
p4v: Practical Verification for Programmable Data Planes∗

Jed Liu

Barefoot Networks

Ithaca, NY, USA

William Hallahan

Yale University

New Haven, CT, USA

Cole Schlesinger

Barefoot Networks

Santa Clara, CA, USA

Milad Sharif

Barefoot Networks

Santa Clara, CA, USA

Jeongkeun Lee

Barefoot Networks

Santa Clara, CA, USA

Robert Soulé

University of Lugano

Lugano, Switzerland

Han Wang

Barefoot Networks

Santa Clara, CA, USA

Călin Caşcaval

Barefoot Networks

Santa Clara, CA, USA

Nick McKeown

Stanford University

Stanford, CA, USA

Nate Foster

Cornell University

Ithaca, NY, USA

ABSTRACT
We present the design and implementation of p4v, a prac-
tical tool for verifying data planes described using the P4

programming language. The design of p4v is based on clas-

sic verification techniques but adds several key innovations

including a novel mechanism for incorporating assumptions

about the control plane and domain-specific optimizations

which are needed to scale to large programs. We present case

studies showing that p4v verifies important properties and

finds bugs in real-world programs. We conduct experiments

to quantify the scalability of p4v on a wide range of addi-

tional examples. We show that with just a few hundred lines

of control-plane annotations, p4v is able to verify critical

safety properties for switch.p4, a program that implements

the functionality of on a modern data center switch, in under

three minutes.

CCS CONCEPTS
• Networks→ Programming interfaces; • Software and its
engineering → Software verification;

KEYWORDS
Programmable data planes, P4, verification.

ACM Reference Format:
Jed Liu,WilliamHallahan, Cole Schlesinger,Milad Sharif, Jeongkeun

Lee, Robert Soulé, Han Wang, Călin Caşcaval, Nick McKeown,

and Nate Foster. 2018. p4v: Practical Verification for Programmable

Data Planes. In SIGCOMM ’18: SIGCOMM 2018, August 20–25, 2018,
Budapest, Hungary. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3230543.3230582

∗
This version fixes small typographic errors in the official published version.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in SIGCOMM ’18: SIGCOMM 2018, August 20–25, 2018, Budapest, Hungary,
https://doi.org/10.1145/3230543.3230582.

1 INTRODUCTION
Suppose you wanted to verify the correctness of a network

data plane. How would you do it? One approach, which

is widely used today, is to rely on exhaustive testing—i.e.,

generate a set of input packets and test whether the device

produces the expected outputs. Testing is expensive, since

modern devices handle dozens of different packet formats

and protocols, each requiring distinct test inputs. But with a

conventional device these costs are paid only once, because

its capabilities are “baked in” at manufacturing time and

cannot be changed by programmers.

Recently, the field has started to shift to more flexible plat-

forms in which data-plane functionality is not controlled

by vendors but can be defined by programmers. The idea

is that the programmer describes the functionality of the

device using a program in a domain-specific language such

as P4 [5, 44, 45], and the compiler generates an efficient im-

plementation for the underlying target device. This approach

not only facilitates rapid innovation, since new protocols can

be deployed without having to spin new hardware, it also

opens up opportunities for novel uses of the network—e.g., in-

band network telemetry [26] and in-network caching [28, 29]

to name a few. While increased programmability offers ben-

efits, it also creates challenges related to correctness.

Example. Consider a “bump in the wire” firewall that uses

acl and nat tables to filter and rewrite incoming packets

(Figure 1 gives an implementation in P4). Suppose we wish

to verify that if acl is populated with rules that drop packets

going to a given internal host, the host will be isolated from

the external network. Even for this simple property, several

complications can arise, illustrating the need for verification.

First, the behavior of the program that implements the

firewall may be undefined on certain kinds of packets since,

according to the P4 language specification [44], reading or

writing an invalid header produces an arbitrary result. In par-

ticular, although the acl table correctly matches and filters

away IPv4 packets sent by external hosts, it might incorrectly

forward other types of packets such as IPv6. Second, there

is potential for confusion between internal and external ad-

dresses. If the program executes the acl table before the nat
table, then the rules intended to filter away external traffic

https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

should match on external addresses, but if it executes the

tables in the opposite order, then the rules should match on

internal addresses instead. Confusing the ordering of tables

in a firewall may seem like a mistake that would be easily

caught, but it is not a hypothetical concern: Cisco changed

the order of these tables going from version 8.2 to 8.4 of their

Adaptive Security Appliance, invalidating numerous config-

urations and leaving networks vulnerable to attacks [31].

Verified data planes. After hearing about an example like

this one, a pessimist might conclude that an increase in bugs

is an inevitable side-effect of making data planes more pro-

grammable.We believe the opposite is actually true.Whereas

the behavior of a conventional device is largely unspecified

and must be discovered through testing, a P4 data plane has

a precise, bit-level description of how it processes packets in

a human-readable language. By providing developers with

powerful, language-based verification tools, we should be

able to decrease the prevalence of bugs that arise in prac-

tice. P4 is an ideal target for automated verification because

the language carefully excludes features such as loops and

pointer-based data structures, which typically require man-

ual annotation or complex analyses. Moreover, the potential

for impact for a P4 verification tool is high, as the language

is also being used to describe the behavior of conventional,

fixed-function devices [41].

Our vision of verified data planes is inspired in part by re-

cent successes in the formal methods community, which has

shown that it is feasible to verify a wide variety of complex

systems including compilers [38], operating systems [21],

databases [40], distributed systems [25], and network con-

trollers [22]. In addition, SAT and SMT solvers, which under-

pin many automated tools, have become very fast in recent

years and are now able to scale to extremely large problem

instances in many common cases [10]. With such tools at our

disposal, we embarked to demonstrate that it is possible to

build a practical tool for verifying programmable data planes.

We believe that such a tool would provide a foundation for

the many other network verification tools that have been

proposed in recent years [1, 3, 13, 17, 18, 20, 32, 34, 39, 46, 47,

50, 53, 55, 56] and might also serve as a catalyst for follow-on

efforts that target higher layers of the networking stack.

Contributions. This paper presents p4v, a practical verifi-
cation tool for P4, and makes the following contributions:

• We motivate the need for data-plane verification us-

ing real-world examples, and we identify classes of

common properties that arise in many P4 programs.

• We present a novel approach to data-plane verification

that incorporates symbolic control-plane interfaces.

• We develop a prototype implementation and domain-

specific optimizations that improve on naive approaches.

• Through case studies and experiments, we demon-

strate that p4v is effectively able to find bugs in real-

world programs and provides good performance.

Challenges. There are several challenges that arise when
building a practical P4 verification tool. One issue is that a P4

program is really only half of a program. The contents of the

match-action tables are not known until they are populated

by the control plane at run time. Some verification tasks

can be carried out by over-approximating the behavior of

the control plane—i.e., by non-deterministically executing

any of the actions listed in each table. However, real-world

control-plane programs are often carefully engineered to

coordinate rules installed across multiple tables, so many im-

portant data-plane properties cannot be established without

an understanding of the interactions with the control plane.

Our p4v tool allows the programmer to define a control-
plane interface that constrains the behavior of the data plane,
making it possible to verify that it will behave as specified

when combined with a control plane into a single program.

For example, in our running firewall example, the control-

plane interface might specify that the acl table must execute

the deny action on packets destined for the internal server, as
well as non-IPv4 packets. Under the hood, these constraints

can be incorporated into the data-plane program using sym-

bolic predicates on “ghost variables” that are automatically

inserted by p4v. It is worth noting that the control-plane

interface must currently be written by hand and is not veri-

fied. Automated synthesis of the control-plane interface from

examples is a promising direction for future work.

Another challenge concerns scalability. Although P4 pro-

grams are limited to simple data structures and control flow,

practical programs can be quite large, often running to tens of

thousands of lines of code. In addition, domain-specific con-

structs such as parser state machines andmatch-action tables

have dense conditional structure. This means that standard

software verification approaches, such as symbolic execu-

tion [7], which explicitly traverses all control flow paths in

the program, are unlikely to scale well, at least not out of the

box [30]. In contrast, p4v is based on symbolic techniques

that avoid explicit run-time traversals of the program source

code. In addition, we have incorporated domain-specific op-

timizations that enable p4v to scale to some of the largest

open-source programs that have been written to date.

