
Optimizing Horn Solvers for Network Repair
Hossein Hojjat∗, Philipp Rümmer†, Jedidiah McClurg‡, Pavol Černý‡, and Nate Foster∗

∗ Cornell University, USA
{hojjat,jnfoster}@cs.cornell.edu

† Uppsala University, Sweden
philipp.ruemmer@it.uu.se

‡ CU Boulder, USA
{jedidiah.mcclurg,pavol.cerny}@colorado.edu

Abstract—Automatic program repair modifies a faulty pro-
gram to make it correct with respect to a specification. Previ-
ous approaches have typically been restricted to specific pro-
gramming languages and a fixed set of syntactical mutation
techniques—e.g., changing the conditions of if statements. We
present a more general technique based on repairing sets of
unsolvable Horn clauses. Working with Horn clauses enables
repairing programs from many different source languages, but
also introduces challenges, such as navigating the large space
of possible repairs. We propose a conservative semantic repair
technique that only removes incorrect behaviors and does not
introduce new behaviors. Our proposed framework allows the
user to request the best repairs—it constructs an optimization
lattice representing the space of possible repairs, and uses a novel
local search technique that exploits heuristics to avoid searching
through sub-lattices with no feasible repairs. To illustrate the ap-
plicability of our approach, we apply it to problems in software-
defined networking (SDN), and illustrate how it is able to help
network operators fix buggy configurations by properly filtering
undesired traffic. We show that interval and Boolean lattices are
effective choices of optimization lattices in this domain, and we
enable optimization objectives such as modifying the minimal
number of switches. We have implemented a prototype repair
tool, and present preliminary experimental results on several
benchmarks using real topologies and realistic repair scenarios
in data centers and congested networks.

I. INTRODUCTION

Program repair is a promising approach to software devel-
opment that synthesizes a modification to a faulty system to
make verification succeed. A number of approaches have been
explored in the literature including deductive program repair
[1] and automatic patch generation [2], but these often have
several limitations.

1) They target specific types of programs—e.g., repairing
functional Scala programs, or patching PHP programs to
make them pass a test suite.

2) They search for specific types of repairs—e.g., finding
syntactically similar programs by swapping arguments to
functions, or modifying the conditions on if statements
by conjoining (or disjoining) additional conditions.

3) In general, they are not able to find repairs that are
optimal with respect to a given objective function.

This paper develops a general approach to the program repair
problem. Rather than developing tools customized for specific
languages, we utilize a general modeling framework that
can be used to encode a wide variety of software artifacts.
Additionally, rather than examining specific types of repairs,
we explore the space of all possible repairs, and develop
techniques for doing this efficiently. Importantly, our tool also

has the ability to search for optimal repairs, specified using a
domain-specific objective function.

Our approach is based Horn clauses—a general framework
that is able to model a wide variety of systems and has scalable
algorithms and verification tools [3], [4], [5]. In order to use
the framework in the context of program repair, we formulate
the Horn clause repair problem: given a set of Horn clauses
that violates a safety invariant, our goal is to produce a repaired
set of clauses where the repair is optimal with respect to a
domain-specific objective function. To find the optimal repair,
we must search through a large (in fact, potentially infinite)
space of Horn clause repairs. To do this, we construct a finite
lattice that abstracts the space of possible repairs—e.g., using
Boolean and interval lattices. Our algorithm for solving Horn-
clause optimization problems over finite lattices combines
ideas from local search with conflict-driven learning (inspired
by SAT and SMT solvers) to prune parts of the optimization
lattice that are guaranteed to not contain solutions.

To evaluate our approach, we show how it can be used
to solve a variety of real-world problems in the domain of
software-defined networking (SDN). To apply our techniques
in a given domain, we need a user-defined mapping from
the source language to Horn clauses (and vice-versa), and
an objective function that specifies in what sense a repair
is optimal. In SDN, a configuration consists of tables of
packet-forwarding rules of the individual switches in the
network. Network configurations often contain bugs—e.g., due
to loops, black-holes, or access-control violations [6]. We
model network configurations using Horn clauses and use
an objective function that minimizes the number of switches
whose configuration is modified by the repair. We show that
our repair framework is able to produce optimal repairs of
realistic network configurations efficiently.

II. MOTIVATING EXAMPLE

The network shown in Fig. 1(a) corresponds to a topology
commonly used in large data centers—switches are grouped
into three layers: core, aggregation, and ToR (top-of-rack)
switches. During normal operation, packets are forwarded
from a host upward through aggregation and core switches,
and then back downward to the destination host. Although
there are physical loops in this network a packet should take
only a finite number of hops in any configuration.
In this example, the data center configuration provides service
to multiple tenants: hosts H1, H2, and H3 belong to one
customer, and H4 belongs to another customer. Host H1 sends
traffic to H2 and H3, but this traffic should not reach H4, as

H1

T1

Host

A1Aggregation

T2ToR T3 T4

A3 A4

H2 H3 H4

Not safe
for H1.

A2

C1Core C2(a) filter(H1)

H1

H2

H3

S1

S2

S3

S4

buffer size=10

S5

S6

Not safe for green.

