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ABSTRACT
In this paper, we explore how programmable data planes can
provide a higher-level of service to user applications via a
new abstraction called packet subscriptions. Packet subscrip-
tions generalize forwarding rules, and can be used to express
both traditional routing and more esoteric, content-based ap-
proaches. We describe a compiler for packet subscriptions
that uses a novel BDD-based algorithm to efficiently translate
predicates into P4 tables that can support O(100K) expres-
sions. Using our compiler, we’ve built a proof-of-concept
pub/sub financial application for splitting market feeds (e.g.,
Nasdaq’s ITCH protocol) with line-rate message processing,
using the full switch bandwidth of 6.5Tbps.

1 INTRODUCTION
The advent of programmable data planes [5, 6, 40] is having a
profound impact on networking, with clear benefits to network
operators (e.g., increased visibility via fine-grained network
telemetry) and to switch vendors (e.g., software development
is faster and less expensive than hardware development). How-
ever, the benefits to users are still relatively unexplored, in
the sense that today’s programmable data planes offer the
same forwarding abstractions that fixed-function devices have
always provided—e.g., match on IP address, decrement TTL,
and send to the next hop.

While the Internet is based on a well-motivated design [11],
classic protocols such as TCP/IP provide a lower level of
abstraction than modern distributed applications expect, espe-
cially in networks managed by a single entity, such as data cen-
ters. As a case in point, today it is common to deploy services
in lightweight containers. Address-based routing for con-
tainerized services is difficult, because containers deployed on
the same host may share an address, and because containers
may move, causing its address to change. To cope with these
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networking challenges, operators are deploying identifier-
based routing (e.g., Identifier Locator Addressing [24]), that
requires name resolution be performed as an intermediate step.
Another example is load balancing: to improve application
performance and reduce server load, data centers rely on com-
plex software systems to map incoming IP packets to one of a
set of possible service end-points. Today, this service layer is
largely provided by dedicated middleboxes. Examples include
Google’s Maglev [13] and Facebook’s Katran [21]. A third ex-
ample occurs in big data processing systems, which typically
rely on message-oriented middleware, such as TIBCO Ren-
dezvous [38], Apache Kafka [23], or IBM’s MQ [17]. This
middleware allows for a greater decoupling of distributed
components, which in turn helps with fault tolerance and
elastic scaling of services [14].

Although the current approach provides the necessary
functionality—the middleboxes and middleware abstracts
away the address-based communication fabric from the
application—the impedance mismatch between the abstrac-
tion that networks offer and the abstraction that applications
need adds complexity to the network infrastructure. Using
middleboxes to implement this higher-level of network ser-
vice limits performance, in terms of thoughput and latency, as
servers process traffic at gigabits per second, while ASICs can
process traffic at terabits per second. Moreover, middleboxes
increase operational costs and are a frequent source of net-
work failures [33, 34]. Given the existence of programmable
devices, can’t we do better?

In this paper, we propose a new network abstraction called
packet subscriptions. A packet subscription is a stateful pred-
icate that, when evaluated on an input packet, determines a
forwarding decision. Packet subscriptions generalize tradi-
tional forwarding rules; they are more expressive than basic
equality or prefix matching and they can be written on ar-
bitrary, user-defined packet formats. A packet subscription
compiler generates both the data plane configuration and the
control plane rules, providing a uniform interface for program-
ming the network. Packet subscriptions easily express a range
of higher-level network services, including pub/sub communi-
cation [14], in-network caching [20, 25], and identifier-based
routing [24].

In some respects, packet subscriptions share a similar mo-
tivation to prior work on content-centric networking [8, 18,
22, 29]. However, in contrast to this prior work, we are not
proposing a complete re-design of the Internet [15, 29]. In-
stead, we argue that higher-level network abstractions are
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already used extensively by distributed applications, and this
functionality can be naturally provided by the network data
plane. Moreover, packet subscriptions can be implemented
efficiently in controlled, data center deployments, in which
the entire network is in a single administrative domain, and
operators have the freedom to directly tailor the network to
the needs of the applications. Packet subscriptions interop-
erate with other routing schemes (e.g. IP), so they are also
suitable for brownfield deployments.