Implementation and evaluation. We built an implementa-

tion of p4v in OCaml and evaluated its effectiveness and

scalability on a variety of real-world programs. To ensure

that p4v does not inherit bugs that might be present in the

open-source reference implementation of P4, we built an

independent front-end that includes a parser, type checker,

and a simple translation into Dijkstra’s guarded command

language [11] and tested our front-end against several other

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

/* Header Types */
header_type ethernet_t {
fields {
dst_addr :48;
src_addr :48;
ether_type :16;

}
}
header_type ipv4_t {
fields {
pre_ttl :64;
ttl:8;
protocol :8;
checksum :16;
src_addr :32;
dst_addr :32;

}
}
/* Instances */
header ethernet_t ethernet;
header ipv4_t ipv4;

/* Parsers */
parser start

extract(ethernet);
return select(ethernet.ether_type) {

0x800: parse_ipv4;
default: ingress;

}
}
parser parse_ipv4 {

extract(ipv4);
return ingress;

}
/* Actions */
action allow() { }
action deny() { drop(); }
action nop() { }
action rewrite(saddr ,daddr , port) {
modify_field(ipv4.src_addr , saddr);
modify_field(ipv4.dst_addr , daddr);
modify_field(standard_metadata.egress_spec , port);

}

/* Tables */
table acl {
reads {
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { allow; deny; }

}
table nat {
reads {
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { rewrite; nop; }

}
/* Controls */
control ingress {
apply(acl);
apply(nat);

}
control egress { }

Figure 1: Example program: firewall.p4.

implementations, including the P4 compiler and software

simulator for Barefoot’s Tofino chip [51].

The p4v back-end uses the Z3 [9] theorem prover to dis-

charge verification conditions and compute counter-example

traces that can be used for debugging. Using several hundred

lines of control-plane annotations, we successfully verified a

number of critical safety properties for switch.p4, a large
program that handles dozens of different packet formats and

protocols, in under three minutes. We have also used p4v to

validate common optimizations used by P4 compilers, and

to find bugs in existing open-source programs.

2 BACKGROUND ON P4
This section briefly reviews the main features of the P4 lan-

guage to set the stage for the design and implementation of

p4v, which is described in the following sections.

P4 [5, 44] is a domain-specific language organized around

packet-processing abstractions such as headers, parsers, ta-

bles, actions, and controls. The execution of a P4 program

follows a simple abstract forwarding model with five distinct

phases: parsing, ingress processing, replication and queuing,

egress processing, and deparsing [6]. The declarations in a

P4 program define the behavior of each of these phases. Dur-

ing execution, the state comprises the data extracted from

packet headers, metadata supplied by the device (e.g., the

ingress port that the packet arrived on) or computed by the

program, as well as mutable state in counters and registers.

Figure 1 gives the source code for a P4 program that im-

plements the firewall example discussed in the last section.

We illustrate the main features of P4 using this program. The

left part of the figure defines the types of the headers that are

manipulated by this program as well as instances of those

types, one for Ethernet and another for IPv4. These instances

are initially invalid, but can be made valid by the parser,

which is defined in the middle part of the figure. Instances

are statically allocated and globally accessible. In addition to

the instances explicitly defined by the programmer, there is

also an implicit instance for standard_metadata that keeps
track of information such as whether the packet should be

dropped, mirrored, or forwarded out a physical port. The

parser is defined in terms of a finite state machine, where

each state may extract bits out of the packet and copy them

into an instance before transitioning to another state.

The bulk of the actual packet processing occurs in the

ingress control, which executes the acl and nat tables in
sequence. The effect of executing these tables on a given

packet is not determined by the P4 program but rather by

the match-action rules that are installed by the control plane

at run time. Each action comprises an imperative block of

code that manipulates header and metadata instances using

built-in primitive actions such as modify_field and drop.
The trivial egress control does not modify any program

state. The deparser is constructed by the compiler from the

parser state machine, and emits each valid instance in order

of dependency—i.e., ethernet followed by ipv4.

3 DATA-PLANE PROPERTIES
At a high level, one can classify the properties that a P4 pro-

grammer might wish to verify into three categories: general

safety properties, architectural properties, and application-

specific properties. This section discusses each of these cate-

gories using concrete examples as motivation.

General safety properties. P4 abstracts away many device-

specific details, but the language makes trade-offs between

safety and performance to ensure that programs can be ex-

ecuted efficiently on a variety of hardware and software

targets. For example, a header instance can either be valid or

invalid, and reading or writing an invalid header produces

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

an undefined result. Some targets might guarantee that head-

ers are initialized with zeros, but the language specification

does not mandate this behavior as it has a non-trivial cost

on some devices. Rather, implementations are free to return

an arbitrary result—e.g., random bits or the value of the

same header from an earlier packet. While reading an in-

valid header seems innocuous, it can lead to serious bugs,

such as causing the wrong rules to be matched in a table or

leaking information from one packet to the next.

In our running example, reading invalid headers can lead

to violations of the intended access control policy for the

firewall. After the parser completes, the ipv4 header may

either be valid or invalid, depending on the value of the

ether_type field. In particular, when the acl table reads the
ipv4.src_addr and ipv4.dst_addr fields on a non-IPv4

packet, any outcome is possible. Even if the acl has been

carefully populated with “whitelist” rules and a catch-all

drop rule, other packets may be forwarded to internal hosts.

There are several ways we can repair the firewall to ensure

that it never reads or writes invalid headers. For example,

we can wrap the ingress control in a conditional:

if(valid(ipv4)) {
apply(acl);
apply(nat);

}

Alternatively, we can modify acl to read ether_type,

table acl {
reads {

ethernet.ether_type:exact;
ipv4.src_addr:lpm;
ipv4.dst_addr:lpm;

}
actions { allow; deny; }

}

and take care to populate the table with non-wildcard rules

only when ether_type is 0x800. We can capture this as-

sumption by introducing an annotation:

assume read(acl ,ethernet.ether_type) != 0x800
implies wildcard(acl ,ipv4.src_addr)

and wildcard(acl ,ipv4.dst_addr)

Such an annotation is part of the control-plane interface,
which p4v uses to constrain the rules that may be legally

installed in match-action tables. This idiom, where one of

the values read by the table “guards” other values, occurs

often in real-world programs. Control-plane interfaces may

also capture constraints that span multiple tables.

Beyond header validity, there are several other basic safety

properties that are critical for ensuring that programs have

consistent and portable behavior. These properties include

ensuring that header stacks are only ever accessed within

statically declared bounds, that arithmetic operations do not

overflow, and that the compiler-generated deparser emits

all headers that are valid at the end of the egress pipeline.

While these properties are straightforward to verify by hand

in small programs, they can quickly become unmanageable

in larger programs—imagine trying to reason about whether

a given header is valid in the middle of thousands of lines

of code that implement multiple layers of tunneling. Fortu-

nately, because these properties can be checked using simple,

local tests on program state, we can annotate programs with

suitable checks automatically and verify them using p4v.

Architectural properties. In the abstract forwarding model

used to execute P4 programs [5, 6], forwarding decisions

are communicated from the ingress phase to the queuing

and replication phase through standard metadata. For exam-

ple, to indicate that the packet should be forwarded out on

a particular physical port, the ingress control can set the

egress_spec field to the value of that port. The queuing and
replication engine takes the metadata and interprets it, per-

forming actions such as dropping the packet, creating a clone,

or moving the packet across to the egress control. However,
it is easy to make mistakes such as specifying conflicting

forwarding operations (e.g., drop and multicast), specifying

operations that are unimplementable (e.g., recirculating the

packet an excessive number of times), or forgetting to make

a forwarding decision at all, letting the target decide what

to do with the packet. There are also restrictions on certain

metadata fields—e.g., in the egress control, egress_port is

read-only and writes to it are silently ignored.

