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Abstract. Software-defined networking (SDN) enables controlling the
behavior of a network in software, by managing the the forwarding rules
installed on switches. However, it can be difficult to ensure that certain
properties are preserved during periods of reconfiguration. The widely-
accepted notion of per-packet consistency requires every packet to be
forwarded using the new configuration or the old configuration, but not
a mixture of the two. A (partial) order on switches is a consistent or-
der update if updating the switches in that order guarantees per-packet
consistency. A consistent order update is optimal if it allows maximal
parallelism, where switches may be updated in parallel if they are incom-
parable in the order. This paper presents a polynomial-time algorithm for
computing optimal consistent order updates. This contrasts with other
recent results, which show that for other properties (e.g., loop-freedom
and waypoint enforcement), the optimal update problem is NP-complete.

1 Introduction

Software-defined networking (SDN) replaces conventional network manage-
ment interfaces with higher-level APIs. SDN can be used to build a variety of
applications, but it can be difficult for operators to correctly and efficiently re-
configure the network—i.e., update the global set of forwarding rules installed on
switches (known as a configuration). Even if the initial and final configurations
are correct, naively updating individual switches (known as switch-updates) can
lead to incorrect transient behaviors such as forwarding loops, blackholes, by-
passing a firewall, etc. Switch-updates can often be parallelized, but this too can
cause incorrect behavior. Hence, we need a partial order on switch-updates which
ensures that correctness properties hold before, during, and after the update.



Consistent order updates. This paper investigates the problem of computing a
consistent order update. Given an initial and final network configuration, a con-
sistent order update is a partial order on switch-updates, such that if the switches
are updated according to this order, an important consistency property called
per-packet consistency [16] is guaranteed throughout the update process. This
property guarantees that each packet traversing the network will follow a single
global configuration: either the initial one, or the final one, but not a mixture of
the two. In particular, this means that if the initial and the final configurations
are loop-free and blackhole-free, prevent bypassing a firewall, etc., then so do all
of the intermediate configurations.

Optimal consistent order updates. In implementing a consistent order update,
we would generally prefer to use one that is optimal. A consistent order update
is optimal if it allows the most parallelism among all consistent order updates.
Formally, recall that a consistent order update is a partial order on switch-
updates—an optimal partial order is one where the length of the longest chain
in the order is the smallest among all possible correct partial orders. Intuitively,
this means the update can be performed in the smallest number of “rounds,”
where rounds are separated by waiting for in-flight packets to exit the network
and by waiting for all the switch updates from the previous rounds to finish.

Single flow vs. multiple flows. A flowis a restriction of a network configuration to
packets of a single type, corresponding to values in packet headers. A packet type
might include the destination address, protocol number (TCP vs. UDP), etc.
We show that if we consider flows to be symbolic (i.e., represented by predicates
over packet headers, potentially matching multiple flows), then the problem is
CO-NP-hard. In this paper, we focus on the problem of updating an individual
flow—i.e., we are interested in the situation where the flows to be updated can
be enumerated. Furthermore, as we are looking for efficient consistent order
updates, we focus on the case where each switch can be updated at most once,
from its initial to its final configuration.

Main result. Our main result is that for updating a single flow, there is a
polynomial-time algorithm, with O(n?(n+m)) complexity where n is the number
of switches and m the number of links. The result is interesting both theoretically
and practically. On the theoretical side, recent papers have presented complex-
ity results for network updates. However, for many other consistency properties
(loop-freedom, waypoint enforcement) and network models, the optimal network
update problem is NP-hard [4, 6, 9, 10, 11, 12]. The same is true for results that
study these problems with a model which is the same as ours (single flows, up-
date every switch at most once). In contrast, we provide a positive result that
there exists a polynomial-time algorithm for optimal order updates for a sin-
gle flow, with respect to the per-packet consistency property. The consistency
properties studied in these papers (loop-freedom and waypoint enforcement) are
weaker than per-packet consistency, which offers a trade-off: enforcing only (for
instance) loop-freedom allows more updates to be found, but it is an (expo-
nentially) harder problem. In practice, network operators might wish to update



Fig. 2: Double diamond: no consistent update order

Fig. 1: Trivial update. oxcists.

only a small number of flows, and here our polynomial-time algorithm would
be advantageous. A potential limitation is that if many flows are considered
separately, it could lead to large forwarding tables.