Packet subscriptions can be used to program any network
hardware. Our prototype compiler targets programmable
ASICs, since they are already deployed in data centers, and
do not require adding additional hardware. Moreover, this
paper focuses on the challenge of compiling subscriptions to
a single device. Routing over multiple switches would require
a different set of techniques [30].

Implementing packet subscriptions is challenging; a naïve
approach would require significant amounts of TCAM and
SRAM memory, which is a scarce resource on network hard-
ware. Compilation is further complicated by the need to sup-
port application-specific message formats and stateful predi-
cates, such as filtering based on some aggregate.

To address these challenges, we have developed a packet-
subscription compiler that uses a novel algorithm based on
Binary Decision Diagrams (BDDs) [1, 7]. Our compiler
translates logical predicates into P4 tables that can support
O(100k) filter expressions within the limited resources of a
programmable switch ASIC. Using our compiler, we have
built a proof-of-concept pub/sub application for splitting fi-
nancial market feeds (e.g., Nasdaq’s ITCH protocol). Our
evaluation demonstrates message processing at line rate using
the full switch bandwidth of 6.5Tbps.

Overall, this paper makes the following contributions:
• It describes a high-level design of a packet subscription

language targeting programmable ASICs (§2).
• It presents an algorithm to efficiently compile packet sub-

scription to P4 tables and control plane rules (§3).
• It experimentally evaluates an implementation of in-

network pub/sub using packet subscriptions against soft-
ware based alternatives (§4).

2 PACKET SUBSCRIPTIONS
To make our presentation of packet subscriptions more con-
crete, we introduce a running example motivated by the fi-
nancial domain. Nasdaq publishes market data feeds using
the ITCH format. ITCH data is delivered to subscribers as
a stream of IP multicast packets, each containing a UDP
datagram. Inside each UDP datagram is a MoldUDP header
containing a sequence number, a session ID, and a count
of the number of ITCH messages inside the packet. There
are several ITCH message types. For our experiments, we
have implemented add-order messages, which indicate
a new order that has been accepted by Nasdaq. It includes
the stock symbol, number of shares, price, message length
and a buy/sell indicator. In the descriptions below, packet

h ∈ Packet headers
f ∈ Header fields
v ∈ State variables
n ∈ N
r ::= c : a Condition-Action Rule
c ::= c1 ∧ c2 | c1 ∨ c2 | ! c1 | e Logical Expression
e ::=p > n | p < n | p == n Relational Expression
p ::=h. f | v Variables
a ::=a1 ; a2 | f wd(n0 . . .ni ) | д Action
д ::=v ← f (v0 . . .vj ,h) State-update Function

Figure 1: Packet subscription language abstract syntax.

subscriptions can refer to fields in the traditional header stack,
or in the application-specific message format.

Subscription Language. Packet subscriptions are filter rules
that identify a packet and indicate an action. The rule:

ip.dst == 192.168.0.1 : fwd(1)

indicates that packets with the IP destination address
192.168.0.1 should be forwarded out port 1 of a switch:

One can interpret this filter rule the traditional way—i.e.,
each host is assigned an IP addresses, and the switches for-
ward packets toward their destinations. An alternative inter-
pretation of the same phenomenon is that hosts express an
“interest” in subscribing to packets with a given IP address,
as in pub/sub-style communication. Packet subscriptions are
general enough that they can support push-based or pull-based
communication, depending on whether the servers publish
content and clients subscribe, or vice-versa.