S7

S8

S9

H4

H5

H6

(b)

10(r)

15(b)

5(g)

5(r)

5(r)

5(b)
5(b)

5(b)

5(r)

5(b) 5(r)

5(b)

5(b)

Fig. 1: a) Repair in data center, b) Repair w.r.t. bandwidth and
queue sizes.

it is not owned by the customer. To implement this policy, the
operator might install a forwarding rule at C1 to filter packets
from H1 going towards A4 and also disable the link A3−T4
for good measure (in the figure, this disabled link is indicated
by a “ ” symbol.) Now assume that the network operator
has brought the core switch C2 down for maintenance—i.e.,
the dashed links cannot be traversed by any packet. After the
maintenance task has been completed, the network operator
decides to bring up C2 to help balance load within the data
center. Unfortunately, this causes the safety requirement to be
violated, since there is a new path that forwards H1 traffic
to H4. Our repair framework interactively helps the network
operator bring the network back to safety. The operator can
provide as input (i) a description of the network as a high-level
transition system, and (ii) a set of required safety properties.
Our tool then synthesizes a set of possible repairs which re-
turns the system to safety. As a first solution, the repair engine
might suggest that we either disconnect the links A1−C2 and
A2−C2, or take C2 offline and return the network to its initial
state. The network operator could reject this “trivial” repair
by stipulating that any repair must not disconnect links. The
repair engine might also suggest solutions that rewrite the
traffic from H1 to another type of traffic by modifying packet
headers, and the network operator could reject such solutions
by stipulating that the repair engine must not modify headers.
After providing such restrictions, our tool returns a solution in
which filters for H1 traffic have been added on a number of
links: {A1−C2, A2−C2}, {C2−A4, A4−T4}, {A4−T4}, etc.
Our framework uses objective (ranking) functions to guide
the repair engine to the “best” answers. For example, the
network operator might be interested in solutions that modify
the configurations on the smallest number of switches. By
providing a suitable objective function, our tool can find an

optimal correct solutions—e.g., adding a single filter on the
link C2−A4 or on the link A4−T4.

Another important class of network configuration repairs is
related to quantitative measures of bandwidth and traffic. As an
example, consider Fig. 1(b) and suppose that each intermediate
node can buffer at most 10 units of traffic. The hosts H1, H2,
H3 on the left receive 10 units of “red” traffic, 15 units of
“blue” traffic, and 5 units of “green” traffic respectively. Red
traffic should be sent to H4, blue traffic to H5, and green
traffic to H6. In addition, the green traffic must not traverse the
intermediate node S6. Initially, the network operator decides
to send 5 units of red traffic to each of S4 and S5. She also
decides to send 5 units of blue traffic to each of S4, S5, and
S6. Unfortunately, this configuration does not allow the green
traffic to reach its destination since it cannot flow through S6,
and the buffers of S4 and S5 are already full. A correct repair
might shift some of red or blue traffic (or both) to S6 to make
room for the green traffic to pass through S4 or S5. Our repair
engine might generate a solution that sends all green traffic to
S4, and allows the red and blue traffic to be arbitrary divided
between S4, S5, and S6, provided the total amount of traffic
does not exceed the buffer capacity.

III. BASIC DEFINITIONS

a) Constraint languages: Throughout this paper, we as-
sume that a first-order vocabulary of interpreted symbols has
been fixed, consisting of a set Σf of fixed-arity function
symbols, and a set Σp of fixed-arity predicate symbols.
The interpretation of Σf and Σp is determined by a fixed
structure (U, I), consisting of a non-empty universe U , and a
mapping I that assigns to each function in Σf a set-theoretic
function over U , and to each predicate in Σp a set-theoretic
relation over U . As a convention, we assume the presence
of an equality symbol “=” in Σp, with the usual interpre-
tation. Given a set X of variables, a constraint language
is a set Constr of first-order formulae over Σf ,Σp, X . For
example, the language of quantifier-free Presburger arithmetic
(mainly used in this paper) has Σf = {+,−, 0, 1, 2, . . .} and
Σp = {=,≤, |}, with the usual semantics.
b) Horn Clauses: We consider a set R of uninterpreted
fixed-arity relation symbols. The arity of a symbol p ∈ R is
denoted by α(p). A Horn clause is a formula H ← C ∧B1 ∧
· · · ∧ Bn, where C is a constraint over Σf ,Σp, X; each Bi
is an application p(t1, . . . , tk) of a relation symbol p ∈ R
to first-order terms over Σf , X; and H is similarly either an
application p(t1, . . . , tk) of p ∈ R to first-order terms, or false .
H is called the head of the clause, and C ∧B1 ∧ · · · ∧Bn

the body. In case C = true , we usually omit C and just
write H ← B1 ∧ · · · ∧ Bn. First-order variables in a clause
are implicitly universally quantified; relation symbols repre-
sent set-theoretic relations over the universe U of a struc-
ture (U, I) ∈ S. Notions like (un)satisfiability and entailment
generalize to formulae with relation symbols.

Definition 3.1: Let HC be a set of Horn clauses over relation
symbols R. HC is called (semantically) solvable (in the
structure (U, I)) if there is an interpretation σ of the relation

Algorithm 1: Generalize Procedure
Input: Unsolvable Horn clauses HC
Result: Solvable Horn clauses HC

1 ok := false;
2 while ¬ok do
3 (ok ,CEX) := SOLVE(HC);
4 pick CEX ′ ⊆ CEX ; HC := (HC \ CEX ′);
5 if ¬ok then
6 for h := (H ← C ∧

∧
j Bj) ∈ CEX ′ do

7 m := fresh symbol ;
8 HC := HC ∪ (H ← C ∧m ∧

∧
j Bj);

symbols R as set-theoretic relations such that the universal
closure Cl∀(h) of every clause h ∈ HC holds in (U, I),
denoted by σ |= HC ; in other words, if the structure (U, I)
can be extended to a model of the clauses HC .

We can practically check solvability of sets of Horn clauses
by means of predicate abstraction [7], [8], using tools like
Z3 [9], HSF [7], or Eldarica [5].

IV. HORN-CLAUSE REPAIR

This section defines the Horn clause repair problem and
presents our conservative approach to solving it.

