
Exploiting Schemas in Data Synchronization

J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard,
Benjamin C. Pierce, and Alan Schmitt

Abstract. Increased reliance on optimistic data replication has led to
burgeoning interest in tools and frameworks for synchronizing discon-
nected updates to replicated data. We have implemented a generic syn-
chronization framework, called Harmony, that can be used to build state-
based synchronizers for a wide variety of tree-structured data formats. A
novel feature of this framework is that the synchronization process—in
particular, the recognition of conflicts—is driven by the schema of the
structures being synchronized. We formalize Harmony’s synchronization
algorithm, state a simple and intuitive specification, and illustrate how it
can be used to synchronize trees representing a variety of specific forms
of application data, including sets, records, and tuples.

1 Introduction

Optimistic replication strategies are attractive in a growing range of settings
where weak consistency guarantees can be accepted in return for higher avail-
ability and the ability to update data while disconnected. These uncoordinated
updates must later be synchronized (or reconciled) by automatically combining
non-conflicting updates while detecting and reporting conflicting updates.

Our long-term aim is to develop a generic framework that can be used to
build high-quality synchronizers for a wide variety of application data formats
with minimal effort. As a step toward this goal, we have designed and built a
prototype synchronization framework called Harmony, focusing on the important
special cases of unordered and rigidly ordered data (including sets, relations, tu-
ples, records, feature trees, etc.), with only limited support for list-structured
data such as structured documents. An instance of Harmony that synchronizes
multiple calendar formats (Palm Datebook, Unix ical, and iCalendar) has been
deployed within our group; we are currently developing Harmony instances for
bookmark data (handling the formats used by several common browsers, includ-
ing Mozilla, Safari, and Internet Explorer), address books, application preference
files, drawings, and bibliographic databases.

The Harmony system has two main components: (1) a domain-specific pro-
gramming language for writing lenses—bi-directional transformations on trees—
which we use to convert low-level (and possibly heterogeneous) concrete data for-
mats into a high-level synchronization schema, and (2) a generic synchronization
algorithm, whose behavior is controlled by the synchronization schema.

The synchronization schema actually guides Harmony’s behavior in two ways.
First, by choosing an appropriate synchronization schema (and the lenses that
transform concrete structures into this form and back), users of Harmony can

control the alignment of the information being synchronized: the same concrete
format might be transformed to different synchronization schemas (for exam-
ple, making different choices of keys) to yield quite different synchronization
semantics; this process is illustrated in detail in Section 6. Second, during syn-
chronization, the synchronization schema is used to identify conflicts—situations
where changes in one replica must not be propagated to the other because the
resulting combined structure would be ill-formed.

Our language for lenses has been described in detail elsewhere [7]; in the
present paper, our focus is on the synchronization algorithm and the way it uses
schema information. The intuition behind this algorithm is simple: we try to
propagate changes from each replica to the other, validate the resulting trees
according to the expected schema, and signal a conflict if validation fails. How-
ever, this process is actually somewhat subtle: there may be many changes to
propagate from each replica to the others, leading to many possible choices of
where to signal conflicts (i.e., which subset of the changes to propagate). To en-
sure progress, we want synchronization to propagate as many changes as possible
while respecting the schema; at the same time, to avoid surprising users, we need
the results of synchronization to be predictable; for example, small variations in
the inputs should not produce large variations in the set of changes that are
propagated. A natural way of combining these design constraints is to demand
that the results of synchronization be maximal, in the sense that, if there is any
well-formed way to propagate a given change from one replica to the other that
does not violate schema constraints, then that change must be propagated.

Our main technical contribution is a simple one-pass, recursive tree-walking
algorithm that does indeed yield results that are maximal in this sense for
schemas satisfying a locality constraint called path consistency (a semantic vari-
ant of the consistent element declaration condition in W3C Schema).

After establishing some notation in Section 2, we explore the design space
further, beginning in Section 3 with some simple synchronization examples. Sec-
tion 4 focuses on difficulties that arise in a schema-aware algorithm. Section 5
presents the algorithm itself. Section 6 illustrates the behavior of the algorithm
using a simple address book schema. Related work is discussed in Section 7.

2 Data Model

Internally, Harmony manipulates structured data in an extremely simple form:
unordered, edge-labeled trees; richer external formats such as XML are encoded
in terms of unordered trees. We chose this simple data model on pragmatic
grounds: the reduction in the overall complexity of the Harmony system far
outweighs the cost of manipulating ordered data in encoded form.

We write N for the set of character strings and T for the set of unordered,
edge-labeled trees whose labels are drawn from N and where labels of the im-
mediate children of nodes are pairwise distinct. We draw trees sideways to save
space. In text, each pair of curly braces denotes a tree node, and each “X !→ ...”
denotes a child labeled X—e.g.,

{

Pat !→111-1111, Chris !→222-2222
}

. When an
edge leads to an empty tree, we omit the braces, the !→ symbol, and the final
childless node—e.g., “111-1111” above actually stands for “{111-1111 !→{}}.”

A tree can be viewed as a partial function from names to trees; we write
t(n) for the immediate subtree of t labeled with the name n and dom(t) for its
domain—i.e. the set of the names of its children. The concatenation operator, ·
is only defined for trees t and t′ with disjoint domains; t · t′ is the tree mapping n
to t(n) for n ∈ dom(t), to t′(n) for n ∈ dom(t′). When n /∈ dom(t), we define t(n)
to be ⊥, the “missing tree.” By convention, we take dom(⊥) = ∅. To represent
conflicts during synchronization, we enrich the set of trees with a special pseudo-
tree X , pronounced “conflict.” We define dom(X) = {nX}, where nX is a special
name that does not occur in ordinary trees. We write T⊥ for T ∪ {⊥} and TX
for the set of extended trees that may contain X as a subtree.

