PAFPGA : A Rapid Prototyping Framework for P4

Han Wang

Cornell University

Robert Soulé

Universita della Svizzera italiana

Huynh Tu Dang

Universita della Svizzera italiana

Barefoot Networks

Ki Suh Lee

Cornell University

Vishal Shrivastav

Cornell University

Nate Foster
Cornell University
Barefoot Networks

Hakim Weatherspoon

Cornell University

ABSTRACT

This paper presents PAFPGA, a new tool for developing and
evaluating data plane applications. PAFPGA is an open-source
compiler and runtime. The compiler extends the P4.org refer-
ence compiler with a custom backend that generates FPGA
code. PAFPGA supports different architecture configurations,
depending on the needs of the particular application.

We have benchmarked several representative P4 programs,
and our experiments show that code generated by PAFPGA
runs at line-rate at all packet sizes with latencies comparable
to commercial ASICs. By combining high-level programming
abstractions offered by P4 with a flexible and powerful hard-
ware target, PAFPGA allows developers to rapidly prototype
and deploy new data plane applications.

KEYWORDS
P4, FPGA, High-level synthesis

ACM Reference format:

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal
Shrivastav, Nate Foster, and Hakim Weatherspoon. 2017. PAFPGA
: A Rapid Prototyping Framework for P4. In Proceedings of ACM
Symposium on SDN Research conference, Santa Clara, California
USA, April 2017 (SOSR 2017), 14 pages.

DOIL: http://dx.doi.org/10.1145/3050220.3050234

1 INTRODUCTION

P4 [6] promises to have a profound impact on networking
by making data planes programmable and enabling unprece-
dented levels of innovation. Programmers are already using

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).

SOSR 2017, Santa Clara, California USA

© 2017 Copyright held by the owner/author(s). 978-1-4503-4947-5/17/04.
DOI: http://dx.doi.org/10.1145/3050220.3050234

the language’s domain-specific abstractions to implement a
variety of novel applications, including network diagnostics
and telemetry tools [23, 38], advanced traffic engineering and
load balancing systems [19], and even optimized consensus
protocols [11, 25].

However, most current targets for P4 are implemented in
software [32, 36]. To get the full performance benefits of
a programmable data plane, developers need access to plat-
forms that can execute their designs efficiently in hardware.
In this respect, Field Programmable Gate Arrays (FPGAs) are
an attractive target platform for P4 programs. As a form of
re-programmable silicon, FPGAs offer the flexibility of soft-
ware and the performance of hardware. Indeed, major cloud
providers, such as Microsoft, Amazon and Baidu, already de-
ploy FPGAs in their data centers to boost performance—e.g.,
to accelerate network encryption and decryption or implement
custom transport layers [35].

There are several challenges in designing a compiler from
P4 to FPGAs. First, FPGAs are typically programmed using
low-level libraries that are not portable across devices. More-
over, communication between 3rd party processing elements
is device-specific, adding an additional hurdle to portability.
Second, generating an efficient implementation of a source
P4 program is difficult since programs vary widely and ar-
chitectures make different tradeoffs. Third, although the P4
language is target agnostic, it relies on a number of “extern”
functions for critical functionality, such as checksums and
encryption, complicating code generation.

This paper presents PAFPGA, an open-source P4-to-FPGA
compiler and runtime that is designed to be flexible, efficient,
and portable. To ensure that PAFPGA is flexible enough to
implement many different network functions, the compiler al-
lows users to incorporate arbitrary hardware modules written
in the language of their choice. This approach offers a degree
of flexibility that would be difficult to achieve on other targets,
such as a switch ASIC. To ensure that the code generated by
the compiler is efficient, PAFPGA supports datapaths with
one [24] or more ports [17]. This approach allows users to

SOSR 2017, April 2017, Santa Clara, California USA

select the best design for their particular application. Finally,

to ensure that programs are portable across different devices,

P4FPGA provides a runtime with device-agnostic hardware

abstractions. This runtime allows PAFPGA to support designs

that can be synthesized to either Xilinx or Altera FPGAs.

We have evaluated our prototype implementation on a va-
riety of representative P4 programs. Our experiments show
that code generated by PAFPGA runs at line-rate throughput
on all packet sizes up to MTU with latencies similar to off-
the-shelf commodity switch ASICs. Moreover, PAFPGA is
already being used by at least two research projects [11, 18]
to deploy P4 programs on actual hardware.

Overall, this paper makes the following contributions:

o It presents the design of a P4-to-FPGA compiler and run-
time system.

o It evaluates the performance of the generated code and
backend on a variety of non-trivial P4 programs and demon-
strates that performance is competitive with commercial
switches—e.g., latencies are comparable to commercial
cut-through switches.

e [t develops a wide variety of standard and emerging net-
work applications using PAFPGA, which demonstrates that
the tool is broadly applicable.

The rest of this paper is organized as follows. We first pro-
vide background on the P4 language (§2). We then discuss
the design of the code-generation (§3) and runtime (§4) com-
ponents; and details of the implementation (§6). Next, we
evaluate (§7) our prototype. Finally, we discuss related work
(§8), and conclude (§9).

2 BACKGROUND AND OVERVIEW

Before describing the details of the PAFPGA design, we
briefly present a high-level overview of the P4 language [6],
and networking processing on FPGAs.

P4 Background. When describing a P4 compiler, it is im-
portant to clarify some terminology. A farget is hardware that
is capable of running a P4 program, such as FPGAs, ASICs,
or CPUs. An architecture refers to the combination of the
runtime as well as the processing pipeline specified in a P4
program. A P4 program is target independent, meaning the
same program can be implemented on different hardware.
A P4 compiler is responsible for mapping the abstract ar-
chitecture specified by the P4 program to a particular target
and architecture. FPGAs are uniquely able to map abstract
architectures directly to hardware. In contrast, a single switch
ASIC will only be able to faithfully implement a small subset
of potential architectures and extern primitives.

As a language, P4 allows developers to specify how pack-
ets are processed in the data plane of network forwarding

H. Wang et al.

CPU
Packet In Match Traff E:l(etOut
—| Parser —»| Action | Deparser —| Marzalcer—’
Pipeline 9erl o
Drop

Figure 1: Example P4 Abstract Architecture

elements. P4 programs are written against an abstract architec-
ture that hides the actual physical implementation. In the ab-
stract architecture, packets are first parsed, and then processed
by a sequence of match-action tables. Each table matches on
specified packet header fields, and then performs a sequence
of actions to modify, forward, or drop the packet. Addition-
ally, the program collects packet metadata, such as ingress
and egress port numbers, which flows through the pipeline.
Implicitly, at the end of the pipeline, packets are reassembled
for transmission in a deparser stage. Figure 1 illustrates a
simple example with a single parser and match table pipeline.
The P4 language provides syntax that mirrors this abstract
model. For brevity, we do not describe the syntax in detail
as the full language specification is available online [31]. We
simply mention that programmers can declare packet headers,
compose tables, and specify actions. Tables can be populated
at runtime with flow rules via a control plane APIL

The PAFPGA compiler supports both P44 and P44 syntax.
The example code in Figure 2 shows a subset of a P44 pro-
gram for counting UDP packets by destination port. Line 4
defines the layout for the UDP packet headers. Line 11 de-
clares an instance of that header, named udp. Line 12 de-
fines how to parse UDP packet headers. The ext ract key-
word assigns values to the fields in the header instance. The
return keyword returns the next parser stage, which could
be ingress, indicating the start of the pipeline. Line 26 is
the start of the flow control for the P4 program. It checks
if the arriving packet is an Ethernet packet, then if it is an
IPv4 packet, and finally if it is a UDP packet. If so, it passes
the packet to the table_count table, defined on Line 23.
The table_count table reads the destination port, and
performs one of two possible actions: count _c1 or .drop a
packet. The action count_c1 on Line 20 invokes a count
function. The count function must be defined externally to
the P4 program.