Definition 4.1 (Repair): Let HC be a set of Horn clauses
and φ a safety invariant, encoded as a Horn clause hφ. Now
assume that HC violates the safety invariant—i.e., HC ∪{hφ}
is unsolvable. The set HC ′ is a repair of HC if (i) HC ′∪{hφ}
is solvable, and (ii) the models I of the first-order variables
in HC are a superset of the models I ′ for HC ′.

Given a set of unsolvable Horn clauses, there can be
many different strategies for repairing them—i.e., to make
the clauses solvable—but it is important that we be able to
map repairs back into the problem domain. As an example,
in our case studies, we will interested in converting suggested
repairs from Horn clauses back to network configurations. The
relation symbols in the Horn clause representation will have
a specific meaning in the problem domain (e.g., position of
the packets or the distribution of traffic in network), and the
clauses will have a specific meaning (e.g., forwarding across
links). Our repair procedure is conservative in the sense that it
does not add clauses, remove clauses, or change the structure
of the relation symbols. This makes the translation of repairs
back to the problem domain easy—we merely add constraints
to the bodies of the clauses to make the clauses more con-
strained with the goal of removing bad behaviors. We show
that this kind of repair corresponds to adding filters or packet-
processing rules to switches, and we argue in Section VII that
this strategy is not restrictive in the networking domain.

The generalization procedure in Algorithm 1 removes coun-
terexamples to a set of Horn clauses by adding fresh relation
symbols to the bodies of a subset (CEX ′) of the clauses
that constitute the counterexample (CEX). The arguments
to the fresh relation symbol m are either determined by
the problem domain, or use all of the arguments from the

existing relation symbols in the head and body of the clause.
Algorithm 1 removes every counterexample so that the while
loop eventually terminates. In the worst case, it conjoins
fresh relation symbols to the bodies of all clauses. The fresh
relation symbol added to the body of each clause are trivially
satisfiable, since the symbols can be set to false. However,
our Horn optimization problem attempts to synthesize more
interesting solutions.

V. HORN-CLAUSE REPAIR OPTIMIZATION

We now develop a general framework for formulating and
solving optimization problems subject to Horn constraints.
The framework is a good match for a range of analysis and
synthesis tasks, and in particular, for the purpose of repairing
networks. In this setting, side conditions in the form of Horn
clauses are used to represent the network, its desired correct-
ness properties, and the space of possible network repairs,
while the optimization objective captures preferences about the
generated repair—e.g., the smallest number of switches should
be updated. Since multiple incomparable solutions may exist
in general, we arrange the search space as a lattice.

Definition 5.1 (Optimization lattice): Suppose again that R
is a set of uninterpreted fixed-arity relation symbols, and that

SR = {σ : R→ P(U∗) | σ(p) ⊆ Uα(p)}

is the space of possible interpretations of the R symbols as
set-theoretic relations over the universe U . An optimization
lattice is a pair (〈L,vL〉, µ) consisting of a complete lattice
〈L,vL〉 and a mapping µ : L → P(SR) from elements of
〈L,vL〉 to sets of interpretations of the R symbols, such that:

1) the bottom element is mapped to µ(⊥) = SR, the set of
all interpretations; and

2) µ is anti-monotonic, i.e., a vL b implies µ(a) ⊇ µ(b).
The lattice (〈L,vL〉, µ) is Horn-definable if there is a

function π mapping elements l ∈ L to finite sets π(l)
of Horn clauses over relation symbols R ∪ R′, such that
µ(l) = {σ|R | σ |= π(l)} for every l ∈ L.

Given a set HC of Horn clauses, we call a lattice ele-
ment l ∈ L feasible if there is an interpretation σ ∈ µ(l) with
σ |= HC ; in other words, if the clauses are satisfied by some
interpretation associated with l. Since µ is anti-monotonic,
feasibility is an anti-monotonic predicate on optimization
lattices as well: if a node is infeasible, all of its successors
are also infeasible. An element l ∈ L is maximal feasible if l
is feasible, but all of its successors are infeasible.

Definition 5.2: A Horn optimization problem is defined
by a set HC of Horn clauses over relation symbols R, an
optimization lattice (〈L,vL〉, µ) over R, and a monotonic
function obj : L → D to a totally ordered domain D. A
solution is a lattice element lmax ∈ L such that

1) lmax is maximal feasible for HC ; and
2) obj (lmax) = max{obj (l) | l ∈ L is feasible for HC}.
Example 5.1: Consider the topology shown in Fig. 2 and

suppose we want to implement IP multicast from H to I1
and I2 with TTL scoping. As background, the TTL (time-
to-live) field is initialized to a default value (e.g., 64) and is

H R

I1

I2

Fig. 2: Multicast router with TTL scoping.

decremented at every hop. Packets with TTL 0 are dropped,
which prevents forwarding loops. In TTL scoping, the operator
assigns a TTL threshold to each output port on all multicast
routers. The routers only forward packets whose TTL value
is greater than or equal to the configured threshold. In this
example, we will consider a stronger version of TTL scoping
with upper and lower bounds. To represent multicasting of a
packet to the hosts I1 and I2 using Horn clauses, we assign
relation symbols R to the router, and I1, I2 to the destination
hosts (Section VI shows how to encode networks as Horn
clauses). Now suppose the network operator wants to disable
multicasting by allowing only traffic to I1 or I2 (but not both)
by adding a filter on TTL values for traffic coming from H .
Representing the newly added filter using the relation symbol
f , we obtain the following Horn clauses:

R(t)← f(t)

I1(t′)← R(t) ∧ (t′ = t− 1) ∧ (t′ ≥ 3)

I2(t′)← R(t) ∧ (t′ = t− 1) ∧ (1 ≤ t′ ≤ 2)

The safety specification is false ← I1(t) ∧ I2(t′).