To ensure that P4 programs behave predictably and are

portable across different targets, it is important to ensure that

metadata is used correctly. For example, we typically want to

ensure that the ingress control either assigns a value to the
egress_spec field or invokes the drop primitive. However,

due to the large variety of packets that arise in practical

programs and the fact that tables are fundamentally non-

deterministic, it can be easy to forget to specify the behavior

on some control paths. For example, in the firewall program,

if we address the issues related to header validity by wrap-

ping both tables in a conditional statement, then packets

that lack a valid ipv4 header will not have a well-defined

forwarding behavior. More subtly, the same issue can arise

with packets that have an ipv4 header. Specifically, consider
what happens if the the packet misses in the acl table and
executes the nop action in the nat table. As should be clear,

we cannot address the problem in either case, without mak-

ing assumptions about the forwarding rules that the control

plane will eventually install in the match-action tables. For

example, we could insist that every packet not blocked by

the acl table must be rewritten by the nat table:

assume action(acl) != deny
implies action(nat) = rewrite

As with safety properties, the p4v tool can automatically

annotate programs with local tests that check for violations

of these and other architectural properties.

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Program-specific properties. Of course, there are also many

properties that are important for ensuring the correctness

of specific programs. For example, the designer of a switch

might want to check that broadcast traffic is handled cor-

rectly, while the designer of a router might want to check

that the IPv4 ttl field is correctly decremented on every

packet. Or, in the firewall example, as discussed previously,

we might want to prove that a given internal server is iso-

lated from the rest of the network. To do this, we can add

annotations to the ingress control in the program itself:

if (valid(ipv4)) {
@pragma assume ipv4.dst_addr == D
apply(acl);
apply(nat);
@pragma assert D == 10.0.0.99 implies drop

}

The first annotation records the value of the IPv4 destination

address using a “ghost variable” D. The p4v tool allows the
programmer to introduce logical variables that facilitate for-

mal reasoning, provided they do not affect the execution of

the program. In this case, D records the initial value of the des-
tination address, prior to possible modifications by the nat
table. The second annotation asserts that if the packet is des-

tined for the internal server (identified by 10.0.0.99), then
it will be dropped after both tables are executed. Again, this

property cannot be proven without making extra assump-

tions about the forwarding rules installed in those tables. For

example, we could stipulate that the appropriate forwarding

rule must be installed in the acl table:

assume reads(acl , ipv4.dst_addr) == 10.0.0.99
implies action(acl) = deny

This annotation, which mentions the particular host needed

to prove a program-specific property, is somewhat unusual.

More commonly the control-plane interface consists of sym-

bolic predicates that express generic constraints on the rules

that may be installed in match-action tables.

4 VERIFICATION METHODOLOGY
This section outlines the techniques we use to verify P4

programs. We closely follow Dijkstra’s classic approach to

program verification based on predicate transformer seman-

tics [11]. That is, we first build a first-order formula that cap-

tures the execution of the program in logic, leveraging the

fact that P4 programs denote functions on finite sequences

of bits (i.e., packets) parameterized on finite state (i.e., switch

registers), and then use an automated theorem prover to

check whether there exists an initial state that leads to a vio-

lation of one or more correctness properties. Although much

of this approach is standard (e.g., it also underpins modern

program verifiers such as Boogie [2] and Dafny [36]) we

review it here for the sake of completeness, and to provide

Variables x
Expressions e
Predicates P ::= e1 = e2 Equality

| P1 ∧ P2 Conjunction
| P1 ∨ P2 Disjunction
| P1 ⇒ P2 Implication
| ¬P Negation

Commands c ::= x := e Assignment
| c1; c2 Sequence
| c1 [] c2 Choice
| assume(P) Assumption
| assert(P) Assertion

Figure 2: Guarded Command Language (GCL).

background for the extensions to this approach, which are

discussed in later sections.

One of the key challenges we faced in building p4v is

that the P4 language lacks formal semantics. The language

specification is generally well-written [44], but the precise

meaning of many constructs is not entirely clear. For exam-

ple, because P4 lacks a static type system, the meaning of

arithmetic operations is not always well-defined: depending

on its bit width, adding x to itself might either produce 2x
or a value less than x if the addition overflows. Worse, if x is
a parameter to an action, its width may be truly arbitrary.

To address this challenge, we defined a translation from

P4 programs to Guarded Command Language (GCL), an

imperative language with non-deterministic choice (see Fig-

ure 2) [11]. We chose to define the semantics of P4 by trans-

lation, rather than developing operational semantics [33, 42],

for several reasons. First, because our semantics is defined

by translation into a core language, it will be easy to add sup-

port for extensions and even new language versions, such

as P416 [45]. To add support for a new language version,

we simply have to update the front-end. Second, using GCL

allows us to leverage decades of prior work on program ver-

ification, including optimizations that are critical for scaling

performance to large programs such as switch.p4.
Our translation is defined in terms of a compositional,

top-down traversal of the P4 program. It handles the full P4

language including parsers, controls, tables, and actions, as

well as parser exceptions, parser value sets, action profiles,

checksums, registers, and meters. The front-end works by

first allocating state for each header and metadata instance,

and then translating each parser, action, and control into a

top-level imperative procedure. Although P4 parsers may

contain loops, we unroll them, following the reference com-

piler, using a simple analysis to detect unproductive cycles

that do not extract any headers from the packet. We use

a variant of a standard type-inference algorithm to assign

types to expressions [48], inserting casts to convert between

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

wlp(x := e,Q) ≜ Q[e/x]
wlp(c1; c2,Q) ≜ wlp(c1,wlp(c2,Q))

wlp(c1 [] c2,Q) ≜ wlp(c1,Q) ∧ wlp(c2,Q)
wlp(assume(P),Q) ≜ P ⇒ Q
wlp(assert(P),Q) ≜ P ∧Q

Figure 3: Verification conditions for GCL.

boolean values and bit values and adjust widths and signs as

appropriate. Whenever we encountered a P4 construct with

unclear semantics, we discussed the intended behavior with

key members of the open-source community to ensure that

our interpretation was consistent with their expectations.

The most interesting aspect of the translation is the case

for match-action tables. As tables are populated by the con-

trol plane, we do not know which action (if any) will be

executed on the packet. Accordingly, we translate each table

application into a non-deterministic choice between the ac-

tions declared for the table and, if the table doesn’t declare

a default action, a “no-op” action for when the table misses.

For example, the translation of apply(acl) is the following:

assume(true) [] allow() [] deny()

The first command encodes a “no-op” operation for the case

where the packet misses in the table.

We have successfully run our front-end on all the pro-

grams in the test suite distributed with the reference P4

compiler, among others. To ensure that the p4v front-end

captures the intended semantics of P4, we developed a tool

that symbolically executes the GCL code to generate input-

output tests. We ran these tests on the P4 compiler and soft-

ware simulator for Barefoot’s Tofino chip. Hence, we have

strong evidence that our “tested semantics” is consistent

with existing implementations of P4 [23].

To verify the GCL code, we first compute a formula that

captures the weakest constraints on the initial state that

are sufficient to ensure that no assertion will fail, and we

check whether the predicate is valid using the Z3 theorem

prover [9]. If the formula is not valid, Z3 gives us a counter-

example that we can convert into a concrete trace through

the program [37]. We have found these counter-example

traces invaluable when debugging large programs.

Figure 3 gives the formal definition of a function wlp (for
weakest liberal preconditions [11]) that computes verifica-

tion conditions for a GCL command c and postcondition

Q , which is initially true. Most of the cases are intuitive:

assignment substitutes the expression for the variable in

the postcondition, sequential composition threads the post-

condition through c2 then c1, and non-deterministic choice

computes the conjunction of the weakest preconditions for

c1 and c2. The cases for assumptions and assertions han-

dle annotations used in program-specific properties such as

Tables t
Actions a
Keys k
Expressions e ::= . . .

| reach(t) Reaches
| reads(t ,k) Reads
| wildcard(t ,k) Wildcarded
| hit(t) Hits
| miss(t) Misses
| action(t) Action
| action_data(t ,a,x) Action data

Figure 4: Expressions used in control-plane interfaces.

the firewall example. Assumptions produce an implication

from the assumed formula to the postcondition, while asser-

tions conjoin the asserted formula with the postcondition.

The verification conditions for a P4 program p are given by

wlp(c, true), where c is the translation of p into GCL.