Packet subscriptions can also refer to application-specific
packet formats. Returning to our running example, suppose
that a trading application running on the server connected to
port 1 is interested in ITCH messages about Google stock. The
following rule states that if the stock field is the constant
GOOGL, the message should be forwarded to port 1.

stock == GOOGL : fwd(1)

Forwarding actions may be unicast or multicast:
stock == GOOGL : fwd(1,2,3)

In this example, messages are forwarded to ports 1, 2, and 3.
The rules we have seen so far are stateless: the condition

does not depend on previously processed data packets. How-
ever, packet subscriptions may also be stateful. A stateful rule
may read or write variables inside the switch data plane:

stock == GOOGL ∧ avg(price) > 50 : fwd(1)

In addition to checking equality on the stock field, this rule
requires that the moving average of the price field exceeds
the threshold value 50. The macro avg stores the current
average, which is updated when the rest of the rule matches.

Syntax and Semantics. Packet subscriptions are evaluated
according to event-condition-action semantics. The event is
the arrival of a data packet of a given format; the condition
specifies a set of constraints on the values of the attributes in
the data packet; and the action defines the processing of the
data packet, typically consisting of a forwarding action. In



1 header_type itch_add_order_t {
2 fields {
3 shares: 32;
4 stock: 64;
5 price: 32;
6 ...
7 }
8 }
9 header itch_add_order_t add_order;

10
11 @query_field(add_order.shares)
12 @query_field(add_order.price)
13 @query_field_exact(add_order.stock)
14 @query_counter(my_counter, 100)

Figure 2: Specification for ITCH message format.

processing a data packet, the switch executes the actions of
all matching rules, in no particular order.

Figure 1 shows the language syntax. Each filter rule has a
condition and an action. Conditions are logical expressions
that may be combined using conjunction (∧), disjunction
(∨), and negation (!). The language includes the standard
relational operators (i.e., < and >). Atomic predicates of the
form h.f == n denote the set of packets whose header field
h. f is equal to n. An action may forward packets (fwd(1))
or perform a computation that updates a state variable.

3 COMPILING SUBSCRIPTIONS
Compilation is divided into two steps: static and dynamic.
The static step is performed once per application, and gener-
ates the packet processing pipeline (i.e., packet parsers and
a sequence of match-action tables) deployed on the switch.
The dynamic compilation step is performed whenever the sub-
scription rules are updated, and generates the control-plane
entries that populate the tables in the pipeline.

Note that this compilation strategy assumes long-running,
mostly stable queries. Highly dynamic queries would require
an incremental algorithm, both to reduce compilation time
and to minimize the number of state updates in the network.
Prior work has demonstrated that such incremental algorithms
are feasible. BDDs—our primary internal data structure—can
leverage memoization [36], and state updates can benefit from
table entry re-use [19].

3.1 Compiling the Static Pipeline
In general, a packet processing pipeline includes a packet
parsing stage followed by a sequence of match-action tables.
The compiler installs a different pipeline for each application,
as different applications require different protocol headers,
packet parser, and tables to match on header fields.

To generate the static plane, users must provide a mes-
sage format specification. The specification is based on data
packets structured as a set of named attributes. Each attribute
has a typed atomic value. For example, a particular ITCH
data packet representing a financial trade would have a string
attribute called stock, and two numeric attributes called
shares and price.

Figure 2 shows the specification for the ITCH application.
The message format specification extends a P4 header specifi-
cation with annotations that indicate state variables and fields
that will be used by the filters. In the figure, lines 12-13 con-
tain annotations indicating that the fields shares, price,
and stock from the add_order header will be used in sub-
scriptions. Thus, the compiler should generate P4 code that
matches on those fields. As an optimization, users may spec-
ify the match type. The annotation on line 13 specifies that
the match should be exact by appending the suffix _exact.
The annotation on line 14 declares a counter state variable.
The first argument is the name of the counter (my_counter)
and the second is its window size (100us).