FPGA Background. FPGAs are widely used to implement
network appliances [10, 16] and accelerators [3], as appli-
cations implemented on FPGAs typically achieve higher
throughput, lower latency, and reduced power consumption
compared to implementations with general-purpose CPUs.

Development on an FPGA typically involves using a low-
level hardware description languages (i.e., Verilog, VHDL)

P4FPGA : A Rapid Prototyping Framework for P4

1 // We have elided eth and ipv4 headers,
2 // and the extern declarations for

brevity
3
4 header_type udp_t {
5 fields {
6 srcPort : 16;
7 dstPort : 16;
8 length : 16;
9 checksum : 16;

10 }}

11 header udp_t udp;
12 parser parse_udp {
13 extract (udp) ;
14 return ingress;
15}

16 counter cl {

17 type: packet;

18 numPackets : 32;

19 }

20 action count_cl() {

21 count (cl, 1);

2 }

23 table table_count {

24 reads { udp.dstPort : exact; }
25 actions { count_cl; _drop; } }
26 control ingress {

27 if (valid(eth)) {

28 if (valid(ipv4d)) {

29 if (valid(udp)) {

30 apply (table_count) ;

31 bh})

Figure 2: Subset of a P4,, program to count UDP packets.

to statically specify a hardware circuit for a single applica-
tion [40]. However, these languages are widely regarded as
difficult to use, and consequently, there has been significant
research in high-level synthesis [2, 9, 37].

P4FPGA uses one of these languages, Bluespec System
Verilog [27], both as the target for compiler generation and
to implement the runtime. Bluespec is a strongly typed func-
tional language, similar in many respect to Haskell. Users
write hardware operations as guarded rules [27]. The lan-
guage includes a large set of libraries for common hardware
constructs such as registers, FIFO queues and state machines.
Moreover, PAFPGA uses Bluespec code from the Connectal
project [21] to implement the control plane channel. Using
Bluespec simplifies FPGA development by providing high-
level language constructs, and is more expressive than Ver-
ilog.

SOSR 2017, April 2017, Santa Clara, California USA

P4FPGA Overview. A compiler for P4 is responsible for
two main tasks: generating the configuration to implement a
data plane on a target platform at compile time and generating
an application programming interface (API) to populate tables
and other programmable elements at run time.

Figure 3 presents a high-level overview of the PAFPGA
framework and compilation strategy. The components inside
the dashed-line were developed specifically for PAFPGA. The
components outside the dashed-line are existing open-source
tools or commercial products for FPGA synthesis that are
re-used by PAFPGA.

P4FPGA builds on the reference P4 compiler implemen-
tation provided by the P4 organization [34]. The reference
compiler parses P4 source, and produces a standard inter-
mediate representation (IR) [34]. We chose to build on the
reference front end for practical reasons. It both reduces the
required engineering effort, and ensures that FPGA conforms
to the latest P4 syntax standards.

P4FPGA includes three main components: (i) a code gen-
erator, (ii) a runtime system, and (iii) optimizers imple-
mented as IR-to-IR transformers. The code generator pro-
duces a packet-processing pipeline inspired by the model pro-
posed by Bosshart et al. [7]. The runtime provides hardware-
independent abstractions for basic functionality including
memory management, transceiver management, host/control
plane communication. Moreover, it specifies the layout of the
packet processing pipeline (e.g. for full packet switching, or to
support network function virtualization (NFV). The optimiz-
ers leveraging hardware parallelism to increase throughput
and reduce latency.

The compiler produces Bluespec code as output, which is
compiled to Verilog. The Verilog code is further synthesized
by downstream FPGA tool chains. The output bitstream can
then be used to configure an FPGA.

In the following sections, we present the code generator,
runtime system, and optimizers in full detail.

3 CODE GENERATION

The core job of the PAFPGA compiler is to map logical
packet-processing constructs expressed in P4 into physical
packet-processing constructs expressed in a hardware descrip-
tion language. We organize the generated physical constructs
into basic blocks. As in most standard compilers, a basic
block is a sequence of instructions (e.g., table lookups, packet-
manipulation primitives, etc.). We implement basic blocks in
P4AFPGA using parameterized templates. When instantiated,
the templates are hardware modules that realize the logic for
packet parsers, tables, actions, and deparsers.

There are two motivations behind our use of basic blocks.
First, it reduces the complexity of the compiler, since code
generation simply becomes the composition of modules that
implement standard interfaces. Second, the modular design

SOSR 2017, April 2017, Santa Clara, California USA

P4FPGA Runtime + H» Verilog

P4 Source
Fm—m—————— -
| |
! IR-to-IR T
| I IR
1 |__Transformers L__g R ;
| |
1
: Code |
: 1
\ Generation
| P4FPGA |
| ¢ :
I 1
| Processing 1| Downstream
| ~T| Compiler
1

Pipeline |

Figure 3: PAFPGA Framework Overview.

enables extensibility in two ways: (i) programmers can easily
add externally-defined functionality via a foreign-function
interface (e.g., to implement a custom hash function), and (ii)
programmers can modify the compiler by replacing one basic
block with another that implements the same functionality
(e.g., to modify the memory storage to use DRAM, SRAM,
or an SSD).

The control flow constructs from the P4 source program dic-
tate the composition of the basic blocks. We refer to this com-
position of blocks as the programmable packet-processing
pipeline. This is in contrast to the fixed-function pipeline that
is realized by the PAFPGA runtime system. In other words,
the programmable packet-processing pipeline is specified by
the logic of a particular P4 source program, whereas the fixed-
function pipeline is determined by the target platform, and is
fixed for all input source programs.

3.1 Programmable Pipeline

The programmable packet-processing pipeline realizes the
programmable logic of a P4 source program on an FPGA
hardware implementation. It consists of a composition of
basic blocks to parse, deparse, match, or perform an action.

Parsing. Parsing is the process of identifying headers and
extracting relevant fields for processing by subsequent stages
of the device. Abstractly, the process of parsing can be ex-
pressed as a finite state machine (FSM) comprising a set of
states and transitions. From a given state, the FSM transitions
to the next state based on a given input from a header or
metadata. A subset of the states identifies and extracts header
fields. The FSM graphs may be acyclic, as is the case with
Ethernet/IPv4 parsers, or cyclic—e.g., to parse TCP options.
P4FPGA adopts a streaming approach in which the packet
byte stream is fed into the FSM and processed as soon as
there is enough data to extract a header or execute a FSM
transition.

H. Wang et al.

The implementation of the parser basic block includes
code that is common to all parser instances and generated
code that is customized for each specific parser. The common
code includes state variables (e.g., header buffer, parse state,
and offset), and a circuit that manages incoming bytes. The
generated portion of a parser implements the application-
specific FSM.

Deparsing. As shown in Figure 3, there are two sources
of input data to the deparser stage. One is the packet data
stored in memory (§4), and one is the modified packet header
processed by the programmable pipeline. The deparser re-
assembles the packet for transmission from these two input
sources.

