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Abstract 1. Introduction

Software-defined networks (SDNs) are a new kind of network A network is a collection of connected devices that route traf-
architecture in which a controller machine manages a distributed fic from one place to another. Networks are pervasive: they con-
collection of switches by instructing them to install or uninstall nect students and faculty on university campuses, they send pack-
packet-forwarding rules and report traffic statistics. The recently ets between a variety of mobile devices in modern households,
formed Open Networking Consortium, whose members include they route search requests and shopping orders through data cen-
Google, Facebook, Microsoft, Verizon, and others, hopes to useters, they tunnel between corporate networks in San Francisco
this architecture to transform the way that enterprise and data centerand Helsinki, and they connect the steering wheel to the drive
networks are implemented. train in your car. Naturally, these networks have different pur-
In this paper, we define a high-level, declarative language, called poses, properties, and requirements. To service these requirements
NetCore for expressing packet-forwarding policies on SDNs. Net- companies like Cisco, Juniper, and others manufacture a variety
Core is expressive, compositional, and has a formal semantics.of devices including routers (which forward packets based on IP
To ensure that a majority of packets are processed efficiently on addresses), switches (which forward packets based on MAC ad-
switches—instead of on the controller—we present new compila- dresses), NAT boxes (which translate addresses within a network),
tion algorithms for NetCore and couple them with a new run-time firewalls (which squelch forbidden or unwanted traffic), and load
system that issues rule installation commands and traffic-statisticsbalancers (which distribute work among servers), to name a few.
queries to switches. Together, the compiler and run-time system  While each of these devices behaves differently, internally they
generate efficient rules whenever possible and outperform the sim-are all built on top of adata planethat buffers, forwards, drops,
ple, manual techniques commonly used to program SDNSs today. Intags, rate limits, and collects statistics about packets at high speed.
addition, the algorithms we develop are generic, assuming only that More complicated devices like routers also haveoatrol plane
the packet-matching capabilities available on switches satisfy somethat run algorithms for tracking the topology of the network and
basic algebraic laws. computing routes through it. Using statistics gathered from the
Overall, this paper delivers a new design for a high-level net- data plane and the results computed using the device’s specialized
work programming language; an improved set of compiler algo- algorithms, the control plane installs or uninstalls forwarding rules
rithms; a new run-time system for SDN architectures; the first for- in the data plane. The data plane is built out of fast, special-purpose
mal semantics and proofs of correctness in this domain; and anhardware, capable of forwarding packets at the rate at which they
implementation and evaluation that demonstrates the performancearrive, while the control plane is typically implemented in software.

benefits over traditional manual techniques.
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Remarkably, however, traditional networks appear to be on
the verge of a major upheaval. On March 11th, 2011, Deutsche
Telekom, Facebook, Google, Microsoft, Verizon, and Yahoo!, own-
ers of some of the largest networks in the world, announced the for-
mation of the Open Networking Foundation [19]. The foundation’s
proposal is extraordinarily simpleliminate the control plane from
network deviceslnstead of baking specific control software into
each device, the foundation proposes a standard protocol that a
separate, general-purpose machine call@draroller can use to
program and query the data planes of many cooperating devices.
By moving the control plane from special-purpose devices onto
stock machines, companies like Google will be able to buy cheap,
commodity switches, and write controller programs to customize
and optimize their networks however they choose.

Networks built on this new architecture, which arose from ear-
lier work on Ethane [4] and 4D [10], are now commonly referred to
as Software-Defined NetworKSDNs). Already, several commer-
cial switch vendors support OpenFlow [17], a concrete realization
of the switch-controller protocol required for implementing SDNSs,
and researchers have used OpenFlow to develop new network-wide
algorithms for server load-balancing, data center routing, energy-
efficient network management, virtualization, fine-grained access



control, traffic monitoring, fault tolerance, denial of service detec- AuthServer A Controller C

tion, host mobility, and many others [8, 12-14, 18, 26]. % —
Now the obvious question is: Why should programming lan- l |

guage researchers, and the POPL community in particular, care v

about these developments? The answer is clear: Some of our most \ |
important infrastructure—our networks—will soon be runnarg %7
entirely new kind of programUsing our experience, principles,

tools, and algorithms, our community has a unique opportunity to Switch S
define the languages these programs will be written in and the in-
frastructure used to implement them. We can have major impact,
and help make future networks easier to program, more secure,
more reliable, and more efficient.