5 CONTROL-PLANE INTERFACE
By itself, a P4 program does not fully specify the semantics of

a data plane, which makes it impossible to fully verify many

programs without additional knowledge of the control plane.

One way to work around this problem is to delay verification

until the forwarding rules are known. By combining the pro-

gram and the forwarding rules, one obtains a deterministic

program that can be verified. Indeed, a recently proposed

tool based on symbolic execution follows this approach [19].

However, this approach has several drawbacks: it changes

verification from a compile-time to a run-time task, and it re-

quires repeatedly verifying the program every time the rules

change, which would become expensive if done naively.

We follow a different approach in p4v: we constrain the

behavior of the control plane using symbolic constraints

in a control-plane interface. Figure 4 defines syntax for the
additional expressions that can be used to define the control-

plane interface. The expression reach(t) is set to 1 if the exe-

cution reaches an application of t . The expression reads(t ,k)
is set to the data-plane value read by t identified by k . Sim-

ilarly, wildcard(t ,k) evaluates to 1 if the value identified

by k is matched against an all-wildcard pattern. The ex-

pressions hit(t) and miss(t) evaluate to 1 if executing the

table hits and misses respectively. Finally, the expression

action_data(t ,a,x) returns the value of the action data for

parameter x in action a of table t .
Note that the control-plane interface is formulated using

symbolic constraints on the data-plane execution—i.e., we do

not need to specify the exact values of the forwarding rules

that will be installed into the match-action tables at run time.

In fact, we can go a step further and write down constraints

that involve multiple tables. For example, we can stipulate

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

[Result]	Passed																													

GCL Program

Control-Plane
Interface

Source
Program

Inlined

Passivized

Optimized

Verification
Conditions

Instrumented

[Result]	Failed
[Counterexample]
[Parser]	start
[Parser]	_parse_ethernet
[Packet]	ethernet.dst_addr	=	0x000000000000
[Packet]	ethernet.src_addr	=	0x000000000000
[Packet]	ethernet.ether_type	=	0xf7ff
[Assert]	(not	(=	ipv4.valid	1w0))

✘

✔

Annotated

Figure 5: p4v system architecture.

that if table t hits, then table u must also hit, or that if table

t executes action a, then table u must execute action b or

action c . We used such multi-table assumptions in verifying

properties of switch.p4—e.g., to rule out cases where an

IPv4 packet processed by a table early in the pipeline is then

processed using actions for IPv6 packets later in the pipeline.

A natural question to ask at this point is how these control-

plane assumptions are integrated into the program. The next

section presents the implementation in detail, but the high-

level idea is as follows: we instrument the program with

ghost variables to keep track of which tables and actions

are executed, we translate the control-plane interface into a

logical formula involving those ghost variables, and finally

we predicate every assertion in the program on this formula.

A limitation of our approach is that we require program-

mers to write control-plane interfaces by hand. While it is

likely that many interfaces could be automatically inferred,

the tool does not currently provide this functionality. In ad-

dition, the control-plane interface is unverified code: overly

constraining the control plane may ease data-plane verifica-

tion but make it difficult or even impossible to implement

the control plane. One way to guard against this situation

is to statically check that the control-plane interface can be

satisfied, and dynamically check that it is compatible with

the rules actually installed at run time. For the latter task,

we can use p4v itself, by combining the P4 program and the

forwarding rules into a deterministic program as described

earlier. In the future, we plan to explore more sophisticated

approaches such as building an efficient run-time monitor

or even statically verifying the control-plane code itself.

6 IMPLEMENTATION
This section discusses our p4v implementation, which com-

prises approximately 17,500 lines of OCaml code. Figure 5

shows the overall architecture, with each of the intermediate

representations produced during verification of a program.

Parsing and type checking. The first phase of the p4v front-
end parses and type-checks the P4 program. This phase is

mostly standard, although some care is needed when infer-

ring types—P414 is an untyped language, and yet the seman-

tics of many arithmetic operations depends on the types of

the operands. Our tool uses a standard algorithm to generate

and solve type constraints [48]. We resolved ambiguities in

the language specification by consulting with the developers

of the open-source reference implementation of P4.

To gain further confidence in our semantics, we tested it

using Barefoot’s proprietary P4 compiler. We built a sym-

bolic executor for GCL and combined it with Z3 to create

a tool for generating packet tests and table configurations,

similar to p4pktgen [43]. Some modifications to the GCL

translation were required to model Tofino-specific features

and primitives. We then used this tool to generate tests for a

variety of programs, including a Tofino-specific variant of

switch.p4. We ran the generated tests on a software model

of the Tofino chip and checked that they passed.

Instrumentation. The next phase of the front-end instru-
ments the program with “zombie” state that keeps track of

information about the execution of tables and actions at

run time.
1
The zombie state for each table records: whether

the table was reached, which values were read by the table,

whether the packet hit or missed, which action was exe-

cuted, and which action data was supplied to the action. For

example, given the following source program,

action a(x) { modify_field(m.g, x); }
table t {
reads { m.f:exact; }
actions { a; }

}
...
apply(t);

p4v generates the following instrumented program:

_p4v_zombie.reach_t := 1;
_p4v_zombie.reads_t := m.f;
{ /* Code for miss */

_p4v_zombie.hit_t := 0; }
[]
{ /* Code for hit with action a */

_p4v_zombie.hit_t := 1;
_p4v_zombie.t_a_x := <?>;
_p4v_zombie.action_t := 1;
m.g := _p4v_zombie.t_a_x }

Here, <?> denotes an arbitrary “havoc” value, as the action

parameter is supplied by the control plane and is unknown.

1
We call this extra state “zombie” state because it is ghost state for the

control plane, which is the “brains” of the network.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

Inlining. The next phase uses a standard inlining algorithm
to eliminate procedure calls and generate a GCL command

that captures the semantics of the original P4 program. Inlin-

ing enables other optimizations and simplifies verification-

condition generation but it can dramatically increase the size

of the program, since it expands each procedure call into

its body. Fortunately, by taking advantage of the domain-

specific structure of P4 programs, we can avoid this blowup

in some important cases. Recall the parser for the firewall

example in Figure 1, which handles Ethernet and IPv4. If

we naively inline the calls to ingress, we will end up with

two copies of the code for the rest of the program. However,

because the last statement in every parser state is a tran-

sition to another state (or an error handler), we can place

one copy of the ingress code at the end of the start state,

and allow the other paths to simply “fall through” to this

code. This optimization significantly improves performance

in programs with complex parsers.

Annotation. The next program transformation weaves the

control-plane interface into the P4 program. The main chal-

lenge in doing this is overcoming the mismatch between

the control plane’s global, table-oriented perspective, and

data plane’s local, packet-oriented perspective. In particular,

because the control-plane interface may contain constraints

that involve multiple tables, weaving the constraints into

the program is non-trivial. The p4v tool first converts the

control-plane interface into a logical formula, using the ghost

variables inserted during an earlier phase, and then predi-

cates every assertion in the program on the resulting formula.

For example, if I is the formula corresponding to the control-

plane interface, then the translation maps an occurrence of

assertion assert(P) to assert(I ⇒ P). The effect is to treat the

control-plane interface as being in force at every program

point. It follows that the programmer must not write con-

straints that are only valid at specific program points. This

is not difficult to do in practice—e.g., we can predicate the

constraint action(t) == a on the assumption reach(t).

Passivization. Careful readers may have noticed that the

algorithm for generating verification conditions shown in

Figure 3 is exponential in the worst case. The blowup re-

sults from the cases for assignment, which substitutes an

expression for each copy of a variable in the predicate, and

for choice, which contains two copies of the postcondition.

A seminal paper by Flanagan and Saxe [16] developed an

alternate algorithm that generates predicates that are only

quadratic in the size of the program. The key insight behind

their algorithm is to convert programs into “passive form,”

similar to single-static assignment, where every assignment

is replaced with an assumption about the state of the pro-

gram at that point. We rely on their efficient algorithm in

p4v—indeed, it is critical to scale up to large programs.