Like the parser, the deparser is implemented as a FSM.
However, the design of deparser is more complicated, since it
may add or remove headers during packet assembly.

The deparser consists of three modules: packet extender,
packet merger, and packet compressor. The packet extender
supports the addition of headers by inserting empty bytes at a
designated offset. The packet merger writes modified packet
fields, including fields added by the extender module. The
packet compressor marks bytes to be removed by writing to a
bit mask.

Note that the deparsing stage is responsible for modifying
packets. Packet modification could be performed inline one-
by-one (i.e., after every table), or all together at the end of the
pipeline. PAFPGA takes the latter approach, since it reduces
latency. In other words, the pipeline modifies a copy of the
header, and changes are merged with the actual header in the
deparser stage.

Matching. In PAFPGA, basic blocks for tables are imple-
mented as FPGA hardware modules that support get/put op-
erations via a streaming interface. P4 allows users to specify
the algorithm used to match packets. Our PAFPGA prototype
supports two matching algorithms: ternary and exact-match.
The ternary match uses a third-party library. We implemented
two versions of exact match ourselves, one using a fully-
associative content addressable memory (CAM) [1], and the
other using a hash-based lookup table. Users can choose the
implementation strategy by using a command line option
when invoking the compiler. Note that because of the “pro-
gramming with tables” abstraction that P4 provides, some
programs include tables without lookup keys, whose purpose
is solely to trigger an action upon every packet processed by
the pipeline stage. PAFPGA handles this corner case by not
allocating any table resources to this stage.

Actions. P4 actions can modify a field value; remove/add a
header; or modify packet metadata. Conceptually, each action
operates on one packet at any given time, with all temporary
variables stored in metadata on the target. PAFPGA performs

P4FPGA : A Rapid Prototyping Framework for P4

DMA Channel

Rx Channel

SOSR 2017, April 2017, Santa Clara, California USA

Network Controller

P4FPGA-generated control API

Tx Channel

I

FIFO

Tx Channel

Packet Cap

512-bit crossbar

o
[
Q
3y
@
ol
.. ©
[}
3

| Parser
Match . Match)
Table —> Action H Table — Action

P4FPGA-generated Pipeline 1-to-N

(

Memory Management Unit

) (Transceiver Management) (Host Communciation)

Altera

BRAM PHY

SRAM DRAM

Xilinx
GTX/GTH

PCle

Gen2/3 P4FPGA Runtime

Figure 4: PAFPGA Runtime and Pipeline.

inline editing to packet metadata and post-pipeline editing to
packet headers. Modify actions create a copy of the updated
value stored in a memory that is merged with the original
packet header field in the deparser block. For actions that
change a packet header length, basic blocks are created before
and after the deparser block, to perform re-alignment. For
example, to remove a packet header, the deparser marks the
header as invalid in a bit mask. The realignment block then
shifts the remaining bytes forward to cover the gap created
by the removed header.

Control Flow. P4 control flow constructs compose tables
and actions into an acyclic graph. A naive implementation
would be to use a fixed pipeline. In such a design, the runtime
would use extra metadata to implement the logic of the source
program. However, because we target an FPGA, PAFPGA can
map the control flow directly onto the generated hardware
design. Each node corresponds to a basic block followed by
a branch condition. We note that this is much more flexible
than implementing control flow on an ASIC. During program
execution, the parsed packet and metadata is passed along
the tree structure. At each node, the runtime evaluates the
conditional and passes the data to the next node along the
appropriate branch, or performs a table lookup depending
on the rules specified in the control plane API. PAFPGA
relies on pipeline parallelism to achieve high throughput. In

other words, at any given time, different nodes in the tree can
process different packets in parallel.

3.2 Control Plane API

In addition to generating code that implements the application-
specific logic in the data plane, PAFPGA also generates a
control plane API that exposes a set of C++ functions that
allow users to insert/delete/modify match table entries and
read/write stateful memory. Moreover, the generated interface
includes functions to support debugging. Users can inject
packets via a packet capture (PCAP) trace, or can enable/dis-
able an on-chip packet generator and capturer.

3.3 External Functions

One of the advantages of FPGAs over ASICs are that they
are more flexible and programmable. P4 offers a relatively
restrictive programming interface that is targeted for network
applications and is platform-agnostic by design. Therefore,
it is sometimes necessary to execute additional functional-
ity via externally defined functions. An externally defined
function could be used to access a state in a register or to
execute custom logic, such as a checksum computation or en-
cryption/decryption. In P4, these are declared using extern
blocks, and the implementations of these calls are target spe-
cific.

SOSR 2017, April 2017, Santa Clara, California USA

PAFPGA allows users to implement externally defined func-
tions in the hardware description language of their choice.
However, such functions pose a challenge for efficient code
generation, since they may have high latency. For example,
an external function that accesses persistent state or requires
complex logic may take a long time to complete. If the pro-
cessing pipeline were to block while waiting for the function
to return, it could significantly impact throughput. PAFPGA
provides an asynchronous implementation, so that the process-
ing of other packets can continue in parallel. This is roughly
analogous to multi-threading, but without the associated cost
of context switching.

4 FIXED-FUNCTION RUNTIME

The PAFPGA fixed-function runtime provides the execution
environment for packet processing algorithms specified in
P4. It defines an API that allows generated code to access
common functionality through a set of target-agnostic ab-
stractions. Consequently, the runtime system plays a crucial
role in providing an efficient, flexible and portable environ-
ment for packet processing applications. It must provide an
abstract architecture that is uniform across many different
hardware platforms. It must also provide an efficient medium
to transport data across processing elements. Finally, the run-
time system must provide auxiliary functionalities to support
control, monitoring, and debugging.

Note that P4 developers can create a variety of potential
applications, ranging from packet switching to NFV style
hardware offloading for packet processing. These applications
have different requirements from the architecture that the
fixed function runtime provides. To support these different
use-cases, PAFPGA allows P4 developers to choose either
of two architectures: multi-port switching or bump-in-the-
wire. The multi-port switching architecture is suitable for
network forwarding elements, such as switches and routers,
and for experimenting with new network routing protocols. It
includes an output cross-bar, as shown in Figure 4, to arbitrate
packets to the appropriate egress port. The bump-in-the-wire
architecture is suitable for network functions and network
acceleration. It receives packets from a single input port, and
forwards to a single output [24].

Below, we describe the design of the major components of
the PAFPGA fixed function runtime. These components, indi-
cated as grey boxes in Figure 4, include memory management,
transceiver management, and host communication.

Memory Management. As packets arrive at the FPGA, they
must be stored in memory for processing. This memory can be
designed in two ways. A straight-forward approach is to use

H. Wang et al.

FIFO queues, which forward packets through processing ele-
ments in the order in which they are received. However, sim-
ple FIFO queues are not sufficient for implementing more ad-
vanced packet-processing features, such as quality-of-service
guarantees. In particular, such features require re-ordering
packets as they are processed.

Therefore, PAFPGA includes an optional memory buffer
managed by a hardware memory management unit (MMU).
The MMU interface defines two functions: malloc and
free. The malloc function takes one parameter, the size of
packet buffer to be allocated rounded up to 256-byte bound-
ary, and returns a unique packet identifier (PID). The PID is
similar to a pointer in C, and is used throughout the lifetime
of the packet in the pipeline. Upon the completion of packet
transmission, the PID (and associated memory) is returned
to the MMU to be reused for future packets, via a call to
free. Users can configure the amount of memory used for
storing packets. By default, PAFPGA allocates 65,536 bytes
of on-chip block RAM (BRAM) per packet buffer.