A path is a sequence of names. We write • for the empty path and p/q for
the concatenation of p and q; the set of all paths is written P . The projection
of t along a path p, written t(p), is defined in the obvious way: (1) t(•) = t,
(2) t(n/p) = (t(n))(p) if t '= X and n ∈ dom(t), (3) t(n/p) = ⊥ if t '= X and
n '∈ dom(t), and (4) t(p) = X if t = X .

A tree is included in another tree, written t ! t′, iff any missing or conflicting
path in t′ is missing in t: ∀p ∈ P . (t′(p) = ⊥ ∨ t′(p) = X) =⇒ t(p) = ⊥.

Our synchronization algorithm is formulated using a semantic notion of
schemas—a schema S is a set of trees S ⊆ T (i.e., S does not contain ⊥ or
X). We write S⊥ for the set S ∪ {⊥}. In Section 6 we also define a syntactic
notion of schema that is used for describing sets of trees in our implementation.
However, the algorithm does not rely on this particular notion of schema.

3 Basics

Harmony’s synchronization algorithm takes two1 replicas a, b ∈ T⊥ and
a common ancestor o ∈ TX and yields new replicas in which all non-
conflicting updates are merged. Suppose that we have a tree representing a
phone book, o =

{

Pat !→111-1111, Chris !→222-2222
}

. Now suppose we make
two replicas of this structure, a and b and separately modify one phone
number in each so that a =

{

Pat !→111-1111, Chris !→888-8888
}

and b =
{

Pat !→999-9999, Chris !→222-2222
}

. Synchronization takes these structures and
produces a structure o′ =

{

Pat !→999-9999, Chris !→888-8888
}

that reflects all
the changes in a and b with respect to o. We save the final merged state at the
end of each synchronization, to use as the o input of the next synchronization.

Loose Coupling Harmony is a state-based synchronizer: only the current
states of the replicas (plus the remembered state o) are supplied to the syn-
chronizer, rather than the sequence of operations that produced a and b from o.
Harmony is designed to require only loose coupling with applications: it manip-
ulates application data in external, on-disk representations such as XML trees.
The advantage of the loosely coupled (or state-based) approach is that we can use
Harmony to synchronize off-the-shelf applications that were implemented with-
out replication in mind. By contrast, many synchronizers manipulate a trace of

1 We focus on the two-replica case. Our algorithm generalizes straightforwardly to
synchronizing n replicas, but the more realistic case of a network of possibly discon-
nected replicas poses additional challenges (see [8] for our progress in this area).

the operations that the application has performed on each replica, and propagate
changes by undoing and/or replaying operations. This approach requires tight
coupling between the synchronizer and application programs.

Conflicts and Persistence During synchronization, it is possible that some
of the changes made to the two replicas are in conflict and cannot be merged.
For example, suppose that, beginning from the same original o, we change
both Pat’s and Chris’s phone numbers in a and, in b, delete the record for
Chris entirely, yielding replicas a =

{

Pat !→123-4567, Chris !→888-8888
}

and
b =

{

Pat !→111-1111
}

. Clearly, there is no single phone book o′ that incor-
porates both of the changes to Chris: we have a delete/modify conflict. At this
point, we must choose between two evils. On one hand, we can weaken users’
expectations for the persistence of their changes to the replicas—i.e., we can
decline to promise that synchronization will never lose or back out any changes
that have explicitly been made to either replica. For example, here, we might
back out the deletion of Chris: a′ = b′ =

{

Pat !→123-4567, Chris !→888-8888
}

.
The user would then be notified of the lost changes and given the opportunity
to re-apply them if desired. Alternatively, we can keep persistence and instead
give up convergence—i.e., we can allow the replicas to remain different after syn-
chronization, propagating just the non-conflicting change to Pat’s phone number
and leaving the conflicting information about Chris untouched in each replica let-
ting a′ =

{

Pat !→123-4567, Chris !→888-8888
}

and b′ =
{

Pat !→123-4567
}

, and
notifying the user of the conflict.2 In Harmony, we choose persistence.

Local Alignment Another fundamental consideration in the design of any
synchronizer is alignment—i.e., the mechanism that identifies which parts of each
replica represent “the same information” and should be synchronized with each
other. Synchronization algorithms can be broadly grouped into two categories,
according to whether they make alignment decisions locally or globally. Syn-
chronizers that use global heuristics for alignment—e.g., the popular Unix tool
diff3, Lindholm’s 3DM [12], the work of Chawathe et al [4], and FCDP [11]—
make a “best guess” about what operations the user performed on the replicas
by comparing the entire current states with the last common state. This works
well in many cases (where the best guess is clear), but in boundary cases these
algorithms can make surprising decisions—i.e., it can be difficult for a user to
predict how data will be aligned, especially in cases where both replicas have
changed significantly. To avoid these issues, our algorithm employs a simple, lo-
cal alignment strategy that associates the subtrees under children with the same
name with each other. The behavior of this scheme should be easy for users to
understand and predict. The cost of operating completely locally is that Har-
mony’s ability to deal with ordered data is limited, as we discuss in Section 6.