As a step toward carrying out this agenda, we propose a high-
level language called NetCore, tiNetwork Core Programming
Languagefor expressing packet-forwarding policies. NetCore has
an intuitive syntax based on familiar set-theoretic operations that
allows programmers to construct (and reason about!) rich policies ) -
in a natural way. NetCore’s primitives for classifying packets in- * We develop novel algorithms for compiling network programs
clude exact-match bit patterns and arbitrary wildcard patterns. It~ and managing controller-switch interactions at run time, includ-
also supports using arbitrary functions to analyze packets and his-  ing classifier generatioandreactive specializatio(Section 5).

torical traffic patterns. This feature makes it possible to describe We prove key correctness theorems (Section 6), establishing

complicated, dynamic policies such as authentication and load bal-  simulation relations between our low-level, distributed imple-

ancing in a natural way, using ordinary functional programs. mentation strategy and our high-level NetCore semantics. We
Unfortunately, compiling these rich policies is challenging. On also prove an importarjuiescenceheorem showing that our

the one hand, the controller machine has the computational power  implementation successfully relocates computation from the
to evaluate arbitrary policies, but the switches do not: they can controller onto switches.

only implement simple kinds of bit matching rules. On the other
hand, directing a packet to the controller for processing incurs
orders of magnitude more latency than processing it on a switch.
Hence, despite the limited computational power of the switches, it
is critical to find ways for them to perform most packet processing.  NetCore arose out of our previous work on Frenetic [9], an-
The NetCore compiler and run-time system surmounts this chal- gther high-level network programming language. Frenetic has three
lenge by analyzing programs and automatically dividing them into main pieces: (1) an SQL-like query language for reading network
two pieces: one that runs on the switches and another that runs orsiate, (2) a language for specifying packet-forwarding policies and,
the controller. Moreover, this division of labour does not occur once (3) g functional reactive “glue” language that processes the results
at compile time; it occurs dynamically and repeatedly. Intuitively, of queries and generates streams of forwarding policies for the
when a packet cannot be handled by a switch, it is redirected to network. NetCore replaces Frenetic's language for expressing for-
the controller. The controller partially evaluates the packet with re- \yarding policies with a significantly more powerful language that
spect to the current network policy and dynamically generates new sypnorts processing packets usargitrary functions In addition,

switch-level rules that handle said packet as well as others like it. NetCore also contains a minimalist “query language,” as its predi-
The new rules are subsequently sentto the switches so similar pack¢ates can analyze traffic history.

ets arriving in the future are handled in the network fast path. Over  The main contribution of this paper relative to earlier work
time, more and more rules are added to the switches and less angy Frenetic is the design of new algorithms for compiling these
less traffic is diverted to the controller. We call this iterative strategy rich policies and for managing the controller-switch interactions
reactive specialization . that arise as compiled policies are executed in a network. These
Our strategy is inspired by the idiom commonly used for SDN - 5jgorithms handle NetCore’s new policy language, and the core
applications today [12, 13, 27], in which an event-driven program  ejements of Frenetic's old policy language even better. In particular,
manually installs a rule to handle future traffic every time a packet he NetCore compiler generates efficient switch classifiers by (1)
is diverted to the controller. However, many programs written man- singwildcard rulesthat process more packets on switches instead
ually in this style use inefficient exact-match rules rather than wild- ot simple exact-match rulesand (2) generating rulgsroactively
card rules, because reasoning about the semantics of overlappingj e in advance of when they are needed), again to process more
wildcards quickly becomes very complicated—too complicated 10 packets on switches, instead of striatiactively(i.e., on demand).
do by hand. Hence, our strategy improves on past work by (1) pro- Finally, NetCore has a formal semantics and correctness proofs for
viding high-level abstractions that obviate the need for program- s core algorithms, whereas Frenetic had none.
mers to deal with the low-level details of individual switches, (2)
synthesizing efficient forwarding rules that exploit the capabili- .
ties of modern switches including wildcard rules implemented by 2. NetCore Overview
ternary content-addressable memories (TCAMSs), (3) automating This section presents additional background on SDNs and NetCore,
the process of dynamically unfolding packet-processing rules on using examples to illustrate the main ideas. For concreteness, we
to switches instead of requiring that programmers craft tricky, low- focus on the OpenFlow SDN architecture [20], but we elide and
level, event-based programs manually. take liberty with certain inessential details. Our compiler does not
To summarize: the central contribution of this paper is a frame- assume the specifics of the current OpenFlow platform.
work for implementing a canonical, high-level network program-
ming language correctly and efficiently. More specifically:

=

Figure 1. Example topology.