Transceiver Management. PAFPGA is portable across
many hardware platforms. As a result, it provides a transceiver
management unit that enables it to use the media access con-
trol (MAC) and physical (PHY) layers specific to a target
platform. For instance, the PAFPGA transceiver management
unit uses vendor-specific protocols without requiring changes
to the P4 program.

Host Communication. PAFPGA integrates a host commu-
nication channel between the FPGA and host CPU. This is
useful for implementing the control channel and for debug-
ging. The host communication channel is built on top of the
PCI express protocol, which is the de-facto protocol for inter-
nal communication within network devices, such as switches
and routers. We provide both blocking and non-blocking re-
mote procedure calls (RPC) between software and hardware.
For example, it is possible for a host program to issue an
non-blocking call to read hardware registers by registering
a callback function to receive the returned value. Similarly,
a controller can program match tables by issuing a function
call with an encoded table entry as a parameter.

Timing Closure. Our general approach to the timing closure
problem is as follows: First, we use pipeline FIFOs to ensure
the inputs and outputs of parser, table and action blocks are
registered. Second, we optimized the design of action en-
gine and control flow logic to perform simple combinatorial
logic in each cycle. If the logic is too complex to perform
within a clock cycle and causes timing closure failure, we
decompose the logic across multiple clock cycles. Third, the
generated pipeline is constructed by template instantiation.
These templates were designed to minimize timing issues by
construction.

P4FPGA : A Rapid Prototyping Framework for P4

S OPTIMIZATION

To ensure that the code generated by PAFPGA is efficient, we
implemented a number of optimizations at both the compiler
and micro-architectural level. Based on our experience, we
have identified a few principles that we followed to improve
the throughput and latency of the packet processing pipeline.
Below, we describe the optimizations in the context of the
NetFPGA SUME platform, but the same principles should
apply to other platforms such as Altera DES. For clarity, we
present these principles in order of importance, not novelty.

Leverage hardware parallelism in space
and time to increase throughput.

FPGAs provide ample opportunities to improve system
throughput by leveraging parallelism in space, e.g., by increas-
ing the width of the datapath. The throughput of a streaming
pipeline, r, is determined the datapath width, w and the clock
frequency, f (r = w X f). The maximum clock frequency
for an FPGA is typically 100s of MHz (a mid-end FPGA
ranges from 200 to 400 Mhz). Therefore, in order to reach a
throughput of 40 to 100 Gbps, it is necessary to use a datapath
width in the range of 100s of bits to a few thousand bits.

On the NetFPGA SUME platform, we target an overall
system throughput of 40Gbps on the four available 10Gbps
Ethernet ports at 250 MHz. We used 128-bits for the parser
datapath and 512-bits for the forwarding pipeline datapath.
The theoretical throughput for the parser is 128 bits x 250
Mhz, or 32 Gbps. As a result, we replicate the parser at each
port to support parsing packets at 10 Gbps.

Another important form of hardware parallelism is pipeline
parallelism. We clock the P4 programmable pipeline at 250
MHz. If we process a single packet in every clock cycle,
we would be able to process 250 Mpps (million packet per
second). At 10 Gbps, the maximum packet arrival rate is 14.4
Mpps for 64 byte packets. At 250 Mpps, we should be able to
handle more than sixteen 10 Gbps ports simultaneously with
one P4 programmable pipeline. Of course, the theoretical
maximum rate does not directly translate to actual system
performance. Nonetheless, we conducted extensive pipelining
optimizations to ensure that all generated constructs are fully
pipelined. In other words, control flow, match tables and
action engines are all fully pipelined.

Transform sequential semantics to parallel
semantics to reduce latency.

The P4 language enforces sequential semantics among ac-
tions in the same action block, meaning that side effects of
a prior action must be visible to the next. A conservative
compilation strategy that respects the sequential semantics
would allocate a pipeline stage for each action. Unfortunately,
this strategy results in sub-optimal latency, since each stage
would add one additional clock cycle to the end-to-end latency.

SOSR 2017, April 2017, Santa Clara, California USA

P4AFPGA optimizes latency by leveraging the fact that hard-
ware inherently supports parallel semantics. As a result, we
opportunistically co-locate independent actions in the same
pipeline stage to reduce the overall latency of an action block.

Select the right architecture for the job.

Network functions can be broadly divided into two sub-
categories: those that need switching and those that do not.
For example, network encryption, filtering, firewalling can be
enforced on a per-port basis. This is especially true if inter-
face speeds increase to 50 or 100Gbps, when CPUs barely
have enough cycles to keep up with data coming in from
one interface. On the other hand, prototyping network for-
warding elements on FPGAs requires switching capability.
As mentioned in Section 4, PAFPGA allows users to select
the architecture most appropriate for their needs.

Use a resource-efficient components to
implement match tables.

In PAFPGA generated pipelines, match tables dominate
FPGA resource consumption. This is because FPGAs lack
hardened content-addressable memory (CAM), an unfortu-
nate reality of using FPGAs for network processing. Although
one can implement CAM using existing resources on FPGAs,
such as Block RAMs or LUTs, it is not efficient. High-end
FPGAs have more resources on-chip to implement CAMs, but
they also come at a premium price. To alleviate the situation,
P4AFPGA uses hash-based methods for table lookup. The com-
piler uses these more efficient implementation techniques by
default. But, users may choose to use more expensive CAM
implementations by specifying a compiler flag.

Eliminate dead metadata

A naive P4 parser implementation would extract full header
and metadata from packets by default. This can be wasteful if
the extracted headers are not used in the subsequent pipeline.
P4AFPGA analyzes all match and action stages, and eliminates
unused header fields and metadata from the extracted packet
representation.

Use non-blocking access for external
modules.

Stateful processing is expensive on high-performance
packet-processing pipelines. Complex operations may require
multiple clock cycles to finish, which can negatively affect
performance if pipelining is only performed at the function
level. PAFPGA implements fine-grained pipelining on state-
ful elements to maintain high throughput. For example, a
memory read operation requires issuing a read request to
memory and waiting for the corresponding response. Due to
the high latency of memory, the response may only come after
multiple cycles of delay. In PAFPGA, we support split-phase
reads such that a read request and response can happen at
different clock cycles. Meanwhile, the pipeline can continue
processing other packets.

SOSR 2017, April 2017, Santa Clara, California USA

6 IMPLEMENTATION

Our prototype PAFPGA implementation consists of a C++-
based compiler along with a Bluespec-based runtime system.
For the frontend, we reused P4.org’s C++ compiler frontend
to parse P4 source code and generate an intermediate represen-
tation [30]. We designed a custom backend for FPGAs, which
consists of 5000 lines of C++ code. The runtime is developed
in a high-level hardware description language, Bluespec [27].
Bluespec provides many higher level hardware abstractions
(e.g., FIFO with back-pressure) and the language includes a
rich library of components, which makes development easier.
The runtime is approximately 10,000 lines of Bluespec. We
relied on Bluespec code from the Connectal project [21] to
implement the control plane channel. We also implemented
mechanisms to replay pcap traces, access control registers,
and program dataplane tables. All code is publicly available
under an open-source license.!