A. Optimization in Boolean Lattices

We discuss two lattices that are frequently useful for defin-
ing Horn optimization problems: Boolean lattices, defined as
the powerset lattice of some finite set, and interval lattices,
which can capture value or address ranges to be enabled or
blocked in network repair problems (Sect. V-B). One can
construct more complicated optimization lattices—e.g., by
taking the Cartesian product of lattices.

We first consider powerset lattices 〈P(B),⊆〉 of some finite
base set B. The bottom element of such a lattice is the empty
set ∅, while the top element is the full set B. This kind of
lattice is useful for modeling optimization problems of discrete
character, and also covers (weighted) first-order Max Horn
SAT problems—i.e., the problem of satisfying a maximum
subset of some set of Horn constraints [10].

To convert 〈P(B),⊆〉 into an optimization lattice, a map-
ping πB from P(B) to sets of Horn clauses can be defined
as a homomorphism πB(A) =

⋃
x∈A πB(x), given a πB that

maps every element of B to a (finite) set of Horn clauses. In
other words, every element x ∈ B is responsible for enabling
some Horn constraints. The mapping πB induces an anti-
monotonic mapping µB(A) = {σ | σ |= πB(A)} to sets of
interpretations, and an optimization lattice (〈P(B),⊆〉, µB).

Example 5.2: Recall Example 5.1. We will show how to
convert this system into a Horn optimization problem. To start,
we choose a base set of clauses

B =

{
f(t)← t < 2, f(t)← t = 2, f(t)← t = 3,
f(t)← t = 4, f(t)← t > 4

}

(−∞, 2]

[2, 2]

(−∞, 3]

[2, 3]

(−∞, 4]

∅

[3, 3]

[2, 4]

(−∞,+∞)

[3, 4]

[2,+∞)

[4, 4]

[3,+∞)

[4,+∞)

v

Fig. 3: Example interval lattice 〈I42 ,v4
2〉.

and generate a 32-element lattice 〈P(B),⊆〉. Since each
lattice element is identified with a set of Horn clauses, the
mapping πB can be defined as the identity function. Each
element of B describes constraints on considered solutions
of f , and maximal feasible elements correspond to solutions
where f accepts as many TTL values t as possible. The
maximal feasible elements are:

m1 = {f(t)← t < 2, f(t)← t = 2, f(t)← t = 3}, and
m2 = {f(t)← t < 2, f(t)← t = 4, f(t)← t > 4},

i.e., f must filter either values t ≥ 4, or values t ∈ [2, 3].

B. Optimization in Interval Lattices

Boolean lattices tend to grow rapidly in practice (as in the
previous example). As a more compact (though more coarse-
grained) representation, lattices of intervals are more useful.
Given integers a, b ∈ Z (a ≤ b), we define the lattice 〈Iba,vba〉:

Iba = {∅} ∪ {(−∞,∞)} ∪
{[x, y] | x, y ∈ Z, a ≤ x ≤ y ≤ b} ∪
{(−∞, x], [x,∞) | x ∈ Z, a ≤ x ≤ b}

vba = {(I, J) ∈ Iba × Iba | I ⊇ J}

where [x, y], (−∞, x], etc., denote non-empty intervals of
integers. The bottom element of the lattice is the full inter-
val (−∞,∞) = Z, and the top element is the empty set ∅. As
an example, the 14-element lattice 〈I42 ,v4

2〉 is given in Fig. 3.
A lattice 〈Iba,vba〉 can naturally be used to express network

repairs that consist of blocking certain ranges (of packet
types, addresses, ports, etc.). For instance, given a unary Horn
predicate p, a mapping πp from interval lattice elements to
Horn clauses can be defined by

πp(I) = {p(z)← z 6∈ I} (for I ∈ Iba) .

The clause πp(I) implies that p holds for all values outside
of the interval I , while p can be false for values within
the interval.1 As before, πp induces an anti-monotonic map-
ping µp(I) = {σ | σ |= πp(I)}, and therefore gives
rise to an optimization lattice (〈Iba,vba〉, µp). Preference of
some intervals over others (e.g., minimizing the lower bound
of solution intervals) can be captured by adding a suitable
monotonic objective function obj .

1For the opposite situation, constraining p to be true for all values within
some interval, a dual lattice can be constructed in which the empty set ∅
forms the bottom element, and the full interval (−∞,∞) is top.

Algorithm 2: Optimization Procedure
Input: Horn clauses HC , optimization lattice

(〈L,vL〉, µ), objective function obj : L→ D
Result: Set Sol of all solutions of optimization problem

1 Sol := ∅; SubOpt := ∅; B := −∞;
2 while there is a feasible l ∈ L that is incomparable with
Sol ∪ SubOpt do

3 m or so :=
boundedMaximize(HC , (〈L,vL〉, µ), obj , l, B);

4 if m was returned, and obj (m) > B then
5 SubOpt := SubOpt ∪ Sol ;
6 Sol := {m}; B := obj (m);
7 else
8 Sol := Sol ∪ {m} or SubOpt := SubOpt ∪ {so};

9 return Sol ;

Example 5.3: We again use the system from Example 5.1,
and the lattice 〈I42 ,v4

2〉 in Fig. 3 as illustration. With the
mapping πf defined as in (V-B), and the Horn constraints
from Example 5.1, the maximal feasible elements are [2, 3] and
[4,∞), which are marked in Fig. 3. Note that those solutions
correspond to the ones identified in Example 5.2, but that the
interval lattice is more compact than the Boolean lattice.

