
Tracking Integrity
in Updatable Security Views

Nate Foster
Princeton

Joint work with

BC Pierce S Zdancewic V Tannen TJ Green J Vaughan
Penn Penn Penn UC Davis Harvard

. .
. .

.

. 2

.

.

 13

Checking Security Policies
Table!X Table!Y

Web!App

Policy:

!"#"$%&'()&*+,-

./01&2

34"/"&56789:

Public
F
T
F
T

Id NameId

Policy:

!"#"$%&;<=

./01&;)&>:8)&?@-A

34"/"&;B9(&C&;<'(

&&>*D&?@A&C&?@-A<'(

&&>*D&EFGHFI?@-A<5+@@J

Access!Control!List
Usr Y_idId

42 6
42 86

8

User:!42
Password:!foo

HTTP!Reque
st

2

.

.

2

.

.

2

.
.

“Pennsylvania yanks voter site after data leak”

.
.

“Passport applicant önds massive privacy breach”

.

.

“Facebook glitch brings new privacy worries”
2

Security Views

.

.

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable

3

Security Views

.

.

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable

3

Security Views

.

.

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable

3

Security Views

.

.

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable

3

Security Views

.

.

.
.✔ Robust: impossible to leak hidden data

.
.✔ Flexible: enforce öne-grained conödentiality policies

.
.✗ Not usually updatable

3

This talk: Plan

• Introduce updatable security views

• Describe three mechanisms for tracking integrity:
1. A purely static information-øow analysis
2. A dynamic analysis based on provenenance
3. An approach based on explicit update operations

4

Updatable Security Views

Lenses: Terminology

In recent years, we have developed a number of
programming languages for describing well-behaved
bidirectional transformations called lenses.

.

.

lens

6

Lenses, Formally

A lens lmapping between a set S of sources and a set V of
views is a pair of total functions

l.get ∈ S → V
l.put ∈ V → S → S

obeying “round-tripping” laws

l.get (l.put v s) = v (PutGet)

l.put (l.get s) s = s (GetPut)

for every s ∈ S and v ∈ V.

7

Lenses, Formally

A lens lmapping between a set S of sources and a set V of
views is a pair of total functions

l.get ∈ S → V
l.put ∈ V → S → S

obeying “round-tripping” laws

l.get (l.put v s) = v (PutGet)

l.put (l.get s) s = s (GetPut)

for every s ∈ S and v ∈ V.

7

Example: Wiki (Get)

8

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED].

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!On Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

Example: Wiki (Update)

9

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED]

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child
* Arthur Goldberg
* [REDACTED]

.
.

.

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!On Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

Example: Wiki (Put)

Observe that propagating the update forces the put
function to modify hidden data in the source!

10

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED]

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child
* Arthur Goldberg
* [REDACTED]

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!Its is on Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child <!1945>
* Arthur Goldberg <!1900>
! Valerie Plame 2005

.
.

.

.

.

Example: Wiki (Put)

Observe that propagating the update forces the put
function to modify hidden data in the source!

10

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED]

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child
* Arthur Goldberg
* [REDACTED]

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!Its is on Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child <!1945>
* Arthur Goldberg <!1900>
! Valerie Plame 2005

.
.

.

.

.

Requirements

.

.

Updated
S

 S V

Updated
V

Con!dential
source

Redacted
view

. .This talk

1. Conödentiality: get does not leak secret data
2. Integrity: put does not taint trusted data

11

Requirements

.

.

Updated
S

 S V

Updated
V

Con!dential
source

Redacted
view

. .This talk
1. Conödentiality: get does not leak secret data
2. Integrity: put does not taint trusted data

11

Integrity

Question: Should the (possibly untrusted) user of the view
be allowed to modify hidden (possibly trusted) source data?

Answer: Maybe!

There aremany alternatives, trading off which information
in the source can be trusted against which information in
the view can be edited.

12

Integrity

Question: Should the (possibly untrusted) user of the view
be allowed to modify hidden (possibly trusted) source data?

Answer: Maybe!

There aremany alternatives, trading off which information
in the source can be trusted against which information in
the view can be edited.

12

Some Integrity Policies

Policy: “Nothing is trusted” (whole source is tainted)
Effect: Arbitrary edits to the view are allowed but any
hidden data in the source can be modiöed by put

13

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child
* Arthur Goldberg
* [REDACTED].

.

=Location=
The CIA Headquarters
is in McLean, VA.

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child <!1945>
* Arthur Goldberg <!1900>
! Valerie Plame 2005

.

.

Some Integrity Policies

Policy: “Conödential data trusted; public data tainted”
Effect: Cannot add or delete redacted blocks or list items

13

.

.

=Location=
The CIA Headquarters
is in McLean, VA.

[REDACTED]

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child
* [REDACTED].

.

