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ABSTRACT

We present P4Testgen, a test oracle for the P4;¢ language. P4Testgen
supports automatic test generation for any P4 target and is designed
to be extensible to many P4 targets. It models the complete seman-
tics of the target’s packet-processing pipeline including the P4
language, architectures and externs, and target-specific extensions.
To handle non-deterministic behaviors and complex externs (e.g.,
checksums and hash functions), P4Testgen uses taint tracking and
concolic execution. It also provides path selection strategies that
reduce the number of tests required to achieve full coverage.

We have instantiated P4Testgen for the Vimodel, eBPF, PNA,
and Tofino P4 architectures. Each extension required effort com-
mensurate with the complexity of the target. We validated the tests
generated by P4Testgen by running them across the entire P4C test
suite as well as the programs supplied with the Tofino P4 Studio. Us-
ing the tool, we have also confirmed 25 bugs in mature, production
toolchains for BMv2 and Tofino.
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1 INTRODUCTION

We present P4Testgen, an extensible test oracle for the P44 [14]
language. Given a P4 program and sufficient time, it generates
an exhaustive set of tests that cover every reachable statement in
the program. Each test consists of an input packet, control-plane
configuration, and the expected output packet.

P4Testgen generates tests to validate the implementation of a
P4 program. Such tests ensure that the device executing the P4
code (commonly referred to as “target”) and its toolchain (i.e., the
compiler [8], control-plane [13, 25], and various API layers [26, 29,
57]) implement the behaviors specified by the P4 program.

Tests generated by P4Testgen can be used by manufacturers of
P4-programmable equipment to validate the toolchains associated
with their equipment [12, 15, 17, 43, 50, 51, 55], by P4 compiler writ-
ers for debugging optimizations and code transformations [8, 54],
and by network owners to check that both fixed-function and pro-
grammable targets implement behaviors as specified in P4, includ-
ing standard and custom protocols [1, 77].

The idea of generating an exhaustive set of tests for a given
P4 program is not new. But prior work has largely focused on a
specific P4 architecture [14, §4]. For example, p4pktgen [52] tar-
gets BMv2 [3], Meissa [77] and p4v [46] target Tofino [15], and
SwitchV [1] targets fixed-function switches. The primary reason
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why these tools are so specialized is development effort. Building
P4 validation tools requires simultaneously understanding (i) the
P4 language, (ii) formal methods, and (iii) target-specific behaviors
and quirks. Finding developers that satisfy this trifecta even for a
single target is already challenging. Finding developers that can
design a general tool for all targets is even harder. The unfortunate
result is that developer effort has been fragmented across the P4
ecosystem. Most P4 targets today lack adequate test tooling, and
advances made with one tool are difficult to port over to other tools.
Our position is that this fragmentation is undesirable and en-
tirely avoidable. While there may be scenarios that warrant the
development of target-specific tools, in the common case—i.e., gen-
erating input—output pairs for a given program—the desired tests
can be derived from the semantics of the P4 language, in a manner
that is largely decoupled from the details of the target. Developing
a common, open-source platform for validation tools has several
benefits. First, common software infrastructure (lexer, parser, type
checker, etc.) and an interpreter that realizes the core P4 language
semantics can be implemented just once and shared across many
tools. Second, because it is open-source, improvements can be con-
tributed back to P4Testgen and benefit the whole community.
P4Testgen combines several techniques in an open-source tool
suitable for production use. First, P4Testgen provides an extensi-
ble framework for defining the semantics of the whole program
(“whole-program semantics”), combining the semantics of the P4
code along with the semantics of the target on which it is executed.
A P4 program generally consists of several P4 blocks (with seman-
tics provided by the language specification) that are separated by
interstitial architecture-specific elements (with semantics provided
by the target). P4Testgen is the first tool that provides an extensible
framework for such whole-program semantics, using a carefully de-
signed interpreter based on the open-source P4 compiler (P4C) [8].
Second, while P4Testgen ultimately uses an SMT solver to generate
tests, it also handles the “awkward squad” of complex functions
that are difficult to model using an SMT solver—e.g., checksums,
undefined values, randomness, and so on. To achieve this, P4Test-
gen uses taint tracking, concolic execution, and a precise model
of packet sizing to model the semantics of the program accurately
and at bit-level granularity. Third, P4Testgen offers advanced path
selection strategies that can efficiently generate tests that achieve
full statement coverage, even for large P4 programs that suffer from
path explosion. In contrast to prior work, these strategies are fully
automated and do not require annotations to use effectively.
To recap, P4Testgen’s key technical innovations are as follows:
(1) Whole-program semantics: Most P4 targets perform pro-
cessing that is not defined by the P4 program itself and
is target-specific. P4Testgen uses pipeline templates to suc-
cinctly describe the behavior of an entire pipeline as a com-
position of P4-programmable blocks and interstitial target-
specific elements.
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(2) Target-specific extensions: Many real-world P4 targets
deviate from the P4;¢ specification in ways small and large.
To accommodate these deviations, P4Testgen’s extensible
interpreter supports target-specific extensions to override
default P4 behavior, including initialization semantics and
an intricate model of packet-sizing, which accommodates
targets that modify packet sizes during processing.

(3) Taint analysis: Targets can exhibit non-deterministic be-
havior, making it impossible to predict test outcomes. To
ensure that generated tests are reliable, P4Testgen uses taint
analysis to track non-deterministic portions of test outputs.

(4) Concolic execution: Some targets have features that can
not easily be modelled using an SMT solver. P4Testgen uses
concolic execution [31, 63] to model features such as hash
functions and checksums.

(5) Path selection strategies: Real-world P4 programs often
have a huge number of paths, making full path coverage
infeasible. P4Testgen provides heuristic path selection strate-
gies that can achieve full statement coverage, usually with
orders of magnitude fewer tests than other approaches.

To validate our design for P4Testgen, we instantiated it for 5
different real-world targets and their corresponding P4 architec-
ture: the vimodel [23] architecture for BMv2, the ebpf_model [72]
architecture for the Linux kernel [28], the pna [33] architecture for
the DPDK SoftNIC [24], the tna [37] architecture for the Tofino 1
chip [15], and the t2na architecture for the Tofino 2 chip [16]. All
5 instantiations implement whole-program semantics without re-
quiring modification to the core parts of P4Testgen. We have tested
the correctness of the P4Testgen oracle itself by generating input—
output tests for example P4 programs of all listed architectures.
Executing P4Testgen’s tests using the appropriate target toolchains,
we have found 17 bugs in the toolchain of the Tofino compiler and
8 in the toolchain of BMv2. P4Testgen is available at the following
URL: https://p4.org/projects/p4testgen.

2 MOTIVATION AND CHALLENGES

P4 offers new capabilities for specifying network behavior, but
this flexibility comes at a cost: network owners must now navi-
gate toolchains that are larger and more complex than with fixed-
function devices. So, as the P4 ecosystem matures, increased focus
is being placed on tools for validating P4 implementations [1, 6, 19,
45, 52, 61, 74, 77], often by exercising input—output tests.

At first glance, the task of generating tests for a given P4 pro-
gram may seem relatively straightforward. Prior work such as
papktgen [52], p4v [46], P4wn [39], Meissa [77], and SwitchV [1]
has shown that it is possible to automatically generate tests using
techniques from the programming languages and software engi-
neering literature [31, 42, 63]. The precise details vary from tool to
tool, but the basic idea is to first use symbolic execution to traverse
a path in the program, collecting up a symbolic environment and
a path constraint, and then use a first-order theorem prover (i.e.,
SAT/SMT solver) to compute an executable test. The theorem prover
fills in the input-output packet(s) from the symbolic environment
to satisfy the path constraint and also computes control-plane con-
figurations required to execute the selected path—e.g., forwarding
entries in match-action tables.
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Technical Challenges. While prior work has shown the feasibility
of automatic test generation using symbolic execution, existing
tools have focused on specific targets (e.g., Tofino) and abstracted
away important details (e.g., non-standard packets and other “cor-
ner cases” in the language), which limits their applicability in prac-
tice. In contrast, our goal for P4Testgen is to develop a general
and extensible test oracle for P4 that can be readily applied to
real-world P4 programs on arbitrary targets. Achieving this goal
requires overcoming several technical challenges, described below.

(1) Missing inter-block semantics. A P4 program only specifies
the target behavior within the P4 programmable blocks in the ar-
chitecture. It does not specify the execution order of those blocks,
or how the output of one block feeds into the input of the next,
i.e., target-specific semantics in the interstices between blocks. For
instance, Tofino’s tna and t2na architectures contain independent
ingress and egress pipelines, with a traffic manager between them.
The traffic manager can forward, drop, multicast, clone, or recir-
culate packets, depending on their size, content, and associated
metadata. As another example, the P4 specification states that, if
extracting a header fails because the packet is too short, the parser
should step into reject and exit [14, §12.8.1]. However, the seman-
tics after exiting the reject state is left up to the target: some drop
the packet, others consider the header uninitialized, while others
silently add padding to initialize the header. None of these behav-
iors are captured by the P4 program itself. P4Testgen offers features
for describing such inter-block semantics (§4).

