
characters inaccessible to a k-observer...

See paper for:

• A secure lens version of Boomerang’s type system that tracks
information flow—in two directions!

• An extension to this type system that uses a combination of
static and dynamic checks to ensure integrity.

24

Syntax for Secure Lenses

In Boomerang, we describe the ∼k and ≈k equivalence relations
using annotated regular expressions.

R ::= ∅ | u | R·R | R|R | R∗ | R :k

The relations are based on an intuitive notion of “erasing”
characters inaccessible to a k-observer...

See paper for:

• A secure lens version of Boomerang’s type system that tracks
information flow—in two directions!

• An extension to this type system that uses a combination of
static and dynamic checks to ensure integrity.

24

Conclusion

Summary:

• Data processing is a fertile area for exploring language-based
approaches to security.

• Secure lenses provide a reliable framework for constructing
updatable security views.

• Mechanisms for ensuring the integrity of data are critical.

Ongoing Work:

• Type system implementation

• Applications

• Other semantics for annotated regular types

• Investigate expressiveness vs. precision

25

Thank You!

Collaborators: Benjamin Pierce and Steve Zdancewic.

Want to play? Boomerang is available for download.

• Source code (LGPL)

• Precompiled binaries

• Research papers

• Tutorial and demos

http://www.seas.upenn.edu/~harmony/

26

http://www.seas.upenn.edu/~harmony/

Dynamic Approach

In the paper we show how to extend secure lenses with dynamic
tests that check if the put function can safelty handle a given
source and view:

l .safe ∈ (P ×Q)→ V → S → B

We replace GetPut with the following law:

l .safe (p, q) v s

l .put v s ≈q s
(GetPut)

We add a non-interference law stipulating that the safe function
must not leak secrets:

v ∼p v ′ s ∼p s ′

l .safe (p, q) v s = l .safe (p, q) v ′ s ′ (SafeNoLeak)

27