* We define the syntax and semantics for NetCore (Section 3) and
model the interaction between the NetCore run-time system and
the network in a process calculus style (Section 4). This is the
first formal analysis of how a controller platform interacts with
switches.

We describe a prototype implementation and an evaluation on
some simple benchmarks demonstrating the practical utility of
our framework (Section 7).

OpenFlow overview. OpenFlow is based on a two-tiered archi-
tecture in which a controller manages a collection of subordinate
switches. Figure 1 depicts a simple topology with a contraller



managing a single switch. Packets may either be processed on
switches or on the controller, but processing a packet on the con-
troller increases its latency by several orders of magnitude. Hence,
to ensure good performance, the controller typically instatisa-
sifier consisting of a set of packet-forwardingleson each switch.

SrcAddr:10.2.0.0/16 \ (SrcAddr:10.2.0.1 U DstPort:22)
— {Switch 2}

We can generate a classifier for this policy in the same way:

. ; o SrcAddr:10.2.0.1 : {r
Each forwarding rule hasgatternthat identifies a set of pack- DstPort:22 . {3
ets, anaction that specifies how packets matching the pattern  srcAddr:10.2.0.0/16 : {Switch 2}

should be processedpuntersthat keep track of the number and

size of all packets processed using the rule, and an inpegeity. Now suppose that we want to generate a classifier that implements
When a packet arrives at a switch, it is processed in three steps:the union of the two policies. We cannot combine the classifiers in
First, the switch selects a rule whose pattern matches the packet@ simple way €.g, by concatenating or interleaving them) because
If it has no matching rules, then it drops the packet, and if it has the rules interact with each other. For example, if we were to simply
multiple matching rules, then it picks the one with the highest pri- concatenate the two lists of rules, the rule that drops packets to

ority. Second, the switch updates the counters associated with thePort 80 would incorrectly shadow the forwarding rule for traffic

rule. Finally, the switch applies the action listed in the rule to the
packet. In this paper, we are concerned with two kinds of actions:
(1) a forwarding action{l1, ..., }, which forwards the packet

to a set of (usually one, sometimes zero, rarely more than one)
adjacent network locations, where eachi; may be the name of
another switch, network, or hostand (2) a controller actiofi,
which forwards the packet to the controller for processing.

NetCore: A simple static forwarding policy. NetCore is a declar-
ative language for specifying high-level packet-forwarding poli-

cies. The NetCore compiler and run-time system handle the details

of translating these policies to switch-level rules and issuing com-
mands to install the generated rules on switches.

The simplest NetCore policies are specified usipgeslicatee
that matches some set of packets and ssaftlocations to which
those packets should be forwarded. We write these policiesS.

The simplest predicates match bits in a particular packet header

field. For example, the predicasecAddr:10.0.0.0/8 specifies
that the first octet of the packet’s source address musoh@is-

ing the standard notation for expressing IP prefix patterns). More
complex predicates are built by taking the uniar), (intersection
(n), negation ¢), or difference () of simpler predicates. Analo-

gous set-theoretic operations may be used to compose more com

plex policies from simpler policies. As an example, consider the
following policy.

SrcAddr:10.0.0.0/8 \ (SrcAddr:10.0.0.1 U DstPort:80)
— {Switch 1}

It states that packets from sources in sulire®© . 0.0/8 should be
forwarded to switcht, except for packets coming frot0.0.0.1
or going to a destination on pab.