=Location=
The CIA Headquarters
is in McLean, VA.

[!On Colonial Farm Rd.]

Also called the Bush
Center for Intelligence.

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

Some Integrity Policies

Policy: “Everything is trusted”
Effect: No edits are allowed

13

.

.

=Location=
The CIA Headquarters
is in Langley, VA.

[REDACTED]

=Employees=
* Julia Child
* [REDACTED].

.

=Location=
The CIA Headquarters
is in Langley, VA.

[!On Colonial Farm Rd.]

=Employees=
* Julia Child <!1945>
! Valerie Plame 2005

.

.

Approach #1:
Information-Flow Analysis

[Foster, Pierce, Zdancewic CSF ’09]

Non-interference

Observation: many policies can be formulated in terms of
non-interference.

.

.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

15

Non-interference— Integrity

Observation: many policies can be formulated in terms of
non-interference.

.

.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

E.g., if the data contains “tainted” and “trusted” portions

.

.

Trusted

Tainted

Trusted

Tainted

then the tainted parts of the input do not affect the trusted
parts of the output.

15

Secure Lenses, Formally

The expectation that

“Tainted inputs to put should not affect Trusted outputs”

can be expressed by generalizing GetPut...

l.put (l.get s) s = s (GetPut)

... like this:

v ≈ (l.get s)
l.put v s ≈ s

(GetPutSecure)

(...as well as a similar non-interference law for conödentiality.)

16

The PutPut Law, Redux

The following law can be derived:

v′ ≈ l.get s≈ v
l.put v′ (l.put v s) ≈ l.put v′ s

This law says that putmust have no “side-effects” on the
trusted parts of the source.

It generalizes the “constant complement” condition, the
gold standard for correct view update in databases.

17

Labels

Fix a lattice of integrity labels, e.g.

.

.Tainted

.Trusted

.⊑

18

Annotated Regular Expressions

Mark up the source schema (a regular expression) to
indicate which data is Tainted and which is Trusted.

..R ::= ∅ | u | R·R | R|R | R∗ | R :k

.

.

The annotation k is drawn from the lattice of integrity labels.

For example:

..S , (“* ” · TEXT:Tainted · “ <!” · YEAR · “>\n”
| “! ” · TEXT · “ ” · YEAR · “\n”)∗

Note: no annotation is equivalent to the least annotation

18

Annotated Regular Expressions

Mark up the source schema (a regular expression) to
indicate which data is Tainted and which is Trusted.

..R ::= ∅ | u | R·R | R|R | R∗ | R :k

.

.

The annotation k is drawn from the lattice of integrity labels.

For example:

..S , (“* ” · TEXT:Tainted · “ <!” · YEAR · “>\n”
| “! ” · TEXT · “ ” · YEAR · “\n”)∗

Note: no annotation is equivalent to the least annotation

18

Equivalences

From an annotated schema, we can read off an equivalence
relation≈k, for each k in the lattice of integrity labels.

• ≈Trusted — “s and s′ agree on trusted data”

.
.* Julia Child, the chef <!1945>
! Valerie Plame 2005

≈Trusted .
.* Julia Child <!1945>
! Valerie Plame 2005

• ≈Tainted — “s and s′ agree on tainted and trusted data”
(i.e., they are identical)

.
.* Julia Child <!1945>
! Valerie Plame 2005

≈Tainted .
.* Julia Child <!1945>
! Valerie Plame 2005

19

Approach #2:
Data Provenance

[Foster, Green, Tannen PODS ’08]

Data Provenance

Observation: information-øow analysis is an effective but
coarse way to track integrity.

Typing rules mark large parts of the source as “potentially
tainted”−→ need a öner-grained mechanism.

Deönition (provenance, n.)

1. the source or origin of an object; its history and pedigree;
a record of the ultimate derivation and passage of an item
through its various owners [Oxford English Dictionary]

2. the description of the origins of a piece of data and the
process by which it arrived in a
database [Buneman, Khanna, Tan ’01]

20

Data Provenance

Observation: information-øow analysis is an effective but
coarse way to track integrity.

Typing rules mark large parts of the source as “potentially
tainted”−→ need a öner-grained mechanism.

Deönition (provenance, n.)

1. the source or origin of an object; its history and pedigree;
a record of the ultimate derivation and passage of an item
through its various owners [Oxford English Dictionary]

2. the description of the origins of a piece of data and the
process by which it arrived in a
database [Buneman, Khanna, Tan ’01]

20

Provenance Semirings

Plan:
• Work with annotations from a commutative

semiring [Green, Karvounarakis, Tannen PODS ’07]
• Decorate source structures with annotations
• Reöne language semantics to propagate annotations

Intuition: (+) represents alternate use while (·) represents
joint use of data

21

Provenance Semirings for XQuery

Intuition: (+) represents alternate use while (·) represents
joint use of data

..
q , element q { for $t in $S return

for $x in ($t)/* return
($x)/* }

$S,(
..az

.bx1

.dy1

.cx2

.dy2 .ey3

)

.