Algorithm. Our algorithm models a network configuration as a directed graph
with unlabeled edges, and an update from an initial configuration to a final con-
figuration as a sequence of individual switch-updates—i.e., updating the out-
going edges at each switch. In order to determine whether a switch n can be
updated while properly respecting the per-packet consistency property, we de-
fine a set of conditions on the paths upstream and downstream from n. We show
that these conditions can be checked in O(n(n +m)) time. In this way, the al-
gorithm produces a partial order on switches, representing the consistent order
update (if such an order does not exist, our algorithm reports a failure). Addi-
tionally, we show that if the partial order is constructed greedily (i.e., all nodes
that can be updated are immediately updated in parallel), it results in an opti-
mal consistent order update. The challenging part of the proof is to show that
this algorithm is complete (i.e., always finds a consistent order update if one
exists) and optimal.

2 Overview

This section presents a number of simple examples to help develop further
intuition about the consistent order updates problem and the challenges that
any solution must address.

Consistent order updates. Consider Figure 1. In the initial configuration Cj
(denoted by solid edges), the forwarding-table rules (outgoing edges) on each
switch are set up such that host H; is sending packets to H, along the path
H{—>A-C—-B—-H,. Let us assume that switch C' is scheduled for maintenance,
meaning we must first transition to configuration C; (denoted by the dashed
edges). Note that the two configurations differ only for nodes A and D. If the
node A is updated before node D, packets from H; will be dropped at D. On the
other hand, updating D before A leads to a consistent order update. Note that
since we model networks as graphs, we will use the terms switch and node inter-
changeably based on the context, and similarly for the terms edge and forwarding
rule. Path will be used to describe a sequence of adjacent edges.

In Figure 2, regardless of the order in which we update nodes, there will
always be inconsistency. Note that here the nodes A and D can be updated first,
but a problem arises due to nodes H; and C'. Specifically, if C' is updated before



Fig. 3: Removable double diamond. Fig. 4: Wait example.

Hj, then the network is in a configuration containing a path H;—~B—C->D->Hs,
which is not in either C; or Cy. In other words, H; cannot be updated unless
the (downstream) path from C to Hy is first updated. On the other hand, C
cannot be updated unless the (upstream) path from Hy to C is first updated. We
refer to this case as a double diamond. If we consider the notion of dependency
graphs [13], where there is an edge from a node z to node y if the update of y
can only be executed after the update of x, then our double diamond example
corresponds to a cyclic dependency graph between H; and C.

Unfortunately, the presence of a double diamond (cyclic dependency) does
not necessarily indicate that there cannot be a solution. Consider Figure 3, where
there is a double diamond between D and J. Updating B removes the old traffic
to D, and then after updating B, the nodes D, E,G, F, H,I,J have no incoming
traffic. At this point, these nodes can be updated without violating per-packet
consistency. Thus, the circular dependency has been eliminated, allowing a valid
update order such as [A,H,,K,L,B,D,E,F,G,H,I,J,C,M]. This shows that
an approach (such as [7, 18]) based on a static dependency graph might miss
some cases where a consistent order update exists—this is a limitation that is
not exhibited by our algorithm.

Waits. As mentioned, it may be impossible to parallelize certain updates—we
may need to make sure that some node z is updated before another node y.
In other words, we may need to wait during the sequence of switch-updates to
ensure that such updates are executed one after the other. This requirement can
arise because when updating a node, we may need to ensure that (1) all of the
previous switch-updates have been completed, and (2) all of the packets that
were in the network since before the previous update have exited the network.
The former type we call a switch-wait, and the latter a packet-wait.

In Figure 3, we see that L must be updated before updating B. To ensure
that edges outgoing from L are ready, we must wait after sending the update
command to L, in order to ensure that its forwarding rules have been fully
installed. In other words, we say that there is a switch-wait required between
updates of L and B. After updating B, the switch D becomes disconnected, but
there may still be some packets in transit on the B—D path. Before updating D,
we must ensure that packets along these old removed paths have been flushed
from the network. For this reason, we say that a packet-wait is needed between
updates of nodes D and B.