To support state variables, the compiler statically pre-
allocates a block of registers that are then assigned to specific
variables dynamically. The compiler also outputs the code to
update state variables in response to subscription actions at
periodic intervals—e.g., to implement the tumbling window
used on line 14 in Figure 2. Notice that the use (read/write) of
state variable is determined by subscription rules, which are
not known statically. Therefore, the static compiler outputs
generic code for various update functions, and the dynamic
compiler effectively links subscription actions to that code.
In particular, the dynamic compiler links an update action of
the general form v ← f (args) with a subscription action by
associating that action to what amounts to pointers to v, f ,
and args. However, the dynamic compiler implemented in our
current prototype only supports actions without arguments.

3.2 Compiling Dynamic Filters
A naïve approach for representing subscription rules would
use one big match-action table containing all the rules—each
rule would be encoded using a single table entry. However,
this approach would be incredibly inefficient because the
table would require a wide TCAM covering all headers but
containing only a few unique entries per header. Furthermore,
programmable switch ASICs only support matching a single
entry in a table, but a packet might satisfy multiple rules.
Hence, we would require a table entry for every possible
combination of rules, resulting in an exponential number of
entries in the worst case.

Instead, our compiler generates a pipeline with multiple
tables to effectively compress the large but sparse logical table
used by the program. To do this, the compiler represents the
subscription rules using a binary decision diagram (BDD) [1,
7]. BDDs are often used to obtain compact representations
of functions on a wide input domain for which a single table
would be too large. A BDD is a rooted acyclic graph in which
non-terminal nodes encode conditions on the input (i.e., the
packet headers), and terminal nodes encode the result (i.e., a
set of actions). See the example in Figure 3.

The evaluation of the overall function of the BDD that
encodes all subscription rules starts at the root node and recur-
sively evaluates the conditions (if) at each node, proceeding to



Figure 3: BDD for three rules. Solid and dashed arrows
represent true and false branches, respectively.
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Figure 4: Table representation of the BDD in Figure 3.

the true (then) or false (else) branch as appropriate. Evaluation
terminates when it reaches a terminal node (actions).

We now briefly describe the algorithm for building a BDD
out of subscriptions rules. What is important for our purposes
is to define the structure of the BDD, so we can implement
the BDD evaluation as a sequence of table lookups.

Representing Rules with a BDD. The subscription rules
are first normalized into disjunctive form, yielding a set of
independent rules in which the condition in each rule consists
of a conjunction of atomic predicates. An atomic predicate is
defined by an equals, greater-than, or less-than relationship
between a field and a constant. For example, the rules in
Figure 3 are in disjunctive normal form. The compiler then
builds the BDD incrementally by evaluating the condition at
each node using the Shannon expansion and adding nodes for
the predicates in the condition as needed.

The compiler reduces the BDD using a combination of
standard and domain-specific transformations. (i) If two nodes
are isomorphic, one is deleted. The incoming edges of the
deleted node are updated to point to the remaining copy. (ii)
If both outgoing edges of a node point to the same successor,
then that node is replaced with the successor. (iii) If any
ancestor n′ of a new node n implies that n is always true or
always false, then n is not added; instead, it reduces to a direct
connection to its true or false branch, respectively. The overall
effect is to share common structure and remove redundant
nodes and unsatisfiable paths [10].

As is standard in ordered BDDs, the conditions in the BDD
are arranged in a fixed order. For example, every path in the
BDD of Figure 3 consists of a sequence of atomic predicates
such that the conditions on field shares precede the condi-
tions on field stock. This is essential for the representation
and evaluation of the BDD as a sequence of table lookups,
as we discuss next. The choice of an order can significantly
impact the size of a BDD. Determining an optimal field order
is NP-hard, but simple heuristics often work well in practice.