2 An industrial-strength synchronization tool will not only notify the user of conflicts,
but may also assist in bringing the replicas back into agreement by providing graph-
ical views of the differences, applying special heuristics, etc. We omit discussion of
this part of the process, focusing on the synchronizer’s basic, “unattended” behavior.

An important avenue for future work is hybridizing local and global alignment
techniques to combine their advantages.

Lenses The local alignment scheme described above works well when the
replicas are represented in a format that naturally exposes the structure of the
data to be synchronized. For example, if the replicas represent address books,
then a good representation is as a bush where an appropriate key field, providing
access to each contact, is at the root level. The key fields, which uniquely identify
a contact, are often drawn from some underlying database:

{

92373 !→{name !→
˘

first !→Megan, last !→Smith
¯

, home !→555-6666}
92374 !→

{

name !→{first !→Pat, last !→Jones} , home !→555-2222
}

}

Using the alignment scheme described above, the effect during synchroniza-
tion will be that entries from the two replicas with the same UID are
synchronized with each other. Alternatively, if UIDs are not available, we
can synthesize a UID by lifting information out of each record—e.g., we
might concatenate the name data and use it as the top-level key field:
{

Megan:Smith !→{home !→555-6666} , Pat:Jones !→{home !→555-2222}
}

.
It is unlikely, however, that the address book will be represented concretely

(e.g., as an XML document) using either of these formats. To bridge this gap, the
Harmony system includes a domain-specific language for writing bi-directional
transformations [7], which we call lenses. By passing each replica through a
lens, we can transform the replicas from concrete formats into appropriately
“pre-aligned” forms. After synchronization, our language guarantees that the
updated replicas are transformed back into the appropriate concrete formats
using the other side of the same lens (i.e., lenses can be thought of as view update
translators [2]). Lenses also facilitate synchronization of heterogeneous formats.
Since each replica is passed through a lens both before and after synchronization,
it does not much matter if the replicas are represented in the same format or
not. We can apply a different lens on each side to bring replicas stored using
different concrete representations into the same format for synchronization.

4 The Role of Schemas

We impose two core requirements on synchronization, which we call safety and
maximality and describe informally here (the long version has precise definitions).

Safety The safety requirement encompasses four sanity checks: (1) a syn-
chronizer must not “back out” any changes made at a replica since the last
synchronization (because we favor persistence over convergence); (2) it should
only copy data from one replica to the other, never “make up” content on its
own; (3) it must halt at conflicting paths, leaving the replicas untouched below;
(4), it must produce results that belong to the same schema as the originals.

Schema Conflicts Our algorithm (unlike other state-based synchronizers) is
designed to preserve structural invariants. As an example of how schema invari-
ants can be broken, consider a run of the algorithm sketched above where o =
{

Pat !→{Phone !→
˘

333-4444 !→{}
¯

}
}

, a =
{

Pat !→{Phone !→
˘

111-2222 !→{}
¯

}
}

,

and b =
{

Pat !→{Phone !→
˘

987-6543 !→{}
¯

}
}

. The subtree labeled 333-4444 has
been deleted in both replicas, and remains so in both a′ and b′. The sub-
tree labeled 111-2222 has been created in a, so we can propagate the cre-
ation to b′; similarly, we can propagate the creation of 987-6543 to a′, yielding
a′ = b′ =

{

Pat !→{Phone !→
˘

111-2222 !→{}, 987-6543 !→{}
¯

}
}

. But this would be
wrong. Pat’s phone number was changed in different ways in the two replicas:
what’s wanted is a conflict. If the phonebook schema only allows a single number
per person, then the new replica is not well formed!

We avoid these situations by equipping the synchronizer with knowledge of
the intended schema of the structures it is synchronizing. It can then simply
signal a conflict (leaving its inputs unchanged) whenever it sees that merging
the changes at a particular point will lead to an ill-formed structure.

Locality and Schemas Because alignment in our algorithm is local, we
cannot expect the algorithm to enforce global invariants expressed by arbitrary
schemas; we need a corresponding restriction to schemas that permits them
to express only local constraints on structure. As an example of a schema
that expresses a non-local invariant, consider the following set of trees:
{

{},
{

n !→x, m !→x
}

,
{

n !→y, m !→y,
}

,
{

n !→{x, y} , m !→y
}

,
{

n !→x, m !→{x, y}
}}

.
Now consider synchronizing two trees from this set with respect to the empty
archive o = {}, with a =

{

n !→x, m !→x
}

, and b =
{

n !→y, m !→y
}

. A local
synchronization algorithm that aligns by name wants to recursively synchronize
the subtrees under n and m. However, it is not clear what schema we should use
for these recursive calls, because the set of trees that can validly appear under
n depends on the subtree under m and vice versa. We might try the schema
that consists of all the trees that can appear under n (and m):

{

x, y,
{

x, y
}}

.
With this schema, the synchronizer computes the tree

{

x, y
}

for both n and m,
reflecting the fact that x and y were both added under n and m. However, these
trees cannot be assembled into a well-formed tree:

{

n !→{x, y} , m !→{x, y}
}

does
not belong to the schema. The “most synchronized” well-formed results are
actually a′ =

{

n !→x, m !→{x, y}
}

and b′ =
{

n !→{x, y} , m !→y
}

, but there does
not seem to be any way to find them with a non-backtracking algorithm.