The first challenge in compiling a high-level language such
as NetCore to a low-level SDN framework such as OpenFlow

arises from the relative lack of expressiveness in the switch packet-

matching primitives. For instance, because switches cannot expres

the difference of two patterns in a single rule, this policy needs to d

be implemented using three rules installed in a particular prioritized
order: one that drops packets fram. 0.0. 1, another that drops all
packets going to po#o, and a final rule that forwards all remaining
packets from10.0.0.0/8 to Switch 1. The following switch-
level classifier implements this policy. We write these classifiers
with the highest priority rule first. Switch-level patterns are on the
left, actions are on the right, and a colon separates the two.

SrcAddr:10.0.0.1 : {3
DstPort:80 : {r
SrcAddr:10.0.0.0/8 : {Switch 1}

Next consider a similar high-level policy to the first:

10n real OpenFlow switches, locations are actually integerseesponding
to physical ports on the switch; in this paper we model them syicdly.

from 10.2.0.0/16. Instead, we need to perform a much more
complicated translation that produces the following classifier:

SrcAddr:10.2.0.1, DstPort:80 : {1},
SrcAddr:10.2.0.0/16, DstPort:80 : {Switch 2}
SrcAddr:10.2.0.1 : {Switch 1}
SrcAddr:10.2.0.0/16, DstPort:22 : {Switch 1}
SrcAddr:10.2.0.0/16 : {Switch 1,Switch 2}
SrcAddr:10.0.0.1 : {r
SrcAddr:10.0.0.0/8, DstPort:80 : {}
SrcAddr:10.0.0.0/8 : {Switch 1}

Dealing with these complexities often leads SDN programmers to
use exact-matchrules—i.e., rules that fully specify every bit in
every single header field. Exact-match rules, for instance, do not
use wildcard patterns that match many values for a single header
field, such a20.0.0.0/8, nor do they leave certain header fields
completely unconstrained. Our first implementation of Frenetic [9]
used exact-match rules exclusively because such rules were far
easier for its run-time system to reason about, particularly when
it came to composing multiple user policies.

This paper presents new, general-purpose algorithms for syn-
thesizing low-level switch classifiers that use wildcard rules to the
extent possible. These new algorithms result in far more efficient
system than the one we built in earlier work: in Frenetic’s origi-
nal exact-match architecture, many more packets wound up being
sent to the controller (suffering orders of magnitude increase in la-
tency) and many more rules had to be sent to switches. The results
of our experiments, presented in Section 7, highlight the magnitude
of these differences.

NetCore: Richer predicates and dynamic policiesThe policies
presented in the previous section were relatively simple—they did
nothing besides match bits in header fields and forward packets ac-
cordingly. Such static policies can be expressed in Frenetic’s sim-
le policy language, though they are not be implemented nearly as
fficiently as in the NetCore system. However, many applications
emand dynamic policies whose forwarding behavior depends on
complex functions of traffic history and other information. And
these richer policies cannot be implemented by simply analyzing
bits in header fields.

As an example, suppose we want to build a security application
that implements in-network authentication for the topology shown
in Figure 1. The networkV; contains a collection of internal hosts,
N, represents the upstream connection to the Intethds the
server that handles authentication for host#&vin and all three el-
ements are connected to each other by the switcinformally,
we want the network to perform routing and access control accord-
ing to the following policy: Forward packets from unauthenticated
hosts inV; to A, from authenticated hosts iN; to their intended
destination inN», and fromA and N» back toN; (although not
from N, to A). This policy can be described succinctly in NetCore
as follows.



(InPort:Network
U (InPort:Network
U (InPort:Server

1 N inspect ps auth — {Network 2})
1 N —(inspect ps auth) — {Server A})
A U InPort:Network 2 — {Network 1})

where
ps = InPort:Server A
auth (3,s,p) = any (isAddr p) ¥

isAddr p (_,p’) = p.SrcAddr == p’.DstAddr

This policy uses arinspector predicatao classify traffic from

N; as authenticated or unauthenticated. An inspector predicate

inspect e f has two arguments: a filter predicat®ver the net-
work traffic history and an (almost) arbitrary boolean-valued func-
tion f. The filter predicate generatesantroller state>:, which is
a collection of traffic statistics, represented abstractly as a multise

of switch-packet pairs (the switch being the place where the packet

was processed). The boolean-valued functforeceives the con-

troller state as one its arguments and may analyze it as part of its

decision-making process.