Algorithm 1: Translating BDD to Tables
Input: The BDD graph, G
Output: A set of tables Tf : state × dom(f ) → state

1 foreach field f do
2 Cf ← subgraph of G predicating on field f

3 In← {n ∈ Cf with in-edges from outside Cf }
4 Out ← {n < Cf with in-edges from Cf }
5 foreach path p = (u ∈ In, . . . ,v ∈ Out) in Cf do
6 range← ⊤ ▷ all allowable values for field f

7 foreach node n ∈ p do
8 range← range ∩ predicate(n)
9 Tf ← Tf ∪ {(u, range) 7→ v}

BDDs to Tables. The BDD can be seen as a state machine,
where each state corresponds to a predicate, and the transition
function is the evaluation of the predicate on the input packet.
However, this naïve evaluation would require an excessively
long sequence of evaluation steps. We instead implement
BDD evaluation using a fixed-length pipeline.

Since every path in the BDD traverses predicates that con-
sider fields in order, and that order is the same for every path,
we use that ordering to effectively slice the BDD into a fixed
number of field-specific components. Each component is a
subgraph of the BDD that contains all and only those nodes
that predicate on a particular field. By extension, we also con-
sider the set of terminal nodes as a component. For example,
the BDD in Figure 3 has three components consisting of the
blue, yellow, and red nodes, corresponding to the shares
and stock fields, and to actions, respectively.

We can now consider the evaluation of the BDD as a state-
machine at the level of the field-specific components. Thus
the transition function out of the component of field f de-
pends on the value of field f in the packet. However, since
the component of field f is a macro-state corresponding to
potentially many states of the BDD, the transition function
must also depend on the BDD state in which we enter the
component. This entry BDD state and the value of field f
are necessary and sufficient to determine the path through
the component of field f and therefore the transition function
for that component. We represent this transition function as a
match-action table where we match on the entry state and on
the value of field f , and where the action points to the next
component and BDD state.

Figure 4 shows all the component-specific match-action
tables corresponding to the transition functions for the BDD
of Figure 3. The three tables also define the three-stage pro-
cessing pipeline. The evaluation through the pipeline stores
the current BDD state in metadata. The initial state is set to
0 and can be omitted from the first table. The actions set the
entry state for the following stage, except for the Leaf table
where the action corresponds to the overall BDD evaluation.
For example, the rightmost path through the BDD in Figure 3
corresponds to the path through the 2nd, 4th, and 3rd rows of
the Shares, Stock, and Leaf tables in Figure 4, respectively.
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Figure 5: Compiler efficiency

It is possible for multiple rules to match the same packet.
For example, in Figure 3, the first two rules could match
the same packet, so the actions fwd(1) and fwd(2) are
merged into one action: fwd(1,2). The compiler translates
this to forwarding to a multicast group with ports 1 and 2.

We compute the transition tables with Algorithm 1. In
essence, for each field-specific component Cf in the BDD,
Algorithm 1 identifies a set of In nodes within Cf that are the
destinations of all the edges that enter Cf from components
of preceding fields, and a set of Out nodes outside Cf that are
the destinations of all the edges that exit from Cf to compo-
nents of succeeding fields. Then Algorithm 1 computes the
transition table by iterating over all the paths that connect In
and Out nodes. In general, a BDD could have an exponential
number of such paths. However, the domain-specific optimiza-
tions we use guarantee that there is at most one path between
any pair of In and Out nodes, which in turn guarantees that
the number of paths is at most quadratic.

Resource Optimizations. One of the scarce resources in
switching ASICs are TCAM memories that allow match-
ing on a subset of bits in headers but consume large area
of die and high power. The compiler uses three techniques
that are application-agnostic to reduce TCAM usage. First,
by default the compiler generates P4 code that implements
range matches, which usually require an expensive TCAM
lookup. However, the user can guide the compiler by speci-
fying a matching type for each field that may not require a
TCAM lookup. Second, matching on a range in TCAM is not
scalable to hundreds of thousands of ranges as each range-
match requires multiple TCAM entries (O(#bits)). To cope
with this, the compiler uses exact matches instead of range
when possible, allowing it to leverage SRAM while saving
TCAM. Third, some fields, like shares, will probably have
only a few unique range predicates. The compiler can map
values for that field and the corresponding range predicates
onto a lower-resolution domain (e.g., 8-bits).