The global invariant expressed by this schema—at most one of n or m may
have {x, y} as a subtree—cannot easily be preserved by a local algorithm. To
avoid such situations, we impose a restriction on schemas, path consistency, that
is analogous to the restriction on tree grammars embodied by W3C Schema.
Intuitively, a schema is path consistent if any subtree that appears at some path
in one tree can be validly “transplanted” to the same location in any other tree in
the schema. This restriction ensures that the sub-schema used to synchronize a
single child is consistent across the schema; i.e., the set of trees that may validly
appear under a child only depends on the path from the root to the node and
does not depend on the presence (or absence) of other parts of the tree.

To define path consistency precisely, we need a little new notation. First, the
notion of projection at a path is extended pointwise to schemas—that is, for a
schema S ⊆ T and path p ∈ P , we have S(p) = {t(p) | t ∈ S ∧ t(p) '= ⊥}. Note
that the projection of a schema at any path is itself a schema.

Next, we define what it means to transplant a subtree from one tree to an-
other at a given path. Let t be a tree and p a path such that t(p) ∈ T . We define
the update of t at p with t′, written t[p !→ t′], inductively on the structure of p
as: t[• !→ t′] = t′, t[n/p !→ t′] =

{

n !→t(n)[p !→ t′], m !→t(m) | m ∈ dom(t) \ {n}
}

.
Now, a schema S is path consistent if, whenever t and t′ are in S, it is the case
that, for every path p, the result of updating t along p with t′(p) is also in the
schema. Formally, a schema S is path consistent iff, for all t, t′ ∈ S and p ∈ P ,
we have t(p) '= ⊥ ∧ t′(p) '= ⊥ =⇒ t[p !→ t′(p)] ∈ S.

Maximality Of course, safety by itself is too weak: the trivial algorithm that
always returns both replicas unchanged is perfectly safe! We therefore say that
a run of a synchronizer is maximal just in case it propagates as many changes as
it safely can. The specification for our synchronization algorithm is that every
run must be both safe and maximal.

This brings us to one final complication that arises in schema-aware syn-
chronization algorithms: for some inputs, there aren’t any safe, maximal runs
belonging to the schema. Consider a run of a synchronizer on the inputs
o =

{

v
}

, a =
{

w, y, z
}

, and b =
{

w, x
}

, with respect to the schema
{{

v
}

,
{

w, x
}

,
{

w, x, y
}

,
{

w, x, z
}

,
{

w, y, z
}

.
}

On the b side, there are three safe
results belonging to the schema,

{

w, x
}

,
{

w, x, y
}

, and
{

w, x, z
}

, but none is
maximal. Notice that, since

{

w, x, y, z
}

does not belong to the schema, we can-
not include both y and z in b′ (without backing out the addition of x). Indeed, for
every safe choice of b′, there is a path p where b′(p) '= a′(p), but, for a different
choice of b′, the trees at those paths are equal.

To ensure that synchronization always has a maximal result, we stipulate
that a schema domain conflict occurs whenever propagating all of the (otherwise
non-conflicting) additions and deletions of children at a node yields an ill-formed
result. On the above trees, our algorithm yields a schema domain conflict at the
root since it cannot add y and z to a′.

5 Algorithm

The synchronization algorithm is depicted in Figure 1. Its structure is as follows:
we first check for trivial cases (replicas being equal to each other or unmodified),
then we check for delete/create conflicts, and in the general case we recurse on
each child label and check for schema domain conflicts before returning the re-
sults. In practice, synchronization will be performed repeatedly, with additional
updates applied to one or both of the replicas between synchronizations. To
support this, the algorithm needs to construct a new archive. Its calculation is
straightforward: we use the synchronized version at every path where the replicas
agree and insert a conflict marker X at paths where they conflict.

Formally, the algorithm takes as inputs a path-consistent schema S, an
archive o, and two current replicas a and b; it outputs a new archive o′ and
two new replicas a′ and b′. We require that both a and b belong to S⊥. The
input archive may contain the special conflict tree X . The algorithm also relies
on one piece of new notation: doms(S) stands for the domain-set of S; i.e., the
set of all domains of trees in S—i.e., doms(S) = {dom(t) | t ∈ S}.

sync(S, o, a, b) =
if a = b then(a, a, b) – equal replicas: done
else if a = o then (b, b, b) – no change to a

else if b = o then (a, a, a) – no change to b

else if o = X then (o, a, b) – unresolved conflict
else if a = ⊥ and b ! o then (a, a, a) – a deleted more than b

else if a = ⊥ and b $! o then (X , a, b) – delete/create conflict
else if b = ⊥ and a ! o then (b, b, b) – b deleted more than a

else if b = ⊥ and a $! o then (X , a, b) – delete/create conflict
else – proceed recursively

let (o′(k), a′(k), b′(k)) = sync(S(k), o(k), a(k), b(k))
∀k ∈ dom(a) ∪ dom(b)

in if (dom(a′) $∈ doms(S)) or (dom(b′) $∈ doms(S))
then (X , a, b) – schema domain conflict
else (o′, a′, b′)

Fig. 1. Synchronization Algorithm

In the case where a and b are identical (i.e., the same tree or ⊥), they are
immediately returned, and the new archive is set to their value. If one of the
replicas is unchanged (equal to the archive), then all the changes in the other
replica can safely be propagated, so we simply return three copies of it as the
result replicas and archive. Otherwise, both replicas have changed, in different
ways. If one replica is missing, then we check whether all the changes in the
other replica are also deletions; if so, we consider the larger deletion (throwing
away the whole tree at this point) as subsuming the smaller; otherwise, we have
a delete/create conflict and we simply return the original replicas.

