
A Generic Programming Toolkit for PADS/ML:
First-Class Upgrades for Third-Party Developers

Mary Fernández1, Kathleen Fisher1, J. Nathan Foster2, Michael Greenberg1,2, and
Yitzhak Mandelbaum1

1 AT&T Research
2 University of Pennsylvania

Abstract. Domain-specific languages facilitate solving problems in a targeted
domain by providing features particular to the domain. Declarative domain-specific
languages have the additional benefit that users specify what something means
rather than how to do something. As a result, the language compiler is free to
choose the best implementation strategies and to generate multiple artifacts from
a single description. PADS/ML is a declarative data description language designed
to facilitate ad hoc data management. From a single description, the compiler
generates a myriad of artifacts, including data structures for the in-memory rep-
resentation of the data and parsers and printers. In this paper, we describe a new
generic programming infrastructure for PADS/ML that allows third-party develop-
ers to define additional useful artifacts without modifying the compiler. We report
on two case studies that use this infrastructure. In the first, we build a version of
PADX for PADS/ML, allowing any data source with a PADS/ML description to be
queried as if it were XML. In the second, we extend Harmony with the ability to
synchronize any data with a PADS/ML description.

1 Introduction

Domain-specific languages provide enormous leverage precisely because they have lim-
ited scope, allowing their designers to tailor the abstractions they provide to the targeted
domain. Declarative domain-specific languages bring an additional benefit in that they
specify what something means, rather than how to do something. As a result, the com-
piler is free to decide how to accomplish the task and even what tasks need to be accom-
plished. This freedom allows the designers of declarative domain-specific languages to
generate more than one software artifact from a single specification.

The PADS/ML language is a declarative domain-specific language for specifying
the format of ad hoc data [MFW+07]. An ad hoc data format is any semi-structured
data representation for which parsing, querying, analysis, or transformation tools are
not readily available. Despite the existence of standard formats like XML, ad hoc data
sources are ubiquitous, arising in industries as diverse as finance, health care, trans-
portation, and telecommunications as well as in scientific domains, such as computa-
tional biology and physics. Figure 1 summarizes a variety of such formats, including
ASCII and binary encodings, with both fixed and variable-width records arranged in
linear sequences and in tree-shaped hierarchies.



2

Name Use Representation
Gene Ontology (GO) [Con] Gene Product Information Variable-width ASCII records
SDSS/Reglens Data [MHS+05] Weak gravitational lensing Floating point numbers, et al

analysis
Web server logs (CLF) Measuring web workloads Fixed-column ASCII records
AT&T Call detail data Phone call fraud detection Fixed-width binary records
Newick Immune system response Fixed-width ASCII records

simulation
in tree-shaped hierarchy

OPRA Options-market transactions Mixed binary & ASCII records
with data-dependent unions

Palm PDA Device synchronization Mixed binary & character
with data-dependent constraints

Fig. 1. Selected ad hoc data sources.

Common characteristics of ad hoc data make it difficult to perform even basic data-
processing tasks. To start, data analysts have little control over the format of the data; it
typically arrives “as is,” and the analysts can only thank the supplier, not request a more
convenient format. The documentation accompanying ad hoc data is often incomplete,
inaccurate, or missing entirely, which makes understanding the data format more diffi-
cult. Ad hoc data sources frequently contain errors, which poses another challenge. For
some applications, like system monitors, erroneous data is more important than error-
free data; it may signal, for example, where two systems are failing to communicate.
Unfortunately, writing code that reliably handles both error-free and erroneous data is
difficult and tedious.

The PADS/ML system, like its close ancestor PADS/C [FG05], solves these prob-
lems by providing a declarative data description language. A PADS/ML specification
describes the physical layout and semantic properties of an ad hoc data source. The
language provides a type-based model: basic types specify atomic data such as inte-
gers, strings, dates, etc., while structured types such as tuples, records, and datatypes
describe compound data. Leveraging the declarative nature of such descriptions, the
PADS/ML compiler generates from each description a suite of useful data structures and
tools, including a canonical in-memory representation of the data, a canonical meta-data
representation called a parse descriptor, a parser, and a printer.

Ideally, a system like PADS/ML would permit third-party developers to build new
tools for specifications without modifying the compiler. With that goal in mind, the
original PADS/ML compiler generated an OCAML functor for traversing the canonical
data structure. Although an improvement over PADS/C, which requires modifying the
compiler to generate new tools, the PADS/ML infrastructure was insufficient because it
only supported tools that consume a PADS data representation in a single depth-first,
left-to-right traversal. This limitation precludes many useful tools, e.g., those that re-
quire a different traversal strategy or that produce a PADS/ML data representation rather
than consuming one.

To rectify this deficiency, we redesigned the generic tool infrastructure of PADS/ML,
leveraging ideas from type-directed programming [Yan98,Hin04]. Given a PADS/ML
description, third-party developers can now build a wide variety of generic tools re-



3

lating to the description’s in-memory representation and parse descriptor. To illus-
trate the power of this generic infrastructure, we describe two third-party tools that
did not require making tool-specific changes to the compiler: an implementation of
PADX [FFGM06], a system for querying any PADS data source as though it were XML;
and an extension to Harmony [FGK+07,PBF+], a system for synchronizing data.