If we are interested only in finding a correct sequence of updates, we can
wait (for an amount of time larger than the maximum switch-wait and packet-
wait duration) after every node update. However, waits may not be necessary
after every update if we update switches from separate parts of the network.
For the Figure 3 example, the correct sequence with a minimal number of waits
is[AH,K,L,®,B,®,D,E,F,G,H,1,J,,C,M], where ® denotes a packet-
wait and @ denotes a switch-wait. In this example, nodes A, Hy, K, L can be
updated in parallel. Similarly, nodes D, E, F', G, H, I can be updated in parallel,
etc. There are three waits, meaning this consistent order update requires four
switch-update rounds.

The example in Figure 4 highlights the relationship between switch-waits
and packet-waits. Observing that the configurations are roughly symmetrical,
let us examine the relationship between nodes A, B, C. The correct order of
updates between these nodes is H1, A, ®, B, ®, C. This is because there must be
a switch-wait between the updates of B and C', due to the presence of a C'y path
C->B. There must be a packet-wait between updates of switches A and B, due
to the presence of a C; path A—B.

As is common in various other works (e.g., [9]), in this paper, we do not
distinguish between packet-waits and switch-waits, and only use the term wait—
our goal is to maximize the parallelism of switch-updates, i.e., minimize the
number of switch-update rounds.

3 Network Model

Network and Configurations. A topology of a network is a graph G = (N, E),
where N is a set of nodes, and F is a set of directed edges. A configuration
C € P(E) is a subset of edges in E. A proper configuration is one that (a) has
one source Hy, and (b) is acyclic. Here, a source is a designated node with no
incoming edges, representing the point where packets enter the network. Note
that cycles in a configuration are undesirable, as this would mean that traffic
might loop forever in the network. We first consider the case with one source, and
in Section 6, we describe a simple reduction for the case of multiple sources. Our
goal is to transition from an initial configuration C; to a final configuration C'y
by updating individual nodes. We will consider C; and C' to be fixed throughout
the paper, and assume that both are proper.

Updates. Let u be a node, and let C' be a configuration. We define a function
out(C,u) which returns the set of edges from C' whose source is u. The func-
tion upd, (C,u) returns the configuration C’ such that C" = (C \ out(C;,u)) U
out(Cy,u), that is, node u is updated to the final configuration in C’. Let R be
the set of all sequences of nodes in N without repetition. We extend upd, to
sequences of nodes by defining the function upd that, given a configuration C
and a sequence of nodes S, returns a configuration C’ = upd(C,S). The func-
tion upd is defined by upd(C,e) = C (where £ is the empty sequence), and
upd(C,uS) = upd(upd, (C,u),S). We consider sequences without repetition, be-
cause our goal is to find sequences that update every node at most once.



Paths. Given a configuration C, a C-path is a directed path (finite or infinite)
whose edges are in C. For a path p, we write p € C if p is a C-path. A Cj-only
path is one which is in C; and not in Cy. Similarly, a Cg-only path is in Cy but
not C;. The function nodes takes a path ¢ as an argument and returns a set @) of
all nodes on a path. Let s and ¢ be two nodes, and let C' be a configuration. The
function paths(s,t,C') returns the set of all paths between s and ¢ in configuration
C. A path p in a configuration C is maximal if it is either (a) finite, and its last
node has no outgoing edges in C, or (b) infinite. The function mazpaths(s,C)
returns the set of all maximal paths starting at node s in configuration C.

Path and Configuration Consistency. We say that a path p is consistent if and
only if p € mazpaths(Hy,C;) v p € mazpaths(Hq,Cy), and a configuration C' is
consistent if and only if Vp € mazpaths(H;,C) we have that p is consistent. In-
tuitively, all maximal paths starting at H; are maximal paths in either the old
configuration or the new configuration—this corresponds to per-packet consis-
tency [16]. If C; and C are proper, then so is every consistent configuration.