Optimizations. The next phase implements several stan-

dard compiler optimizations, such as constant propagation

and dead code elimination, to shrink the size of the program,

and ultimately the size of the formula that must be passed to

the SMT solver. These optimizations are key for improving

the overall performance of p4v—e.g., checking header valid-

ity for switch.p4 with these optimizations disabled did not

terminate after 10 minutes. Note, however, that like the rest

of the p4v front-end, these optimizations must be trusted—a

bug could cause the tool to produce an incorrect result.

Verification conditions. The next phase takes the optimized,

passive program and uses the Flanagan-Saxe algorithm to

generate verification conditions, producing a single logical

formula that we hand off to the Z3 theorem prover. To check

whether the formula is valid, we ask Z3 if its negation is sat-

isfiable. If not, then the program is guaranteed to be correct,

because the weakest preconditions are valid. On the other

hand, if it is satisfiable, then Z3 returns a model that provides

a counter-example to the property being checked.

Counter-example generation. In the case where verification
fails, the final step is to convert the model produced by Z3

back into a human-readable trace [37]. We use depth-first

search on the program to find some assertion whose formula

evaluates to false in the model, and then trace our steps back-

wards to populate the rest of the trace. We report the initial

value of the packet headers, and the sequence of parser states

and tables executed to reach the failed assertion. Figure 5

gives an example of a counter-example trace.

7 CASE STUDIES
This section presents our experiences verifying a variety of

properties on a range of real-world programs using p4v.

7.1 Header validity for switch.p4
In the first case study, we verified that switch.p4 never

accesses a field of an invalid header. As discussed previously,

this general safety property should hold in every program to

avoid undefined behavior. It is also an interesting property

to study because it requires reasoning about nearly every

line of code in the program.

As background, switch.p4 is a large program that con-

sists of roughly 5600 lines of code and implements essentially

all of the functionality found on a modern data center switch,

including L2 switching, L3 routing, multicast, LAG, ECMP,

tunneling, ACLs, MPLS, multi-device fabrics, and mirror-

ing. These features can be selectively enabled or disabled to

save resources, allowing for sets of feature configurations.
We conducted our case study using the default configura-

tion with in-band network telemetry disabled. This modified

configuration has 58 parse states and 120 tables in total.

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

We used p4v to automatically insert an assertion before

each read or write of a header field that checks whether the

corresponding header instance is valid at that program point.

For example, just before the following P4 statement,

modify_field(mpls [0].bos , 0x1);

p4v would insert the annotation,

assert valid(mpls [0]. valid)

which checks that mpls[0] is valid at the point of access.

Verification took 2 minutes 48 seconds on an Intel Core i7-

7500U laptop with 23GiB RAM and required a control-plane

interface with 143 distinct clauses (769 lines of code), along

with 38 single-line pragmas to specify ghost variables for

representing the validity of various headers at key points in

the program. The annotations can be categorized as follows:

• Default actions: switch.p4 does not assign default ac-

tions to many tables, but the control plane initializes

all tables with a default action. Annotations describing

default actions were needed for 31 of 120 tables.

• Inter-device fabric traffic: switch.p4 assumes that inter-

device fabric traffic is well-formed—e.g., if the packet

has been classified as ordinary unicast, then none of

the tunnel headers should be valid. 14 annotations

express these well-formedness properties.

• Table actions: A P4 table supports all combinations of

matches and actions, but the control plane rarely in-

tends to use all combinations. 66 annotations explicitly

disallow specific nonsensical action combinations.

• Table reads: Some tables match on the validity of a

header while at the same time performing a ternary

match on one of its fields. This could result in an un-

defined read unless the ternary match has “don’t care”

bits in every rule where validity is false. 10 annota-
tions fall in this category.

• Action data: 14 annotations stipulate that only certain

values will be supplied as parameters to actions.

The remaining annotations correspond to bugs in switch.p4,
where each additional annotation is akin to an XFAIL, de-

scribing known bad behavior. In total, we found 10 bugs in

switch.p4. Two were parser bugs, which parsed packets

that were not supported by the rest of the pipeline. For exam-

ple, the parser allowed L3 Geneve tunnels (which do not have

an inner Ethernet header), whereas the tunnel-decapsulation

code assumed L2 Geneve tunnels only and unconditionally

copied the inner_ethernet header. One bug was an order-

of-operations error, in which fields were modified in a header

before the header was added. Two bugs were in tables that

incorrectly permitted the nop action to be taken. Another

bug was in the actions for terminating L3 MPLS tunnels,

which erroneously read the inner_ethernet header. Three

bugs correspond to multi-table constraints that the designers

of switch.p4 believe hold, but do not see how to enforce

using the control plane. The final bug was found in which a

table read invalid state in its match key.

Overall, the control-plane interface for switch.p4was de-
veloped by a single programmer working for approximately

three days in aggregate, spread over two weeks. All told, we

found the annotation burden reasonable. The annotations

total roughly 14% of the lines of P4 code, but this represents

only a very small fraction of the tens of thousands of lines

of code that make up the control plane. Moreover, two p4v
features greatly eased the burden: fast verification times and

intuitive counterexample traces, which quickly pointed the

way to identifying missing control-plane assumptions.

7.2 NetCache parser roundtripping
In the second case study, we attempted to verify an important

architectural property for NetCache, a program that imple-

ments an in-network key-value store on a P4-programmable

target [29]. Many P4 targets, including PISA [5, 6], deparse

the headers into a byte stream at the end of the ingress

pipeline, and then reparse the byte stream back into headers

after replication and queuing and before executing the code

in the egress pipeline. To prevent data from being corrupted

or lost, it is important that the programmer-specified parser

and compiler-generated deparser compose to the identity

function. For example, if the IPv4 header is removed in the

ingress pipeline, but the programmer neglects to set the

EtherType field to a new value, then the egress parser will

attempt to populate the IPv4 header using bits from another

header or the packet payload, producing a mangled result.

We used p4v to automatically insert assertions into Net-

Cache to check that the information in each header is cor-

rectly preserved when processed using the deparser and the

parser. For example, at the end of the ingress pipeline, p4v
inserts assumptions to record the validity of the Ethernet

header and the values of its fields as ghost variables:

assume _p4v_roundtrip.ethernet.valid
iff valid(ethernet);

assume _p4v_roundtrip.ethernet.dst_addr ==
ethernet.dst_addr;

assume _p4v_roundtrip.ethernet.src_addr ==
ethernet.src_addr;

assume _p4v_roundtrip.ethernet.ether_type ==
ethernet.ether_type;

At the start of the egress pipeline, it inserts the following

assertions to check that the Ethernet header is preserved on

the round-trip through the deparser and the parser.

assert valid(ethernet)
iff _p4v_roundtrip.ethernet.valid == 1;

assert valid(ethernet)
implies _p4v_roundtrip.ethernet.dst_addr ==

ethernet.dst_addr
and _p4v_roundtrip.ethernet.src_addr ==

ethernet.src_addr
and _p4v_roundtrip.ethernet.ether_type ==

ethernet.ether_type;

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

action set_mirror_bd(bd) {
modify_field(egress_metadata.bd, bd);

}
table mirror {
reads { i2e_metadata.mirror_session_id : exact; }
actions {
nop;
set_mirror_nhop;
set_mirror_bd;

}
}
action outer_replica_from_rid(bd, ...) {

modify_field(egress_metadata.bd, bd); ...
}
action inner_replica_from_rid(bd, ...) {
modify_field(egress_metadata.bd, bd); ...

}
table rid {
reads { intrinsic_metadata.egress_rid: exact; }
actions {
nop;
outer_replica_from_rid;
inner_replica_from_rid;

}
}

Figure 6: Action dependency between tables.

We wrote a control-plane interface with 93 annotations

that specify the default actions of tables. This interface,

which was derived in a few minutes from the static control-

plane provided with NetCache, was sufficiently strong to

establish header validity, with one exception. It turns out the

NetCache header may be invalid after parsing, but is always

accessed at the start of the ingress pipeline. We added an

extra annotation to limit verification to packets with a valid

NetCache header.