Since there are multiple maximal feasible elements, we can
use a monotonic objective function obj to disambiguate—e.g.,
such a function could return the negated upper endpoint, which
would express a preference for [2, 3] over [4,∞):

obj (I) =


−y if I = [x, y] or I = (−∞, y]

−∞ if I = [x,∞)

∞ if I = ∅

C. Effective Optimization for Finite Lattices

We now present our algorithm for solving Horn optimization
problems over finite lattices. The algorithm combines ideas
from local search (e.g., [11]) with conflict-driven learning
(inspired by SAT and SMT solvers) to prune parts of the
optimization lattice that are guaranteed to not contain solu-
tions. The algorithm is partly derived from an earlier search
procedure for optimal Craig interpolants [12].

Example 5.4: We first illustrate the procedure using Ex-
ample 5.1, and the interval lattice in Example 5.3. The two
maximal feasible elements in the lattice (Fig. 3) are [2, 3] and
[4,∞). Interval [2, 3] has cost obj ([2, 3]) = −3, and is the
optimal solution (obj from Example 5.3).

Our algorithm starts by choosing an arbitrary feasible lattice
element, and then walks upward in the lattice until a maximal
feasible element is reached. In the example, we can choose
the bottom element (−∞,+∞), since if any lattice element
is feasible, then so is bottom; suppose that maximizing this
element (walking upward as long as feasible successors exist)
yields [2, 3], which also happens to be the global optimum.

After identifying [2, 3] as a possible solution, optimality
must be verified. For this, we make the observation that every

Algorithm 3: boundedMaximize (HC , (〈L,vL〉, µ), obj , l, B)

Input: Horn clauses HC , feasible lattice element l ∈ L,
optimization bound B

Result: m ∈ L s.t. l vL m, m is maximal feasible,
and obj (m) ≥ B or

so ∈ L s.t. l vL so, obj (so) < B, and all
successors of so are infeasible.

1 upperBound := >;
2 for all immediate successors s of l do
3 if s vL upperBound then
4 if s is feasible then
5 l := s; Restart loop at line 2;
6 else if ∃b. feasibilityBound(l, s, b) then
7 upperBound := upperBound u b;
8 if obj (upperBound) < B then
9 return so := upperBound ;

10 if upperBound is feasible then
11 return m := upperBound ;

12 if obj (l) < B then return so := l ;
13 return m := l;

further solution has to be incomparable to [2, 3], since ele-
ments above [2, 3] are infeasible, and elements below are not
maximal. Our procedure therefore picks an arbitrary feasible
incomparable element, and then again walks upward towards
a maximal feasible element. To find feasible incomparable
elements, we enumerate all minimal incomparable elements,
and check whether any of them is feasible (otherwise, no fea-
sible incomparable element can exist). Here, the two minimal
elements incomparable to [2, 3] are (−∞, 2] and [3,∞), and
we suppose that the latter (the feasible one) is picked.

To walk upward, we check whether [3,∞) has a feasible
successor. Suppose we first consider [3, 4], which turns out
to be infeasible. Our algorithm utilizes this information to
derive a feasibility bound: since [3,∞) is feasible and [3, 4]
infeasible, it follows that every feasible element above [3,∞)
has to be below or equal to [4,∞), i.e., further search can be
bounded by [4,∞). Since obj ([4,∞)) = −∞ < obj ([2, 3]),
we can conclude that no solution can possibly exist above
[3,∞), and the search must backtrack. Note that it is not
relevant whether [4,∞) itself is feasible.

At this point, the feasibility bound [4,∞) can be used to
prune further search, since no solutions can exist above or
below [4,∞). We search for further feasible elements that are
incomparable to both [2, 3] and [4,∞). The minimal incom-
parable elements are now (−∞, 2] and [3, 4], both of which
are infeasible. It follows that no further feasible incomparable
elements exist, and that [2, 3] is the (unique) solution.

The pseudo-code of the optimization procedure is shown in
Alg. 2 and 3. The main loop in Alg. 2 maintains a set Sol
of solutions, a set SubOpt of blocking elements, and cost B
of the best solution so far. In each iteration, Alg. 2 computes
a feasible element l that is incomparable to all elements in
Sol ∪ SubOpt (i.e., neither above nor below any element in

Sol∪SubOpt , line 2), and then searches for a maximal feasible
element above l using boundedMaximize (line 3).

To update the variable upperBound (line 7 in Alg. 3), the
algorithm exploits the fact that a feasible lattice element l with
an infeasible successor s has been found. Given a pair l vL s
such that l is feasible and s is infeasible, we define what it
means for an element b ∈ L to be a feasibility bound:

feasibilityBound(l, s, b) ≡{
l = s u b, and
l v x implies x v b for every feasible element x ∈ L.

Given a feasible element l with infeasible successor s of l,
the predicate feasibilityBound provides an upper bound b for
every feasible successor of l. This allows the subsequent max-
imization to ignore parts of lattice that are not underneath b.
Derivation of feasibility bounds is discussed in Sect. V-D.

Feasibility bounds often enable our procedure to prune
away large parts of the search space. As the experiments in
Sect. VIII show, the algorithm can in practice handle opti-
mization lattices with more than 1030 elements, only needing
to inspect a tiny fraction of the lattice to find all solutions. The
procedure is furthermore an “anytime procedure,” which can
at any point provide (possibly sub-optimal) solutions, should
time run out. The procedure is also complete:

Theorem 5.1: When applied to a finite optimization lattice,
Alg. 2 terminates and returns the set of all solutions.

D. Feasibility Bounds

The predicate feasibilityBound can often be defined generi-
cally for a lattice 〈L,vL〉, without taking the actual set HC of
clauses into account. For Boolean lattices 〈P(B),⊆〉, correct
feasibilityBound statements can be derived using the rule

x 6∈ A
feasibilityBound(A,A ∪ {x}, B \ {x})

.