Complex FPGA-based systems often require integration
with existing intellectual property (IP) components from other
vendors and P4FPGA is no exception. We allow third-party
IPs to be integrated with the existing PAFPGA runtime sys-
tem as long as those components conform to the interfaces
exposed by PAFPGA runtime. For example, we currently sup-
port IP cores such as MAC/PHY and Ternary CAM (TCAM)
provided by FPGA vendors and commercial IP vendors [5].

7 EVALUATION

In this section, we explore the performance of the PAFPGA.
Our evaluation is divided into two main sections. First, we
evaluate the ability of PAFPGA to handle a diverse set of
P4 applications. Then, we use a set of microbenchmarks to
evaluate the individual components of PAFPGA in isolation.

Toolchain and hardware setup. We evaluate the perfor-
mance of PAFPGA generated designs against a set of rep-
resentative P4 programs. Each program in our benchmark
suite is compiled with the PAFPGA compiler into Bluespec
source code, which is then processed by a commercial com-
piler from Bluespec Inc. to generate Verilog source code.
Next, the Verilog source code is processed by the standard
Vivado 2015.4 tool from Xilinx, which performs synthesis,
placement, routing and bitstream generation. The compilation
framework supports both the Altera tool suite, Quartus, and
Xilinx tool suite, Vivado. For this evaluation, we only used
Vivado. We deployed the compiled bitstream on a NetFPGA
SUME platform with a Xilinx Virtex-7 XC7V690T FPGA,
with 32 high-speed serial transceivers to provide PCle (Gen3
x8) communication and 4 SFP+ ports (10Gbps Ethernet).

For packet generation, we built a custom packet generator
that is included as part of the PAFPGA runtime. It generates
packets at a user-specified rate. We also provide a utility to

Uhttp://www.p4fpga.org

H. Wang et al.

program the packet generator with a packet trace supplied in
the PCAP format or to configure/control the packet genera-
tor from userspace. Similarly, we provide a built-in packet
capture tool to collect output packets and various statistics.

7.1 Case Studies

To illustrate the broad applicability of PAFPGA, we imple-
mented three representative P4 applications as case studies.
We chose these examples because (i) they represent non-
trivial, substantial applications, (ii) they illustrate function-
ality at different layers of the network stack, and (iii) they
implement diverse functionality and highlight P4’s potential.

Table 1 shows the lines of code in P4 for each of these
applications. As a point of comparison, we also report the
lines of code for the generated Bluespec code. While lines of
code is not an ideal metric, it does help illustrate the benefit
of high-level languages like P4, which requires orders-of-
magnitude fewer lines of code. Below, we describe each of
these applications in detail.

L2/L3 Forwarding. P4 was designed around the needs of
networking applications that match on packet headers and
either forward out a specific port, or drop a packet. Therefore,
our first example application performs Layer 2 / Layer 3
forwarding. It uses a switching architecture and routes on the
IP destination field.

Paxos. Paxos [22] is one of the most widely used protocols
for solving the problem of consensus, i.e., getting a group
of participants to reliably agree on some value used for com-
putation. The protocol is the foundation for building many
fault-tolerant distributed systems and services. While Paxos is
traditionally implemented as an application-level service, re-
cent work demonstrates that significant performance benefits
can by achieved by leveraging programmable data planes to
move consensus logic in to network devices [11, 12, 25]. The
P4 implementation [11] defines a custom header for Paxos
messages that is encapsulated inside a UDP packet. The pro-
gram keeps a bounded history of Paxos packets in registers,
and makes stateful routing decisions based on comparing
the contents of arriving packets to stored values. Paxos uses
the switch architecture with one input and one output port,
essentially a bump-in-the-wire.

Market Data Protocol. Many financial trading strategies
critically depend on the ability to react quickly to changing
market condition, and to place orders at high speeds and
frequencies. Platforms that implement these trading algo-
rithms would therefore benefit by offloading computations
into hardware using custom packet headers and processors.
As a proof-of-concept for how P4 could be used for financial
applications, we implemented a commonly used protocol, the
Market Data Protocol (MDP). MDP is used by the Chicago

P4FPGA : A Rapid Prototyping Framework for P4

SOSR 2017, April 2017, Santa Clara, California USA

Table 1: Example applications compiled by PAFPGA and lines of code (LLoC) in P4 and Bluespec. The framework in-

cludes P4FPGA runtime and control plane support.

Name Description LoCin P4 LoC in Bluespec Framework
1213.p4 L2/L3 router 170 1281 33295
mdp.p4 variable packet length, financial trading protocol 205 1812 33295
paxos.p4 stateful processing, consensus protocol 385 3306 33295

Table 2: Latency breakdown, cycles @ 250MHz. Note
that memory is only accessed in the shared memory con-
figuration.

App Size Parser Table Memory Deparser
64 2 31 21 11
13 256 2 31 23 32
512 2 31 24 66
1024 2 31 23 130
256 15 9 23 34
mdp 512 35 9 24 68
1024 88 9 23 130
paxos 144 6 42 21 12

Mercantile Exchange. Essentially, MDP is a L7 load balancer.
An MDP P4 implementation is complicated by the fact that
the protocol header is variable length. Figure 5 shows the
header definitions for a book refresh message. A “book” is
an entity that keeps the most recent stock price. A book re-
fresh message has a fixed header mdp_t that is common to all
MDP protocol messages, as well as a variable length header,
refreshBook, with one or more entries refreshBookEntry. A
field numEntries in refreshBook dictates how many entries
must be extraced by the parser. Our P4 implementation of
MDP can address the header variable length and also parse the
input packet stream, filter duplicated messages, and extract
important packet fields for additional processing.

Table 3: Latency comparing to vendors. The latency of
cut-through switch (Arista 7050QX) is from [4]

Mode Packet Size
64 256 1024 1518
Arista 7050QX 550ns 550ns 550ns 550ns

P4FPGA (L2/LL3) 340ns 420ns 810ns 1050ns

header_type mdp_t {
fields {

msgSegNum : 32;
sendingTime : 64;
msgSize : 16;
blockLength : 16;
templateID : 16;
schemalID : 16;
version : 16;

= T Y o S

10 }}

11 header_type event_metadata_t {
12 fields {

13 group_size : 16;

14 }}

15 header_type refreshBook ({

16 fields ({

17 transactTime : 64;

18 matchEventIndicator : 16;
19 blockLength: 16;

20 numEntries: 16;

21 }}
22 header_type refreshBookEntry ({
23 fields {

24 mdEntryPx : 64;

25 mdEntrySize : 32;

26 securityID : 32;

27 rptReq : 32;

28 numberOfOrders : 32;
29 mdPricelLevel : 8;

30 mdUpdateAction : 8;
31 mdEntryType : 8;

32 padding : 40;

33 }}

Figure 5: Header definitions for MDP.p4.

Processing time and latency. Our evaluation focuses on
two metrics: processing time and latency. Table 2 shows the
processing time for each application on a single FPGA. Note
that memory is only access in a shared memory architec-
ture configuration. All latency measurements are taken from a

SOSR 2017, April 2017, Santa Clara, California USA

cycle-accurate simulation, which is as precise as measurement
on actual FPGA hardware. The numbers are in term of cycles
running at 250MHz, where each cycle is 4 nanoseconds. We
measured the packet-processing time of each application on
small and large packets. Since the L2/L3 application only
parses Ethernet and IP headers, parsing only takes 2 cycles, or
8 ns. On the contrary, the MDP application spends more time
parsing because it performs variable-length header processing
and inspects packet payload for market data. Match and action
stages are constant time for each application For example,
L2/L.3 spends 31 cycles or 124 ns in match and action stage.
The time is spent on table look-up, packet field modification
and packet propagation through multiple pipeline stages. The
amount of time spent in a match and action stage depends
on the number of pipeline stages and the complexity of ac-
tions performed on a packet. Memory access accounts for
time taken to access a shared memory buffer, and therefore
is always a constant overhead among all packets. The time
required for the deparser, which must reassemble and transmit
the packet, is proportional to the packet size. Even though the
latency for a single packet may be 65 cycles or longer (e.g.
L2L3 with 64 byte packets), a pipeline has a lot of parallelism
and a piplined stage may take as much as 10 to 20 cycles for
a table access with or without memory.

