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“Pennsylvania yanks voter site after data leak”

.
.

“Passport applicant önds massive privacy breach”

.

.

“Facebook glitch brings new privacy worries”
2



Security Views

.

.

       

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable
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This talk: Plan

• Introduce updatable security views

• Describe three mechanisms for tracking integrity:
1. A purely static information-øow analysis
2. A dynamic analysis based on provenenance
3. An approach based on explicit update operations
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Updatable Security Views



Lenses: Terminology

In recent years, we have developed a number of
programming languages for describing well-behaved
bidirectional transformations called lenses.

.

.

       

 

lens
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Lenses, Formally

A lens lmapping between a set S of sources and a set V of
views is a pair of total functions

l.get ∈ S → V
l.put ∈ V → S → S

obeying “round-tripping” laws

l.get (l.put v s) = v (PutGet)

l.put (l.get s) s = s (GetPut)

for every s ∈ S and v ∈ V.
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Example: Wiki (Get)
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=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED].

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!On Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.
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Example: Wiki (Update)
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Example: Wiki (Put)

Observe that propagating the update forces the put
function to modify hidden data in the source!
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Example: Wiki (Put)

Observe that propagating the update forces the put
function to modify hidden data in the source!
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Requirements

.

.

Updated
S  

       S V

Updated
V

Con!dential
source

Redacted
view

. .This talk

1. Conödentiality: get does not leak secret data
2. Integrity: put does not taint trusted data
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Integrity

Question: Should the (possibly untrusted) user of the view
be allowed to modify hidden (possibly trusted) source data?

Answer: Maybe!

There aremany alternatives, trading off which information
in the source can be trusted against which information in
the view can be edited.
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Some Integrity Policies

Policy: “Nothing is trusted” (whole source is tainted)
Effect: Arbitrary edits to the view are allowed but any
hidden data in the source can be modiöed by put
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Some Integrity Policies

Policy: “Conödential data trusted; public data tainted”
Effect: Cannot add or delete redacted blocks or list items
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Some Integrity Policies

Policy: “Everything is trusted”
Effect: No edits are allowed
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Approach #1:
Information-Flow Analysis

[Foster, Pierce, Zdancewic CSF ’09]



Non-interference

Observation: many policies can be formulated in terms of
non-interference.

.

.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.
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Non-interference— Integrity

Observation: many policies can be formulated in terms of
non-interference.

.

.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

E.g., if the data contains “tainted” and “trusted” portions

.

.

Trusted

Tainted

Trusted

Tainted

then the tainted parts of the input do not affect the trusted
parts of the output.
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Secure Lenses, Formally

The expectation that

“Tainted inputs to put should not affect Trusted outputs”

can be expressed by generalizing GetPut...

l.put (l.get s) s = s (GetPut)

... like this:

v ≈ (l.get s)
l.put v s ≈ s

(GetPutSecure)

(...as well as a similar non-interference law for conödentiality.)
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The PutPut Law, Redux

The following law can be derived:

v′ ≈ l.get s≈ v
l.put v′ (l.put v s) ≈ l.put v′ s

This law says that putmust have no “side-effects” on the
trusted parts of the source.

It generalizes the “constant complement” condition, the
gold standard for correct view update in databases.
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Labels

Fix a lattice of integrity labels, e.g.

.

.Tainted

.Trusted

.⊑
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Annotated Regular Expressions

Mark up the source schema (a regular expression) to
indicate which data is Tainted and which is Trusted.

..R ::= ∅ | u | R·R | R|R | R∗ | R :k

.

.

The annotation k is drawn from the lattice of integrity labels.

For example:

..S , ( “* ” · TEXT:Tainted · “ <!” · YEAR · “>\n”
| “! ” · TEXT · “ ” · YEAR · “\n”)∗

Note: no annotation is equivalent to the least annotation
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Equivalences

From an annotated schema, we can read off an equivalence
relation≈k, for each k in the lattice of integrity labels.

