PENN

\%

Quotient Lenses

Nate Foster (Penn)
Benjamin C. Pierce (Penn)
Alexandre Pilkiewicz (Polytechnique/INRIA)

IBM PLDay '08

4——<—

Bidirectional Transformations

S %’—» T
Updated Updated
=

Bidirectional Programming Language

lens

T

Eliminates Redundancy: programs describes two functions

Ensures Correctness: type system guarantees well-behavedness

Semantics

A lens | from S to T is a triple of functions

|.get e S—T A
l.put e T—-5-5S5 l

l.create ¢ T — S

obeying three “round-tripping” laws:
l.put (l.gets) s =s (GETPUT)
l.get (l.putts) =t (PuTrGET)

|.get (I.create t) =t (CREATEGET)

Boomerang

Data model: strings
Core combinators: finite-state transducers

Host language: A-calculus, regular types, dependent types,
user-defined data types, polymorphism

Lenses: addresses books, bibliographies, CSV, documents,
scientific data, XML

Applications: converters, synchronizers, structure editors

Example: MediaWiki (Get)

==Chefs==

* Julia Child

* Jacques Pepin
==Justices==

* Warren Burger

* Arthur Goldberg

<html>
<body>
<h2>Chefs</h2>

Julia Child</1i>
Jacques Pepin</1i>

<h2>Justices</h2>

Warren Burger
Arthur Goldberg</1li>

</body>
</html>

Example: MediaWiki (Put)

<html>
<body>
<h2>Chefs</h2>

==Chefs== Julia Child</1i>
* Julia Child
==Justices== <h2>Justices</h2>
* Arthur Goldberg
Arthur Goldberg</1li>

</body>
</html>

Example: MediaWiki (Lens)

(* helpers *)
let mk_elt (ws:string) (tag:string) (body:lems) = ...
let mk_simple_elt (ws:string) (tag:string) (body:lens) =
qins WS ws .
ins ("<" . tag . ">")
body .
ins (u</u . tag . ||>n)

(* main lenses *)
let p : lens =
mk_simple_elt nl4 "p" ((text . nl)* . (text . del nl))
let 1i : lens =
mk_simple_elt nl6é "1i" (del "* " . text)
let ul : lens =
mk_elt nl4 "ul" (1i . del nl)+
let h2 : lens =
mk_simple_elt nl4 "h2" (del "==" . text . del "=="
let s : lens =
(del n1 . (p | ul))*
let html : lens =
mk_outer_elt nl0 "html" (mk_elt nl2 "body" s*)

This Talk: Lenses for... ?

This Talk: Lenses for Whitespace!

Many data formats contain inessential information:

N \n
______ \n

e \n

______ \n

This Talk: Lenses for Whitespace!

Many data formats contain inessential information:

\n
\n
\n
\n
\n
\n
\n
\n
\n
\n
\n

\n

This Talk: Lenses for Whitespace!

Many data formats contain inessential information:

\n
_ \n
. \n
_ \n
. \n
\n

Want the put function to treat these views equivalently but

l.get (l.putts) =t

implies they must map to different sources!

(PuTrGET)

Dealing With Ignorable Data

Approach #1: No laws.

Transformations not required to obey any formal properties.
But clearly intended to be “essentially” bidirectional.

Backed up by intuitive understanding of implementation.

Examples:
» biXid
» PADS

Dealing With Ignorable Data

Approach #2: Weaker laws.

Replace round-trip laws with round-trip-and-a-half versions.
Allows transformations that normalize data in the view...

...along with a whole host of ill-behaved transformations.

Examples:
> Inv
» X
» Bi-XQuery

Dealing With Ignorable Data

Approach #3: Viewers.

— parse —
T o >+
T < T

Sm— Sm—
72r'exﬁy print \
viewer lens

Examples:
» Focal
» XSugar

Dealing With Ignorable Data

Or... develop a theory of lenses that are well-behaved modulo
equivalence relations on the source (~s) and target (~7).

Dealing With Ignorable Data

Or... develop a theory of lenses that are well-behaved modulo
equivalence relations on the source (~s) and target (~7).

A quotient lens / satisfies the following laws

l.put (l.gets) s ~s s (GETPUT)
l.get (I.putt s) ~7 t (PuTrGET)

l.get (I.createt) ~7 t (CREATEGET)

(Plus a few natural laws ensuring that the components of
lenses respect ~s and ~.)

Quotient Lenses

original lens

S/~ ~,

Quotient Lenses

original lens canonizer

choose —

*

S/~ T/~ V/~,

\ 4

S—

canonize L)

Quotient Lenses

original lens canonizer
\choose | —
.
> >
S/~ T/~, V/~,
< <
canonize L)

\

quotiented lens

Quotient Lenses

B
)

A Y

AY

Quotient Lenses

B
)

A Y

AY

W

A Y

4

Quotient Lenses

B
)

<

- -
-
| |
] <
<< << Bl Bl
N—
amiTANES
| |y |
<
< | <
S ___J

Quotient Lenses

B
)
J

A
AY

[
|
&

)
>
)

Ay
B
Ay

|
<
|

{08 - {805 - 08

Canonizers

A canonizer g from V to T is a pair of functions

g.canonize € V — T
qg.choose € T —V

-
>
gl
|

obeying just one law:

l.canonize (l.choose t) t =t (RECANONIZE)

Syntax for Canonizers

Every lens | from V to T can be converted to a canonizer:

q.canonize l.get

— >

> >

|.create - =

L~

The CREATEGET law for / implies RECANONIZE.

q.choose

Additionally, the relaxed canonizer law enable primitives that
are not valid as lenses:

» sorting
» duplicating
» wrapping long lines of text

Conclusion

The need to handle inessential data arises in many real-world
applications built using lenses.

Much of this data is simple, but failing to deal with it renders
many lenses essentially useless.

Quotient lenses are a critical piece of technology that helps
bridge the gap between the theory and practice of bidirectional
programming languages.

Canonizers lead to elegant syntax for quotient lenses.

Thank Youl

Collaborators: Benjamin Pierce, Alexandre Pilkiewcz.

Other Boomerang contributors: Aaron Bohannon, Michael
Greenberg, and Alan Schmitt.

Want to play? Boomerang is available for download:
» Source code (LGPL)
» Binaries for OS X, Linux
» Research papers

» Tutorial and growing collection of demos

http://www.seas.upenn.edu/~harmony/

http://www.seas.upenn.edu/~harmony/