(2) Target-specific intra-block semantics. Even though P4 describes
the behavior of a programmable block, targets may also have dif-
ferent intra-block semantics, i.e., they interpret the P4 code within
the programmable block differently. The P4 specification delegates
numerous decisions to targets and targets may not implement all
parts of the specification. For instance, hardware restrictions can
make it difficult to implement parser exceptions faithfully [34].
Match-action table execution can also be customized using target-
specific properties (e.g., action profiles) and annotations can influ-
ence the semantics of headers and other language constructs in
subtle ways—see Tbl. 6 in the appendix for a (non-exhaustive) list of
target-specific deviations. As part of its whole-program semantics
model, P4Testgen offers a flexible abstract machine based on an
extensible class hierarchy, which makes it easy to accommodate
target-specific refinements of the P4 specification.

(3) Unpredictable program behavior. Not all parts of a P4 pro-
gram are well-specified by the code. For instance, reading from an
uninitialized variable may return an undefined value. P4 programs
may also invoke arbitrary extern functions, such as pseudo-random
number generators, which produce unpredictable output. To ensure
that generated tests are deterministic, P4Testgen needs facilities
to track program segments that may cause unpredictable output.
P4Testgen uses taint-tracking to keep track of unpredictable bits in
the output (§4.4), ensuring that it never produces nondeterministic
tests unless explicitly asked to do so.

(4) Complex primitives. Like other automated test generation tools,
P4Testgen relies on a first-order theorem prover to compute input—
output tests. However, not all primitives can easily be encoded
into first-order logic—e.g., checksums and other hash functions, or
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Figure 1: The P4Testgen test case generation process.

programs that modify the size of the packet using dynamic values.
For instance, consider a program that uses the advance function
to increment the parser cursor by an amount that depends on
values within the symbolic input header. Modeling this behavior
precisely either requires bit vectors of symbolic width, which is not
well-supported in theorem provers, or branching on every possible
value, which is impractical. P4Testgen uses concolic execution to
accommodate computations which cannot be encoded into first-
order logic (§4.5).

(5) Path explosion. By default, P4Testgen uses depth-first search
(DFS) to select paths throughout the P4 program. It does not priori-
tize any path and it explores all valid paths to exhaustion. However,
real-world P4 programs often have dense parse graphs and large
match-action tables, so the number of possible paths grows expo-
nentially [46, 68]. Achieving full path coverage would require gen-
erating an excessive number of tests. P4Testgen provides strategies
for controlling the selection of paths, including random strategies
and coverage-guided heuristics that seek to follow paths containing
previously unexplored statements. These strategies enable achiev-
ing full statement coverage with orders of magnitude fewer tests
compared to other approaches (§5).

Outlook. To our knowledge, P4Testgen is the first test generation
tool for P4 that meets all of these challenges. Moreover, P4Testgen
has been designed to be fully extensible, and it is freely available
online under an open-source license, as a part of the P4C compiler
framework. We are hopeful that P4Testgen will become a valuable
resource for the P4 community, providing the necessary infrastruc-
ture to rapidly develop accurate test oracles for a wide range of
P4 architectures and targets, and generally reducing the cost of
designing, implementing, and validating data planes with P4.

3 P4TESTGEN OVERVIEW

As shown in Fig. 1, P4Testgen generates tests using symbolic ex-
ecution. It selects a path in the program, encodes the associated
path constraint as a first-order formula, and then solves the con-
straint using an SMT solver. If it finds a solution to the constraint,
then it emits a test comprising an input packet, output packet(s),
and any control-plane configuration required to execute the path.
If it finds no solution, then the path is infeasible. Along with the
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generated tests, P4Testgen reports which segments of the program
(statements, externs, actions) are covered by each test. P4Testgen’s
workflow can be summarized as a three-step process.

Step 1: Translate the input program and target into a symbolically
executable representation. P4Testgen takes as input a P4 program,
the target architecture, and the desired test framework (e.g., STF [7]
or PTF [4]). It parses the P4 program and converts it into the P4C
intermediate representation language (P4C-IR). P4Testgen then
transform the parsed P4C-IR into a simplified form that makes
symbolic execution easier, e.g., P4Testgen unrolls parser loops and
replaces run-time indices for header stacks with conditionals and
constant indices. The correctness of P4Testgen’s tests is predicated
on the correctness of the P4C front-end and these transformations.

Step 2. Generate the test case specification. After the input pro-
gram has been parsed and transformed, P4Testgen symbolically
executes the program by stepping through individual AST nodes
(parser states, tables, statements). By default, the P4Testgen inter-
preter provides a reference implementation for each P4 construct.
However, each step can be customized to reflect target-specific se-
mantics by overriding methods in the symbolic executor. Targets
must also define whole-program semantics (§4) which describe how
individual P4 blocks are chained together (i.e., the order in which a
packet traverses the P4 blocks), what kind of parsable data can be
appended or prepended to packets (e.g., frame check sequences),
and how target system data (also called intrinsic metadata) is ini-
tialized. Typically, this target-specific information can be inferred
from the documentation for the P4 architecture or the target itself.
Detailed knowledge of hardware microarchitecture is not necessary.

Step 3. Emit the test case. Once P4Testgen has executed a path, it
emits an abstract test specification, which describes the expected
system state (e.g., registers and counters) and output packet(s) for
the given packet input and control-plane configuration. This ab-
stract test specification is then concretized for execution on different
test frameworks (STF, PTF, etc.).

3.1 P4Testgen in Action

As an example to illustrate the use of P4Testgen, consider two P4
programs, as shown in Fig. 2, written for a fictitious, BMv2-like
target with a single parser and control block.

Example 1. In the first program (Fig. 2a), Ethernet packets are for-
warded based on a table that matches on the EtherType field. There
are four different input—output pairs that could be generated. The
first pair is a valid Ethernet packet, but no table entries are asso-
ciated with the input. Since the default action is noop, the output
port of the packet does not change. The second pair is a configura-
tion with a table entry that executes set_out whenever h.eth. type
matches a given value. Since the program previously set h.eth. type
to OxBEEF the table entry must match on 0xBEEF. The output port is
defined by the control plane. The third pair is similar, except noop is
chosen as action, which does not alter the output port. For the last
input pair the packet is too short and the extract call fails. Hence,
the target stops parsing and continues to the control. For this par-
ticular target the packet will be emitted, but forward_table will not
execute because the match key is uninitialized. P4Testgen is able
to generate four distinct tests for this program. For input-output
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1 parser Parser(...) {

2 pkt.extract(hdr.eth);

3 transition accept;

4%

5 control Ingress(...) {

6 action set_out(bit<9> port) {

7 meta.output_port = port;

8 3

9 table forward_table {

10 key = { h.eth.type: exact; @name("type") }

1 actions = { noop; // Default action.

12 set_out; }

13 3}

14 h.eth.type = OxBEEF;

15 forward_table.apply();

16 3}

Size Port eth.dst eth.src eth.type

-—— Test 1 -———-----"--—"-—-———— -
Input: 112 @ 0000 000 0 00000 0000
Qutput: 112 0 0000 00 000000000000 BEEF
=== Test 2 === ——— - e
Input: 112 @ 000000000000 000000000000 0000
Qutput: 112 2 0000 000 0 0@ BEEF
Table Config: match(type=0xBEEF),action(set_out(2))
—== Test 3 —=———————— - e
Input: 112 © 000000000000 000000000000 0000
OQutput: 112 0 0000 00000 BEEF
Table Config: match(type=0xBEEF),action(noop())
-—- Test 4 ————————————— -
Input: 96 0 000000000000 00000000000
Output: 96 0@ 0 0 00000000

(a) P4 program that forwards using the source MAC.

1 parser Parser(...) {
2 pkt.extract(hdr.eth);
3 transition accept;
4%
5 control Verify(...) {
6 meta.checksum_err = verify_checksum(
7 hdr.eth.isValid(),
8 {hdr.eth.dst, hdr.eth.src},
9 hdr.eth. type);
10 }
11 control Ingress(...) {
12 if (meta.checksum_err == 1) {
13 mark_to_drop(); // Drop packet.
14
15 3}
Size Port eth.dst eth.src eth.type
-—- Test 1 —==—=—————————————— o
Input: 112 @  BADCOFFEE@DD FO@DDEADBEEF
Output: 112 @  BADCOFFEE@DD F@@DDEADBEEF
--- Test 2 -————-—-—-———-———-———- o
Input: 112 @  BADCOFFEEODD F@@DDEADBEEF FFFF
--- Test 3 ———————————————-—-— e

BADCOFFEEQDD FQODDEADBEEF 7072
BADCOFFEEQDD FQODDEADBEEF 7072

Input: 112 ©
OQutput: 112 @

(b) P4 program that validates the Ethernet checksum.