Unfortunately, the round-tripping property fails to hold

for NetCache. It took p4v 3 minutes 35 seconds to discover

this and print a counter-example on an Intel Core i7-7500U

laptop with 23GiB RAM. NetCache uses a packet format with

standard Ethernet, IPv4, and UDP headers, followed by a

custom header containing an op-code and key, and finally an

optional header containing a value. Together, these headers

encode operations such as get(k) and put(k,v). The root of
the bug is in the P4 implementation of the put(k,v) operation:
the code correctly writes the value v into stateful registers

and invalidates the optional header but it fails to update the

op-code. Hence, the egress parser attempts to re-parse the

optional value header. If the packet is sufficiently long then

it will extract the required bits from the payload, but if it

is not, then the parser will transition to an error state and

the packet will be dropped. We reported this issue to the

NetCache developers who confirmed it is indeed a bug.

7.3 NetPaxos bug
In the third case study, we analyzed an application-specific

property of NetPaxos [8], a P4 implementation of the Paxos

consensus protocol [35]. As originally discovered by the de-

velopers of P4-Assert [19], the published P4 implementation

of NetPaxos contains a serious bug: the action that compares

the round number from the arriving packet with the round

number stored at the switch sets the drop flag of the arriv-

ing packet by default, under the assumption that the packet

should be dropped. However, the code does not reset the drop

flag if the round number in the packet is greater than the

stored round number. As a result, consensus is not reached.

We were able to identify the root cause of this bug adding

an assumption and assertion that, together, state that if the

Paxos header is valid, and the round number of the packet is

greater than the round number at the switch, then the packet

should not be dropped.

assume valid(paxos)
implies local_metadata.round <= paxos.rnd

assert valid(paxos)
implies local_metadata.set_drop == 0

On an Intel Core i7-7500U laptop with 23GiB RAM, it took

p4v 159 milliseconds to produce a counter-example trace

that exercises the bug. We also confirmed that the bug is
present by inverting the assertion:

assert valid(paxos)
implies local_metadata.set_drop == 1

This case study illustrates another use case for p4v: assert-
style debugging. Hardware targets don’t typically come with

debuggers, making it difficult to diagnose the root causes of

observed anomalies. By adding an assertion that captures

the correct (non-anomalous) behavior of a program with a

bug, we can use p4v to generate a counterexample trace. In

the case of NetPaxos, the first counterexample returned by

p4v indicated a missing control-plane annotation, and the

second counterexample identified the actual bug.

7.4 Enabling compiler optimizations
In the fourth case study, we explored how p4v can be used to

enable compiler optimizations that would be difficult or im-

possible to implement using traditional analysis techniques.

Table placement is one of the key tasks performed by a P4

compiler, which attempts to maximize parallelism while re-

specting data dependencies. However, since the compiler

lacks information about how the tables will be populated

with rules by the control plane, it is often difficult to deter-

mine which dependencies are genuine and which are spu-

rious. Using p4v and a suitable control-plane interface, we

can verify that certain apparent dependencies are spurious.

To illustrate, consider Figure 6, which is based on code

from switch.p4. The mirror and rid tables each contain

an action that modifies metadata for the L2 bridge domain

(egress_metadata.bd). In the absence of a control-plane

interface, the compiler conservatively assumes that the ta-

bles may execute any of their actions, and allocates them in

different stages. But assuming these tables are configured so

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Total No CP interface Control-plane interface
header Memory Memory

Parse length Uses Time (MiB) Time (MiB)
Program LOC states Tables (bytes) state (mm:ss.s) p4v z3 # Lines (mm:ss.s) p4v z3

simple_router 63 3 1 34 ✗ 0.05 30 15 0 0 — — —

calc 304 3 1 30 ✗ 0.06 31 15 0 0 — — —

easyroute 53 3 1 13 ✗ 0.06 30 16 1 2 0.06 30 15

flowlet_switching 246 4 7 54 ✓ 0.06 31 15 0 0 — — —

dead_drop 469 3 2 32 ✓ 0.07 32 15 0 0 — — —

paxos 205 5 4 90 ✓ 0.07 32 18 0 0 — — —

fox_fastflow 498 4 2 42 ✓ 0.07 33 16 1 1 0.11 33 20

vpc 272 6 10 68 ✗ 0.08 31 17 4 9 0.08 31 17

axon 99 6 2 29 ✗ 0.15 32 24 3 9 0.09 32 16

tor 456 10 13 96 ✓ 0.18 34 23 10 50 0.15 34 19

fox_2110 506 6 1 62 ✓ 0.19 34 29 1 1 0.20 34 29

netcache 538 17 96 187 ✓ 0.20 36 25 9 17 0.20 36 19

stful 1,167 10 27 58 ✓ 0.21 37 32 0 0 — — —

linear_road 846 14 24 59 ✓ 0.23 34 43 1 5 0.19 34 40

nat 293 5 6 65 ✗ 0.50 32 115 3 9 0.43 32 102

prog1 530 28 1 124 ✗ 3.41 129 43 0 0 — — —

ndn 495 31 7 2,357 ✓ 3.42 246 15 0 0 — — —

tlv_parsing 189 8 1 92 ✗ 6.49 174 89 3 8 6.42 190 90

prog2 536 7 10 78 ✗ 16.77 42 370 2 13 35.15 42 377

dapper 605 11 17 78 ✓ 49.35 1,051 527 2 3 49.34 1,051 522

switch 5,599 58 120 182 ✓ 2:36.11 444 2,761 143 769 2:47.51 576 1,521

prog3 929 33 5 140 ✗ 19:09.03 488 2,688 — — — — —

hyperp4 11,173 16 537 100 ✗ — 179 (OOM) — — — — —

Figure 7: Experimental results conducted on an Intel Core i7-7500U laptop with 23GiB RAM. The standard error
for each result is within 5% of the reported mean.

that replication and mirroring are only applied to L3 packets

simultaneously, it is safe to place them in the same stage.

Formally, we can capture the absence of an action depen-

dency as follows:

assert not
((action(rid) == inner_replica_from_rid or

action(rid) == outer_replica_from_rid) and
action(mirror) == set_mirror_bd)

Intuitively, this assertion states that no packet may be pro-

cessed using actions from rid and mirror that modify the

same L2 bridge domain metadata. Next, we annotate the pro-

gramwith ghost variables to record the values of egress_rid
and mirror_session_id at the start of the egress pipeline:

assume
R == intrinsic_metadata.egress_rid and
M == i2e_metadata.mirror_session_id

Finally, we add a constraint stipulating that the mirror table
must not apply its L2 action (set_mirror_bd) to packets

that are both replicated and mirrored—i.e., to L3 packets:

assume
(R != 0 and
M == reads(mirror ,

i2e_metadata.mirror_session_id))
implies

not(action(mirror) == set_mirror_bd)

With these annotations, p4v can verify that the actions are

disjoint, allowing it to optimize the placement of the tables.

We plan to integrate p4v with the P4 compiler to optimize

resources such as storage for header instances in future work.

8 EVALUATION
To evaluate the performance of p4v, we conducted exper-

iments on a diverse collection of open-source and propri-

etary programs that vary in size and complexity. These pro-

grams implement a wide range of functionality, including

conventional forwarding, source routing, data center routing,

content-based networking, performance monitoring, com-

plex packet parsing, and in-network processing. We devel-

oped a control-plane interface for all but two programs, and

verified the header validity property—i.e., during every exe-

cution of the program, is every header valid when it is read

or written. We believe that header validity is a good prop-

erty for benchmarking as it is a global property that requires

reasoning about nearly all control-flow paths.

The results of our experiments are given in Figure 7. We

report running times and memory usage with and without

control-plane interfaces, along with statistics about the pro-

grams: lines of code, parser states, match-action tables, total

header lengths, use of stateful features, and total annotations

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

pr
og

1

nd
n

tlv
_p

ar
si

ng

tlv
_p

ar
si

ng
+i

fa
ce

pr
og

2

pr
og

2+
ifa

ce

da
pp

er

da
pp

er
+i

fa
ce

sw
itc

h

sw
itc

h+
ifa

ce

pr
og

3

0%

20%

40%

60%

80%

100%

Z3
VCGen
Passivize
Optimize
Type
Inline
Translate

Figure 8: Performance breakdown by phase of verification for benchmark programs that required more than one
second of running time to complete.

and lines of code in control-plane interfaces. All tests were

done on an Intel Core i7-7500U laptop with 23GiB RAM.