4 EVALUATION
We have implemented a prototype compiler in OCaml. The
compiler parses the application specifications written in P414
using the P4V library [26], patched to support our custom an-
notations. We use our own implementation of a multi-terminal
BDD library with reduction optimizations.

There are three parts to our evaluation: (i) we explore the
space/time efficiency of the compiler; (ii) we demonstrate
the efficacy of packet subscriptions by implementing an in-
network publish/subscribe system; and (iii) we compare the
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Figure 6: Overview of Camus.

end-to-end system latency and throughput for in-network
publish/subscribe to a baseline software implementation.

Efficiency of the compiler. To measure the space efficiency
of the compiler, we generated workloads using the Siena
Synthetic Benchmark Generator [35], which has been used to
evaluate prior work in pub/sub systems [9]. Figure 5 shows
the number of table entries required on the switch as we
vary key parameters: (a) number of subscriptions; and (b)
selectiveness of subscriptions (number of predicates).

Given the low growth rate of table entries as workloads
become more complex (5a), the experiments show that Camus
uses available space effectively. Figure 5b shows that more
selective subscription conditions (i.e. more predicates in the
conjunction) require fewer table entries, which is because
they result in fewer paths in the BDD.

To measure our compiler’s runtime, we used a synthetic
workload generator to create ITCH subscriptions of the form
“stock == S ∧ price > P: fwd(H)”, where S is
one of a 100 stock symbols, P is in the range (0, 1000) and H
is one of 200 end-hosts. Figure 5c shows the results. Compil-
ing 100K subscriptions resulted in 21,401 table entries and
198 multicast groups, which can easily fit in switch memory.

Case Study: In-Network Pub/Sub. As an example use-case
for packet subscriptions, we have implemented an in-network
pub/sub system. Figure 6 illustrates the design of our pub/sub
system, which we call Camus. Camus takes the subscription
filters together with the message format specification, and
generates two outputs: (i) a P4 control block that specifies
the control-flow and match-action tables in the pipeline, and
(ii) a set of control-plane rules to populate the tables. The
P4 compiler then takes the P4 parser specification (i.e., the
packet format) and the control block generated by the Camus
compiler to generate the switch image for the packet pro-
cessing pipeline. At runtime, publishers send messages. The
switches running the Camus pipeline process the messages
and forward them to interested subscribers.

We used our Camus pub/sub system to do in-network filter-
ing of market data feeds. Many financial companies subscribe
to the Nasdaq feed and broadcast it to all of their servers in or-
der to execute trading strategies. Typically, each server is only
interested in a very small subset of stocks. For example, one
trading strategy might only depend on data related to Google
stock, while another might depend on data related to Apple.
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Figure 7: ITCH experiments on hardware.

Therefore, broadcasting the feed wastes resources. Moreover,
broadcasting all packets to servers builds queues at switches
and servers, which increases delay and the chances of packet
drops. Any increase in latency can have a significant impact
on the user, as high-frequency trading strategies depend on
speed to gain an advantage in arbitraging price discrepancies.

Throughput and Latency. Our experimental setup resem-
bles Figure 6, except for that the publisher and subscriber
are collocated for accurate timestamping. We ran our packet
subscription pipeline on a 32-port Barefoot Tofino switch,
which can process packets at 3.25Tbps (on the 64-port ver-
sion of the switch, we would support 6.5Tbps). The ITCH
publisher and subscriber are implemented with DPDK [12],
running on a server with an 8-core Intel Xeon E5-2620 v4 @
2.10GHz CPUs, 256GB DDR4-2133 RAM and 25Gb/s NICs
(Mellanox ConnectX-4 Lx and Intel XXV710-DA2). We ran
the same workloads under two configurations. In the baseline
configuration, the subscriber filters the feed for add-order
messages with stock symbol GOOGL. In the second configu-
ration, the filtering is done with Camus.