In the example above, the filter predicate selects all traffic
coming from the authentication server. In this idealized example,
we will treat an entity sending a packetas authenticated if the

authentication server has ever sent it a packet at any point in the

past. The functioruth takes three arguments: the controller state
3, the switchs that should be handling the packet, and the pagket
to which the policy applies. Here, thexth function tests whether
the SrcAddr field of the packep being processed is equal to the
DstAddr of any other packep’ in the filtered traffic history (and
because there is only one switch in this examalgh ignores its

s argument). In other words, it tests whether the authentication
server has sent a packet to that sender in the past. If it has, th
inspector predicate is satisfied; if not, it is not satisfied. atreh
function performs these tests using the auxiliary functiang, a
built-in function that tests whether a boolean function is true of
any element of a multiset, arig¢Addr, a user-defined function that
tests whether one packetstAddr is equal to another packet's
SrcAddr. This inspector is combined with the other set-theoretic
operators to implement the overall packet-forwarding policy.

€

In the first case, the system can install rules on the switch that as-
sociate packets similar to the one just processed with the set of
forwarding actions just computed. Because the set of computed ac-
tions will never change, installing such rules on switches preserves
the semantics of the policy. In the second case, the system can not
install rules on the switch—the next packet might be forwarded
differently, so the system will have to reevaluate it on the con-
troller. In our example, once a host has been authenticated, it stays
authenticated—once thath function evaluates to true it will con-
tinue to do so, and is therefoirevariant Since inferring invariance
automatically from an arbitrary program is a difficult problem, we
currently ask NetCore programmers to supply invariance informa-
tion to the compiler in the form of an auxiliary hand-written func-

ttion. In this simple case, writing the invariance functirth_inv

is trivial— it is true whenevesuth is true:

auth_inv (X,s,p) = auth (X,s,p)

To effectively generate rules, even in the presence of inspector
predicates, the run-time system must be able to determine when
inspector returns the same results on one packet as it does on
another—ke., it must be able to calculate themilar packetsre-
ferred to above. Observe that an inspector always returns the same
results on two different packets if those packets agree on all header
fields that the inspector function examines. Conversely, if the in-
spector does not examine a particular header field, the value of that
field does not affect its result. Hence, when generating a policy
after evaluating it against a single packet, the run-time can substi-
tute wildcards for all header fields that the policy does not inspect.
Though itis likely possible to infer the set of headers any inspector
function examines (at least conservatively), our current implemen-
tation assumes that programmers supply this information explicitly.

Overall, these techniques—(1) run-time evaluation of policies
against particular packets on the controller, (2) invariance, and (3)
specification of header information—collaborate to turn the diffi-
cult problem of evaluating policies containing arbitrary functions
back in to the simpler problem of compiling static forwarding poli-
cies efficiently. We call these techniquesictive specialization

Policies that use inspectors are easy to write because forwardin .
decisions can be exprr::‘ssed using ar)é)itrary functional programsqg’- A Core Calculus for Network Programming
These programs can query past traffic history or look up facts This section defines the syntax and semantics of NetCore, a core
they need such as authentication status in a database. On the othefalculus for high-level network programming. The calculus has two
hand, these programs never have to manage the low-level detailsmajor componentgredicateswhich describe sets of packets, and
of generating or installing switch-level rules—the run-time system policies which specify where to forward those packets. Figure 2
does that tedious, error-prone work for the programmer. Of epurs  presents the syntax of these constructs as well as various network
this expressiveness presents an extreme challenge for the compilevalues such as headers and packets.
and run-time system. While it would be easy to evaluate the results
of such policies by sending all packets to the controller, doing so
would be totally impractical. We must find a way to implement the
policy while processing the majority of traffic on switches.