We define the pipeline latency as the time from when the
first bit of packet enters the P4 pipeline (right after the RX
channel in Figure 4) until the first bit of packet exits the
pipeline (right before the TX channel 4). In all three cases,
P4FPGA processes packets with low latency. The additional
latency in the program generated by PAFPGA in Table 3 is
caused by serializing and deserializing packets to and from
the packet buffer (store-and-forward). To place the latency
numbers in context, we report the performance results from
Arista 7050QX cut-through switch in Table 3. As we can see,
P4FPGA is able to offer latency comparable to commercial
off-the-shelf switches.

Packet processing is heavily pipelined and we can sustain
10Gbit/s line rate at all packet sizes for all our test applications.
We note that the shared memory buffer architecture imposes
some overhead due to the memory management unit. Specifi-
cally, the malloc and free operations do not support pipelining.
Currently, the shared memory buffer implementation supports
up to 10Mpps, which is less than line rate for packets smaller
than 125 bytes. We expect that this performance could be
further optimized with additional engineering.

7.2 Microbenchmarks
The next part of our evaluation focuses on a set of microbench-
marks that evaluate different aspects of PAFPGA in isolation.
We investigate the following questions:

o How does the runtime perform?

e How does overall pipeline perform?

H. Wang et al.

e How much of the FPGA resources are required for
the pipeline and runtime?

We focus on three metrics for evaluation: throughput, latency
and resource utilization on the FPGA. We present the details
of these microbenchmarks below.

7.2.1 Fixed-Function Runtime. The target FPGA
board consists of 4x 10Gbps ports. As a result, the runtime
system must sustain line-rate forwarding at 40Gbps to avoid
being a bottleneck to overall system performance. To verify
that PAFPGA is able to satisfy this requirement, we mea-
sured the raw throughput of the fixed-function runtime with
an empty packet processing pipeline (no table, no action in
ingress or egress pipeline).

In this experiment, we used a runtime configured with
six input and output ports. Each input port receives traffic
from a built-in packet generator at full 10Gbps line rate. The
two additional ports in the runtime runtime can be used to
send packets to the host CPU through a DMA engine or to
recirculate packets from the egress pipeline to the ingress
pipeline. However, these operations are out-of-the-scope for
this paper. We loaded a packet trace with packet sizes ranging
from 64 to 1516 bytes and replayed the packet trace a million
times. The fixed function runtime is able to sustain between
53.3Gbps for 64 bytes packets and 59.5Gbps for 1518 bytes
packets, which is well above the required 40Gbps throughput
requirement.

7.2.2 Programmable pipeline. We evaluated the per-
formance of a generated P4 pipeline with a set of microbench-
marks that focused on each key language construct in isola-
tion: parsers, tables, and actions. As a point of comparison,
we also report results for running the same experiments with
the PISCES [36] software switch. PISCES extends Open
vSwitch [29] with a protocol independent design. In all cases,
PISCES uses DPDK [15] to avoid the overhead of the kernel
network stack. Note, to make the comparison equal, we used
only two ports for PISCES.

Parser. We used the packet generator to send 256-byte
packets with an increasing number of 16-bit custom packet
headers. We measured both latency and throughput, and the
results are shown in Figures 6 and 7. As expected, we see that
parsing latency increases as we increase the number of ex-
tracted headers. In terms of absolute latency, PAFPGA is able
to leverage the performance of FPGAs to significantly reduce
latency. PAFPGA took less than 450 ns to parse 16 headers,
whereas PISCES took 6.5us. The results for throughput are
similar. For both PAFPGA and PISCES, the parser throughput
decreases as the number of headers increases. As expected,
P4FPGA significantly outperforms PISCES in terms of abso-
lute throughput as well as the number of headers that parse
without performance degradation.

P4FPGA : A Rapid Prototyping Framework for P4

p4fpga
7000 pisces mmmm

6000
5000
4000

3000

Latency (ns)

2000

1000

1 2 4 8 12 16
Number of Headers

Figure 6: Parser latency v.s. number of headers parsed

sl
@
Q
Qo
8 6f . o - - .
= ~e_
3
Qo N
.§’ S
g 4T
=
£
5|
P4FPGA —+—
0 PISCES —=—
1 4 8 12 16 20 24 28 32

Header Number

Figure 7: Parser throughput v.s. number of headers
parsed

Table. In this experiment, we compiled a set of synthetic
programs with an increasing number of pipeline stages (1 to
32). We measured the end-to-end latency from the entry of
the ingress pipeline to the exit of the egress pipeline. The
result is shown in figure 8. Although the absolute latency is
much better for PAFPGA, the trend shows that the processing
latency increases with the number of tables. In contrast, the
latency for PISCES remains constant. This is because PISCES
implements an optimization that fuses multiple match-action
pipeline stages into a single match-action rule. We have not
yet implemented this optimization for PAFPGA.

Action. In this experiment, we evaluate how the action
complexity can affect throughput. We vary the number of
header field writes from 8 to 64. All field write operations are
independent, meaning that they write to different fields in the
packet header. Hence, PAFPGA is able to leverage hardware
parallelism to perform all write operations within the same

clock cycle, as there is no dependency between any operation.

Note that this faithfully implements the sequential semantics
of the original P4 source program, even though all actions are
performed in parallel. As shown in Figure 9, the end-to-end
packet processing latency in PAFPGA remains the same at

SOSR 2017, April 2017, Santa Clara, California USA

p4fpga

5000 - pisces mmm=m -

4000 [

3000 [

Latency (ns)

2000 [

1000 [

1 4 8 16 32
Number of tables

Figure 8: Processing latency v.s. number of tables

6000 - pdfpga
pisces ==
5000 | B

4000 b

3000 - b

Latency (ns)

2000 - b

1000 - b

8 16 32 40 48 54 64
Number of actions

Figure 9: Pipeline latency v.s. number of actions

364 ns. This is in contrast to PISCES, which consumes more
CPU cycles to process write operations, as the operations are
performed in sequence on a CPU target [36]. In other words,
the absolute latency is much higher on a software target,
and it also increases with the number of write operations. In
contrast, with PAFPGA, the latency remains low and constant
independent of the number of writes in a stage.

7.2.3 Resource Utilization. We report the resource uti-
lization of the FPGA in two parts: the resource consumed
by the fixed function runtime which is common to all P4
programs; and the resource consumed by individual P4 con-
structs which is variable depending on parameters specified
by P4 program. We quantify resource consumption with the
number and percentage of look-up tables (LUTs) and memory
consumed by each block.

The runtime subsystem implements PCle host communica-
tion, and the MAC and PHY layers of the Ethernet protocol.
As shown in Table 4, the total resource consumption of the
runtime is about 7.5% of total available LUTs and 2.3% of
available memory blocks, which leaves many of the resources
available to implement the actual logic of a P4 program.