Waits. Let U = ujus---us, be a sequence of node updates. Let C; = upd(C;, U;) be
the configuration reached after updating a sequence U = ujug---u; for 1 < j <k,
and let Cy = C;. For [,u such that 0 <! <u <k, let C}' be the configuration
obtained as a union of configurations Cj u---u C,. We say that a wait is needed
between u; and uy, in U if and only if the configuration C’J]?_1 is not consistent. To
illustrate, let us return to the example in Figure 4 (note that we no longer dis-
tinguish between packet-waits and switch-waits). As mentioned, after updating
H; and A, we need a wait before updating B. Let the configuration C, be the
union of all the intermediate configurations until after the update to B. Then
C, has the path H;—~A—B—, where we take the solid edge from A to B and a
dashed outgoing edge from B, meaning a wait is needed. In this case, using the
union of the configurations captures the reason for the wait.

Consistent update sequence. For any set of nodes S, let 7(S) be the set of se-
quences that can be formed by nodes in S, without repetition. Let Z = S1.55---S
be a sequence such that each S; is a subset of N. Let 7(Z) be the set of sequences
defined by {Tl’l“g"-’l“k | € 7T(S1) ATg € W(SQ) N ANTp € W(Sk)}

The sequence Z = 5155--Sg is a consistent update sequence if and only if

1. The sets S1,Ss,---, Sk partition the set of nodes N. This ensures that VU ¢
w(Z), we have upd(C;,U) = Cy, i.e., after updating u, we are in Cy.

2. YU e w(Z), for every prefix U’ of U, C=upd(C;,U") is a consistent configu-
ration.

3. YU en(Z), let U’ = wqug---u; and U" = ugug---uy, be prefixes of u, s.t. k> j,
then if a wait is needed between u;,uy in U, then u;,u; are in different sets

S and S'.

Consistent Order Update Problem. Given an initial configuration C; and the
final configuration C, the consistent order update problem is to find a consistent
update sequence if there exists one.



Upstream
(Condition for paths(Hi,s,C.))

Downstream
(Condition for mazpaths(s,C.))

Ya(s) =2 p € paths(Ha,s,C.)

Zi(s) = (out(s,Cy) = @) v
Vp € mazpaths(s, upd(Ce,s)) :
p € mazpaths(s,Cy)

Yy (s) = =Ya(s)AVp € paths(Hi,s,Cc) :

p € paths(H1,s,C;)
Ap € paths(Hi,s,Cy)

Zy(s) = Vp € mazpaths(s,upd(Ce,s)) :
p € mazxpaths(s,C;)
Vv p € mazpaths(s,Cy)

Yo(s) = ~Ya(s) A-Yi(s)
AVp € paths(H,s,C.):
p € paths(Hy,s,Cy)

Z.(s) = Yp € mazpaths(s,upd(Ce,s)) :
p € mazpaths(s,Cy)

Ya(s) = =Ya(s) A=Y5(s)
AVp e paths(H,s,C.):
p € paths(H1,s,C;)

Z4(s) = Vp € mazpaths(s,upd(C.,s)) :
p € mazxpaths(s,C;)

Ye(s) = =Ya(s) A =Yo(s)

A =Ye(s) A=Ya(s)

Z.(s) = Yp € mazpaths(s,upd(Ce,s)) :
p € mazxpaths(s, C;)

A p € mazpaths(s,Cy)

Fig. 5: Necessary conditions for updating a node s in current configuration C.

Optimal Consistent Order Update Problem. Given C; and Cy, if a consistent up-
date sequence exists, the optimal consistent update problem is to find a consistent
update sequence of minimal length.

4 OrderUpdate Algorithm

This section presents an algorithm (Algorithm 1) that solves the consistent
order update problem. It works by repeatedly finding and updating a node that
can be updated without violating consistency. For clarity, we focus first on cor-
rectness. Section 5 presents an improved version that finds an optimal update.

Correct Sequence. A correct sequence of node updates T' = t1ta-t| | refers to a
consistent update sequence of singleton sets Z = S1S5---Sjn s.t. Vj € [1,|N]]: S; =
{t;}. Algorithm 1 uses a subroutine at Line 6 (in this section, the subroutine
is Algorithm 2—in Section 5 we will replace it with Algorithm 3 to achieve
optimality) to find a correct update sequence. It takes C; and Cy as inputs and
returns two sequences of nodes, R and R,,. Sequence R is the solution to the
consistent order update problem (a sequence of singleton sets). Sequence R,
contains information about the placement of waits, which will be the same as R
in this section, since we initially wait after every node update.