Each experiment consisted of ten trials, and the results have

standard error within 5% of the reported means.

The first point to notice is that most programs can be

checked in under a minute—and in well under a second for

many. For those programs that took more than a second,

Figure 8 depicts the performance breakdown by each phase

of verification. The programs with the longest running times

are switch, dapper, and prog3, each of which are large and

have complex state and control-flow. Another observation is

that adding annotations can increase verification time. We

believe there are two main reasons for this: (i) adding anno-

tations increases the size of the program, and hence the size

of the formula passed to Z3, and (ii) showing that a formula

is unsatisfiable generally takes longer than showing that it is

satisfiable—the former requires considering all possible mod-

els, while the latter only requires finding a single model of

the formula. Finally, we note that our current p4v prototype

does have some limitations: the tool failed to complete on

HyperP4 [24], a complex program that implements virtual

data planes, as Z3 ran out of memory.

Overall, these results show that p4v scales to real-world
programs and provides a sufficiently high level of perfor-

mance that it could be used in everyday work.

9 RELATEDWORK
There are now more than 50 years of research on software

verification. Hence, we are truly “standing on the shoulders

of giants” such as Hoare [27] and Dijkstra [11], as well as

recent tools such as ESC-Java [15], Boogie [2], andDafny [36].

The main conceptual innovation in our tool is the use of

zombie state to track assumptions about the control-plane

interface to a P4 program. This approach can be seen as an

instance of more general techniques for reasoning about

unknown behavior in program analysis tools (e.g., see the

article by Dillig et al. [12] for an overview), but we exploit

the fact that P4 programs are loop-free.

Early work by Xie et al. [54] proposed the idea of network

verification and developed techniques based on computing

the transitive closure of transfer functions to statically ana-

lyzing device configurations to check reachability properties.

HSA [32] and Veriflow [34] later applied this methodology

to software-defined networking data planes, and developed

optimized data structures to represent transfer functions to

enable verification to scale. NetKAT [1] emerged from an

earlier effort to develop a machine-verified implementation

of the language in Coq [22] but added a sound and complete

decision axiomatization and a decision procedure based on

an automata representation [18]. Recent work in the area has

focused on optimizations based on clever data structures [4],

atomic predicates [55], and exploiting symmetry [47].

Control-plane verification is fundamentally more diffi-

cult than data-plane verification. Intuitively, a control plane

can be thought of as generating a sequence of data planes,

each of which must be verified. In addition, control-plane

protocols typically have complex policies to facilitate inter-

actions between multiple autonomous systems. Early work

p4v: Practical Verification for Programmable Data Planes SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

on RCC [14] focused on finding bugs in BGP configurations

but was neither sound nor complete. Recent tools such as

Batfish [17], ARC [20], and Minesweeper [3] have developed

efficient heuristics and abstract representations of control

plane that allow verification to scale to much larger problems.

Bagpipe [53] developed a mechanized semantics of BGP.

Middlebox verification is fundamentally more difficult

than data-plane verification due to the pervasive use of state.

The problem is undecidable in the general case butmany com-

mon topologies and network functions remain tractable [52].

Recent work has focused on scaling verification using tech-

niques such as abstract interpretation [13, 46, 50, 56]. P4 pro-

grams have bounded state, which keeps verification tractable.

Several other recent projects propose semantics and veri-

fication techniques for P4 programs. Early work by Lopes et

al. developed an operational semantics for P4 and developed

a tool based on Datalog for automatically verifying safety

properties and checking program equivalence [42]. Subse-

quent work by Kheradmand and Rosu developed a complete

operational semantics for P4 in the the K framework and

proposed applications including a symbolic model checker

and deductive verification tool [33]. Nötzli et al. developed

p4pktgen, a tool that uses symbolic execution to generate

an exhaustive set of input-output tests for a P4 program [43].

Freire et al. developed p4-assert, which translates P4 to

a C-like representation and then uses Klee to symbolically

execute the resulting program [19]. Finally, Stoenescu et al.

developed Vera [49], which uses SymNet [50] a symbolic

execution framework that uses network-specific algorithms

and data structures, to verify P4 programs efficiently. A re-

cent empirical study found that symbolic execution often

outperforms tools based on verification condition generation,

except when the program being verified is “branchy” [30].

P4 programs typically have dense conditional structure.

10 CONCLUSION
This paper presented p4v, a practical tool for verifying P4

data plane programs. It demonstrated that p4v scales to large
programs and finds bugs in real-world implementations. In

the future, we plan to investigate a number of follow-on

questions. We would like to extend the P4 language with

domain-specific constructs for specifying control-plane in-

terfaces. Such constructs might provide intuitive abstraction

for specifying properties such as “these tables are accessed

by disjoint sets of packets” or even “these applications never

generate conflicting rules.” We are also interested in explor-

ing applications of program synthesis—e.g., automatically

generating control-plane interfaces from example traces. Fi-

nally, we are interested in exploring questions lower down

the stack, building verified compilers for P4 and even veri-

fied hardware, as well as higher up the stack, investigating

whether we can effectively map down to verified P4 imple-

mentations from high-level descriptions of network behavior,

such as state machines and message sequence diagrams.

ACKNOWLEDGMENTS
We thank Michael Attig, Antonin Bas, Chris Dodd, Vladimir

Gurevich, Theo Jepsen, Changhoon Kim, Prathima Kotikala-

pudi, Ramkumar Krishnamoorthy, Xin Jin, and Dan Lenoski

for productive discussions related to the design of p4v and
for assistance with the P4 compiler and Tofino software

simulator. We thank Amin Vadhat, Steffen Smolka, George

Varghese, participants at IFIP WG 2.8 Asilomar, the anony-

mous SIGCOMM reviewers, and our shepherd Costin Raicu

for many helpful suggestions.

REFERENCES
[1] Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D.,

Schlesinger, C., and Walker, D. NetKAT: Semantic foundations for

networks. In POPL (2014), pp. 113–126.

[2] Barnett, M., Chang, B.-Y. E., Deline, R., Jacobs, B., and Leino,

K. R. M. Boogie: A modular reusable program verifier for object-

oriented programs. In Formal Methods for Components and Objects
(2005), pp. 364–387.

[3] Becket, R., Gupta, A., Mahajan, R., and Walker, D. A general

approach to network configuration verification. In SIGCOMM (2017),

pp. 155–168.

[4] Bjørner, N., Juniwal, G., Mahajan, R., Seshia, S. A., and Varghese,

G. ddNF: An efficient data structure for header spaces. In Haifa
Verification Conference (2016), pp. 49–64.

[5] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rex-

ford, J., Schlesinger, C., Talayco, D., Vahdat, A., Varghese, G., and

Walker, D. P4: Programming Protocol-Independent Packet Processors.

SIGCOMM CCR 44, 3 (July 2014), 87–95.

[6] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Iz-

zard, M., Mujica, F., and Horowitz, M. Forwarding Metamorphosis:

Fast Programmable Match-Action Processing in Hardware for SDN.

In SIGCOMM (2013), pp. 99–110.

[7] Cadar, C., Dunbar, D., and Engler, D. KLEE: Unassisted and auto-

matic generation of high-coverage tests for complex systems programs.

In OSDI (2008), pp. 209–224.
[8] Dang, H. T., Canini, M., Pedone, F., and Soulé, R. Paxos made

switch-y. SIGCOMM CCR 46, 2 (May 2016), 18–24.

[9] de Moura, L., and Bjørner, N. Z3: An efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems (2008),
pp. 337–340.

[10] de Moura, L., and Bjørner, N. Satisfiability modulo theories: Intro-

duction and applications. CACM 54, 9 (2011), 69–77.
[11] Dijkstra, E. W. Guarded commands, nondeterminacy, and formal

derivation of programs. CACM 18, 8 (1975), 453–457.
[12] Dillig, I., Dillig, T., and Aiken, A. Reasoning about the unknown in

static analysis. CACM 53, 8 (2010), 115–123.
[13] Dobrescu, M., and Argyraki, K. Software dataplane verification.