Figure 2: PATestgen test case examples. “Port” denotes the input-
output port. “Size” is the packet bit-width.

pairs 2 and 3, P4Testgen synthesizes control plane entries, which
execute the appropriate action. For input-output pair 4, P4Testgen
makes use of its packet sizing (§ 4.3.1) implementation to generate
a packet that is too short. P4Testgen uses taint tracking (§ 4.4) to
identify that h.eth. type is uninitialized. Since this target will not
match on uninitialized keys, P4Testgen does not generate an entry
for forward_table.
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Example 2. The second program (Fig. 2b) parses an Ethernet header.
If it is valid (line 7), the program tests whether the checksum com-
puted on hdr.eth.dst and hdr.eth.src (lines 6—9) corresponds to
the value in field hdr.eth. type (line 10).1 If not, meta. checksum_err
is set to true and the packet is dropped. This program produces
three distinct input—output pairs. The first pair is an input packet
that is too short, which causes the Ethernet header to be invalid.
Hence, verify_checksum is not executed, the error is not set, and
the packet is forwarded. The second and third input-output pair
include a valid Ethernet header. In the second pair, hdr.eth. type
matches the computed checksum value and the packet is forwarded.
In the third pair, the value does not match and the packet is dropped.
Note that for input-output pair 2 and 3, P4Testgen uses concolic exe-
cution (§ 4.5) to model the checksum computation. P4Testgen picks
a random concrete assignment to hdr.eth.dst and hdr.eth.src,
computes the checksum, and compares the result to hdr.eth. type.
As there are no other restrictions on the value of hdr.eth.dst and
hdr.eth.src, P4Testgen produces tests where the checksum either
matches (test 3) or does not match (test 2).

Summary. As shown, P4Testgen prefers to maximize program cov-
erage even though it may lead to path explosion. The behaviors
exhibited by the tests in Fig. 2 are possible on the underlying targets
and testing them is important. Indeed, we have used P4Testgen
to uncover a variety of bugs in compilers, drivers, and software
models—see §7 for details. Moreover, these bugs were not for toy
programs or early versions of systems under development. Rather,
they were found in production code for mature systems that had
already undergone extensive validation with traditional testing.

4 WHOLE-PROGRAM SEMANTICS

The symbolic execution of P4 programs requires a model of not
only the P4 code blocks (parsers, controls, etc.), but also the trans-
formations performed by the rest of the target. However, the P4
language does not specify the behavior of the target architecture
(e.g., the order of execution of P4 programmable blocks). P4Testgen
addresses this limitation through a flexible abstract machine and
pipeline templates.

4.1 P4Testgen’s Abstract Machine

Fig. 3 summarizes the design of the abstract machine that powers
P4Testgen’s symbolic executor. It has standard elements, such as a
stack frame, symbolic environment, and so on, as well as a continu-
ation, which encodes the rest of the computation. A full treatment
of continuations [58] is beyond the scope of this paper. In a nutshell,
continuations make it easy to encode non-linear control flow such
as packet recirculation, which many P4 architectures support, and
they also preserve execution contexts across paths, which is helpful
for implementing different path selection heuristics.

4.2 The Pipeline Template

Pipeline templates are a succinct mechanism for describing the
pipeline state and control flow for an architecture—and with those
two, its inter-block semantics. By default, they capture the common

"Note this is a non-standard use of EtherType for the sake of the example.
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class ExecutionState {
// Small-step Evaluator: can be overriden by targets
friend class SmallStepEvaluator;
// Symbolic Environment: maps values to variables
SymbolicEnv env;
// Visited: previously-visited nodes for coverage
P4::Coverage: :CoverageSet visitedNodes;
// Path Constraint: must be satified to execute this path
std::vector<const IR::Expression *> pathConstraint;
// Stack: tracks namespaces, declarations, and scope
std::stack<const StackFrame &>> stack;
// Continuation: remainder of the computation
Continuation: :Body body;

Figure 3: Execution state for P4Testgen’s abstract machine.

ArchitectureSpec("ViSwitch", {
// parser Parser<H, M>(packet_in b,

// out H parsedHdr,

// inout M meta,

// inout standard_metadata_t sm);
{"Parser", {none, "xhdr", "xmeta", "#sm"}},

// control VerifyChecksum<H, M>(inout H hdr,

// inout M meta);

{"VerifyChecksum", {"*hdr", "*meta"}},
// control Ingress<H, M>(inout H hdr,

// inout M meta,

// inout standard_metadata_t sm);
{"Ingress", {"*hdr", "xmeta", "xsm"}},

// control Egress<H, M>(inout H hdr,

// inout M meta,

// inout standard_metadata_t sm);

{"Egress", {"*hdr", "xmeta", "*sm"}},

// control ComputeChecksum<H, M>(inout H hdr,
// inout M meta);
{"ComputeChecksum", {"xhdr", "xmeta"}},

// control Deparser<H>(packet_out b, in H hdr);
{"Deparser", {none, "xhdr"}}});

Figure 4: The pipeline state for the vimodel architecture. Comments
describe the associated P4 block. The word none indicates parameters
irrelevant to the state.

case where the state associated with the packet simply flows be-
tween P4-programmable blocks in a straightforward manner—e.g.,
by copying output variables of one block to the input variables of
the next. P4Testgen also handles more complicated forms of packet
flow in the architecture, such as recirculation, but this requires
writing explicit code against the abstract machine.

4.2.1 Pipeline State. Pipeline state describes the per-packet data
that is transferred between P4-programmable blocks. Fig. 4 shows
the pipeline state description for the vimodel in a simple C++ DSL.
The objects listed in the data structure are mapped onto the pro-
grammable blocks in the top-level declaration of a P4 program
(shown in comments). The declaration order of these objects de-
termines the order in which the blocks are executed by default,
but this can be overridden by the pipeline control flow based on a
packet’s per-packet data values. Arguments with the same name
are threaded through the programmable blocks in execution order.
For example, the *hdr parameter in the parser is first set undefined,
as it is used in an out position as seen by the comments in Fig. 4.
After executing the parser, it is copied into the checksum unit, then
to the ingress control, etc.
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1 control Ingress(...) {

2 if (hdr.ip.ttl == 0) {

3 m.drop = 1; // Drop packet

4 3

5 if (hdr.ip.ttl == 1) {

6 resubmit.emit(m); // Resubmit packet
7 3

8}

9 Pipeline(I_Parser (), Ingress(), I_Deparser(),

E_Parser (), Egress(), E_Deparser()) pipe;

(a) P4 program snippet that sets metadata state.

.............. Ingress pipe
: attach_ i_.l Parser I—)I Control I—DI Deparserl—

metadata()

———T== = —I Traffic manager

"lf m.recirculate? :K—* m.drop? E(—

Egress pipe

'I Parser I—)I Control I—)I Deparser F*;;:::E:r:;i:t:-::

(b) P4Testgen control-flow. Dashed segments are target-defined. X is false
Figure 5: P4Testgen’s pipeline control flow.

4.2.2  Pipeline Control Flow. P4Testgen allows extension develop-
ers to provide code to model arbitrary interpretation of the pipeline
state. Fig. 5 shows an example of a P4 program snippet being inter-
preted in the context of P4Testgen’s pipeline control flow. The target
is a fictitious target with an implicit traffic manager between ingress
and egress pipelines. The green dashed segments in the figure are
target-defined and interpret the variables set in the Ingress control.
If m.drop is set, the packet will be dropped by the traffic manager,
skipping execution of the entire egress. If the resubmit.emit() is
called, m. recirculate will implicitly be set, causing P4Testgen to re-
set all metadata and reroute the execution back to the ingress parser.
We have modeled this control flow for targets such as vimodel, tna,
and t2na.

4.3 Handling Target-Specific Behavior

Targets have different intra-block semantics and diverge in their in-
terpretation of core P4 language constructs. P4Testgen is structured
such that every function in the abstract machine can be overridden
by target extensions. For example, the vimodel P4Testgen extension
overrides the canonical P4Testgen table continuation to implement
its own annotation semantics (e.g., the “priority” annotation, which
reorders the execution of constant table entries based on the value
of the annotation). Targets may also reinterpret core parsing func-
tions (e.g., extract, advance, lookahead).

4.3.1 P4Testgen’s Approach to Packet-Sizing. One area where there
is significant diversity among targets is in the semantics of op-
erations that change the size of the packet. Some paths in a P4
program are only executable with a specific packet size. P4 externs
such as extract can throw exceptions when the packet is too short
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or malformed. These packet paths are often sparsely tested when
developing a new P4 target and toolchain. Particularly on hardware
targets, packets with an unexpected size may not be parsed as ex-
pected. Correspondingly, P4Testgen must be able to control the size
of the input packet (Challenge 2). And, since some of these inputs
may trigger parser exceptions, it also needs to model the impact
these exceptions have on the content and length of the packet.

P4Testgen implements packet-sizing by making the packet size
a symbolic variable in the set of path constraints. This encoding
turns out to be non-trivial. Since the required packet size to tra-
verse a given path is now a symbolic variable, it is only known after
the SMT solver is invoked. However, at the same time, externs in
P4 manipulate the size of the packets (e.g., extract calls shorten
while emit calls lengthen the packet), which requires careful book-
keeping in first-order logic. Targets also react differently to specific
packet sizes (e.g., BMv2 produces garbage values for 0-length pack-
ets [59], whereas Tofino drops packets smaller than 64 bytes [37,
§7.2]). Lastly, some targets add and remove content from the packet
(e.g., Tofino adds internal metadata to the packet [37, §5.1]). Any
packet-sizing mechanism needs to handle these challenges, while
remaining target independent.