For interval lattices 〈Iba,vba〉, the predicate can be defined by:

R1. feasibilityBound([x, x], ∅, [x, x])
R2. feasibilityBound([x, y], [x+ 1, y], [x, x])
R3. feasibilityBound((−∞, y], [a, y], (−∞, a])
R4. feasibilityBound([x, y], [x, y − 1], [y, y])
R5. feasibilityBound([x,∞), [x, b], [b,∞])
R6. feasibilityBound([x,∞), [x+ 1,∞), [x, x])
R7. feasibilityBound((−∞,∞), [a,∞), (−∞, a])
R8. feasibilityBound((−∞, y], (−∞, y − 1], [y, y])
R9. feasibilityBound((−∞,∞), (−∞, b], [b,∞])

For instance, R2 says if [x, y] is feasible and [x + 1, y] is
infeasible, it can be concluded that every feasible interval I
above [x, y] must be below (or equal to) [x, x]. Clearly, if
I wba [x, y] is feasible, it must be the case that I 6wba [x+ 1, y]
(since [x+1, y] is infeasible, and feasibility is anti-monotonic),
which implies that I must include the value x; I vba [x, x].

VI. SOFTWARE-DEFINED NETWORKING

To demonstrate the usefulness of our approach in practice,
we apply it in the context of software-defined networking.
In this paper, we consider a packet to be a bounded natural

number pkt ∈ N (0 ≤ pkt < 2b) where b is the total required
number of bits to represent the header fields. A packet with
a value outside the admitted bound (e.g., pkt = −1) is an
invalid packet, and any switch immediately drops it.

A switch has a forwarding table consisting of a set of rules.
Each rule has a pattern which is a predicate on headers. When
a packet matches a pattern, the switch forwards it to an output
port (with possibly updates to some header fields). If there
are multiple matching rules, the switch is free to pick any of
them, and if there are no matching rules, it drops the packet.

A. Single-packet Transition System

A single-packet transition system is a tuple S =
〈pkt , trc, Q,Qi, Qf , T 〉 in which pkt ∈ N , trc : [Q] (trace
of states); Q is a set of states (Qi ⊆ Q start, Qf ⊆ Q final);
T ∈ (Q × Φ(pkt, pkt′) × Q) is the transition relation from
state q to q′, written as q

φ→ q′. The label φ ∈ Φ is a Presburger
formula over pkt (value of pkt in q) and pkt ′ (value of pkt
in q′). Each state q ∈ Q of a single-packet transition system
normally corresponds to a switch in the network. We show the
source of a transition with src, destination with dst , and label
with `. A transition updates the trc value trc′ = trc / q′.
a) Drop State: We assume that there is a special state
qd ∈ Qf that represents dropping a packet. For any q 6∈ Qf ,
there is a transition to the drop state for the invalid packets:

q
(pkt<0 ∨ pkt≥2b)−−−−−−−−−−−−→ qd. The condition on this transition is

weaker for a switch that drops more packets in the space of
admissible packets.
b) Local Progress: We assume that for any packet pkt , there
is always a transition out of a non-final state:

∀q 6∈Qf .∀pkt∈N.∃t∈T.∃pkt ′∈N.(src(t)=q) ∧ `(t)(pkt , pkt ′)

Intuitively, this means that a non-final state either forwards a
packet to the next or the drop state. The local progress property
along with the drop state helps us specify reachability in terms
of safety constraints. If there are no forwarding loops in a
network, having local progress ensures that a packet is either
received at the drop state or a final host.
c) Path: A path of a single-packet transition system S =

〈pkt , trc, Q,Qi, Qf , T 〉 is a sequence 〈pkt0, trc0, q0〉
φ→

〈pkt1, trc1, q1〉
φ′→ · · · φ

(n−1)

→ 〈pktn, trcn, qn〉 where q0 ∈ Qi
is an initial state, and qn ∈ Qf is a final state.
d) Invariant: A single-packet transition system S =
〈pkt , trc, Q,Qi, Qf , T 〉 satisfies an invariant ψ(trc) (written
as S |= ψ) if and only if every path trc satisfies ψ.
e) Horn-Clause Translation: We associate a relation sym-
bol sq with arity 2 to any q ∈ Q. The following Horn clause
represents the transition relation q

φ→ q′:

sq′(pkt
′, trc′)← sq(pkt , trc)∧φ(pkt , pkt ′)∧(trc′ = trc/q′) .

If in a start state qi, a packet has an initial value pkt i, then
we add the following clause: sqi(pkt , trc)← (pkt = pkt i).

We can describe some invariants of interest in the network
domain using Horn clauses, such as the following.

Non-dropping—no packet is dropped: false← qd(pkt , trc).
Non-Reachability—for a non-dropping network, the traffic
from a given source qa must not reach a certain destination:
false← qf (pkt , trc) ∧ qa 6= trc.head.
Way-pointing—a specific switch qa must be traversed:
false← qf (pkt , trc) ∧ qa 6∈ trc.