CACM 58, 11 (2015), 113–121.
[14] Feamster, N., and Balakrishnan, H. Detecting BGP configuration

faults with static analysis. In NSDI (2005), pp. 43–56.
[15] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe,

J. B., and Stata, R. Extended static checking for Java. In PLDI (2002),
pp. 234–245.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Liu, et al.

[16] Flanagan, C., and Saxe, J. B. Avoiding exponential explosion: Gener-

ating compact verification conditions. In POPL (2001), pp. 193–205.

[17] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan,

R., Mahajan, R., and Millstein, T. A general approach to network

configuration analysis. In NSDI (2015), pp. 469–483.
[18] Foster, N., Kozen, D., Milano, M., Silva, A., and Thompson, L. A

coalgebraic decision procedure for NetKAT. In POPL (2015), pp. 343–

355.

[19] Freire, L., Neves, M., Leal, L., Levchenko, K., Schaeffer-Filho, A.,

and Barcellos, M. Uncovering bugs in P4 programs with assertion-

based verification. In SOSR (2018), pp. 4:1–4:7.

[20] Gember-Jacobson, A., Viswanathan, R., Akella, A., and Mahajan,

R. Fast control plane analysis using an abstract representation. In

SIGCOMM (2016), pp. 300–313.

[21] Gu, R., Shao, Z., Chen, H., Wu, X. N., Kim, J., Sjöberg, V., and

Costanzo, D. Certikos: An extensible architecture for building certi-

fied concurrent OS kernels. In OSDI (2016), pp. 653–669.
[22] Guha, A., Reitblatt, M., and Foster, N. Machine-verified network

controllers. In PLDI (2013), pp. 483–494.
[23] Guha, A., Saftoiu, C., and Krishnamurthi, S. The essence of

JavaScript. In ECOOP (2010), pp. 126–150.

[24] Hancock, D., and Van der Merwe, J. HyPer4: Using P4 to virtualize

the programmable data plane. In CoNEXT (2016), pp. 507–508.

[25] Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R., Parno, B.,

Roberts, M. L., Setty, S., and Zill, B. Ironfleet: Proving practical

distributed systems correct. In SOSP (2015), pp. 1–17.

[26] Hira,M., andWobker, L. Improving networkmonitoring andmanage-

ment with programmable data planes. P4 Language Consortium Blog,

Sept. 2015. Available at https://p4.org/p4/inband-network-telemetry/.

[27] Hoare, C. A. R. An axiomatic basis for computer programming. CACM
12, 10 (1969), 576–580.

[28] Jin, X., Li, X., Zhang, H., Foster, N., Lee, J., Soulé, R., Kim, C., and

Stoica, I. NetChain: Scale-free sub-RTT coordination. In NSDI (2018),
pp. 35–49.

[29] Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and

Stoica, I. NetCache: Balancing key-value stores with fast in-network

caching. In SOSP (2017), pp. 121–136.

[30] Kassios, I. T., Müller, P., and Schwerhoff, M. Comparing verifi-

cation condition generation with symbolic execution: An experience

report. In VSTTE (2012), pp. 196–208.

[31] Kazemian, P. Network path not found? Forward Networks Blog, Feb.

2017. Available at https://bit.ly/2FzpEEZ.

[32] Kazemian, P., Varghese, G., andMcKeown, N. Header space analysis:

Static checking for networks. In NSDI (2012), pp. 113–126.
[33] Kheradmand, A., and Rosu, G. P4K: A formal semantics of P4 and

applications, 2018. https://arxiv.org/abs/1804.01468.

[34] Khurshid, A., Zou, X., Zhou, W., Caesar, M., and Godfrey, P. B.

VeriFlow: Verifying network-wide invariants in real time. In NSDI
(2013), pp. 15–29.

[35] Lamport, L. The part-time parliament. TOCS 16, 2 (1998), 133–169.
[36] Leino, K. R. M. Dafny: An automatic program verifier for functional

correctness. In Logic for Programming, Artifical Intelligence, and Rea-
soning (2010), pp. 348–370.

[37] Leino, K. R. M., Millstein, T., and Saxe, J. B. Generating error traces

from verification-condition counterexamples. Science of Computer
Programming 55, 1-3 (2005), 209–226.

[38] Leroy, X. A formally verified compiler back-end. Journal of Automated
Reasoning 43, 4 (2009), 363–446.

[39] Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P. B., and

King, S. T. Debugging the data plane with Anteater. In SIGCOMM
(2011), pp. 290–301.

[40] Malecha, G., Morrisett, G., Shinnar, A., and Wisnesky, R. Toward

a verified relational database management system. In POPL (2010),

pp. 237–248.

[41] McKeown, N., Sloane, T., and Wanderer, J. P4 runtime–putting the

control plane in charge of the forwarding plane, Dec. 2017. Available

at http://bit.ly/2It6Ecn.

[42] McKeown, N., Talayco, D., Varghese, G., Lopes, N., Bjorner, N.,

and Rybalchenko, A. Automatically verifying reachability and well-

formedness in P4 networks. Tech. rep., Microsoft Research, Sept. 2016.

[43] Nötzli, A., Khan, J., Fingerhut, A., Barrett, C., and Athanas, P.

p4pktgen: Automated test case generation for p4 programs. In SOSR
(2018), pp. 5:1–5:7.

[44] P4 Language Consortium. P4 Language Specification, Version 1.0.4,
2017. Available at https://p4.org/specs/.

[45] P4 Language Consortium. P416 language specification, 2017. https:

//p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html.

[46] Panda, A., Lahav, O., Argyraki, K. J., Sagiv, M., and Shenker, S.

Verifying reachability in networks with mutable datapaths. In NSDI
(2017), pp. 699–718.

[47] Plotkin, G. D., Bjørner, N., Lopes, N. P., Rybalchenko, A., and

Varghese, G. Scaling network verification using symmetry and

surgery. In POPL (2016), pp. 69–83.

[48] Pottier, F., and Rémy, D. Advaned Topis in Types and Programming
Languages. MIT Press, 2005, ch. The Essence of ML Type Inference,

pp. 389–489.

[49] Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., and

Raiciu, C. Debugging P4 programs with Vera. In SIGCOMM (2018).

[50] Stonescu, R., Popovici, M., Negranu, L., and Raiciu, C. SymNet:

Scalable symbolic execution formodern networks. In SIGCOMM (2016),

pp. 314–327.

[51] Barefoot Tofino. https://www.barefootnetworks.com/products/

brief-tofino/, 2015.

[52] Velner, Y., Alpernas, K., Panda, A., Rabinovich, A., Sagiv, M.,

Shenker, S., and Shoham, S. Some complexity results for stateful

network verification. In Tools and Algorithms for the Construction and
Analysis of Systems (2016), pp. 811–830.

[53] Weitz, K., Woos, D., Torlak, E., Ernst, M. D., Krishnamurthy, A.,

and Tatlock, Z. Scalable verification of Border Gateway Protocol

configurations with an SMT solver. In OOPSLA (2016), pp. 765–780.

[54] Xie, G. G., Zhan, J., Maltz, D. A., Zhang, H., Greenberg, A. G.,

Hjálmtýsson, G., and Rexford, J. On static reachability analysis of

IP networks. In IEEE INFOCOM (2005), pp. 2170–2183.

[55] Yang, H., and Lam, S. S. Real-time verification of network properties

using atomic predicates. In IEEE ICNP (2013).

[56] Zaostrovnykh, A., Pirelli, S., Pedrosa, L. D., Argyraki, K., and

Candea, G. A formally verified NAT. SIGCOMM (2017), 141–154.

https://p4.org/p4/inband-network-telemetry/
https://bit.ly/2FzpEEZ
https://arxiv.org/abs/1804.01468
http://bit.ly/2It6Ecn
https://p4.org/specs/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

	Abstract
	1 Introduction
	2 Background on P4
	3 Data-Plane Properties
	4 Verification Methodology
	5 Control-Plane Interface
	6 Implementation
	7 Case Studies
	7.1 Header validity for switch.p4
	7.2 NetCache parser roundtripping
	7.3 NetPaxos bug
	7.4 Enabling compiler optimizations

	8 Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