4.1 Necessary Conditions for Updating a Node

To determine which node updates lead to consistent configurations, we as-
sume the network is in a consistent configuration C., and identify a set of nec-
essary conditions that must hold for the update to preserve consistency. We
classify nodes into five categories based on the types of paths that are incoming
to them from H;. The classification is given in the left-hand side of Figure 5.



Upstream Paths and Candidate Nodes. Paths from source H; to a node s are
called upstream paths to s (in some configuration). The condition on these paths
is called the upstream condition. If a node satisfies the upstream condition for
one of the five categories/types, it is known as a candidate of that type.

Downstream Paths and Valid Nodes. Downstream paths from a node s are max-
imal paths starting at s (in some configuration). For each of the upstream condi-
tions, there is a downstream condition which must be satisfied, in order to ensure
that all maximal paths starting from H; in upd(C,,s) through s are consistent.
If a candidate node satisfies the corresponding downstream condition, it is called
valid. A node which is not valid is called invalid. Note that upstream paths to s
are the same in C, and upd(C., s).

Lemma 1. In a consistent configuration C., if a valid node s is updated, then
upd(C., s) is consistent.

Proof Sketch. Figure 5 identifies nodes as Types A-E based on upstream condi-
tions. The upstream conditions are exhaustive and mutually exclusive, meaning
each node is a candidate of exactly one of the types. For each type described
in Figure 5, our downstream condition ensures that updating preserves consis-
tency. Upstream paths to a node may be fully contained in C; or Cy (Type C
and Type D respectively). For these cases, we need to ensure that downstream
paths are also contained in C; and Cy respectively. They may be in C; n Cy or
C; uCy (Type B and Type E respectively). For these cases, we need to ensure
that downstream paths are in C; u Cy (for Type B) and C; n Cy (for Type E).
Type A is a special case, as nodes of this type (also referred to as disconnected
nodes) do not have any upstream paths. These nodes can be updated without
the requirement of a downstream condition. However, we enforce a downstream
condition (denoted Z in the table) in order to streamline the proofs. O
The proof of this and other theorems/lemmas are in the extended version [3].
Using Lemma 1, each node updated by OrderUpdate leads to a valid intermediate
configuration. So, we change from C; to C'y without going through an inconsistent
state, and since we wait between all updates, we obtain a consistent sequence.

Theorem 1. Any sequence R of nodes produced by Algorithm 1 (using subrou-
tine Algorithm 2) is correct.

4.2 Careful Sequences

Previously, we said that Type A candidates (disconnected nodes) do not re-
quire a downstream condition to be updated. However, Algorithm 1 imposes a
downstream condition on disconnected nodes for them to be valid and updated.
We refer to sequences that respect this downstream condition (i.e., update only
valid nodes) as careful sequences. Let s be a node and C be a configuration, and
define valid; (C, s) to be true if and only if s in valid in configuration C. We ex-
tend wvalid; to a sequence of nodes by defining valid as valid(e,C) = true (where
e is the empty sequence) and valid(C,uS) = valid(upd(C,u),S) A valid, (C,u).

Careful Sequence A careful sequence T = t1ta-+t| is a correct sequence of nodes
s.t. Vie []., |N|] : valid(upd(CZ-,t1t2---tl,1)7tl).



Algorithm 1: OrderUpdate

Input: set of all nodes (IN), initial configuration (Cj), final configuration (Cy)
Result: consistent order of node updates (R), updates before which there are

waits (Ruw)
1 R=Ry =Py« k<1 // initialize R, Ry, Po and k
2 C. < C} // C. starts with the initial value of C}
3 while C. # Cy do // stop when C. and Cy are equal
4 U< {s|seNA((Ya(s)AZa(8))V (Ys(s)AZp(s)) Vv

(Ye(8) A Ze(8)) v (Ya(s) A Za(s)) v (Ye(s) A Ze(s)))} // valid nodes
5 if U = @ then EXIT // no consistent order of updates exists
6 s = PickAndW ait() // by default, use Algorithm 2
7 Ce < (Ce N out(s,Cy)) U out(s,Cy) // update C.
8 N« N -{s} // remove updated nodes from node list
9 return (R, Ry)

Algorithm 2: SequentialPickAnd Wait

1 s=Pick(U) // pick any valid node
2 Ry < Ry.s // by default, there is a wait after every update
3 R< R.s // append s to the end of result R

Theorem 2. If a correct sequence of updates exists, then a careful sequence
also exists.