The contributions of this paper are:

– An extension of PADS/ML with a generic tool infrastructure, which permits third
parties to easily build new tools for processing PADS data (Section 3).

– A demonstration of how to implement generic programming constructs in OCAML
(Section 3).

– Case studies of two non-trivial ad hoc data tools whose functionality was enhanced
by using PADS/ML’s generic tool infrastructure (Section 4).

We briefly review the PADS/ML data description language in Section 2. We then
describe the generic tool framework in Section 3. In Section 4, we describe how the
framework was used to build PADX and Harmony. We survey related work and conclude
in Section 5.

2 A Review of PADS/ML

In this section, we briefly describe PADS/ML; a more complete description appears in
earlier publications [MFW+07,Man06]. A PADS/ML description specifies the physi-
cal layout and semantic properties of an ad hoc data source. These descriptions are
formulated using types. Base types describe atomic data, such as ASCII-encoded, 8-
bit unsigned integers (puint8), binary 32-bit integers (pbint32), dates (pdate),
strings (pstring), and the singleton types corresponding to literal values. Certain
base types take additional OCAML values as parameters. For example, pstring(c)
describes strings that are immediately followed by the character c. Structured types de-
scribe compound data built using standard type constructors such as tuples and records
for specifying ordered data, variants for specifying alternatives, and lists for specify-
ing homogeneous sequences of data. Type constraints describe data satisfying arbitrary
programmer-specified semantic conditions—e.g., that a string pstring has at least
ten characters. The following subsections illustrate PADS/ML types further using Cisco
router configuration files as an example.

2.1 Example: Cisco router configuration

A configuration file for a Cisco router sets the values of parameters that control the
router’s behavior. The configuration language contains hundreds of commands, and a
typical configuration file has hundreds of commands with thousands of parameters.
A configuration file lists commands, one per line, where the first word on the line is
the command and the remaining words are parameters. A command may depend on
other commands, indicated by indentation. Additionally, configurations may include
comments, marked by “!”. Figure 2 shows an excerpt of such a file.



4

version 12.0
!
hostname anaconda
username viking password 5 AF334003CC2
policy-map mis_policy_90:100_output_12K
class rt_class
priority
police cir percent 90 conf-act tx

end

Fig. 2. A tiny excerpt of a Cisco router configuration file.

ptype command = cmd_name * ’ ’ * cmd_args
ptype section (min_indent : int) = {
indent: [i: pstring_ME("/ˆ */") | length i >= min_indent];
start_cmd: command; peol;
sub_cmds: section(length indent + 1) plist(No_sep,Error_term)

}
ptype config_element =

Section of section (0)
| Comment of pre "/ *[!].*$/" * peol

ptype source = config_element plist(No_sep,No_term)

Fig. 3. Simplified description of Cisco configuration files.

Figure 3 contains a simplified PADS/ML description of the Cisco configuration file
format. The description is a sequence of type definitions. The first definition, command,
describes a single command consisting of a command name followed by its arguments.
The section type describes a group of related commands. A command is deemed to
be a child of an earlier command if its indentation is greater. To express this constraint,
section is parameterized by the expected minimum indentation, and its identation is
checked against the parameter. The section type is a record with three fields. The
first field indent describes the indentation preceding every command. It detects a
decrease in indentation level signals, which signals the end of a command group, using
a constraint. The second field, start_cmd, describes the first command of the section,
and the third field, sub_cmds, describes the list of its subcommands.

The plist constructor defining the subcommand list takes three parameters: on
the left, the element type; on the right, an optional separator that delimits list elements,
and an optional terminator. In this example, the list has no separators; it terminates
when it encounters an element with an error. Next, config_element uses a variant
type to indicate that an element of a configuration file can be either a section or a
comment line. Lastly, the type source describes a complete Cisco configuration file
as a list of elements with no separator and no special terminator. It is terminated with
the default terminator of the end-of-file.

2.2 Compiling PADS/ML

Given a description, the PADS/ML compiler creates an OCAML library containing types
for the in-memory representation and for the parse-descriptor body for each type in the



5

type source = Config_element.rep plist
type source_pd_body = Config_element.pd_body plist_pd_body Pads.pd
module Source :
sig
type rep = source
type pd_body = source_pd_body
type pd = pd_body Pads.pd
val parse : Pads.handle -> rep * pd
val print : rep -> pd -> Pads.handle -> unit
module MakeTyrep (GenFunTys:GenFunTys.S) : sig
val tyrep : ...

end
...

end

Fig. 4. Selected software artifacts generated from the source type.

PADS/ML description. It also contains a module with functions for parsing and printing
the data, and a functor for creating a runtime representation of the types. Figure 4 shows
the signature of the module produced for the type source from Figure 3.

For reference, we note that the structure of the parse descriptor reflects that of the
representation. Every parse descriptor has a header with meta data describing the en-
tirety of the corresponding representation (error information, etc.), and a body, con-
sisting of descriptors for each subcomponent. Therefore, every parse descriptor has the
type pd_header * ’pdb, for some parse-descriptor body type ’pdb. We use the
abbreviation ’a pd = pd_header * ’a to express this structure.