Our approach is to model packet-sizing as described in the P4
specification. For each program path, we calculate the minimum
header size required to successfully exercise the path without trig-
gering a parser exception. The packet-sizing model defines and
manipulates three symbolic bit vector variables: the required input
packet (I), the live packet (L), and the emit buffer (E). The input
packet I represents the minimum header content required to reach
a particular program point without triggering an exception. The
live packet L represents the packet header content available to the
interpreter stepping through the P4 program, e.g., extract will con-
sume content from L. The emit buffer E is a helper variable which
accumulates the headers produced by emit. This is necessary to
preserve the correct order of headers, as prepending headers to L
each time emit is executed would cause it to be inverted.

Initially, all variables are zero-width bit vectors. While travers-
ing the program, parser externs (e.g., extract or advance) in the
P4 program slice data from the live packet L. If L is empty (mean-
ing we have run out of packet header data), P4Testgen allocates a
new symbolic packet header and adds it to I. Targets may augment
the input packet with custom parsable data (e.g., metadata) which
reduces the input packet needed to avoid triggering a parser ex-
ception. Correspondingly, this content is added to the live packet
variable L. Once P4Testgen has finished executing a path, I will
denote the content of the final input packet in the generated test. L
on the other hand will correspond to the content of the expected
packet output. Fig. 9 in App. A.3 illustrates the variables used for
an example pipeline.

This design also handles multi-parser, multi-pipe targets, such
as Tofino. Each Tofino pipeline has two parsers: ingress and egress.
The egress parser receives the packet (L) after the ingress and traffic
manager. If the egress parser runs out of content in L, P4Testgen
must again append symbolic content to I, increasing the size of the
minimum packet required to parse successfully.
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4.4 Controlling Unpredictable Behavior

Many P4 programs are non-deterministic, which can lead to unpre-
dictable outputs (Challenge 3). To avoid generating “flaky” tests,
we use taint analysis [62]. As P4Testgen steps through the program,
we keep track of which bits have a known value (i.e., “untainted”),
and which bits have an unknown value (i.e., “tainted”). For example,
a declaration of a variable that is not initialized and reads from
random memory will be designated as tainted. The result of any
operation that references a tainted variable will also be tainted.
Later, when generating tests, we use the taint to avoid generating
tests that might fail—i.e., due to testing tainted values. For example,
if the output packet contains taint, we know that certain bits are
unreliable. We use test-framework-specific facilities (e.g., “don’t
care” masks) to ignore tainted output bits. On the other hand, if
the output port is tainted and the test framework does not support
wildcards for the output port, P4Testgen can not reliably predict
the output, so we drop the test and issue a warning.

Mitigating taint spread. A common issue with taint analysis is taint
spread, the proliferation of taint throughout the program, quickly
tainting most of the state. In extreme situations, taint spread can
make test generation almost useless, as the generated tests have
many “don’t care” wild cards. To mitigate taint spread we use a few
heuristics. First, we apply optimizations to eliminate unnecessary
tainting (for example, multiplying a tainted value with 0 results
in 0). Second, we exploit freedom in the P4 specification to avoid
taint. For example, when a ternary table key is tainted, we insert
a wildcard entry that always matches. Third, we model target-
specific determinism. For example, the Tofino compiler provides an
annotation which initializes all target metadata with 0. Applying
these heuristics significantly reduces taint in practice.

Applying taint analysis. In our experience, taint analysis is essen-
tial for ensuring that P4Testgen can generate predictable tests. It
substantially reduces the signal-to-noise ratio for validation engi-
neers, enabling them focus on analyzing genuine bugs rather than
debugging flaky tests. And, although it was not intended for this
purpose, P4Testgen’s taint analysis can be used to track down un-
defined behavior in a P4 program. P4Testgen does this by offering
a “restricted mode,” which triggers an assertion when the inter-
preter reads from an undefined variable on a particular path. The
more “correct” a P4 program is written (i.e., by carefully validating
headers) the less taint (and fewer assertions) it produces.

Prototyping extensions using taint. Another useful byproduct of
taint analysis is the ability to easily prototype a P4Testgen extension
and its externs. Rather than implementing the entire P4Testgen
extension at once, a developer can substitute taint variables for
the parts that may need time-intensive development (a form of
angelic programming [5]). By constraining the non-determinism of
the unimplemented parts of the extension it is possible to generate
deterministic tests early. We used this approach to generate initial
stubs for many externs (e.g., checksums, meters, registers) before
implementing them precisely.

4.5 Supporting Complex Functions

To handle complex functions that cannot be easily encoded into first-
order logic (Challenge 4), P4Testgen uses concolic execution [31, 63].
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Concolic execution is an advanced technique that combines sym-
bolic and concrete execution. In a nutshell, it leaves hard-to-model
functions unconstrained initially, and adds constraints later using
the concrete implementation of the function. The verify_checksum
function described in § 3.1 is an example where concolic execu-
tion is necessary. The checksum computation is too complex to be
expressed in first-order logic. Instead, we model the return value
of the checksum as an uninterpreted function dependent on the
input arguments of the extern. While P4Testgen’s interpreter steps
through the program, this uninterpreted function acts as a place-
holder. If the function becomes part of a path constraint, the SMT
solver is free to fill it in with any value that satisfies the constraint.

Once we have generated a full path, we need to assign a con-
crete value to the result of the uninterpreted function. First, we
invoke the SMT solver to provide us with concrete values to the
input arguments of the uninterpreted function that satisfy the path
constraints we have collected on the rest of the path. Second, we
use these input arguments as inputs to the actual extern implemen-
tation (e.g., the hash function executed by the target). Third, we
add equations to the path constraints that bind all the values we
have calculated to the appropriate input arguments and output of
the function. We then invoke the solver a second time to assess
whether the result computed by the concrete function satisfies all
of the other constraints in the path. If so, we are done and can
generate a test with all the values we calculated.

Handling unsatisfiable concolic assignments. In some cases, the
newly generated constraints cannot be satisfied using the inputs
chosen by the SMT solver. In practice, retrying by generating new
inputs may not lead to a satisfiable outcome. Before discarding this
path entirely, we try to apply function-specific optimizations to
produce better constraints for the concolic calculation. For exam-
ple, the verify_checksum function (see also §3.1) tries to match the
computed checksum of input data with an input reference value. If
the computed checksum does not match with the reference value,
verify_checksum reports a checksum mismatch. Instead of retrying
to find a potential match, we add a new path that forces the ref-
erence value to be equal to the computed checksum. This path is
satisfiable if the reference value is derived from symbolic inputs,
which is often the case. Note that in situations where the reference
value is a constant, we are unable to apply this optimization.

5 PATH SELECTION STRATEGIES

Methodologies that assess the program coverage of tests have be-
come standard software engineering practice. While path coverage
is often infeasible (as the number of paths grows exponentially),
statement coverage, also known as line coverage, has been pro-
posed as a good metric for evaluating a test suite [9]. P4Testgen
allows users to pick from several different path selection strategies
to produce more diverse tests, including Random Backtracking and
Coverage-Optimized Search. As the name suggests, Random Back-
tracking simply jumps back to a random known branch point in the
program once P4Testgen has generated a test. Coverage-Optimized
Search is similar to the concept with the same name in Klee [9].
After a new test has been generated, it selects the first path from
all unexplored paths it has seen so far which will execute P4 state-
ments that have not been covered. If no path with new statements
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can be found, Coverage-Optimized Search falls back to random
backtracking until a path with new statements is discovered. This
greedy search covers new statements quickly, but at the cost of
higher memory usage (because it accumulates unexplored paths
with low potential) and slower per-test-case performance. We mea-
sure in §7.3 how these strategies perform on large P4 programs.
Our path selection framework is extensible, allowing us to integrate
many different selection strategies. We can easily add other success
metrics, such as table, action, or parser state coverage.

Targeted test generation with preconditions. Path selection strate-
gies guide test case generation towards a goal, but they do not select
for a specific type of test. P4Testgen also gives users the ability to in-
strument their P4 program with a custom extern (testgen_assume).
This P4Testgen-intrinsic extern adds a path constraint on vari-
ables accessible within the P4 program (e.g., h.eth_hdr.eth_type
== 0x0800), which forces P4Testgen to only produce tests that sat-
isfy the provided constraint. Assume statements are similar to p4v’s
assumptions [46], Vera’s NetCTL constraint [68], or Aquila’s LPI
preconditions [71]. We study the effect of these constraints in §7.3.