SOSR 2017, April 2017, Santa Clara, California USA

Table 4: Area and frequency of fixed function runtime

Slice LUTs Block RAMs MHz
PCle 6377 9 250
10G MAC x4 8174 0 156
10G PHY x4 10422 0 644.5
Connectal 7867 25 250
Area Used 32700 (7.5%) 34 (2.3%) -

Next, we profile resource consumption of major P4 con-
structs: match table, parser, deparser and action. Match tables
are implemented with content-addressable memory (CAM)
to perform key lookup, and regular memory to correspond-
ing action for a matched key entry. Unlike ASICs, FPGAs
lack native support for CAM, and as a result, we had to em-
ulate CAM by implementing it with regular memory blocks.
We evaluated three different CAM implementations on the
FPGA: binary CAM for implementing exact match, ternary
CAM for implementing ternary and longest prefix match, and
hash-based CAM for exact match.

As shown in Table 5, we can implement up to a 288-bit
key binary CAM (BCAM), ternary CAM (TCAM), or a hash-
based associative memory with minimum resource utilization.
The commercial-grade TCAM implementation is more effi-
cient than our BCAM. We suspect that the difference is due
to both implementation efficiency and internal architecture of
these two CAM technologies. But, the hash-based associative
memory implementation is the most efficient among all three
implementations [14]. If we were to use the whole FPGA
for only a CAM with a 288-bit key, then a BCAM, TCAM,
and hash-based associative memory can fit up to 6K, 53K,
93K entries on a Virtex-7 FPGA, respectively. To put these
numbers into context, a Mellanox Spectrum ASIC allows 9K
entries of 288 bit rules in a common TCAM table shared
between ingress and egress pipeline.

8 RELATED WORK

We briefly survey related work on P4 compilers, use of FPGAs
in networking, and FPGA synthesis.

P4 Compilers. Given the significant interest in P4 as a de-
velopment platform, there are several efforts underway to
implement P4 compilers and tools. Our microbenchmarks
compare against PISCES [36], which is a software hypervi-
sor switch that extends Open vSwitch [29] with a protocol-
independent design. The Open-NFP [28] organization pro-
vides a set of tools for developing network function process-
ing logic, including a P4 compiler that targets 10, 40 and
100GbE Intelligent Server Adapters (ISAs) manufactured
by Netronome. These devices are network processing units

H. Wang et al.

(NPUs), while PAFPGA targets FPGAs. The Open-NFP com-
piler currently does not support register related operations
and cannot parse header fields larger than 32 bits. Users im-
plement actions in MicroC code external to the P4 program.
P4c [33] is a retargetable compiler for the P4 language which
generates high performance network switch code in C, link-
ing against DPDK [15] libraries. DPDK provides a set of
user-space libraries, which bypass the Linux kernel. P4c does
not yet support P4 applications that require register uses to
store state. P4.org provides a reference compiler [34] that gen-
erates a software target, and can be executed in a simulated
environment (i.e., Mininet [26] and P4 Behavioral Model
switch [32]). PAFPGA shares the same compiler front-end,
but provides a different back-end.

A P4 compiler backend targeting a programmable
ASIC [20] must deal with resource constraints. The major
challenge arises from mapping logical lookup tables to physi-
cal tables on an ASIC. In contrast, FPGAs can directly map
logical tables into the physical substrate without the complex-
ity of logical-to-physical table mapping, thanks to the flexible
and programmable nature of FPGAs.

Perhaps the most closely related effort is Xilinx’s SD-
Net [39]. SDNet compiles programs from the high-level
PX [8] language to a data plane implementation on a Xil-
inx FPGA target, at selectable line rates from 1G to 100G.
A Xilinx Labs prototype P4 compiler works by translating
from P4 to PX, and then using SDNet to map this PX to
a target FPGA. As the compiler implementation is not yet
publicly available, we cannot comment on how the design or
architecture compares to PAFPGA.

FPGAs for networking. The NetFPGA project [40] is an-
other open-source framework that researchers frequently use
to prototype networking ideas. PAFPGA shares the same vi-
sion with NetFPGA to provide an open framework for net-
work researchers. Furthermore, PAFPGA can support not only
NetFPGA-specific hardware platforms, but also many other
existing FPGA platforms on the market.

A unified software-hardware co-design framework simpli-
fies the FPGA development process [21]. PAFPGA leveraged
the idea of generating SW/HW interfaces from a interface def-
inition file from Connectal [21], which has greatly simplified
the generation of a control-plane interface for P4 prototyping
on FPGAs.

High-level Synthesis. FPGAs are typically programmed
using hardware description languages such as Verilog. Many
developers find working with these languages challenging,
as they expose low-level hardware details to the programmer.
Consequently, there has been significant research in high-
level synthesis and programming language support for FP-
GAs. Some well-known examples include CASH [9], which
compiles C to FPGAs; Kiwi [37], which transforms .NET

P4FPGA : A Rapid Prototyping Framework for P4

SOSR 2017, April 2017, Santa Clara, California USA

Table 5: BCAM and TCAM Resource Utilization on Virtex 7 XCVX690T, which has 1470 BRAM blocks, 866400 Flip-
flops and 433200 LUTs. We show resource utilization as percentage as well as actual amount of resource used.

#Flip-Flops #LUTs

0.26% (2280 / 866400)
0.46% (3992 / 866400)
0.92% (7976 / 866400)
1.8% (15944 / 866400)

0.59% (2552 / 433200)
1.1% (4642 / 433200)
2.2% (9589 / 433200)

4.5% (19350 / 433200)

0.56% (4900 / 866400)
0.63% (5482 / 866400)
0.85% (7430 / 866400)

2.1% (9100 / 433200)
2.8% (12033 / 433200)
4.4% (18977 / 433200)

Hardware Key'Sme #Entries % BRAM
(Bits)

36 1024 2.2% (32/1470)

BCAM 72 1024 4.4% (64/1470)
144 1024 8.7% (128/1470)
288 1024 17.4% (256/1470)
72 2048 2.7% (40/1470)

TCAM 144 2048 3.2% (48/1470)
288 2048 3.9% (58/1470)
72 1024 0.7% (10.5/1470)

HASH 144 1024 0.8% (12.5/1470)
288 1024 1.1% (16.5/1470)

0.12% (1053 / 866400)
0.16% (1440/866400)
0.25% (2232/866400)

0.27% (1185/433200)
0.32% (1395/433200)
0.46% (2030/433200)

progrrams into FPGA circuits; and Xilinx’s AccelDSP [2],
which performs synthesis from MATLAB code.

P4FPGA notably relies on Bluespec [27] as a target lan-
guage, and re-uses the associated compiler and libraries to pro-
vide platform independence. As already mentioned, PAFPGA
uses Connectal [21] libraries, which are also written in Blue-
spec, for common hardware features.

9 CONCLUSION

FPGAs offer performance that far exceeds software running
on general purpose CPUs, while offering a degree of flexibil-
ity that would be difficult to achieve on other targets, such as
ASICs. At the same time, they are also notoriously difficult
to program. PAFPGA lowers the barrier to entry, giving pro-
grammers a programmable substrate for creating innovative
new protocols and applications.