3 Generic Programming for Ad hoc Data

In a data-processing pipeline, several steps typically occur between parsing and print-
ing. Some steps may be application specific, but many others can be expressed gener-
ically and applied to data of any type. Examples include compression and decompres-
sion, pretty printing, flattening, database formatting, cleaning, querying, conversion to
and from generic formats such as XML and S-expressions, summarization, data gen-
erators (e.g., for testing), and transformations like those described in the “scrap-your-
boilerplate” series [LP03,LP04,LP05]. Given the variety and number of generic oper-
ations, we wish to provide third-party developers with a mechanism to express such
operations, without having to modify the PADS/ML compiler.

We use the term “generic” to mean type indexed. A type-indexed function defines
a family of functions, with one member of the family for every type in the index. A
type-indexed function can be constrasted with a polymorphic function, which is a sin-
gle function that can be used at many different types. Because PADS/ML descriptions
consist of types, it is natural to express algorithms that are generic to any description as
functions indexed by the types of the in-memory representation and the parse descriptor.

Previously, we introduced a generic-tool framework for PADS/ML to support third-
party tool development [MFW+07]. While this framework was sufficient to code a num-
ber of useful functions, it had limitations. Specifically, it only supported functions that



6

type summary = ... (* uniform data summary type. *)
type seed = ... (* seed value used in data generation. *)
(’r,’b) pretty_print = ’r -> ’b Pads.pd -> string
(’r,’b) flatten = ’r -> ’b Pads.pd -> (string * string) list
(’r,’b) decompress = in_channel -> ’r * (’b Pads.pd)
(’r,’b) summarize = ’r -> ’b Pads.pd -> summary -> summary
(’r,’b) clean = ’r * ’b Pads.pd -> ’r * ’b Pads.pd
(’r,’b) generate = seed -> ’r * (’b Pads.pd)

Fig. 5. Type constructors for selected generic functions.

could be implemented by consuming the in-memory representation of PADS/ML data in
a single depth-first, left-to-right traversal.

In this section, we present a fully redesigned framework that supports a much
broader range of generic functions. We begin with an overview of our new framework.
Then, we provide two examples of how the system is used, from the perspectives of
both the user and the tool developer. Finally, we will describe the implementation of the
generic tool framework, including the details of type representations.

3.1 Overview

In our generic-programming architecture, three different “actors” cooperate to build
and use each generic function f : the end user, the PADS/ML compiler, and the tool
developer. When a user wants to apply a generic function f to data of a particular type
τ , she needs to specialize f to τ , that is, select the member of f appropriate to τ . We
use the notation f [τ ] to denote this member. Note that for every type-indexed function
f , there is a type constructor σ that relates the type indices of f to the types of members
of f—specifically, f [τ ] : σ(τ). For example, Figure 5 lists type constructors for some
useful generic functions.

While, conceptually, specialization involves types τ , in reality, OCAML provides no
way to manipulate, or even access, types in code. Therefore, we must encode type in-
dexes as runtime values, which we call type representations. A function specialize,
defined in the PADS/ML runtime, instantiates generic functions to particular types using
the type’s runtime representation. All type representations are built from a set of com-
binators, which we will describe in greater detail at the end of this section. In principle,
the user can use the combinators to construct type representations by hand. In practice,
though, such constructions are tedious boilerplate and therefore best generated auto-
matically. Therefore, the PADS/ML compiler generates the runtime representations for
each PADS/ML type, along with all of the other generated software artifacts.

The tool developer is responsible for writing f as a type-indexed function. In OCAML,
a natural way to express such functions is by pattern matching on a representation of
the type. Therefore, the developer implements f by specifying the generic function’s
behavior for each PADS/ML type constructor, including base types, records, tuples, vari-
ants, and user-defined types. Note that the role of “tool developer” might be played by
a range of users, from PADS/ML developers to data analysts. Our goal is that tool devel-
opers should not need any expertise in PADS/ML internals to be productive, although we



7

<Left>
<fst>""</fst>
<snd>
<fst><fst>version</fst><snd>12.0</snd></fst>
<snd/>

</snd>
</Left>

Fig. 6. Cisco config command version 12.0 encoded in XML using a canonical, sums-of-
products schema.

do expect a higher level of programming expertise for tool developers than for average
PADS/ML users.

3.2 Example: conversion to XML

We begin with an example use of a generic function to_xml that translates any PADS
data to a corresponding canonical XML representation.3 This canonical representation
uses one schema to encode all data as anonymous sums of products. We explain our
choice of this simple encoding when we dicuss the implementation of to_xml.

In the example, the end-user wants to translate Cisco configuration data into XML,
so she needs to specialize the generic function to_xml to the source type from the
Cisco description of Figure 3. The user might perform this conversion as follows:

module SourceTyrep = Cisco.Source.MakeTyrep(TXTys)
let source_to_xml = specialize to_xml SourceTyrep.tyrep
let r,pd = ... Cisco.Source.parse ... ;;
let source_xml = source_to_xml r pd "Config"

In the first line, she creates a representation of the type source by applying the
functor MakeTyRep, generated by the compiler for this purpose, to the module TXTys
defined by the to_xml tool writer to specify the type structure of that tool. In the
second line, she specializes the generic function to_xml to the type source, creating
the function source_to_xml. She then parses the configuration file to create a data
representation r and its corresponding parse descriptor pd. Finally, she applies the
specialized conversion function to r, pd, and a tag for the resulting XML element,
yielding an XML representation of the data. Figure 6 shows the result of converting the
command “version 12.0” in Figure 2 into XML using the to_xml function.