• ≈Trusted — “s and s′ agree on trusted data”

.
.* Julia Child, the chef <!1945>
! Valerie Plame 2005

≈Trusted .
.* Julia Child <!1945>
! Valerie Plame 2005

• ≈Tainted — “s and s′ agree on tainted and trusted data”
(i.e., they are identical)

.
.* Julia Child <!1945>
! Valerie Plame 2005

≈Tainted .
.* Julia Child <!1945>
! Valerie Plame 2005
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Approach #2:
Data Provenance

[Foster, Green, Tannen PODS ’08]



Data Provenance

Observation: information-øow analysis is an effective but
coarse way to track integrity.

Typing rules mark large parts of the source as “potentially
tainted”−→ need a öner-grained mechanism.

Deönition (provenance, n.)

1. the source or origin of an object; its history and pedigree;
a record of the ultimate derivation and passage of an item
through its various owners [Oxford English Dictionary]

2. the description of the origins of a piece of data and the
process by which it arrived in a
database [Buneman, Khanna, Tan ’01]

20



Data Provenance

Observation: information-øow analysis is an effective but
coarse way to track integrity.

Typing rules mark large parts of the source as “potentially
tainted”−→ need a öner-grained mechanism.

Deönition (provenance, n.)

1. the source or origin of an object; its history and pedigree;
a record of the ultimate derivation and passage of an item
through its various owners [Oxford English Dictionary]

2. the description of the origins of a piece of data and the
process by which it arrived in a
database [Buneman, Khanna, Tan ’01]

20



Provenance Semirings

Plan:
• Work with annotations from a commutative

semiring [Green, Karvounarakis, Tannen PODS ’07]
• Decorate source structures with annotations
• Reöne language semantics to propagate annotations

Intuition: (+) represents alternate use while (·) represents
joint use of data

21



Provenance Semirings for XQuery

Intuition: (+) represents alternate use while (·) represents
joint use of data

..
q , element q { for $t in $S return

for $x in ($t)/* return
($x)/* }

$S,(
..az

.bx1

.dy1

.cx2

.dy2 .ey3

)

.

.q

.

.q

.d .e
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Provenance Semirings for XQuery
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for $x in ($t)/* return
($x)/* }

$S,(
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Fundamental Property

For every query q and homomorphism of commutative
semirings h ∈ K1 → K2, the following diagram commutes:

..K1-structure .K1-structure

.K2-structure .K2-structure

.q

.h

.q

.h

22



Application of Fundamental Property

Let K be {Untouchable, TruSted, TaiNted}

Let h be the homomorphism that maps x2 to N and every
other (non-zero) label to S

.

.q

.h

.q

.h

.az

.bx1

.dy1
.cx2

.dy2 .ey3

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

.aS

.bS

.dS
.cN

.dS .eS

.q

.dS .eN
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Approach #3:
Audit

[work-in-progress with J Vaughan]



Audit Logs

Motivation: want to allow untrusted users to modify hidden
information in the source but also provide its owner with a
way to audit their changes

To to this, we need:
1. a representation for audit logs
2. a semantics for lenses that generates logs
3. tools for examining and manipulating logs

24



∆-Lenses

o ::=nop | o;o |  v | (o,o) | inl o v | inr o v
| swap i j | insert v | delete | hd o | tail o

A ∆-lens l is a pair of total functions

l.get ∈ OS → OV

l.put ∈ OV → OS

Can use operations
• characterize update quality
• implement efficient, öne-grained rollbacks
• handle concurrent updates
• maintain views incrementally
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Thank You!

Collaborators: Benjamin Pierce, Steve Zdancewic,
Val Tannen, TJ Green, Jeff Vaughan

Other Contributors: Aaron Bohannon, Davi Barbosa,
Julien Cretin, Ravi Chugh, Malo Deniélou,
Michael Greenberg, Michael Greenwald,
Christian Kirkegaard, Stéphane Lescuyer, Adam Magee,
Jon Moore, Alexandre Pilkiewicz, Danny Puller, Alan Schmitt

.

.

Want to play? Boomerang is available for download.
• Source code (LGPL)
• Precompiled binaries
• Papers, tutorial, and demos

http://www.cs.princeton.edu/~jnfoster/
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