B. Bandwidth Constraints

In some repair scenarios, the properties of interest are
related to bandwidth capacities of the links, congestion
avoidance, or buffer overflows in packet queues. To model
traffic sizes, we use a technique based on counter abstraction.
The basic idea is to use tokens to represent the sizes of the
flows that enter the network. Tokens here are merely used to
model bandwidth usage and should not be confused with the
actual packets. The token counters get updated whenever a
flow of packets travels through a link.
A bandwidth transition system is a tuple S =
〈Q,Qi, Qf ,M,M0, T 〉 in which Q is a set of states
(Qi ⊆ Q start, Qf ⊆ Q final); M is the distribution of the
traffic tokens in the network at any time. For a state q ∈ Q and
a traffic type τ ∈ N, the value of M(q, τ) is the number of
tokens of traffic type τ at state q, M0 is the initial distribution
of tokens in the network, T ∈ (Q × Φ(M,M ′) × Q) is the
transition relation from state q to q′, written as q

φ→ q′. The
label φ determines how the distribution of the tokens M(q)
and M(q′) changes during the transition.
a) Invariant: Invariants in bandwidth transition systems are
similar to single-packet transition systems, the difference being
that the property ψ talks about the distributions of tokens in
the network. As an example, if a state q is not safe for traffic
type typ, then an invariant for the network specifies the number
of tokens for typ to be 0 at any time.
b) Horn-Clause Translation: Assume that there are n
types of traffic in a network, namely {typ1, · · · , typn}. For a
bandwidth transition system S = 〈Q,Qi, Qf ,M,M0, T 〉, we
use a single relation symbol s that holds counters to store the
number of tokens for each flow at any Q = {q1, · · · , qm} po-
sition in the network: s(ctyp1

q1 , · · · , ctypn
q1 , · · · , ctyp1

qm , · · · , ctypn
qm).

Similar to the single-packet case, we add clauses to capture
the transitions of T and the updates to M .

VII. NETWORK REPAIR PROBLEM

A network repair problem U = (S, ψ, ρ) has the following
inputs: S is a single-packet or bandwidth transition system, ψ
is an invariant such that S 6|= ψ, and objective ρ is a ranking
on the space of transition systems. A solution to the repair
problem updates the transition relation T in S to obtain S′,
such that S′ |= ψ and if S′′ is another transition system that
satisfies the above conditions then ρ(S′) ≥ ρ(S′′). Objectives
of interest in networking are, e.g., touching a minimal number
of switches, filtering fewer traffic paths in the network, etc.

Let HC be the translation of S to Horn clauses. We
formulate a Horn optimization problem for single-packet and
bandwidth transition systems.

Benchmarks #Nodes#Links #Rels. #Lattice #Eld Time(s)
Gridnet 9 20 – – – –
Cesnet200304 29 33 3 2.22×1010 145 4.98
Arpanet19706 9 10 3 2.22×1010 91 2.98
Oxford 20 26 8 3.89×1027 664 16.70
Garr200902 54 71 6 4.92×1020 3045 107.62
Getnet 7 8 2 7.90×106 61 1.45
Surfnet 50 73 3 2.22×1010 101 3.49
Itnet 11 10 1 2.81×103 17 0.18
Garr199904 23 25 1 2.81×103 19 0.33
Darkstrand 28 31 5 1.75×1017 425 14.81
Carnet 44 43 2 7.90×106 37 0.49
Atmnet 21 22 1 2.81×103 15 0.67
HiberniaCanada 13 14 11 8.63×1037 1795 84.56
Evolink 37 45 1 2.81×103 14 0.20
Dfn 58 87 – – – –
Ernet 30 32 4 6.23×1013 140 4.94
Bren 37 38 6 4.92×1020 974 25.14
Niif 36 41 2 7.90×106 48 0.92
Renater2001 24 27 3 2.22×1010 101 3.56
Latnet 69 74 2 7.90×106 47 0.64

Fig. 4: Repairing 20 benchmarks from Topology Zoo [13] on
a 1.4 GHz AMD OpteronTM Processor with 32 Gigabytes of
memory (time-out is set to 2 minutes in this experiment).

a) Single-packet Transition System: We use Alg. 1 to add
new fresh symbols m(pkt) to the bodies of some clauses in
HC to get HC ′ (or m(pkt , pkt ′) when the source switch
can rewrite packets). Assuming the size of the header in a
packet is b, to each m(pkt) we associate an interval lattice
I2

b−1
0 (e.g., lattice in Fig. 3) that represents the packets that

should be filtered out. The lattice of repair solutions is the
product of all the interval lattices for m relations. For an
objective function ρ that more highly ranks solutions that filter
fewer traffic types, we use an objective function obj in the
Horn optimization problem that assigns the lowest rank to the
solution that assigns (−∞,∞) to every m.
b) Bandwidth Transition System: The formulation of net-
work repair in this case is similar to single-packet transition
systems, with the difference being that the lower-bound of the
intervals for added fresh symbols is 0, and the upper-bound is
the maximum number of tokens for each type.
c) Generality of Repair: We assume that the reason for a
violation of the safety property is that the network configura-
tion is under-constrained. In other words, there are forwarding
behaviors in the network that should be restricted—e.g., by
adding filters on the links. Furthermore, we assume that during
the repair procedure, no new switches or links are added to
the network. These assumptions are not overly restrictive in
practice—if the network operator wants to add new switches
to the network, she can connect the new switch to the rest of
the network without any constraints: the new switch behaves
as a repeater. It is also possible to add links to the network and
send all the traffic through the new links. The repair procedure
may then restrict forwarding of packets through these links.

VIII. IMPLEMENTATION AND EXPERIMENTS

We have implemented the prototype tool Marham (Minimal
repair for Horn clause systems) that operates on top of the

Eldarica [5] verifier. To evaluate Marham, we considered
two main questions. First, we studied the applicability of
our approach to several interesting repair scenarios from the
network domain. Second, we benchmarked the performance
of our tool against a dataset of real topologies. For the first
question, we considered the network properties introduced in
Section II using the data center topology shown in Fig. 1(a)
with a non-dropping criterion. We used [0, 7] as intervals, with
0 representing SSH traffic. Our tool found the correct repair
by suggesting that a filter be added on A4. We also repaired a
way-pointing scenario by removing the path through the way-
point and then repairing. For the Fig. 1(b) example, Marham
produces a repair by sending the green traffic to s4.