Next, we turn to the tool developer’s task of implementing the generic function
to_xml. Figure 7 shows an excerpt of the code. The first four lines define the type con-
structor TXTys, which describes the types of the specializations of the generic function
to_xml. The implementation of the generic function follows. It is actually a record
with one field for each type constructor that can appear in a type index. Each field de-
fines a function that specifies how the generic function behaves for the corresponding
type constructor.

3 We presume a type xml with two constructors: PCData, for atomic values, and Element,
for structured values; and a pretty-printer for such values.



8

module ToXMLTycon =
struct
type (’a,’pdb) t = ’a -> ’pdb pd -> string -> xml

end
module TXTys = GenFunTys.MakeGeneric(ToXMLTycon)
let rec to_xml = { TXTys.
int = (fun i (hdr,()) tag ->

Element(t,[PCData(string_of_int i)]));
tuple = (fun a_ty b_ty (a,b) (hdr,(a_pd,b_pd)) tag ->

let a_xml = specialize to_xml a_ty a a_pd "fst" in
let b_xml = specialize to_xml b_ty b b_pd "snd" in
Element(tag,[a_xml;b_xml])

);
sum = (fun a_ty b_ty v (hdr,v_pdb) tag ->

match v,v_pdb with
Left a, Left a_pd ->

Element(tag,[specialize to_xml a_ty a a_pd "Left"])
| Right b,Right b_pd ->

Element(tag,[specialize to_xml b_ty b b_pd "Right"])
);
defined = (fun a_ty (from_t, to_t) (from_pdb, to_pdb)

t (hdr,t_pdb) tag ->
specialize to_xml a_ty (from_t t) (hdr,(from_pdb t_pdb)) tag

);
}

Fig. 7. Excerpt of a generic converter to XML.

For the sake of brevity, we have simplified the implementation of to_xml. In the
full implementation, there are cases for most of OCAML’s base types and a default case.
The cases for sums and products have additional parameters to support n-ary sums
and products with field and constructor names, and nullary constructors, thereby fully
supporting OCAML’s named records and variant types. Additionally, parse descriptor
headers are included in the XML when they indicate an error in the data.

The case (i.e., field) for integers, int, takes the representation of a parsed inte-
ger and its parse descriptor as arguments. It returns a representation of that integer
wrapped in the XML constructor PCData. More interesting is the field tuple, which
corresponds to the case for binary products. The first two arguments, a_ty and b_ty,
represent the types of the tuple components. They are used to specialize to_xml for
use with those components. The next two arguments are the tuple to be converted and
its parse descriptor. The last argument is the tag to be used when constructing the XML
element. The first two lines of the function body translate the components into XML
by specializing to_xml to the type of each tuple component and applying the result
to the appropriate component. Note that this “appropriateness” is statically checked by
the OCAML compiler (that is, unless the components have the same type, inverting the
type representations will result in a type error.) Finally, the XML for the components is
bundled into a single element with the tag specified by the final argument.



9

module FromXMLTycon =
struct
type (’a,’pdb) t = xml -> (’a * ’pdb pd)

end
module FXTys = GenFunTys.MakeGeneric(FromXMLTycon)
let rec from_xml = { FXTys.
int = (fun Element(_,[PCData(s)]) ->

try int_of_string s, (good_hdr,())
with Failure "int_of_string" -> 0, (error_hdr,()));

tuple = (fun pos a_name a_ty b_ty Element(_,[a_xml;b_xml]) ->
let (a,a_pd) = a_ty from_xml a_xml in
let (b,b_pd) = b_ty from_xml b_xml in
(a,b),(valid_hdr,(a_pd,b_pd))

);
sum = (fun pos a_name a_ty a_empty b_ty b_empty -> function

Element(_,[Element("Left",_) as a_xml]) ->
let a,a_pd = a_ty from_xml a_xml in
Left a, (valid_hdr, Left a_pd)

| Element(_,[Element("Right",_) as b_xml]) ->
let b, b_pd = b_ty from_xml b_xml in
Right b, (valid_hdr, Right b_pd)

);
defined = (fun a_ty (from_t, to_t) (from_pdb, to_pdb) a_xml ->

let a,(h,a_pdb) = a_ty from_xml a_xml in
(to_t a),(h,to_pdb a_pdb)

);
}

Fig. 8. Generic converter from XML.

The case for binary sums follows the same pattern as that of binary tuples. For user-
defined types, we borrow from Hinze [Hin04], requiring the tool writer to use functions
that convert between the user-defined type and a sum-of-products type (similarly for
the parse descriptor). These compiler-generated conversions are supplied by the caller
of the tool as the second and third arguments of the defined field (the first argument
is a representation of the sum-of-products type). In our example, we are mapping from
a type to XML, so we use the “from” conversion function.