Notation. Throughout this paper, whenever we define syntax, as
in the grammar for packets, we will use the grammar non-terminal
(p) as a metavariable ranging over the objects being defined, the

Our implementation strategy for such policies proceeds as fol- Capitalized version of the non-terminaf) as a metavariable rang-
lows. First, we compile the parts of the policy that do not involve N9 OVer sets or multisets of such objects, and vector notafipn (
inspectors as effectively as we can: The system generates normafor Séquences of objects. _ _
forwarding rules when it can, and rules that send packets to the con- e describe finite sets using the notati¢m,, ..., zx} and
troller otherwise. Next, whenever a packet that cannot be handled €0Mbine sets using operationsn, -, andx (union, intersection,
by a switch arrives at the controller, the run-time system evaluates COMPlement, and difference respectively). Typically, we give defi-
the packet against the current policy, which includes inspectors, Nitions for intersection and complement and leave unfn(s; =

producing a set of forwarding actions. There are two possibilities: ~(~51 N -52)) and difference §1 ~ S> = 51 n -52) as de-
rived forms. We also overload and use it to negate booleans;

its meaning will be clear from context. We write multisets us-
ing the notation{x1, ..., z,[} and combine multisets using mul-

tiset union My w M,. We write finite maps using the notation

{z1 » y1,...,2n — yn} and lookup elements of a finite map

m using function applicatiom(z;).

1. The policy with respect to this packet (and similar ones) is
invariant. In other words, every subsequent time the system
evaluates the policy against this packet, it will return the same
set of forwarding actions.

. The policy with respect to this packet (and similar ones) is
volatile. In other words, the set of forwarding actions to be
applied to this policy may change in the future.

Network values. For simplicity, we only model a single kind of
network entity to forward to, switches Packetsp are the basic



irr.elevantqor uninteresting. We also say thgt a bitstfimyatches
wildcard w whenever the corresponding bits match. For example,
Switch s 1111 and0011 both match the wildcard?11.
Header h Basic predicates have the forim w. A packetp matchesh : w
. if p(h), (i.e, the h header ofp) matchesw. For example, the
Switch Set § == {s1,..., 80} predicateDstPort: 1010000 matches all packets withstPort
Header SetH := {hi,...,hn} header field equal 80 (as1010000 is 80 in binary). Another basic
Bit b =10 predicate,svlvitch s,dmatches alljl placke]Es (in anylstate) sentto A
. > > More complex predicates are built up from simpler ones using the
Packet p = {h1 = b,... hin > b} intersection and complement operators. Additional building blocks
State ¥ == {(s1,p1),---,(Sn,Pn)]} such asTrue, False, e; U ez, OF e1 \ e can be implemented as
derived forms.
The most interesting component of the language igtsigector
o predicate,inspect e f. The first component of an inspector is a
Snapshotz = (X, s,p) filter predicatee that selects switch-packet pairs matchinfrom

Wildcard w == 1]0]7? the current stat®, creating a refined stat . In other wordse acts
Inspector f ¢ State[ H1] x Switch x Packet[ H2] — Bool as a query over the network traffic history. The second component,
Predicate e = h: | switch s |inspect e f|e1nes | —e /. is an (almost) arbitrary Boolean-valued function o%rand

the switch-packet pairs(andp) in question. The authentication
example defined in the previous section used an inspector. Another
example is {nspect filterWeb cond)where

Policy 7 == e—>S|mnnm|-7

Figure 2. NetCore syntax.

filterWeb = DstPort:1010000
cond (X,s,p) = cardinality ¥ < 10000 ||
p.SrcAddr == 10.0.0.1
‘ [e] = {z1,...,m} ‘ Here, cardinality is a function that counts the number of ele-
ments in a multiset. This inspector extracts all web traffictfort
[h: @] = {(Z,s,p) | p(h) matchesi} is 1010000) from the current state. The inspector is satisfied if the
[switch s'] = {(Z,5,p) | 8" = s} total number web packets sent is less thanoo or the packep
) , comes from a particular sendeércAddr is 10.0.0.1).
finspecte f] = {(Z,s,p) | f(X,5,p)} To make compilation tractable, two additional pieces of infor-
whereX’ = {(s',p") | (s',p') e S and(Z, 5", p') € [¢]} mation are associated with inspector functighsThe first piece
of information comes from the sets of headers mentioned in its in-
[er nea] = [er] N [e2] dexed type,
[~e] = -] State[ H;] x Switch x Packet[ H2] — Bool .
[7] (z) =S Such a type restrictg to only examine header®; of packets in
the state and headef$; in the packet. For instance, the function
S ifxele] cond above may be assigned a type wherginis the empty set
[e = ST (=) ={ therwi (as summing packet counts requires looking at no headers) and
@ otherwise Hy is {SrcAddr} (ascond only examines th&rcAddr field of its
[ n 7] (2) =[] (z) 0[] (z) packet argument). The second piece of information associated with
[=7] (z) = - [7] (z) f comes from itgnvariance oracle A function f is invariant on

(%, s,p), writteninvariant ((3, s, p), f), if for all ¥’, we have

Figure 3. NetCore semantics. F(ZuY s,p)=f(2,s,p).