Instrumenting fixed control-plane configurations. Network opera-
tors in general have restricted environments in which only a limited
set of packets and control plane configuration is actually valid. Sim-
ilar to Meissa [77] and SwitchV [1], we are developing techniques
to instrument a particular fixed control plane configuration before
generating tests. We are looking into a specification method to
allows users to only generate tests which comply with their envi-
ronment assumptions. As an initial step in this direction, P4Testgen
implements SwitchV’s P4Constraints framework (§6.1.1).

6 IMPLEMENTATION

P4Testgen is written as an extension to P4C using about 15k lines
of C++ code, including both P4Testgen core and its extensions. To
resolve path constraints, P4Testgen uses the Z3 [18] SMT solver.

Interacting with the control plane. P4Testgen uses the control
plane to trigger some paths in a P4 program (e.g., paths depen-
dent on parser value sets [14, §12.11], tables, or register values).
Since P4Testgen does not perform load or timing tests, the inter-
action with the control plane is mostly straightforward. For each
test that requires control-plane configuration, P4Testgen creates
an abstract test object, which becomes part of the final test specifi-
cation. For tables, P4Testgen creates forwarding entries, and if the
test framework provides support, it can also initialize externs such
as registers, meters, counters and check their final state after exe-
cution. In general, richer test framework APIs give P4Testgen more
control over the target—e.g., STF lacks support for range-based
match types, which means some paths cannot be executed.

6.1 P4Testgen Extensions

Tbl. 1 lists the targets we have instantiated with P4Testgen. We
also list the LoC every extension required, noting that tna and t2na
share a lot of code. Further, vimodel LoC are inflated because of
the P4Constraints parser and lexer implementation specific to the
vimodel extension. We modeled the majority of the Tofino externs
based on the P4 Tofino Native Architecture (TNA) available in the
Open-Tofino repository [37]. Each extension also contains support
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Architecture  Target Test back end C/C++ LoC

vimodel BMv2 STF, PTF, Protobuf, Meta 5289
tna Tofino 1 Internal, PTF 475 (3314 shared)
t2na Tofino 2 Internal, PTF 478 (3314 shared)
ebpf_model Linux Kernel STF 1011
pna DPDK SoftNIC ~ PTF, Meta 1694

Table 1: P4Testgen extensions. The core of P4Testgen is 6679 LoC.

for several test frameworks. The vimodel instance supports PTF,
STF, Protobuf [47] messages, and the serialization of metadata state.
The Tofino instance supports PTF and an internal compiler testing
framework. The eBPF instance supports STF. The Portable NIC
Architecture (PNA) [33] instance only has metadata serialization.

6.1.1 vimodel. P4Testgen supports the vimodel architecture, in-
cluding externs such as recirculate, verify_checksum, and clone.
The clone extern requires P4Testgen’s entire toolbox to model its
behavior, so we explain it in detail below.

Implementing clone. The clone extern duplicates the current packet
and submits the cloned packet into the egress block of the vimodel
target. It alters subsequent control flow based on the place of execu-
tion (ingress vs. egress control). Depending on whether clone was
called in the ingress vs. egress control, the content of the recircu-
lated packet will differ. Further, which user metadata is preserved
in the target depends on input arguments to the clone extern.

We modeled this behavior entirely within the BMv2 extension
to P4Testgen without having to modify the core code of P4Test-
gen’s symbolic executor. We use the pipeline control flow and
continuations to describe clone’s semantics, concolic execution to
compute the appropriate clone session IDs, and taint tracking to
guard against unpredictable inputs.

P4Constraints. P4Testgen’s BMv2 extension also implements the
P4Constraints framework [1] for vimodel. P4Constraints annotates
tables to describe which control plane entries are valid for this table.
P4Constraints are needed for programs such as middleblock.p4 [27],
which models an aggregation switch in Google’s Jupiter network [66]
that only handles specific entries. To generate valid tests for such
programs, P4Testgen must accommodate constraints on entries.
It does so by converting P4Constraints annotations into its own
internal predicates, which are applied as preconditions, restricting
the possible entries, and hence, the number of generated tests (§7).

6.1.2 tna/t2na. We have implemented the majority of externs for
tna and t2na, including meters, checksums, and hashes. For others,
such as registers, we make use of rapid prototyping using taint.
Our t2na extension leverages much of the tna extension, but t2na is
richer, so it took more effort to model its capabilities. Not not only
does t2na use different metadata, it also adds a new programmable
block (“ghost”) and doubles the number of externs. Also, both tna
and t2na support parsing packets at line-rate, which is significantly
more complex than BMv2 [37, §5].

Parsing packets with Tofino. The Tofino targets prepend multi-
ple bytes of metadata to the packet [37, §5.1]. As an Ethernet de-
vice, they also append a 32-bit frame check sequence (FCS) for
each packet. Both the metadata and FCS can be extracted by the
parser but are not part of the egress packet in the emit stage. If the
packet is too short and externs in the parser trigger an exception,
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Figure 6: Average CPU time spent in P4Testgen.

Tofino drops the packet in the ingress parser, but not in the egress
parser [37, §5.2.1]. However, if the ingress control does read from
the parser_error metadata variable, the packet is not dropped and
instead skips the remaining parser execution and advances to the
ingress control. The content of the header that triggered the ex-
ception is unspecified in this case. We model this behavior entirely
in the Tofino instantiations of P4Testgen. We treat the metadata,
padded content, and FCS as taint variables which are prepended
to the live packet L. Since Tofino’s parsing behaves differently to
the description in the P4 specification, we extend the implementa-
tions of advance, extract, and lookahead in the Tofino extensions
to model the target-specific behavior.

6.1.3 ebpf_model. As a proof of concept for P4Testgen’s extensi-
bility we also implemented an extension for an end-host target.
ebpf_model is a fairly simple target, but it differs from tna and t2na,
which are switch-based. The pipeline has a single parser and control.
The control is applied as a filter following the parser. There is no
deparser. The eBPF kernel target rejects a packet based on the value
of the accept parameter in the filter block. If false, the packet is
dropped. As there is no deparser, we model implicit deparsing logic
by implementing a helper function that iterates over all headers
in the packet header structure and emits headers based on their
validity. We were able to implement the eBPF target in a few hours
and generate input-output tests for all the available programs (30)
in the P4C repository. Because of the lack of maturity of the target,
we did not track any bugs in the toolchain.

6.1.4 pna. PNA [33] is a P4 architecture describing the functional-
ity of end-host networking devices such as (Smart-)NICs. A variety
of targets using the pna architecture have been put forward by Xil-
inx [73], Keysight [38], NVIDIA [43], AMD [55], and Intel [17]. We
have instantiated a P4Testgen extension for a publicly available pna
instance, the DPDK SoftNIC [24]. Since there are no functional test-
ing frameworks (e.g., PTF or STF) yet available for this target, we
generate abstract test templates, which describe the input-output
behavior and expected metadata after each test. By generating
these abstract tests we can already perform preliminary analysis
on existing pna programs (§7.3).

7 EVALUATION

Our evaluation of P4Testgen considers several factors: performance,
correctness, coverage, and effectiveness at finding bugs.

7.1 Performance

To evaluate P4Testgen’s performance when generating tests, we
measured the percentage of cumulative time spent in three major
segments: 1) stepping through the symbolic executor, 2) solving
Z3 queries, 3) serializing an abstract test into a concrete test. Fig. 6



P4Testgen: An Extensible Test Oracle For P4

shows P4Testgen’s CPU time distribution for generating 10000 tests
for the larger programs listed in Tbl. 2. In general, solving path
constraints in Z3 accounts for around 16% of the overall CPU time.
P4Testgen spends the majority of time in the symbolic executor.
This is expected, as we prioritized extensibility and debuggability
for P4Testgen’s symbolic execution engine, not performance. We
expect performance to improve as the tool matures. From informal
conversations we are aware that P4Testgen generates tests on the
same order of efficiency as SwitchV’s p4-symbolic tool does.

7.2 Correctness

As a general test-oracle, P4Testgen is designed to support multiple
targets. We consider our design successful if a target extension is
both able to generate correct test files for a wide variety of P4 pro-
grams and also produce tests that pass for complex, representative
programs on each target.

Producing valid tests for diverse P4 programs. To ensure that P4-
Testgen’s interpretations of P4 and target semantics are correct,
we generated tests for a suite of programs and executed them on
the target. For vimodel, pna, and ebpf_model, we selected all the
P4 programs available in the P4C test suite. For Tofino, we used
the programs available in the P4Studio SDE and a selected set of
compiler tests given to us by the Tofino compiler team. The majority
of these programs are small and easy to debug, as they are intended
to test the Tofino compiler. In total, we tested on 458 Tofino, 191
Tofino 2, 507 BMv2, 62 PNA, and 30 eBPF programs.

We used P4Testgen to generate 10 input-output tests with a fixed
random seed for each of the above programs. We then executed
these tests using the appropriate software model and test back ends.
In fact, on every repository commit of P4Testgen, we execute P4-
Testgen on all 5 extensions and their test back ends (Tbl. 1), totaling
more than 2800 P4 programs and 10 tests per program. We used this
technique to progressively sharpen our semantics over the course
of a year, running P4Testgen millions of times. If the execution
of a test did not lead to the output expected by P4Testgen, we
investigated. Sometimes, it was a bug in P4Testgen, which we fixed.
Sometimes, the target was at fault and we filed a bug (see §7.4).