3.3 Example: conversion from XML

A significant improvement in the new generic interface for PADS/ML is that it does
not limit developers to writing functions that consume data. To illustrate this point, we
define in Figure 8 the implementation of a generic function from_xml that produces
data of a given type from XML input.

The implementation mirrors that of to_xml. The first four lines specify the type
constructor for the generic function and create the type of the from_xml generic func-
tion. The field definitions for from_xml follow the same pattern as those for to_xml,
producing data rather than consuming it. One difference relates to parse descriptors.



10

The type constructor for from_xml requires a parse descriptor along with the recon-
structed data. But we discarded such descriptors when converting to XML, so we need
to recreate them now. In most cases, we simply provide a place-holder valid_hdr to
indicate the data is error free. For the int field, however, we check that the string in
the XML is a valid integer and report errors using the parse descriptor.

3.4 Other generic functions

All our example tools are self contained in that they make no reference to other generic
functions. Our framework, however, permits generic functions that depend on other
generic functions, and even mutually recursive generic functions. The only limitation is
that such functions must all share the same generic-function type constructor.

3.5 Type representations

We now discuss the implementation of type representations, reusing the to_xml generic
function from above for an example. The tool developer implemented to_xml as a
record with one field for each type constructor. The end user specialized this generic
function implementation to a particular PADS/ML type τ by applying the specialize
function to a representation of the type τ . The expression specialize to_xml has
the polymorphic type

specialize to_xml : (’r,’p) tyrep -> ’r -> ’p pd -> xml

Notice that the type constructor σ of to_xml is expressed implicitly in this type.
While the runtime provides the definition of the specialize function, it is the

task of the compiler to produce the representation of the PADS/ML type τ . Following
Yang’s approach [Yan98], we choose to represent each PADS/ML type τ as a function
that takes as an argument a generic function, (i.e., a record of functions, each field
specifying the behavior of the generic function for one type constructor) and selects the
field of the generic function corresponding to τ . If τ is a simple type, that is all the
type representation function need do. If τ is a type constructor, the type representation
function then applies the selected function to the representations of the arguments of
the type constructor.

For example, the representation of the PADS/ML type (pint*pint) is:

fun gf -> gf.tuple (fun gf -> gf.int) (fun gf -> gf.int)

This function takes a generic function gf as an argument and selects the tuple field.
Because tuples are type constructors with two arguments, the type representation func-
tion for the pair then applies this selected function to the type representation of the
arguments, pint. This representation type function simply selects the int field from
the generic function gf.

With this choice for the representation of types, the definition of the specialize
function is trivial— it is just function application: fun gf ty -> ty gf. This one
definition handles all generic functions and all type representations. In contrast, the
compiler must generate a different type representation for each PADS/ML type in a de-
scription.



11

type to_xml_record = {
int : int -> unit pd -> xml
tuple : ’a ’b ’p ’q. (’a,’p) type_rep -> (’b,’q) type_rep

-> (’a * ’b) -> (’p pd * ’q pd) pd -> xml
sum : ’a ’b ’p ’q. (’a,’p) type_rep -> (’b,’q) type_rep

-> (’a,’b) sum -> (’p pd,’q pd) sum pd -> xml
defined : ’a ’p ’u ’q. (’a,’p) type_rep -> (’a,’u) iso

-> (’p,’q) iso -> ’u -> ’q pd -> xml
}
and (’r,’p) type_rep = to_xml_record -> ’r -> ’p pd -> xml

Fig. 9. The type of to xml.

The type system of OCAML ensures that the application of a generic function to a
type representation will never go wrong, but getting our choice for type representations
as functions to typecheck in OCAML takes a bit of engineering. To illustrate, we again
turn to the to_xml example. Figure 9 defines the type to_xml_record, which is
the type of the generic function implementation to_xml. Notice that the record fields
contain first-class polymorphic functions. This flexibility is essential because the repre-
sentation of a PADS/ML type might need to apply the same field to several distinct types,
e.g., for a PADS/ML type containing more than one kind of tuple. Figure 9 also defines
the type constructor type_rep, which is the type of the representation of all PADS/ML
types for the to_xml generic function. As an example, the type of the representation
of the the PADS/ML type (pint*pint) is

to_xml_record -> int*int -> (int_pd*int_pd) pd -> xml

which is just (int*int,int_pd*int_pd) type_rep.

3.6 Tool-independent type representations

The types in Figure 9 describe the to_xml generic function very precisely; too pre-
cisely, in fact. Those types and the type representations built from them are specific to
to_xml and could not be used for other generic function, for example, from_xml.
To support a wide range of different generic functions, we follow Yang’s approach and
provide tool-independent type representations and record types, by abstracting away the
pieces that are particular to each generic function. Specifically, we must abstract away
the type constructor associated with the generic function.