Finally, in the general case, the algorithm recurses: for each k in the domain
of either current replica, we call sync with the corresponding subtrees, o(k), a(k),
and b(k) (any of which may be ⊥), and the sub-schema S(k); we collect up the
results of these calls to form new trees o′, a′, and b′. If either of the new replicas
is ill-formed (i.e., its domain is not in the domain-set of the schema), then we
have a schema domain conflict and the original replicas are returned unmodified.
Otherwise, the synchronized results are returned.

5.1 Theorem: Let S ⊆ T be a path-consistent schema. If a, b ∈ S⊥ and the
run sync(S, o, a, b) evaluates to o′, a′, b′, then the run is both safe and maximal.

6 Case Study: Address Books

We now present a brief case study, illustrating how schemas can be used to
guide the behavior of our generic synchronizer on trees of realistic complexity.
The examples use an address book schema loosely based on the vCard standard.

Schemas We begin with a concrete notation for writing schemas. Schemas
are given by mutually recursive equations of the form X = S, where S is generated
by the following grammar: S ::= {} | n[S] | !(F)[S] | *(F)[S] | S,S | S|S. Here
n ranges over names in N and F ranges over finite sets of names. The first form

of schema, {}, denotes the singleton set containing the empty tree; n[S] denotes
the set of trees with a single child named n where the subtree under n is in S; the
wildcard schema !(F)[S] denotes the set of trees with any single child not in F,
where the subtree under that child is in S; the other wildcard schema, *(F)[S]
denotes the set of trees with any number of children not in F where the subtree
under each child is in S. The set of trees described by S1|S2 is the union of the
sets described by S1 and S2, while S1,S2 denotes the set of trees t1 · t2 where t1
belongs to S1 and t2 to S2. Note that, as trees are unordered, the “,” operator
is commutative (e.g., n[X],m[Y] and m[Y],n[X] are equivalent.) We abbreviate
n[S]|{} as n?[S], and likewise !(∅)[S] as ![S] and *(∅)[S] as *[S].

All the schemas we write are path consistent. This can be checked syntacti-
cally: if a name appears twice as a child of a node, like m in m[X],n[Y]|m[X],o[Z],
the schemas of the associated subtrees are textually identical.

Address Book Schema Here is a typical contact (the notation [t1; . . . ; tn],
which represents a list encoded as a tree, is explained below):

o =















name !→{first !→Meg, other !→ [Liz; Jo], last !→Smith }
email !→

{

pref !→ms@c.edu, alts !→meg@s.com
}

home !→555-6666, work !→555-7777

org !→
{

orgname !→City U, orgunit !→CS Dept
}















There are two sorts of contacts—“professional” contacts, which contain manda-
tory work phone and organization entries, plus, optionally, a home phone, and
“personal” ones, which have a mandatory home phone and, optionally, a work
phone and organization information. Contacts are not explicitly tagged with
their sort, so some contacts, like the one for Meg shown above, belong to both
sorts. Each contact also has fields representing name and email data. Both sorts
of contacts have natural schemas that reflects their record-like structures.

The schema C describes both sorts of contacts (using some sub-schemas
that we will define below): C = name[N],work[V],home?[V],org[O],email[E] |

name[N],work?[V],home[V],org?[O],email[E]. The trees appearing under the
home and work children represent simple string values—i.e., trees with a sin-
gle child leading to the empty tree; they belong to the V schema, V = ![{}].

The name edge leads to a tree with a record-like structure containing mandatory
first and last fields and an optional other field. The first and last fields lead
to values belonging to the V schema. The other field leads to a list of alternate
names such as middle names or nicknames, stored (for the sake of the exam-
ple) in some particular order. Because our actual trees are unordered, we use a
standard “cons cell” representation to encode ordered lists. The list [t1; . . . ; tn]
is encoded as the tree

{

head !→t1 , tail !→{. . . !→
˘

head !→tn , tail !→nil
¯

. . .}
}

.
Using this representation of lists, the N schema is defined straightforwardly as:
N = first[V],other?[VL],last[V], where VL is a schema that describes lists of
values (encoded as trees): VL = head[V],tail[VL] | nil[{}]. The email address
data for a contact is either a single value, or a set of addresses with one distin-
guished “preferred” address. The E schema describes these structures using a
union of a wildcard to represent single values (which excludes pref and alts to

ensure path consistency) and a record-like structure with fields pref and alts to
represent sets of addresses: E = !(pref, alts)[{}] | pref[V],alts[VS], where
VS = *[{}] describes the trees that may appear under alts—bushes with any
number of children where each child leads to the empty tree. These bushes are
a natural encoding of sets of values as trees. Finally, organization information
is represented by a structure with orgname and orgunit fields, each leading to a
value, as described by this schema: O = orgname[V],orgunit[V].

The Need For Schemas To illustrate how and where schema conflicts can
occur, let us see what can go wrong when no schema information is used. We
consider four runs of the synchronizer using the universal schema Any = *[Any],

each showing a different way in which schema-ignorant synchronization can pro-
duce mangled results. In each case, the archive, o, is the tree shown above.