PAFPGA provides a P4-to-FPGA compiler and runtime that
is flexible, portable, and efficient. It supports multiple archi-
tectures, generates code that runs on Xilinx or Altera FPGAs
and runs at line-rate with latencies comparable to commercial
ASICs. PAFPGA is open source and publicly available for
use. Indeed, it has already been used by two research projects

to evaluate P4 programs on hardware. We hope that this re-
search will help other users in real environments or to support
systems and networking research.

10 AVAILABILITY

P4FPGA is publicly available under an open-source license.
All source code, as well as example P4 source programs

and their generated Bluespec counterparts are available at
http://p4fpga.org. Furthermore, benchmarks are available via

the P4 Whippersnapper Benchmark Suite [13].

ACKNOWLEDGEMENTS

This research is partially supported by Swiss NSF (166132
and 159537), European Union’s Horizon 2020 research and
innovation programme under the SSICLOPS project (agree-
ment No. 644866), DARPA CSSG (D11AP00266), NSF
(1053757, 1440744, and 1422544), and with gifts from Cisco,
Xilinx, Altera and Bluespec. We thank Jamey Hicks and John
Ankcorn for their help with Connectal, Nagase for providing
the TCAM IP core, our shepherd Luigi Rizzo, and the SOSR
reviewers for helpful comments.

http://p4fpga.org

SOSR 2017, April 2017, Santa Clara, California USA

REFERENCES

(1]

(2]
(3]
(4]

[5

—

(6]

[7

—

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]
[16]
(17]

(18]

A. Abdelhadi and G. Lemieux. Modular SRAM-Based Binary Content-
Addressable Memories. In IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), May
2015.

AccelDSP Synthesis Tool. http://www.xilinx.com/tools/acceldsp.htm.
Algorithms in Logic. www.algo-logic.com.

Arista 7050X Switch Architecture. https://solutions.arista.com/hubfs/
Arista/Datasheets/Arista_7050X_Switch_Architecture_V0.51_2.pdf.
Axonerve. Axonerve Low Latency Matching Engine Synthesizable IP
Core.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-Independent Packet Processors. SIGCOMM
Computer Communication Review (CCR), 44(3):87-95, July 2014.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. 1z-
zard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN. In SIG-
COMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pages 99-110,
Aug. 2013.

G. Brebner and W. Jiang. High-Speed Packet Processing using Re-
configurable Computing. IEEE/ACM International Symposium on
Microarchitecture, Jan. 2014.

M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein. Spatial
computation. In ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS),
2004.

Corsa. Corsa DP6420 OpenFlow data plane. http://www.corsa.com/
products/dp6420.

H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos Made Switch-y.
SIGCOMM Computer Communication Review (CCR), 44:87-95, Apr.
2016.

H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:
Consensus at Network Speed. In ACM SIGCOMM SOSR, pages 59-73,
June 2015.

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soul, and H. Weatherspoon. Whippersnapper: A P4 Language
Benchmark Suite. In ACM SIGCOMM SOSR, 2017.

U. Dhawan and A. Dehon. Area-Efficient Near-Associative Memories
on FPGAs. ACM Transactions on Reconfigurable Technology System,
Jan. 2015.

DPDK. http://dpdk.org/.

ExaBlaze. Exalink Fusion. https://exablaze.com/exalink-fusion.

J. H. Han, P. Mundkur, C. Rotsos, G. Antichi, N. H. Dave, A. W.
Moore, and P. G. Neumann. Blueswitch: Enabling Provably Consistent
Configuration of Network Switches. In Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems, ANCS, 2015.

T. Jepsen, L. P. de Sousa, H. T. Dang, F. Pedone, and R. Soulé. Opti-
mistic aborts for geo-distributed transactions. CoRR, abs/1610.07459,

[19]

[20]

[21]

(22]
(23]

[24]

[25]

(26]
[27]
(28]
[29]
(30]
[31]
(32]
[33]
(34]
[35]

[36]

(371

(38]
(39]

[40]

H. Wang et al.

2016.

J.Z.J.K Lee. LBSwitch: Your Switch is Your Server Load-Balancer .
http://p4.org/p4-workshop-2016/, May 2016.

L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling Packet
Programs to Reconfigurable Switches. In 12th USENIX Symposium on
Networked Systems Design and Implementation. USENIX Association,
May 2015.

M. King, J. Hicks, and J. Ankcorn. Software-Driven Hardware De-
velopment. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, New York, NY, USA,
2015.

L. Lamport. The Part-Time Parliament. ACM Transactions on Com-
puter Systems (TOCS), 16:133—-169, May 1998.

P. Lapukhov. Data-plane probe for in-band telemetry collection. https:
/Itools.ietf.org/html/draft-lapukhov-dataplane- probe-00.

B.Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen. Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware. In SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), 2016.

J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports.
Just Say NO to Paxos Overhead: Replacing Consensus with Network
Ordering. In OSDI16, Nov. 2016.

Mininet. http://mininet.org.

R. Nikhil and K. Czeck. BSV by Example. CreateSpace, 2010.
Open-NFP. http://open-nfp.org/.

Open vSwitch. http://www.openvswitch.org.

P4. P4 Behavioral Model. https://github.com/p4lang/p4c-bm.

P4. P4 Specification. http://p4.org/spec/.

P4 Behavioral Model. https://github.com/p4lang.

P4@ELTE. http://p4.elte.hu/.

P4.org. http://p4.org.

A. Putnam, A. Caulfield, E. Chung, and D. Chiou. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. In Proceeding
of the 41st Annual International Symposium on Computer Architecuture
(ISCA), June 2014.

M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford. PISCES: A Programmable, Protocol-Independent Software
Switch. In SIGCOMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication (SIGCOMM),
2016.

S. Singh and D. J. Greaves. Kiwi: Synthesis of fpga circuits from paral-
lel programs. In Proceedings of the 2008 16th International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2008.
T. Tofigh. Dynamic Analytics for Programmable NICs Utilizing P4.
http://p4.org/p4-workshop-2016/, May 2016.

Xilinx. ~ SDNet. http://www.xilinx.com/products/design-tools/
software-zone/sdnet.html.

N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore.
NetFPGA SUME: Toward 100 Gbps as Research Commodity. /EEE
Micro, Sept. 2014.

http://www.xilinx.com/tools/acceldsp.htm
www.algo-logic.com
https://solutions.arista.com/hubfs/Arista/Datasheets/Arista_7050X_Switch_Architecture_V0.51_2.pdf
https://solutions.arista.com/hubfs/Arista/Datasheets/Arista_7050X_Switch_Architecture_V0.51_2.pdf
http://www.corsa.com/products/dp6420
http://www.corsa.com/products/dp6420
http://dpdk.org/
https://exablaze.com/exalink-fusion
http://p4.org/p4-workshop-2016/
 https://tools.ietf.org/html/draft-lapukhov-dataplane-probe-00
 https://tools.ietf.org/html/draft-lapukhov-dataplane-probe-00
http://mininet.org
http://open-nfp.org/
http://www.openvswitch.org
https://github.com/p4lang/p4c-bm
http://p4.org/spec/
https://github.com/p4lang
http://p4.elte.hu/
http://p4.org
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html

	Abstract
	1 Introduction
	2 Background and Overview
	3 Code Generation
	3.1 Programmable Pipeline
	3.2 Control Plane API
	3.3 External Functions

	4 Fixed-Function Runtime
	5 Optimization
	6 Implementation
	7 Evaluation
	7.1 Case Studies
	7.2 Microbenchmarks

	8 Related Work
	9 Conclusion
	10 Availability
	References