Here we encounter a problem: abstracting over a type constructor requires sup-
port for higher-order polymorphism, a feature not provided in OCAML’s core language.
Therefore, we turn to OCAML’s module system and use a functor to do the abstraction.
Figure 10 shows a simplified excerpt of such a functor, MakeGeneric, provided by
the PADS/ML runtime. This functor defines the type of the representation of PADS/ML
types type_rep and the type of the generic-function record for all generic functions
associated with the type constructor t, passed as an argument to the functor. Conceptu-
ally, the types we described earlier in this section, to_xml_type, etc., result from ap-
plying this functor, although in doing the abstraction, we added a parameter to the type



12

constructor t so that a single instance of this functor will be able to express the neces-
sary types for a wider range of generic functions. Note that we have simplified the pre-
sentation of this functor in the same way that we simplified to_xml and from_xml –
specifically, we have left out a number of cases and the parameters to tuple and sum
that provide full support for OCAML’s records and variant types.

type ’a pd = pd_hdr * ’a
type (’a,’t) iso = (’t -> ’a) * (’a -> ’t)
type (’l,’r) sum = Left of ’l | Right of ’r
module MakeGeneric(GenFunTycon: sig type (’r,’pdb,’s) t end) :
sig
type (’r,’pdb,’s) gf_tycon = (’r,’pdb,’s) GenFunTycon.t
type ’s gf_record = {
int : (int, unit, ’s) gf_tycon;
tuple : ’a ’b ’a_pdb ’b_pdb.

(’a,’a_pdb,’s) type_rep ->
(’b,’b_pdb,’s) type_rep ->
(’a * ’b, (’a_pdb pd * ’b_pdb pd) pd, ’s) gf_tycon;

sum : ’a ’b ’a_pdb ’b_pdb.
(’a,’a_pdb,’s) type_rep ->
(’b,’b_pdb,’s) type_rep ->
((’a,’b) sum, (’a_pdb pd,’b_pdb pd) sum pd, ’s) gf_tycon;

defined : ’a ’r ’a_pdb ’r_pdb.
(’a,’a_pdb,’s) type_rep ->
(’a,’r) iso -> (’a_pdb,’r_pdb) iso ->
(’r,’r_pdb,’s) gf_tycon;

}
and (’r,’pdb,’s) type_rep =

’s gf_record -> (’r,’pdb,’s) gf_tycon
end

Fig. 10. A simplified excerpt of the signature of functor MakeGeneric for making generic-
function types. This functor is located in the GenFunTys module, which is part of the PADS/ML

runtime.

The issue of higher-order polymorphism arises in the definition of the representa-
tion of PADS/ML types as well because the representations reference the labels of the
generic-function record. Hence, the definition of the representation of each PADS/ML
type is given in a compiler-generated functor MakeTyrep, parameterized by the type
of the generic function.

To summarize, the generic function infrastructure provided by PADS/ML has three
main components: the function specialize and the functor MakeGeneric, de-
fined once, and the functor MakeTyrep, which is generated for each PADS/ML type
in a given description. A tool developer writing a generic function with associated type
constructor σ uses the functor MakeGeneric to produce the type of the generic func-
tion that she must define. The user of the generic function uses the functor MakeTyrep
to produce a representation of the PADS/ML type suitable for use with that generic func-
tion.



13

(’a, ’pdb, ’s) consumer = ’a -> ’pdb Pads.pd -> ’s
(’a, ’pdb, ’s) producer = ’s -> ’a * (’pdb Pads.pd)
(’a, ’pdb, ’s) updater = ’a * ’pdb Pads.pd -> ’a * ’pdb Pads.pd
flatten : (’a,’pdb,(string * string) list) consumer
pretty_print : (’a,’pdb, string) consumer
summarize : (’a,’pdb, summary -> summary) consumer
to_xml : (’a,’pdb, xml list) consumer
decompress : (’a,’pdb,in_channel) producer
generate : (’a,’pdb, seed) producer
from_xml : (’a,’pdb, xml list) producer
clean : (’a,’pdb,unit) updater

Fig. 11. Classes of generic functions.

An apparent disadvantage of this functorized approach is that a given type represen-
tation can only be applied to one generic function – the one corresponding to the type
constructor for which it was instantiated. However, this limitation is not as restrictive
as it might seem. The type constructor at which a type representation is instantiated
can be far more general than a single generic function and can encompass a family
of functions using the extra type parameter ’s. For example, Figure 11 shows how to
rewrite the function types in Figure 5 in terms of only three generic function classes:
consumers, producers, and updaters.

4 Case Studies

Converting ad hoc data to XML is only one of many possible applications of our generic
function framework. In this section, we discuss two other uses of the framework.

4.1 PADX/ML

In previous work [FFGM06], we reported on our experience designing and implement-
ing PADX, a system for querying large-scale PADS data sources with XQuery [Kat04],
a standardized query language for XML. PADX synthesizes and extends two existing
systems: PADS/C and Galax [FSC+03]. With PADX, an analyst writes a PADS descrip-
tion of her ad hoc data, and the PADS/C compiler produces two software artifacts: an
XML Schema that specifies the virtual XML view of the corresponding PADS data and a
customized library for viewing it as XML. The resulting library is linked with the Galax
query engine, permitting the analyst to query ad hoc data sources using XQuery.

We were pleased with PADX’s functionality. The unified system gave us a standard,
high-performance engine for querying ad hoc data without having to build one from
scratch. We were frustrated, however, by the implementation and its limitations. We
made substantial modifications to the PADS/C compiler to generate PADX’s software
artifacts, which required 1050 lines of Standard-ML, 2117 lines of C, and 350 lines
of OCAML. The generated libraries were large, e.g., the library for the Sirius descrip-
tion [FG05] was more than 7000 lines of C and used C macros extensively, making
the code hard to understand and debug. Most significantly, the changes only supported
PADX and were incomplete: PADX can map from PADS data to XML but not vice versa.