Producing valid tests for large P4 programs. For the vimodel, we
chose two actively maintained P4 models of real-world data planes.
middleblock.p4 (§ 6.1.1) and up4.p4 [48]. up4.p4 is a P4 program de-
veloped by the Open Networking Foundation (ONF) which models
the data plane of 5G networks. We have considered other programs
but they were either written in P414 [67] or not sufficiently com-
plex to provide a useful evaluation [11]. For tna/t2na, we generate
tests for the appropriate version of switch.p4, the most commonly
used P4 program for the Tofino programmable switch ASIC. We
execute the generated tests on either BMv2 or the Tofino model
(a semantically accurate software model of the Tofino chip). For
each target, we generate 100 PTF tests. The eBPF kernel target does
not have a suite of representative programs. Instead, we generated
tests for P4C’s sample programs. The tests we have generated pass,
showing that we can correctly generate tests for large programs.
pna on the DPDK SoftNIC does not have an end-to-end testing
pipeline available yet, but we still generate tests for its programs.
As a representative program we picked dash_pipeline.p4, which
models the end-to-end behavior of a programmable data plane in
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P4 program Valid tests ~ Time Stmts.  Stmts. covered
middleblock.p4 (vimodel) 74472 ~40m 150 100%
up4.p4 (vimodel) 57853 ~55m 185 100%
dash_pipeline.p4 (pna) >1M ~668m 256 ~90%
simple_switch.p4 (tna) >1M ~628m 300 ~43%
switch.p4 (tna) >1M ~2653m 921 ~36%
switch.p4 (t2na) >1M ~2719m 1024 ~31%

Table 2: Coverage statistics for large P4 programs using DFS.

P4 [70]. dash_pipeline.p4 is still under development, but is already
complex enough to generate well over a million unique tests.

7.3 Coverage

When generating tests, P4Testgen tracks the statements (after dead-
code elimination) covered by each test. Once P4Testgen has finished
generating tests, it emits a report that details the total percentage
of statements covered. We use this data to identify any P4 program
features that were not exercised. For example, some program paths
may only be executable if the packet is recirculated.

How well does P4Testgen cover large programs? We tried to ex-
haustively generate tests for the programs chosen in the previous
section. Tbl. 2 provides an overview of the number of tests gen-
erated for each program (this number correlates with the number
of possible branches as modelled by P4Testgen) and the best state-
ment coverage we have achieved using DFS. As expected, for the
switch.p4 programs of tna and t2na, we generate too many paths
to terminate in a reasonable amount of time. For the switch.p4 pro-
grams we list the coverage we achieved before halting generation
after the millionth test.

How does path selection help with statement coverage? Tbl. 2
shows that the number of tests generated for larger P4 programs
can be overwhelming. In practice, users want tests with specific
properties, which necessitates the use of path selection strategies.
We measure the effect of the P4Testgen’s path selection strate-
gies (§5). We select middleblock.p4 and up4.p4 as representative
sample programs for vimodel. For tna and t2na, we select simple_-
switch.p4, which we patched up such that all statements in the
program are reachable. We have chosen simple_switch.p4 for two
reasons: (i) we have not implemented all features to fully cover
switch.p4 (specific register/meter configurations, recirculation) to
achieve full statement coverage,2 and (ii) simple_switch.p4 is an
open-source program available at the OpenTofino repository [37].
simple_switch.p4 is still a complex Tofino program: it produces
over 30 million unique, valid tests. We generate tests with each
strategy until we hit 100% statement coverage. We compare Ran-
dom Backtracking and our Coverage-Optimized Search to standard
DFS. We measure the total number of tests needed to achieve cov-
erage across a sample of 10 different seeds.

Fig. 7 shows the mean coverage across 10 seeds over 1000 timesteps
for simple_switch.p4. We stopped a heuristic if it did not achieve
100% within an hour of generating tests. Only Coverage-Optim-
ized Search reliably accomplishes full coverage in this time frame
and outperforms Random Backtracking and DFS by a wide margin.
Coverage-Optimized Search always outperforms DFS and generally
outperforms Random Backtracking. In some cases, however, (e.g.,

*We currently achieve around 90% coverage using Coverage-Optimized Search.
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Figure 7: Path selection strategy performance on simple_switch.p4.

up4.p4) Coverage-Optimized Search is not sophisticated enough
to find the path which covers a sequence of statements. In those
cases, it will perform similarly to Random Backtracking. Tbl. 7 of
the appendix shows a results breakdown for all selected programs.

How do preconditions affect the number of generated tests? We
conducted a small experiment to measure the impact of applying
preconditions and simplified extern semantics on middleblock.p4.
We measured the number of generated tests when fixing the input
packet size (thus avoiding parser rejects in externs) and applying
SwitchV’s P4Constraints. Fig. 8 shows the results. The number of
generated tests can vary widely, based on these input parameters.
Applying the input packet size and the P4Constraints table entry
restrictions can reduce the number of generated tests by as much
as 71%. Adding testgen_assume (§5) statements, which mandates
that we only produce packets with TCP/IP headers, reduces the
generated tests by 95%. Tbl. 8 in the appendix has detailed statistics.

What are the limits of P4Testgen’s statement coverage? There are
P4 programs where P4Testgen can not achieve full statement cov-
erage. An example is blink.p4 [36], a P4 program, where statement
execution depends on the timestamp metadata field which is set
by the target when a packet is received. Since P4Testgen can not
control the initialization of the timestamp for BMv2 (yet), we are
unable to cover any statement depending on it. Other tools such as
FP4 [74] and P4wn [39] are able to cover these statements as they
generate packet sequences which may eventually cause the right
timestamp to be generated. This limitation is not insurmountable.
In the future, we plan to mock timestamps using a match-action
table, or add an API for controlling timestamps directly.

7.4 P4Testgen in Practice

We have used P4Testgen to successfully generate tests for nearly a
year. Compiler developers rely on P4Testgen to gain confidence in
the implementation of new compiler features. For instance, they
can generate tests for an existing program, enable the new compiler
feature, and check that the tests still pass. This approach iden-
tified several flaws in new compiler targets and features during
development. We have also used P4Testgen to give users of Tofino
confidence to upgrade their targets or their toolchains. In one of
our use cases, a switch vendor had reservations on migrating their
P4 programs from Tofino 1 to Tofino 2. The vendor could not ensure
that the behavior of the program remained semantically equivalent
in this new environment. Using P4Testgen we generated a high-
coverage test suite, which reassured the team that they could safely
migrate to the Tofino 2 chip.
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Figure 8: Effects of preconditions on the total number of tests gener-
ated for middleblock.p4.

Generating tests for abstract network device models. An increas-
ingly popular use-case of P4 is to use it as a modeling language
to describe network data planes [1, 70]. Often, these data plane
models lack tests. P4Testgen can exhaustively generate tests for the
P4 data plane model, where the tests also satisfy particular cover-
age criteria. Further, because P4Testgen is extensible, a developer
modelling their device can use arbitrary P4 architectures. We are
now working with the DASH [70] and SwitchV [1] developer teams,
who are interested in applying P4Testgen to their data plane models
written for the pna and vimodel architectures.

7.4.1 Bugs. For any validation tool, the bottom line is whether it ef-
fectively finds bugs, particularly in mature, well-tested systems. To
evaluate P4Testgen’s effectiveness, we used the workflow described
in §7.2, by running P4Testgen on each program in the appropriate
test suite. Tbl. 4 summarizes the bugs we found. Tbl. 3 provides
details on the bugs we have filed for BMv2. For confidentiality
reasons, we are unable to provide details on Tofino bugs.

What are the bugs we are interested in? We report only target stack
bugs—i.e., a bug in the software or hardware stack. We consider a
target stack bug any failing test that was generated by P4Testgen but
was not an issue with P4Testgen itself. This includes compiler bugs
as well as crashes of the control-plane software, driver, or software
simulator. We only count bugs that are both new, distinct (i.e.,
cause a new entry in the issue tracker), and non-trivial (bugs which
require either a particular packet size, control-plane configuration,
or extern to be exercised). If a bug is considered a duplicate by the
developers we only count it once. P4Testgen revealed two types of
bugs: (1) exceptions, where the combination of inputs caused an
exception or other fault; and (2) wrong code bugs, where the test
inputs did not produce the expected output.

What caused these bugs? The causes of the bugs found were diverse.
Some were due to errors in the compiler back end, others due to
mistakes in the software model, while still others due to errors in
the control plane software and test framework. For each bug, we
filed an issue in the respective tracker system. Several issues either
anticipated a customer bug that was filed later or reproduced an
existing issue that was still open. In several instances, P4Testgen
was able to discover bugs where hand-written tests lacked coverage.