4.3 Completeness of the OrderUpdate Algorithm

The OrderUpdate Algorithm (with the SequentialPick AndWait subroutine)
is complete, i.e., if there exists any correct sequence, we find one. We can observe
that if two nodes a and b are both valid in configuration C., then upd(C,,ab)
and upd(C.,ba) are both consistent configurations. This property holds for any
number of nodes and for all careful sequences, but not for all correct sequences.
We prove this behavior in the following lemma, which is the key to confirming
completeness of the OrderUpdate Algorithm.

Lemma 2. If T = UVnY is a careful sequence, and valid(upd(C;,U),n), then
T' =UnVY is also careful.

In other words, Lemma 2 shows that if there are multiple valid nodes in
some configuration C, then these nodes can be updated in any order. This is
because once a node becomes valid, it does not become invalid. This is why we
introduced careful sequences, because this lemma is not true for arbitrary correct
sequences. Using this lemma, we can prove the completeness of Algorithm 1 (with
the Algorithm 2 subroutine).

Theorem 3. Algorithm 1, using subroutine Algorithm 2, generates a correct
order of updates R if one exists, and otherwise fails (in Line 5).

Running Time. Let |V| be the number of nodes and |E| be the number of edges in
G. In each iteration of its outer loop, Algorithm 1 using SequentialPickAnd Wait
(Algorithm 2) as a subroutine, makes a list of valid nodes and picks one to
update. The set of valid nodes U in Line 4 can be found using a graph search on



Algorithm 3: OptimalPickAnd Wait

1 if k=1 then // we do not need a wait before first node
2 L Py« U // all nodes initially valid are P,
3 if Py =@ then // we have to pick a lower priority node
4 Py < U // all nodes in U become P, after waiting.
5 s = Pick(Po); R« R.s; Ry < Ry.s; k< k+1; // pick Py node, append s
to result R, add wait, increment number of rounds k

6 else

7 L s = Pick(FPy); R« R.s // pick any P, node, add s to result R

C, for each node, which takes O(|V|(|]V|+|E|)) steps. The loop runs |V| times
and updates each node, so the overall runtime is O(|V|>(|V|+|E|)). This analysis
relies on the fact that the graph search is implemented in a way that goes through
each edge and node a constant number of times. Once a node has been visited,
it is marked F', I, or B, based on whether the maximal paths downstream from
it are maximal paths starting from it in C;, C¢, or both. This ensures that we
avoid visiting the node (and its outgoing edges) again.

5 Optimal OrderUpdate Algorithm

Thus far, we solved the consistent order update problem by generating a
consistent sequence with only singleton sets. This corresponds to requiring a
wait at every step of the update sequence, which does not allow any parallelism.
However, we have seen in Section 2 that some nodes can be updated in paral-
lel. In Section 3, we defined when a wait is needed in the sequence of updates.
In this section, we provide a sequence of updates where there is a wait if and
only if it is needed, solving the optimal version of the problem. We use Algo-
rithm 1, but replace the subroutine SequentialPickAndWait (Algorithm 2) with
OptimalPickAndWait (Algorithm 3). The algorithm returns a solution for the
optimal consistent update problem in the following format.

Correct Waited Sequence. A correct waited sequence is a tuple (7, W) of node
sequences without repetition, where W is a subsequence of T and (T,W) =
(tltg'«-t|N|,w1w2--«wk_1), such that a consistent update sequence S7.55---S% can
be formed by taking Sy = {t1,-+, tm } where tp,, = w1, Vie (1,k) :S; ={ts,, tm, }
where t;, = w;_1 and t,,, = w;, and Sg = {t;,,-~, t|n|} where t;, = wy_1.