We used two workloads: a Nasdaq trace from August 30th
2017 and a synthetic feed. The number of messages of in-
terest (i.e. for GOOGL) is 0.5% of the Nasdaq trace, and 5%
of the synthetic feed. We measured the latency between the
publisher sending a message with GOOGL, and it being re-
ceived by the subscriber. Figure 7 shows the latency CDF for
both workloads. For the Nasdaq trace, all messages arrived
within 50us with Camus, compared to 300us for the baseline.
For the synthetic workload, 99.5% of the messages arrived
within 20us with Camus, compared to 96.5% with the base-
line. Overall, filtering messages on the switch with Camus
reduces the tail latency, allowing applications to meet their
latency requirements under high throughput.

Other applications. In this paper, we have focused on one
running example, financial market data. We chose this appli-
cation because it demonstrates many of the requirements that
motivate packet subscriptions: routing based on application-
specific content, stringent latency demands, and filtering
based on expressive predicates. Because packet subscriptions
can be used to implement pub/sub communication, they could
be used as an alternative for frameworks like Kafka or Ac-
tiveMQ [3]. However, packet subscriptions are not a one-for-
one replacement. They are limited, in that they do not pro-
vide features such as reliable communication and persistence.

Rather, packet subscriptions are best suited for application do-
mains with high-throughput workloads that can tolerate some
loss, such as streaming analytics. In on-going work, we are
exploring other use cases, related to load-balancing, elastic
scaling of services, and security. Packet subscriptions would
also be a useful abstraction for in-network caching, which
routes based on content identifier (e.g., NetCache [20]).

5 RELATED WORK
Packet subscriptions are related to pub/sub messaging, net-
work languages, and information-centric networking.

Publish/subscribe messaging system. Many application-
level middleware messaging services provide pub/sub com-
munication, such as Kafka, ActiveMQ, and Siena [9]. Eugster
et al. provide a comprehensive survey [14].

Network programming languages. Several languages sup-
port the control-plane configuration of switches, including
Frenetic [16], Pyretic [27], Merlin [37], and NetKAT[2]. In
contrast to this work, packet subscriptions provide stateful
filtering rules that realize a form of in-network processing,
and therefore amount to data-plane programs. Marple [28]
evaluates telemetry queries in-network. BDDs have long been
used as a compressed representation of relations. In network-
ing, BDDs have been used to verify network properties [41],
check network configurations [4], and optimize compilation
of OpenFlow rules [36]. Our compiler also uses BDD as an
efficient internal representation, but differs from this prior
work in that it generates a switch pipeline configuration.

Information-centric networking. With information-centric
networking (ICN), packets are routed using symbolic names
rather than network addresses. Some ICN architectures sup-
port the rich pub/sub semantics of packet subscriptions [30],
but the mainstream architectures (CCN and NDN) are based
on a “pull” model and on a stateless prefix matching that is
significantly less expressive than the content-based and state-
ful filtering of packet subscriptions. In any case, prior work in
ICN achieves a maximum throughput that is well below the
line-rate throughput of packet subscriptions [31, 32, 39, 42].

6 CONCLUSION
Today, networks provide a lower level of abstraction than
what is expected by modern distributed applications. The
main argument of this paper is that the emergence of pro-
grammable data planes has created an opportunity to resolve
this incongruity, by allowing the network to offer a more
expressive interface. The core technical contribution of this
paper is a set of algorithms for compiling complex filter ex-
pressions to reconfigurable network hardware using BDDs.
These techniques are widely applicable to a range of network
services. As a systems artifact, we have used these techniques
to build an in-network publish-subscribe system that demon-
strates predictable, low-latency packet processing using the
full switch bandwidth.
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