14

Using the generic tool framework, the implementation of PADX/ML is more com-
plete, simpler, and more flexible than that of PADX. The PADX/ML consumer tool maps
PADS/ML representations and parse descriptors into values in Galax’s abstract XML data
model (XDM) (i.e., sequences of elements and XML scalar values), and the PADX/ML
producer tool does the inverse, enabling the output of XQuery expressions to be repre-
sented as PADS data. Together, the tools are implemented in only 884 lines of OCAML.

The PADX consumer yields a completely lazy tree, which permits the Galax query
engine to cope with large-scale data more efficiently. Each XML element in Galax’s
XDM roughly corresponds to a node in the consumer’s lazy tree. The consumer is lazy
“all the way down”, that is, the consumer does not parse a PADS element in a data source
until its corresponding node in the XDM is forced. This laziness is important to query
performance. For some queries, Galax can produce query plans that access a virtual
XML source sequentially using memory bounded by the query size, not the data size.
This optimization is only possible if the underlying data source is itself lazy.

The PADX producer maps values in the Galax XDM into PADS/ML. Given a pro-
ducer specialized on a type and an XML value in the Galax XDM, the producer simply
performs a pattern match on the XML value to map it into the corresponding PADS/ML
value. When a match fails, a parse-descriptor header is returned, indicating a syntax
error. To apply a producer, however, requires knowing the correspondence between an
XML value and an extant, unparameterized PADS/ML type. This correspondence can be
recovered by validating an XML value with respect to any PADS/ML-generated XML
Schema, as each XML Schema type corresponds one-to-one with a PADS/ML type. If
validation succeeds, the XML value is labelled with its corresponding XML Schema
type. The compiler produces a meta-data table that given an XML Schema type name
selects a specialized producer for the corresponding PADS/ML type.

We did make one modification to the PADS/ML compiler for PADX to generate the
XML Schema for a PADS/ML specification. A generic type-consumer tool would avoid
this problem, by permitting computation over any PADS/ML type, just like the generic
value-consumer tool permits computation over the representations and parse descriptors
of any PADS/ML value. No technical issue prevents us from providing a generic type-
consumer tool, but it is not yet implemented.

4.2 Harmony

In our second case study, we use our generic infrastructure with the Harmony synchro-
nization framework [PBF+]. An instance of Harmony takes as inputs two replicas con-
taining data to be synchronized, an archive representing their last synchronized state,
and a schema describing the set of well-formed replicas. Harmony’s synchronization al-
gorithm merges non-conflicting changes made to each replica relative to the archive and
subject to the constraints expressed in the schema, and produces as outputs maximally-
synchronized replicas (and an updated archive). Harmony instances exist for synchro-
nizing browser bookmarks, calendars, address books, and structured documents.

To simplify the synchronization algorithm—in particular, the task of aligning and
identifying the common data in each replica—Harmony’s internal data model is un-
ordered trees and not a richer model like XML. Working with unordered trees makes
synchronization simpler, but introduces a “last-mile problem”—most data is not stored



15

{Section={indent={""},
start_cmd={elt1={version={}},

elt2={"12.0"={}}}}}

Fig. 12. Cisco config command version 12.0 encoded as an unordered tree.

as unordered trees. Therefore, before the replicas can be processed using Harmony they
need to be parsed, and likewise after synchronization, the updated replicas must be se-
rialized to their original formats. Harmony currently relies on a collection of custom
“viewers”—i.e., parsers and corresponding pretty printers—for a variety of on-disk for-
mats (XML, CSV, iCalendar, and Palm Datebook) to bridge this gap. These viewers are
not ideal, however, being tedious to write and difficult to maintain. Moreover, every
new format requires its own custom viewer. A better solution is to use a generic tool to
generate a viewer from a PADS description.

We have implemented generic tools for the unordered tree data model analagous
to the to_xml and from_xml tools for XML. The generic consumer takes a PADS
representation of a data value and yields a Harmony tree. The generic producer maps
a Harmony tree back to a PADS representation. The representation of a data value as
an unordered tree is determined by its type: base type values are represented as trees
with a single child whose label encodes the value; records are represented as trees with
a child for every field; a value belonging to a variant type is represented as a tree with
a single child whose label is the tag; and lists are represented using a cons-cell encod-
ing. Figure 12 shows how the Cisco line from the earlier example is represented as an
unordered tree (writing “{” for internal tree nodes and “=” for subtrees).

These generic tools provide effective conduits between arbitrary on-disk represen-
tations of ad hoc data described in PADS and Harmony’s internal data model. We plan
to use them to build Harmony instances for several new data formats in the near future.

5 Discussion

Our generic programming framework combines two existing techniques: Yang’s theo-
retical account of type-indexed values and their encoding in ML-like languages using
the ML module system [Yan98], and Hinze’s framework for generic programming using
Haskell’s type classes [Hin04]. We compare our work to these approaches in turn.