Intuitively, T specifies a correct sequence of updates, with some waits, while
W specifies the nodes, immediately before which a wait is placed. If we simply
group the nodes between i-th and (i + 1)-st waits into a set S;;1 we obtain the
consistent update sequence of Section 3. Considering solutions to the problem
in the form of a sequence of nodes and waits simplifies the arguments we use to
prove correctness and optimality.

Minimal Correct Waited Sequence. A minimal correct waited sequence is a cor-
rect waited sequence (T, W) such that |[W/| is minimal. Since we always pick valid
nodes, we need to prove that if a minimal correct waited sequence exists, then
there exists a minimal correct waited sequence that updates only valid nodes.



Careful Waited Sequence. A careful waited sequence of updates (T,W) =
(tita-t|n), wiwa-wy_1) is a correct waited sequence s.t. Vj e [1,|N][] :
valid (upd(Cs,t1--t5-1),t;) A minimal careful waited sequence is a careful waited
sequence (T, W) s.t. [W/| is minimal. We prove the following for such sequences.

Theorem 4. If a minimal correct waited sequence exists, then a minimal careful
sequence exists as well.

5.1 Condition for Waits

Partial Careful Waited Sequence. Given careful waited sequence Z = (T =
ti—tn, W = wiwg-1), a partial careful waited sequence is 2z’ = (1" =
ty-ty, W' = wy-ws) such that 77 is a prefix of T and W' is a prefix of W.
We start with a partial careful waited sequence with no nodes, and at every step
adds a node while ensuring that the obtained sequence is a partial careful waited
sequence, i.e., can be extended to a careful waited sequence.

Wait Condition. Consider a function wait that takes a partial careful waited
sequence S = (t1tg - t,, wiwy-ws) and node n s.t. valid(C;, Uty---t,.) as an argu-
ment and returns true if there needs to be a wait before its update. Specifically:
wait(n,S) = true if and only if node Iz € [1,7] : —valid(upd(C;,t1--tz),n) A
-(Jy € [1,s],3z € (z,7] : wy = t.), i.e., in the partial careful waited sequence,
there must be a wait before updating a valid node n if and only if it was not valid
until its dependencies were updated, and there was no wait after their update.
In this case, n must be updated in a new round, after a wait.

We now show completeness of the wait condition, i.e., if a wait is needed (as
defined in §3) after updating S and before updating n, then wait(n,S) is true.

Lemma 3. If (1) n is the node picked for update, and (2) the partial careful
waited sequence built before updating n is S = (t1te:t,, wiwaws), and (3)
ws = t, for some y € [1,r], and (4) we define Yz € [1,r]: Cy, = upd(C;,t1-+t5),
and then wait(n,S) <> C;, u--- U Cy U upd(Cy,,n) is inconsistent.

5.2 Algorithm for Optimal Consistent Order Updates

The OptimalPickAnd Wait (Algorithm 3) subroutine minimizes waits, solving
the optimal consistent update problem. We minimize waits by assigning priority
Py (higher priority) or P; (lower priority) to nodes. Let S be a partial sequence.
A node is in Py if and only if ~wait(n,S), i.e., Py nodes do not require waiting
before update. A node is in P; if and only if wait(n, S), i.e., we must wait before
updating a P; node. We greedily update Py nodes first.

Correctness and optimality follow from the correctness argument in the pre-
vious section, and from Lemma 3. Intuitively, updating a node in Py which does
not need a wait allows the P; list to build up. This means we need to place a
single wait for as many P; nodes as possible. When we place a wait in the par-
tial careful waited sequence, every valid node that was in P; moves to Py. The
last key property needed for the following theorems is that once a node acquires
priority Py, it retains priority Fj.

Theorem 5. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces
a correct waited sequence.
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Fig. 6: Multiple sources.  Fig.7: Double diamond with symbolic forwarding rules.

Theorem 6. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces
a correct and optimal waited sequence of updates, if one exists.

Running Time. The OrderUpdate Algorithm with the OptimalPickAndWait
subroutine has the same time complexity that it had with the
Sequential PickAndWait subroutine. The OptimalPickAndWait subroutine
introduces a priority-based node selection mechanism—after every wait, it
simply moves nodes from the valid set U to the higher priority list Py, which
requires only O(|N|) additional steps in each iteration.