Suppose, first, that the a replica is obtained by deleting the work and org

children, making the entry personal, and that the b replica is obtained by deleting
the home child, making the entry professional:

a =



























name !→

{

first !→Meg
other !→ [Liz; Jo]
last !→Smith

}

email !→

{

pref !→ms@c.edu

alts !→meg@s.com

}

home !→555-6666



























b =











































name !→

{

first !→Meg

other !→ [Liz; Jo]
last !→Smith

}

email !→

{

pref !→ms@c.edu

alts !→meg@s.com

}

work !→555-7777

org !→

{

orgname !→City U

orgunit !→CS Dept

}











































Although a and b are both valid address book contacts, the trees that result from
synchronizing them with respect to the Any schema are not, since they have the
structure neither of personal nor of professional contacts:

a′ = b′ =

{

name !→{first !→Meg, other !→ [Liz; Jo], last !→Smith }
email !→

{

pref !→ms@c.edu, alts !→meg@s.com,
}

}

Next, suppose that the replicas are obtained by updating the trees along
the path name/first, replacing Meg with Maggie in a and Megan in b. (From now
on, for the sake of brevity we only show the parts of the tree that are different
from o and elide the rest.) o(name/first) = Meg, a(name/first) = Maggie, and
b(name/first) = Megan. Synchronizing with respect to the Any schema yields re-
sults where both names appear under first: a′(name/first) = b′(name/first) =
{

Maggie, Megan
}

. These results are ill-formed because they do not belong to the
V schema, which describes trees that have a single child.

For the next example, consider updates to the email information where
the a replica replaces the set of addresses in o with a single ad-
dress, and b updates both pref and alts children in b: o(email) =
{

pref !→ms@c.edu, alts !→meg@s.com
}

, a(email) =
{

meg@s.com
}

, and b(email) =
{

pref !→meg.smith@cs.c.edu, alts !→ms@c.edu
}

. Synchronizing these trees with
respect to Any propagates the addition of the edge labeled meg@s.com

from a to b′ and yields conflicts on both pref and alts children,

since both have been deleted in a but modified in b. The results af-
ter synchronizing are thus: a′(email) = meg@s.com and b′(email) =
{

meg@s.com, pref !→meg.smith@cs.c.edu, alts !→ms@c.edu
}

. The second result,
b′, is ill-formed because it contains three children, whereas all the trees in the
email schema E have either one or two children.

As a final example, consider changes to the list of names stored at the path
name/other. Suppose that a removes both Liz and Jo, but b only removes Jo:
o(name/other) = [Liz; Jo], a(name/other) = [], and b(name/other) = [Liz]. Com-
paring the a replica to o, both head and tail are deleted and nil is newly
added. Examining the b replica, the tree under head is identical to correspond-
ing tree in o but deleted from a. The tree under tail is different from o but
deleted from a. Collecting all of these changes, the algorithm yields these re-
sults: a′(name/other) = nil and b′(name/other) =

{

tail !→nil, nil
}

. Here
again, the second result, b′, is ill-formed: it has children tail and nil, which is
not a valid encoding of any list.

Situations like these—invalid records, multiple children where a single value
is expected, and mangled lists—provided the initial motivation for equipping a
straightforward “tree-merging” synchronization algorithm with schema informa-
tion. Fortunately, in all of these examples, the step that breaks the structural
invariant can be detected by a simple, local, domain test. In the first example,
where the algorithm removed the home, work, and org children, the algorithm
tests if {name, email} is in doms(C). Similarly, in the second example, where
both replicas changed the first name to a different value, the algorithm tests
if {Maggie, Megan} is in doms(V). In the example involving the tree under email,
the algorithm tests if the domain {meg@s.com, pref, alts} is in doms(E). Finally,
in the example where both replicas updated the list of other names, it tests
whether {tail, nil} is in doms(VL). All of these local tests fail and so the syn-
chronizer halts with a schema domain conflict at the appropriate path in each
case, ensuring that the results are valid according to the schema.

In the remainder of the section, we further explore the strengths (and weak-
nesses) of our approach by examining the behavior of our algorithm on the
structures that are used in address books.

Values The simplest structures in our address books, string values, are rep-
resented as trees with a single child that leads to the empty tree and described
by ![{}]. When we synchronize two non-missing trees using this schema, there
are three possible cases: (1) if either of a or b is identical to o then the algorithm
set the results equal to the other replica; (2) if a and b are identical to each
other but different to o then the algorithm preserves the equality; (3) if a and
b are both different from o and each other then the algorithm reaches a schema
domain conflict. That is, the algorithm enforces atomic updates to values.

Sets Sets can be represented as bushes—nodes with many children, each la-
beled with the key of an element in the set— e.g., for sets of values, this structure
is described by the schema *[{}]. When synchronizing two sets of values, the
synchronization algorithm never reaches a schema conflict; it always produces a
valid result, combining the additions and deletions of values from a and b. For

example, given these three trees representing value sets: o =
{

meg@s.com
}

, a =
{

ms@c.edu, meg.smith@cs.c.edu
}

, and b =
{

meg@s.com, meg.smith@cs.c.edu
}

The synchronizer propagates the deletion of meg@s.com and the addition of
two new children, ms@c.edu and meg.smith@cs.c.edu, yielding a′ = b′ =
{

ms@c.edu, meg.smith@cs.c.edu
}

, as expected.