What features of P4Testgen were important for finding a bug? 8 of
the total 25 we have found were triggered by P4Testgen synthesiz-
ing table and extern configurations. 2 were triggered by P4Testgen
implementing a detailed model of extern functions. 2 were triggered
by P4Testgen generating tests with unexpected packet sizes. The
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Bug label Type Bug description

p4lang/PI/issues/585 Exception
p4lang/behavioral-model/issues/1179  Exception

p4lang/p4c/issues/3423 Exception
p4lang/p4c/issues/3514 Exception
p4lang/p4c/issues/3429 Exception
p4lang/p4c/issues/3435 Exception
p4lang/p4c/issues/3620 Exception

p4lang/p4c/issues/3490

The open-source P4Runtime server has incomplete support for the p4runtime_translation annotation.
BMv2 crashes when trying to add entries for a shared action selector.

BMv2 crashes when accessing a header stack with an index that is out of bounds.

The STF test back end is unable to process keys with expressions in their name.

The output by the compiler was using an incorrect operation to dereference a header stack.

Actions, which are missing their “name” annotation, cause the STF test back end to crash.

BMv2 can not process structure members with the same name.

Wrong code  The compiler swallowed the table.apply() of a switch case, which led to incorrect output.

Table 3: BMv2 bugs found by P4Testgen.

Bug Type Feature BMv2  Tofino Total
Unusual path 2 5 7

Synthesized control plane 5 1 6

Exception Packet-sizing 0 2 2
Extern model 0 1 1

Total 7 9 17

Unusual path 0 5 5

Synthesized control plane 1 1 2

Wrong Code | Packet-sizing 0 0 0
Extern model 0 1 1

Total 1 7 8

Total 8 17 25

Table 4: Bugs in targets discovered by P4Testgen.

remaining bugs were caused because P4Testgen’s generated tests
exercised untested program paths or esoteric language constructs
(e.g., a stack-out-of-bounds error or header union access). Overall,
we found more incorrect behavior bugs with Tofino because of (i)
its complexity and (ii) the fact that we focused our bug-tracking
efforts on Tofino and gave BMv2 issues lower priority.

Reachability bugs in P4 programs A side-effect of P4Testgen’s sup-
port of explicit coverage heuristics is its ability to detect reachability
bugs in P4 programs. In some cases, Greedy-Lookahead is unable to
cover a particular program statement. This may be because of fail-
ures in the heuristic, but often the code is simply non-executable—
i.e., dead. We encountered several instances of such dead code for
proprietary and public production-grade programs [60]. The devel-
opers were usually appreciative of our bug reports, which occurred
in complex programs that are difficult to debug, especially early in
the development process.

8 RELATED WORK

Automatic test generation for Software-Defined Networks (SDNs).
The SDN literature has considerable research dedicated to auto-
mated network testing, frequently using symbolic execution to
verify the correctness of network invariants [10, 40, 41, 49, 69].
Some of these projects verify network data-plane configurations by
generating test input packets, for example Automatic Test Packet
Generation (ATPG) [75]. ATPG automates input packet generation
to validate a configured switch network by computing all possible
packets that cover every switch link and table rule. Monocle [56]

and Pronto [76] are similar systems. All use the control-plane con-
figuration as ground truth, which allows them to check whether
the right packet headers have been forwarded out on the correct
port. P4Testgen targets a richer data plane model than these prior
approaches because the data plane is effectively specified in a DSL.
But, P4Testgen focuses more narrowly on a single device’s data
plane implementation, not the entire network’s forwarding rules.

Verifying P4 programs. Many tools help verify P4 programs against
a formal specification. Tools in this domain usually rely on asser-
tions that model relational properties—e.g., the program does not
read or write invalid headers [20, 21, 30, 39, 46, 64, 65, 68, 71]. P4Test-
gen is orthogonal to these tools. It produces tests for a P4 program
but does not check the correctness of the program itself.

Some of these tools [39, 46, 64, 65] are able to generate concrete
test inputs in the form of input packets. The outputs of these inputs
are then compared against developer-supplied assertions. In theory,
with good assertions, this method can also detect bugs in a given
P4 toolchain. P6 [64] in particular considers “platform-dependent
bugs”, which are comparable to toolchain bugs.

Testing P4 toolchains. Other tools focus on validating P4 imple-
mentations by generating test inputs. Tbl. 5 provides a summary.
Compared to P4Testgen, these tools are typically tailored to a single
target or use case. P4Testgen relies on formal semantics to compute
inputs and outputs, avoiding running a second system to produce
the output [1, 74]. In particular, developers using P4Testgen do not
need to understand the semantics of the P4 program to generate
tests; P4Testgen provides these semantics as part of its tool.

p4pktgen [52] is a symbolic executor that automatically gener-
ates tests. It focuses on the vimodel, STF tests, and BMv2. In spirit,
p4pktgen is close in functionality to P4Testgen. However, the tool
does not implement all aspects of the P4 language and vimodel
architecture—its capabilities as a test oracle are limited. We tried to
reproduce the bugs listed in Tbl. 3 using p4pktgen but were not able
to. p4pktgen either was not able to produce tests for the program
or did not achieve the necessary coverage. While p4pktgen does
support a form of packet-sizing to trigger parser exceptions, its
model only considers a simple parser-control setup, not multiple
subsequent parsers such as Tofino’s.

SwitchV [1] uses differential testing to find bugs in switch soft-
ware. It automatically derives inputs from a switch specification in
P4, feeds the derived inputs into both the switch and a software ref-
erence model, and compares the outputs. SwitchV uses fuzzing and
symbolic execution to generate inputs that cover a wide range of
execution paths. To limit the range of possible inputs, the tool relies
on pre-defined table rules and the P4Constraints framework. It also
does not generate control-plane entries. Like p4pktgen, SwitchV is
specialized to vimodel and BMv2.

Meissa [77] is a symbolic executor specialized to the Tofino target.
Meissa builds on the LPI language’s pre- and post-conditions [71]
to generate input—output tests. The tool is designed for scalability
and uses techniques such as fixed match-action table rules, code
summaries for multi-pipeline programs, and path pruning to elimi-
nate invalid paths according to the input specification. P4Testgen’s
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Tool Input generation method  Synthesizes control-plane?  Multi-target? ~ Models target semantics? ~ Data plane coverage metric
Meissa [77] Symbolic Execution X X Symbolic model
SwitchV (via p4-symbolic) [1] Symbolic Execution X X v Symbolic model, Assertions
pdpktgen [52] Symbolic Execution v X X Symbolic model
Gauntlet (model-based testing) [61] ~ Symbolic Execution X v X Symbolic model
PTA (uses p4v) [6] Fuzzing X v X Symbolic model (p4v)

DBVal [45] Fuzzing X N X Tables, Actions

FP4 [74] Fuzzing X v X Actions

P6 [74] Fuzzing X v X Symbolic model

P4Testgen Symbolic Execution v v 4 Symbolic model, source code

Table 5: P4 tools generating input—output tests. Data plane coverage describes how the tool measures coverage of the generated inputs.

preconditions and path selection strategies combat the same scal-
ing issues as Meissa. Meissa’s source code is proprietary, which
precludes a direct comparison.

PTA [6] and DBVal [45] both implement a target-independent
test framework designed to uncover bugs in the P4 toolchain. Both
PTA and DBVal augment the P4 program under test with extra as-
sertions to validate the correct execution of the pipeline at runtime.
Both projects provide only limited support for test-case generation.

FP4 [74] is a target-independent fuzzing tool that uses a second
switch as a fuzzer to test the implementation of a P4 program. FP4
automatically generates the necessary table rules and input packets
to cover program paths. To validate whether outputs are correct,
FP4 requires custom annotations instrumented by the user.

Coverage. There are important differences in testing tools assess
coverage—see Tbl. 5 for a summary. P4Testgen marks a node in the
source P4 program as covered when the symbolic executor steps
through that node and generates a test. FP4 measures action cover-
age by marking bits in the test packet header to track which actions
were executed. As FP4 generates packets at line rate it achieves cov-
erage for actions faster than P4Testgen. p4pktgen discusses branch
coverage, which can be estimated by parsing generated tests to
see which control-plane constructs (tables, actions) were executed.
Meissa reports coverage based on the branches of its own formal
model of the P4 program. SwitchV also measures branch coverage
based on developer-provided goals derived from its symbolic model.
Another important consideration is whether programmers can an-
notate the program with constraints or preconditions—see Fig 8. In
many scenarios, these constraints are necessary to model assump-
tions made by the overall system, but they also affect coverage since
they reduce the number of legal paths.

Extensibility. Petr4 [19] and Gauntlet [61] are designed to support
multiple P4 targets. Petr4 provides an “plugin” model that allows the
addition of target-specific semantics. However, it does not support
automatic test case generation and does not aim to provide path
coverage. Gauntlet can generate input-output tests for multiple
P4 targets but it does not model externs, nor does it implement
whole-program semantics to model the tested target.