6 Discussion

Multiple hosts and sinks. We can extend our single-source approach to a network
with multiple sources H 4, Hp, Ho, --. To do this, we assume that there is a
master source H1, and every actual source is connected to H;, as shown in Figure
6. This approach works because we update every node only once, meaning we
cannot artificially disable and then re-enable some sources and keep others.

Multiple packet types. Our approach can be applied when there are multiple
(discrete) packet types, as long as each forwarding rule matches on a single
packet type—in this case, we compute an update for each packet type, and
perform these (rule-granularity) updates independently. In the more realistic
case with symbolic forwarding rules (i.e., matching based on first-order formulae
over packet header fields), deciding whether a consistent update exists is CO-
NP-hard. Specifically, there is a reduction from SAT to this problem. We can
consider each edge in a configuration as being labeled by a formula, and only
packets whose header fields satisfy this formula can be forwarded along that
edge. Consider a double diamond (Figure 7) with one edge labelled by ¢, and
all other edges labelled with true (T). We have seen that a consistent update
for this double diamond example is not possible in the situation where packets
(of any type) can flow along all of the edges, so we can see that there exists a
consistent update if and only if ¢ is unsatisfiable. This completes the reduction.

7 Related Work

Consistency. Our core problem is motivated by earlier work by Reitblatt et al.
[16] that proposed per-packet consistency and provided basic update mechanisms.

Ezxponential Search-Based Network Update Algorithms. There are various ap-
proaches for producing a sequence of switch updates guaranteed to respect
certain path-based consistency properties (e.g., properties representable using



temporal logic, etc.). For example, McClurg et al. [15] use counter-example
guided search and incremental LTL model checking, FLIP [17] uses integer linear
programming, and CCG [19] uses custom reachability-based graph algorithms.
Other works such as Dionysus [7], zUpdate [8], and Luo et al. [12], seek to per-
form updates with respect to quantitative properties.

Complexity results. Mahajan and Wattenhofer [13] propose dependency-graphs
as a representation for network updates, and propose properties that can be
solved using this general approach, including loop freedom, which is handled in
a minimal way. Yuan et al. [18] detail general algorithms for building dependency
graphs and using these graphs to perform a consistent update. Forster et al. [6]
show that for blackhole-freedom, computing an update with a minimal number
of rounds is NP-hard (assuming memory limits on switches). They also show Np-
hardness results for rule-granular loop-free updates with maximal parallelism.
Per-packet consistency in our problem is stronger than loop and blackhole free-
dom, but we consider solutions where each switch is updated once, and where a
switch update replaces the entire old forwarding table with the new one.

Forster and Wattenhofer [5] examine loop-freedom, showing that maximiz-
ing the number for forwarding rules updated simultaneously is NP-hard. Ludwig
et al. [10] show how to minimize the number of update rounds with respect
to loop-freedom. They show that deciding whether a k-round schedule exists is
NP-complete, and they present a polynomial algorithm for computing a weaker
variant of loop-freedom. Amiri et al. [1] present an Np-hardness result for greed-
ily updating a maximal number of forwarding rules in this context. Additionally,
Ludwig et al. [9] investigate optimal updates with respect to a stronger prop-
erty, namely waypoint enforcement in addition to loop freedom. They produce
an update sequence with a minimal number of waits, using mixed-integer pro-
gramming. Ludwig et al. [11] show that the decision problem is NP-hard.

Mattos et al. [14] propose a relaxed variant of per-packet consistency, where
a packet may be processed by several subsequent configurations (rather than
a single one), and present a polynomial graph-based algorithm for computing
updates. Dudycz et al. [4] show that simultaneously computing two network
updates while minimizing the number of switch updates (“touches”) is Np-hard.
Brandt et al. [2] give a polynomial algorithm to decide if a congestion-free update
is possible when flows are “splittable” and/or not restricted to be integer.

8 Conclusion

We presented a polynomial-time algorithm to find a consistent update order
for a single packet type. We then described a modification to the algorithm
which finds a consistent update order with a minimal number of waits. Finally,
we proved that this modification is correct, complete, and optimal.
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