For the second question, for topologies from the Internet
Topology Zoo set [13], we generated Horn clauses to connect
a set of random vertices (Topology Zoo contains data network
topologies from around the world). We non-deterministically
selected a node and made it unsafe for a certain flow by adding
a clause specifying that this type of traffic should not reach
that particular point. We considered the objective function that
minimizes the number of filtered paths relative to the original
configuration. Table in Fig. 4 shows the results of executing
Marham for repairing 20 representative topologies from the
Topology Zoo. The table reports the number of nodes, links,
and synthesized relation symbols, as well as the size of the
lattice, number of calls to Eldarica, and total time.

IX. RELATED WORK

Although optimizing SMT solvers have been proposed in
previous work [14], to the best of our knowledge, our frame-
work is the first to provide such optimization functionality in
a Horn clause solver. Our approach also differs from MaxSAT
solvers, which search for solutions satisfying maximum sets
of clauses, in the generic way that optimization lattices and
objectives are formulated.

A number of approaches to repair are based on finding
similar expressions—e.g., by using a game-based approach
in which winning strategies correspond to choosing a correct
expression [15], adding nondeterministic expressions at prob-
lematic locations and using a SAT solver to find a deterministic
program that satisfies the specification [16], using a cost
function to select a correct expression [17], or using deductive
approaches based on guided synthesis [1].

Other repair approaches target specific languages (e.g.,
Boolean programs, which are essentially a restricted form of
C programs [18]) or specific types of fixes (e.g., atomicity
violations [19]). Our repair framework is different in that (i)
it is not language-specific so it can be used in a variety of
settings, (ii) it places no restrictions on the type of repairs that
can be made, and (iii) it allows the programmer to repair with
respect to a safety property as well as an objective function.

In regards to the problem of synthesizing repairs for network
configurations, the closest to our work is [20]. Our work is
more general in several aspects. Their specification language is
based on regular expressions, and updates are specified as end-
to-end paths from the old to new configuration using regular

expressions. Our Horn clause specification language gives us
the power to consider more general properties such as loop
freedom, bandwidth constraints, etc.

X. CONCLUSION

This paper introduces a framework for repairing a set of
Horn clauses, and presents an optimization technique to search
the space of repairs efficiently. We have implemented our
repair engine in the Marham tool—to investigate its applica-
bility to real world problems, we perform experiments using
the Internet Topology Zoo dataset. The generality of Horn
clauses in describing problems from various domains makes
our proposed approach suitable for repairing various systems.

ACKNOWLEDGMENTS

We thank the FMCAD reviewers for helpful and construc-
tive comments. Our work is supported by the National Science
Foundation under grants CNS-1111698, CNS-1413972, CCF-
1421752, CCF-1422046, CCF-1253165, and CCF-1535952;
the Office of Naval Research under grant N00014-15-1-2177;
and gifts from Cisco, Facebook, Fujitsu, Google, and Intel.

REFERENCES

[1] E. Kneuss, M. Koukoutos, and V. Kuncak, “Deductive program repair,”
in CAV, pp. 217–233, 2015.

[2] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in POPL, pp. 298–312, ACM, 2016.

[3] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, “Horn
clause solvers for program verification,” in Fields of Logic and Compu-
tation II, pp. 24–51, Springer, 2015.

[4] N. Bjørner, K. McMillan, and A. Rybalchenko, “On solving universally
quantified horn clauses,” in SAS, pp. 105–125, Springer, 2013.

[5] H. Hojjat, F. Konečný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer,
“A verification toolkit for numerical transition systems (tool paper),” in
FM, 2012.

[6] J. McClurg, H. Hojjat, P. Cerný, and N. Foster, “Efficient synthesis of
network updates,” in PLDI, pp. 196–207, 2015.

[7] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI, 2012.

[8] P. Rümmer, H. Hojjat, and V. Kuncak, “Disjunctive interpolants for
Horn-clause verification,” in CAV, pp. 347–363, 2013.

[9] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, 2012.

[10] B. Jaumard and B. Simeone, “On the complexity of the maximum sat-
isfiability problem for Horn formulas,” Information Processing Letters,
vol. 26, no. 1, pp. 1 – 4, 1987.

[11] H. Hoos and T. Stützle, Stochastic Local Search: Foundations &
Applications. Morgan Kaufmann Publishers Inc., 2004.

[12] J. Leroux, P. Rümmer, and P. Subotic, “Guiding Craig interpolation with
domain-specific abstractions,” Acta Informatica, 2015.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” Selected Areas in Communications, IEEE
Journal on, vol. 29, no. 9, pp. 1765–1775, 2011.

[14] N. Bjørner, A. Phan, and L. Fleckenstein, “νz - an optimizing SMT
solver,” in TACAS, pp. 194–199, 2015.

[15] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a
game,” in CAV, pp. 226–238, Springer, 2005.

[16] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based
program repair using SAT,” in TACAS, pp. 173–188, Springer, 2011.

[17] R. Samanta, O. Olivo, and E. A. Emerson, “Cost-aware automatic
program repair,” in SAS, pp. 268–284, Springer, 2014.

[18] A. Griesmayer, R. Bloem, and B. Cook, “Repair of boolean programs
with an application to C,” in CAV, pp. 358–371, Springer, 2006.

[19] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atomicity-
violation fixing,” PLDI, vol. 46, no. 6, pp. 389–400, 2011.

[20] S. Saha, S. Prabhu, and P. Madhusudan, “Netgen: Synthesizing data-
plane configurations for network policies,” in SOSR ’15, 2015.