9 CONCLUSION

P4Testgen is a new P4 test oracle that automatically generates
input-output tests for arbitrary P4 targets. It uses whole-program
semantics, taint-tracking, concolic execution, and path selection
strategies to model the behavior of the P4 program and generate
tests that achieve coverage. P4Testgen is intended to be a resource
for the entire P4 community. It already supports input-output test
generation for three open-source P4 targets and several extensions

for closed-source targets are in development. By designing it as a
target-independent, extensible platform, we hope that P4Testgen
will be well-positioned for long-term success. Moreover, since P4-
Testgen is a back end of P4C, it should be easy for developers to
build on our tool, lowering the barrier of adoption.

As P4Testgen is an open-source tool, we welcome contributions
from the broader community to improve and extend its functionality.
For example, two common community requests are to extend P4-
Testgen with the ability (i) to generate arbitrarily many entries
per table and (ii) produce tests with a state-preserving sequence of
input—output packets. In the future, to further validate P4Testgen’s
generality, we would like to complete P4Testgen extensions for the
P4-DPDK SoftNIC target and the open-source PSA [32] target for
NIKSS [53], as well as proprietary SmartNICs [17, 43, 55]. We also
intend to develop additional P4 validation tools based on P4Test-
gen’s framework which apply ideas from software testing in the
networking domain—e.g., random program generation, mutation
testing, and incremental testing. We are also interested in network-
specific coverage notions—e.g., for parsers, tables, actions, etc.

Software testing is always important, but testing the packet
processing programs that power our network infrastructure, pro-
cessing billions of packets per second, is especially important. In
time, there will inevitably be better approaches than P4Testgen for
generating high-quality tests for packet processing systems. The
P4Testgen framework can serve as a vehicle for prototyping these
approaches, and for integrating them into the P4 ecosystem. In the
future, inspired by efforts from other communities [2, 44], we envi-
sion having an open benchmark suite of standard test programs,
control plane configurations, and various notions of coverage to
standardize comparisons between different testing approaches—
enabling more rapid progress for the whole community.

Ethics. Our work on P4Testgen does not raise any ethical issues.
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A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 Target Implementation Details

tna/t2a target detail

15 tna has ~48 extern functions and 6 programmable blocks [37]. t2na has over a 100 externs and 7 programmable blocks.

1= Tofino 2 adds a programmable block, the ghost thread. This block can update information related to queue depth in parallel to the packet traversing the program.

= In the Tofino parser, if a packet is too short to be read by an extern (extract/advance/lookahead) the packet is dropped, unless Tofino’s ingress control reads the parser error
variable. Then the packet header causing the exception is in an unspecified state [37, §5.2.1].

1= The packet that enters the Tofino parser is augmented with additional information, which needs to be modelled. Tofino 1 and 2 prepend metadata to the packet [37, §5.1]. A
4-bytes Ethernet frame check sequence (FCS) is also appended. The parser can parse these values into P4 data structures.

1= If the egress port variable is not set in the P4 program, the packet is practically dropped (no unicast copy is made) [37, §5.1].

1= The value of the output port in Tofino matters. Some values are associated with the CPU port or recirculation, some are not valid, some forward to an output port. The
semantics and validity of the ports can be configured [37, §5.7].

1= Tofino follows the Ethernet standard. Packets must have a minimum size of 64 bytes. Otherwise, the packet will be dropped [37, §7.2]. The exception to this rule are packets
injected from the Tofino CPU PCle port.

1= The Tofino compiler provides annotations which can affect program semantics. Some annotations can alter the size of the P4 metadata structure. If not handled correctly, this
can affect the size of the output packet [37, §11]. Another convenience annotation will initialize all otherwise random metadata to 0.

15 The Tofino compiler removes all fields that are not read in the P4 program from the egress metadata structure. This influences the size of the packet parsed by the egress parser.
= Invalid access to header stacks in a parse loop will not cause a StackOutOfBounds error. Instead, execution transitions to the control with PARSER_ERROR_CTR_RANGE set [37, §5.2.1].
= Control plane keys in the Barefoot Runtime (Bfrt) may contain dollar signs ($). When generating PTF/STF tests, these have to be replaced using a compiler pass.

1= Tofino has a metadata variable, which tells the traffic manager to skip egress processing entirely [37, §5.6].

1= Tofino 2 has a metadata variable, which instructs the deparser to truncate the emitted packet to the specified size.

vimodel target detail

1= vimodel has ~26 extern functions and 6 programmable blocks [22].

1= BMv2’s default output port is 0 [22]. BMv2 drops packets when the egress port is 511.

1= When using Linux virtual Ethernet interfaces with BMv2, packets that are smaller than 14 bytes produce a curious sequence of hex output (02000000) [59].

1 BMv2 supports a special technique to preserve metadata when recirculating a packet. Only the metadata that is annotated with field_list and the correct index is preserved [22].
1= BMv2 supports the assume/assert externs which can cause BMv2 to terminate abnormally [35].

= BMv2’s clone extern behaves differently depending on the location it was called in the pipeline. If recirculated in ingress, the cloned packet will have the values after leaving
the parser and is directly sent to egress. If cloned in egress, the recirculated packet will have the values after it was emitted by the deparser [22].

1 BMv2 has an extern that takes the payload into account for checksum calculation. This means you always have to synthesize a payload for this extern [22].

1 A parser error in BMv2 does not drop the packet. The header that caused the error will be invalid and execution skips to ingress [22].

1= All uninitialized variables are implicitly initialized to 0 or false in BMv2.

1= Some vimodel programs include P4Constraints, which limits the types of control plane entries that are allowed for a particular table.

15 The table implementation in BMv2 supports the priority annotation, which changes the order of evaluation of constant table entries.

ebpf_model target detail

1= ebpf_model has 2 extern functions and 2 programmable blocks.

1= The eBPF target does not have a deparser that uses emit calls. It can only filter.
1= extract or advance have no effect on the size of the outgoing packet.

1= A failing extract or advance in the eBPF kernel automatically drops the packet.

Table 6: A nonexhaustive collection of target implementation details that require P4Testgen’s use of whole-program semantics to provide an
accurate model. Where possible, we cited a source. Some details are not explicitly documented.

A.2 Program Measurements

Program ‘ middleblock.p4 ‘ up4.p4 ‘ simple_switch.p4 dash_pipeline.p4

Metric (Median) Tests Time Total time | Tests Time Total time | Tests Time Total time | Tests Time Total time
Strategy per test per test per test per test
DFS 25105  ~0.05 1321.4s 12932 ~.06s 726.34s * ~0.07 * * ~0.06 *
Random Backtracking 956 ~.08s 80.92s 2463 ~.07s 169.3s * ~0.09 * * ~0.13 *
Coverage-Optimized Search | 86 ~17s 11.41s 3581 ~.06s 242.6s 4612 ~0.12 555.24 63 ~0.41 21.86s

nEn

Table 7: Path selection results for 100% statement coverage on representative P4 programs for 10 different seeds.
did not achieve 100% coverage within 60 minutes.

indicates that the strategy

Applied N Fixed-Size P4Constraint P4Constraints P4Constraints, Fixed- ~ P4Constraints, Fixed-Size
precondition On€  Packet OnSAmLS - pived-Size Packet  Size IPv4 Packet IPv4-TCP Packet

Valid test paths | 146784 83784 74472 42486 28216 7054
Reduction 0% ~43% ~49% ~71% ~81% ~95%

Table 8: Effect of preconditions on the number of tests generated for middleblock.p4. Fixed packet size is 1500B.
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A.3 Packet-Sizing

1 parser IngressParser(...) {

2 state start {

3 pkt.extract(ingress_meta);
4 pkt.extract (hdr.eth);

5 pkt.extract (hdr.ipv4);

6 }

7%

8 control IngressControl(...) {

9 apply {2

10 }

11 control IngressDeparser(...) {

12 apply {

13 pkt.extract(ingress_meta);
14 pkt.extract (hdr.eth);

15 pkt.extract (hdr.ipv4);

16 3}

17 }

18 parser EgressParser(...) {

19 state start {

20 pkt.extract(egress_meta);
21 pkt.extract (hdr.eth);

22 3}

23}

24 control EgressControl(...)

25 apply {2

26 }

27 control EgressDeparser(...) {

28 apply {

29 pkt.extract (hdr.eth);

30 }

31}

32 Pipeline(

33 IngressParser (), Ingress(), IngressDeparser(),
34 EgressParser (), Egress(), EgressDeparser ()
35 ) pipe;

36 Switch(pipe) main;

(a) Extern sequence manipulating Ethernet and IPv4 headers.

Ruffy et al.
Steps through Required . .
pipe o . input Live Emit
perations packet ~ packet  buffer
I3

Ingress prepend(ingress_meta)
Pipe

extract(ingress_meta)

extract(hdr.eth)

extract(hdr.ip)

emit(hdr.eth)

emit(hdr.ip)

prepend_emit_bufter
Egress prepend(egress_meta) .
Pipe

extract(egress_meta)

extract(hdr.eth)

emit(hdr.eth)

]

prepend_emit_bufter £
____________________ ==
Legend

i Target-defined operation
i P4-defined operation

Final test
input packet

Final test
output packet

(b) Change in the packet sizing variables as P4Testgen steps through the program.
Each block corresponds to a P4 header.

Figure 9: Packet-sizing for a Tofino program.
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