.q

.

.q

.d .e

21

Provenance Semirings for XQuery

Intuition: (+) represents alternate use while (·) represents
joint use of data

..
q , element q { for $t in $S return

for $x in ($t)/* return
($x)/* }

$S,(
..az

.bx1

.dy1

.cx2

.dy2 .ey3

)
.

.q

.

.q

.d .e

21

Provenance Semirings for XQuery

Intuition: (+) represents alternate use while (·) represents
joint use of data

..
q , element q { for $t in $S return

for $x in ($t)/* return
($x)/* }

$S,(
..az

.bx1

.dy1

.cx2

.dy2 .ey3

)
.

.q

.

.q

.d .e

21

Provenance Semirings for XQuery

Intuition: (+) represents alternate use while (·) represents
joint use of data

..
q , element q { for $t in $S return

for $x in ($t)/* return
($x)/* }

$S,(
..az

.bx1

.dy1

.cx2

.dy2 .ey3

)
.

.q

.

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

21

Fundamental Property

For every query q and homomorphism of commutative
semirings h ∈ K1 → K2, the following diagram commutes:

..K1-structure .K1-structure

.K2-structure .K2-structure

.q

.h

.q

.h

22

Application of Fundamental Property

Let K be {Untouchable, TruSted, TaiNted}

Let h be the homomorphism that maps x2 to N and every
other (non-zero) label to S

.

.q

.h

.q

.h

.az

.bx1

.dy1
.cx2

.dy2 .ey3

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

.aS

.bS

.dS
.cN

.dS .eS

.q

.dS .eN

22

Application of Fundamental Property

Let K be {Untouchable, TruSted, TaiNted}

Let h be the homomorphism that maps x2 to N and every
other (non-zero) label to S

. .q

.h

.q

.h

.az

.bx1

.dy1
.cx2

.dy2 .ey3

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

.aS

.bS

.dS
.cN

.dS .eS

.q

.dS .eN

22

Application of Fundamental Property

Let K be {Untouchable, TruSted, TaiNted}

Let h be the homomorphism that maps x2 to N and every
other (non-zero) label to S

. .q

.h

.q

.h

.az

.bx1

.dy1
.cx2

.dy2 .ey3

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

.aS

.bS

.dS
.cN

.dS .eS

.q

.dS .eN

22

Application of Fundamental Property

Let K be {Untouchable, TruSted, TaiNted}

Let h be the homomorphism that maps x2 to N and every
other (non-zero) label to S

. .q

.h

.q

.h

.az

.bx1

.dy1
.cx2

.dy2 .ey3

.q

.dz·x1·y1+z·x2·y2 .ez·x2·y3

.aS

.bS

.dS
.cN

.dS .eS

.q

.dS .eN

22

Approach #3:
Audit

[work-in-progress with J Vaughan]

Audit Logs

Motivation: want to allow untrusted users to modify hidden
information in the source but also provide its owner with a
way to audit their changes

To to this, we need:
1. a representation for audit logs
2. a semantics for lenses that generates logs
3. tools for examining and manipulating logs

24

∆-Lenses

o ::=nop | o;o | v | (o,o) | inl o v | inr o v
| swap i j | insert v | delete | hd o | tail o

A ∆-lens l is a pair of total functions

l.get ∈ OS → OV

l.put ∈ OV → OS

Can use operations
• characterize update quality
• implement efficient, öne-grained rollbacks
• handle concurrent updates
• maintain views incrementally

25

∆-Lenses

o ::=nop | o;o | v | (o,o) | inl o v | inr o v
| swap i j | insert v | delete | hd o | tail o

A ∆-lens l is a pair of total functions

l.get ∈ OS → OV

l.put ∈ OV → OS

Can use operations
• characterize update quality
• implement efficient, öne-grained rollbacks
• handle concurrent updates
• maintain views incrementally

25

Thank You!

Collaborators: Benjamin Pierce, Steve Zdancewic,
Val Tannen, TJ Green, Jeff Vaughan

Other Contributors: Aaron Bohannon, Davi Barbosa,
Julien Cretin, Ravi Chugh, Malo Deniélou,
Michael Greenberg, Michael Greenwald,
Christian Kirkegaard, Stéphane Lescuyer, Adam Magee,
Jon Moore, Alexandre Pilkiewicz, Danny Puller, Alan Schmitt

.

.

Want to play? Boomerang is available for download.
• Source code (LGPL)
• Precompiled binaries
• Papers, tutorial, and demos

http://www.cs.princeton.edu/~jnfoster/

26

http://www.cs.princeton.edu/~jnfoster/