We make a number of improvements to Yang’s original presentation. First, his theo-
retical encoding requires first-class polymorphism, which at the time was only available
in the ML module system. Now that OCAML provides first-class polymorphism within
records, his encoding can be expressed in a significantly more lightweight manner. Sec-
ond, we have generalized his theoretical encoding to support the definition of generic
functions based on other generic functions. Finally, Yang did not support user-defined
recursive types, which we address using techniques based on Hinze’s work.

While Yang’s work showed how to implement generics in OCAML, Hinze’s work is
the most closely related in terms of the interface it provides to users and generic function
developers. The essential difference between Hinze’s framework and our own is that
Hinze’s solution works for Haskell, while ours is for OCAML. This difference manifests
itself most notably in that Hinze uses Haskell’s type classes to parameterize over type



16

constructors, and so he manages type representations implicitly as dictionaries. We use
OCAML’s module system for parameterization and our type representations must be
passed explicitly, which provides more control over instantiation at the price of some
syntactic overhead. An important practical but less essential difference is that we have
adapted our system for use with PADS/ML, incorporating parse descriptors and requiring
tools to implement a case for constrained types.

The “scrap-your-boilerplate” series of papers [LP03,LP04,LP05] presents another
approach to generic programming in HASKELL. Recently, members of the Gallium
project have added support for similar functionality to OCAML with the new camlp4
system [cam]. We refer readers to the SYB papers for a full comparison of SYB to
other generic-programming approaches, including this one.

Shortly before this paper was ready for publication, Yallop [Yal07] and Karvo-
nen [Kar07] published works on generic programming in ML. Due to lack of time to
fully review their work, we offer only basic comparisons. Yallop’s work uses camlp4
– an OCAML preprocessor – to extend OCaml with a deriving construct, similar to that
found in Haskell. As Yallop points out in his conclusion, while this approach offers a
convenient way to use the generic functions, it does not address the challenge of writing
new generic functions, which is exactly the goal of the current work. Karvonen’s work
is more closely related in that it supports generic programming within ML itself, rather
than in a preprocessor. However, Karvonen is working within the confines of Standard
ML, which lacks recursive values and first-class polymorphism. Hence, the challenges
he faces are somewhat different, as is his resulting solution.

The most direct contributions of the present work are both related to PADS/ML:
the extension of PADS/ML’s support for third-party development of type-directed tools
and the description of two non-trivial tools built using this extension. However, both
of these contributions have broader relevance. The latter, because PADX/ML and ex-
tended Harmony provide compelling examples of the applicability of generic program-
ming techniques to real-world challenges. The former, because the generic program-
ming framework that we present is relevant to OCAML developers in general, not just
those interested in PADS/ML.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments on the
paper and its organization.

References

[cam] Camlp4 - Gallium. http://brion.inria.fr/gallium/index.php/Camlp4.
[Con] Gene Ontology Consortium. Gene ontology project. http://www.geneontology.org.
[FFGM06] Mary Fernández, Kathleen Fisher, Robert Gruber, and Yitzhak Mandelbaum. PADX:

Querying large-scale ad hoc data with XQuery. In PLAN-X, 2006.
[FG05] Kathleen Fisher and Robert Gruber. PADS: A domain-specific language for process-

ing ad hoc data. In PLDI, 2005.



17

[FGK+07] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C. Pierce,
and Alan Schmitt. Exploiting schemas in data synchronization. Journal of Computer
and System Sciences, 73(4), June 2007.

[FSC+03] Mary F. Fernández, Jŕôme Siméon, Byron Choi, Amélie Marian, and Gargi Sur. Im-
plementing XQuery 1.0: The Galax experience. In VLDB, pages 1077–1080, 2003.

[Hin04] Ralf Hinze. Generics for the masses. In ICFP, 2004.
[Kar07] Vesa A.J. Karvonen. Generics for the working ml’er. In ML Workshop, 2007.
[Kat04] Howard Katz, editor. XQuery from the experts. Addison Wesley, 2004.
[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design

pattern for generic programming. In TLDI, 2003.
[LP04] Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips, and

generalised casts. In ICFP, 2004.
[LP05] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible

generic functions. In ICFP, 2005.
[Man06] Yitzhak Mandelbaum. The Theory and Practice of Data Description. PhD thesis,

Princeton University, September 2006.
[MFW+07] Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernandez, and Artem

Gleyzer. PADS/ML: A functional data description language. In POPL, 2007.
[MHS+05] R. Mandelbaum, C. M. Hirata, U. Seljak, J. Guzik, N. Padmanabhan, C. Blake, M. R.

Blanton, R. Lupton, and J. Brinkmann. Systematic errors in weak lensing: application
to SDSS galaxy-galaxy weak lensing. Mon. Not. R. Astron. Soc., 361:1287–1322,
August 2005.

[PBF+] Benjamin C. Pierce, Aaron Bohannon, J. Nathan Foster, Michael B. Greenwald, San-
jeev Khanna, Keshav Kunal, and Alan Schmitt. Harmony: A synchronization frame-
work for heterogeneous tree-structured data. http://www.seas.upenn.edu/ harmony/.

[Yal07] Jeremy Yallop. Practical generic programming in ocaml. In ML Workshop, 2007.
[Yan98] Zhe Yang. Encoding types in ML-like languages. In ICFP, 1998.