Records Two sorts of record structures appear in the address book schema.
The simplest records, like the one for organization data (orgname[V],orgunit[V]),
have a fixed set of mandatory fields. Given two trees representing such records,
the synchronizer aligns the common fields, which are all guaranteed to be present,
and synchronizes the nested data one level down. It never reaches a schema
domain conflict at the root of a tree representing such a record. Other records,
which we call sparse, allow some variation in the names of their immediate
children. For example, the contact schema uses a sparse record to represent the
structure of each entry; some fields, like org, may be mandatory or optional
(depending on the presence of other fields). As we saw in the preceeding section,
on some inputs—namely, when the updates to the replicas cannot be combined
into a tree satisfying the constraint expressed by the sparse record schema—the
synchronizer yields a schema conflict but preserves the sparse record structure.

Lists Lists present special challenges, because we would like the algorithm
to detect updates both to elements and to their relative position. On lists, our
local alignment strategy matches up list elements by absolute position, leading
to surprising results on some inputs. We illustrate the problem and propose a
more sophisticated encoding of lists that reduces the chances of confusion.

On many runs of the synchronizer, updates to lists can be successfully prop-
agated from one replica to the other. If either replica is identical to the archive,
then the algorithm trivially copies all of the changes from the other replica. Or,
if both replicas are not equal to the archive but each replica modifies a disjoint
subset of the elements of the list (and leaves the spine of the list intact), then the
synchronizer can merge the changes successfully. There are some inputs, however,
where synchronizing lists using the local alignment strategy and simple cons cell
encoding produces strange results. Consider a run of the synchronizer on the
following trees: o = [Liz; Jo], a = [Jo] and b = [Liz; Joanna]. Considering the
changes that were made to each list from a high-level—a removed the head and
b renamed the second element—the result calculated for b′ is somewhat surpris-
ing: [Jo; Joanna]. The algorithm does not recognize that Jo and Joanna should
be aligned. Instead, it aligns pieces of the list by absolute position, matching Jo

with Liz and nil with [Joanna].

It is not surprising that our algorithm doesn’t have an intuitive behavior
when its inputs are lists. In general, detecting changes in relative position in a list
requires global reasoning but our algorithm is essentially local. In order to avoid
these problematic cases, we can use an alternative schema, which we call the
keyed list schema, for lists whose relative order matters. Rather than embedding
the elements under a spine of cons cells, one can lift up the value at each position
into the spine of the list. For example, in the extended encoding, the list a from

above is represented as the tree a =
{

Jo !→{head !→{}, tail !→nil}
}

.3 The
schema for keyed lists of values is: KVL = !(nil)[head[{}],tail[KVL]] | nil.

During synchronization, elements of the list are identified by the value above
each cons cell; synchronization proceeds until a trivial case applies (unchanged
or identical replicas), or when the two replicas disagree on the domain of an
element, resulting in a schema domain conflict. In the problematic example,
the algorithm terminates with a conflict at the root. Keyed lists combine an
alternate representation of lists with an appropriate schema to ensure that the
local algorithm has reasonable (if conservative) behavior.

Conclusion The examples in this section demonstrate that schemas are a
valuable addition to a synchronization algorithm: (1) we are guaranteed valid
results in situations where a schema-blind algorithm would yield mangled results;
(2) by selecting an appropriate encoding and schema for application data, we
can tune the behavior of the generic algorithm to work well with a variety of
structures. While building demos using our prototype implementation, we have
found that this works well with rigidly structured data (e.g., values and records)
and unstructured data (e.g., sets of values), but so far has limited utility when
used with ordered and semi-structured data (e.g., lists and documents). In the
future, we hope to extend our algorithm to better handle ordered data.

7 Related Work

In the taxonomy of optimistic replication strategies in the survey by Saito and
Shapiro [22], Harmony is a multi-master state-transfer system, recognizing sub-
objects and manually resolving conflicts. Harmony is further distinguished by
some distinctions not covered in that survey: it is generic, loosely coupled from
applications, able to synchronize heterogeneous representations, and is usable
both interactively and unsupervised. Supporting unsupervised runs (where Har-
mony does as much work as it can, and leaves conflicts for later) requires our
synchronizer’s behavior to be intuitive and easy to predict.

IceCube [10] is a generic operation-based reconciler that is parameterized
over a specific algebra of operations appropriate to the application data being
synchronized and by a set of syntactic/static and semantic/dynamic ordering
constraints on these operations. Molli et al [15], have also implemented a generic
operation-based reconciler, using the technique of operational transformation.
Their synchronizer is parameterized on transformation functions for all oper-
ations, which must obey certain conditions. Bengal [6] records operations to
avoid scanning the entire replica during update detection. Like Harmony, Ben-
gal is a loosely-coupled synchronizer. It can extend any commercial database
system that uses OLE/COM hooks to support optimistic replication. However,
it is not generic because it only supports databases, it is not heterogeneous be-
cause reconciliation can only occur between replicas of the same database, and
it requires users to write conflict resolvers if they want to avoid manually resolv-
ing conflicts. FCDP [11] is a generic, state-based reconciler parameterized by

3 For keyed lists of values, we could drop the child head, which always maps to the
empty tree. However, we can also form keyed lists of arbitrary trees, not just values.

ad-hoc translations from heterogeneous concrete representations to XML and
back again. There is no formal specification and reconciliation takes place at
“synchronization servers” that are assumed to be more powerful machines per-
manently connected to the network. FCDP fixes a specific semantics for ordered
lists—particularly suited for document editing. This interpretation may some-
times be problematic, as described in the long version of this paper. File system
synchronizers (such as [23, 16, 1, 18]) and PDA synchronizers (such as Palm’s
HotSync), are not generic, but they do generally share Harmony’s state-based
approach. An interesting exception is DARCS [21], a hybrid state-/operation-
based revision control system built on a “theory of patches.”

Harmony, unlike many reconcilers, does not guarantee convergence in the
case of conflicts. Systems such as Ficus [19], Rumor [9], Clique [20], Bengal [6],
and TAL/S5 [15] converge by making additional copies of primitive objects that
conflict and renaming one of the copies. CVS embeds markers in the bodies of
files where conflicts occurred. In contrast, systems such as Harmony and Ice-
Cube [10] will not reconcile objects affected by conflicting updates.

Harmony’s emphasis on schema-based pre-alignment is influenced by exam-
ples we have found in the context of data integration where heterogeneity is
a primary concern. Alignment, in the form of schema-mapping, has been fre-
quently used to good effect (c.f. [17, 14, 3, 5, 13]). The goal of alignment, there,
is to construct views over heterogeneous data, much as we transform concrete
views into abstract views with a shared schema to make alignment trivial for the
reconciler. Some synchronizers differ mainly in their treatment of alignment. For
example, the main difference between Unison [1] (which has almost trivial align-
ment) and CVS, is the comparative alignment strategy (based on the standard
Unix tool diff3) used by CVS. At this stage, Harmony’s core synchronization
algorithm is deliberately simplistic, particularly with respect to ordered data.
As we develop an understanding of how to integrate more sophisticated align-
ment algorithms in a generic and principled way, we hope to incorporate them
into Harmony. Of particular interest are diff3 and its XML based descendants:
Lindholm’s 3DM [12], the work of Chawathe et al [4], and FCDP [11].

References

1. S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Network-
ing (MobiCom ’98), Oct. 1998. Full version available as Indiana University CSCI
technical report #507, April 1998.

2. F. Bancilhon and N. Spyratos. Update semantics of relational views. TODS,
6(4):557–575, 1981.

3. C. Beeri and T. Milo. Schemas for integration and translation of structured and
semi-structured data. In ICDT’99, 1999.

4. S. S. Chawathe, A. Rajamaran, H. Garcia-Molina, and J. Widom. Change detection
in hierarchically structured information. In Proceedings of the ACM SIGMOD
International Conference on the management of Data, pages 493–504, Montreal,
Quebec, 1996.

5. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In SIGMOD Conference, 2001.

6. T. Ekenstam, C. Matheny, P. L. Reiher, and G. J. Popek. The Bengal database
replication system. Distributed and Parallel Databases, 9(3):187–210, 2001.

7. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Com-
binators for bi-directional tree transformations: A linguistic approach to the view
update problem. In ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL), Long Beach, California, 2005.

8. M. B. Greenwald, S. Khanna, K. Kunal, B. C. Pierce, and A. Schmitt. Agreement
is quicker than domination: Conflict resolution for optimistically replicated data.
Submitted for publication; available electronically, 2005.

9. R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and G. J. Popek. Rumor:
Mobile data access through optimistic peer-to-peer replication. In Proceedings of
the ER ’98 Workshop on Mobile Data Access, pages 254–265, 1998.

10. A.-M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube ap-
proach to the reconciliation of diverging replicas. In proceedings of the 20th an-
nual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC ’01), Aug. 26-29 2001. Newport, Rhode Island.

11. M. Lanham, A. Kang, J. Hammer, A. Helal, and J. Wilson. Format-independent
change detection and propoagation in support of mobile computing. In Proceedings
of the XVII Symposium on Databases (SBBD 2002), pages 27–41, October 14-17
2002. Gramado, Brazil.

12. T. Lindholm. XML three-way merge as a reconciliation engine for mobile data. In
Proceedings of MobiDE ’03, pages 93–97, September 19 2003. San Diego, CA.

13. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In The VLDB Journal, pages 49–58, 2001.

14. T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data
translation. In VLDB’98, 1998.

15. P. Molli, G. Oster, H. Skaf-Molli, and A. Imine. Using the transformational ap-
proach to build a safe and generic data synchronizer. In Proceedings of ACM Group
2003 Conference, November 9–12 2003. Sanibel Island, Florida.

16. T. W. Page, Jr., R. G. Guy, J. S. Heidemann, D. H. Ratner, P. L. Reiher, A. Goel,
G. H. Kuenning, and G. Popek. Perspectives on optimistically replicated peer-to-
peer filing. Software – Practice and Experience, 11(1), December 1997.

17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

18. N. Ramsey and E. Csirmaz. An algebraic approach to file synchronization. In
Proceedings of the 8th European Software Engineering Conference, pages 175–185.
ACM Press, 2001.

19. P. L. Reiher, J. S. Heidemann, D. Ratner, G. Skinner, and G. J. Popek. Resolving
file conflicts in the ficus file system. In USENIX Summer Conference Proceedings,
pages 183–195, 1994.

20. B. Richard, D. M. Nioclais, and D. Chalon. Clique: a transparent, peer-to-peer
collaborative file sharing system. In Proceedings of the 4th international conference
on mobile data management (MDM ’03), Jan. 21-24 2003. Melbourne, Australia.

21. D. Roundy. DARCS revision control system, 2004. http://www.abridgegame.
org/darcs/.

22. Y. Saito and M. Shapiro. Replication: Optimistic approaches. Technical Report
HPL-2002-33, HP Laboratories Palo Alto, Feb. 8 2002.

23. M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, and
D. C. Steere. Coda: A highly available file system for a distributed workstation
environment. IEEE Transactions on Computers, C-39(4):447–459, Apr. 1990.