Intuitively, a function is invariant on a state when its result does not

values processed by programs, which we represent as a finite map:hange, no matter what add_itional infqrmatiop is added to it. Again,
from headersh to bitstringsb. We write p(h) for the bitstring as an example, theond function above is invariant on all snapshots
associated with the headefin p. We assume all fields have fixed, ~nvolving packets fromi0.0.0.1 as well as all snapshots where
finite length and therefore the set of complete packets is finite. The ¢ardinality ¥ > 10000—once the total volume of web traffic
controller state(X) accumulates information about packets that has crossed the threshold, the function always returns true. In our

arrive at each switch. We represent controller state as a multisetMPlémentation, the programmer writes invariance oracles by hand
of switch-packet pairs. as simple Haskell functions.

Together, the header sets in the inspector types, and the invari-
Predicates. Informally, predicates select sets of packets that are ance oracle, allow the compiler to generate effective switch-level
of interest in some forwarding policy. Formally, a predicatde- rules even though the inspector function itself cannot be analyzed.
notes a set cdnapshots: comprising a controller stafg, a switch However, the language of predicates does have one significant lim-
s, and a packep located ats. The state component is essential itation: it depends upopermaneninvariance of predicates. There
for modeling predicates that depend upon historical traffic patterns, are predicates that are invariant for a long time, and hence could
such as the past load on particular links or packets sent and re-have rules installed on switches for that time, but are not perma-
ceived from various locations. Figure 3 defines the semantics of nently invariant. We believe our framework can be extended to han-
predicates. We say that a snapshohatches predicate: when it dle such semi-permanent invariance properties, having the compiler
belongs to the denotation ef We sometimes say that a packet uninstall rules at the end of a time period, or in response to a net-
matcheg, leaving the state and the switch implicit because they are work event, but defer an investigation of this topic to future work.



The state of the synchronous machinés(,¢) includes the NetCore

Synchronous MachineMsyn = (7, %,T) policy 7, the stateZ, and a multisef” of pending transmissions. At

Asynchronous MachineMasyne = (7, %, T1,T2) each step, the machine removes a transmission Foprocesses
it using the policy, updates the machine state, and adds the new
Msynci Mgyne transmissions generated by the policy to the multiset of pending

transmissions. The state of the asynchronous machifigyd{)

B ot includes the program, state>>, and two multisets of transmissions:
[7](%,5,p) =5  forward(S,p) =T Ty, which represents transmissions waiting to be processed by
(.S, Tw{T(s|p)[}) =5 (r,Sw{(s,p)}, TwT) the policy, andl, which represents transmissions that have been
processed by the policy but have not yet been added to the state.
The firstinference rule for the second machine takes a transmission

Masynci’ Mzsyne from T4, processes it using the policy, and places iT# the set
- of transmissions waiting to be incorporated idtpthe second rule
[7] (%, s,p) =S forward(S,p) = T" takes a transmission frofft and adds it ta.
I =TweT T;=Tw{T(s|p)|}
(1,2, Ty w{|T(s|p)},T2) =% (.5, T}, T4) 4. The Run-time System

In this section we discuss how to implement NetCore’s semantics
on a software-defined network by giving an operational semantics
to the NetCore run-time system and the underlying network de-
- - vices. This operational semantics explains the basic interactions
Figure 4. Reference machines. between the controller and the switches.

(T>E7T17T2 W {|T(S|p) ‘}) - (7—7Zlﬂ {|(S,p)‘},T1,T2)

Switch classifiers. Before we can present the run-time system,
o o ) we need a concrete representation of the rules that switches use
Policies. Policies 7 specify how packets should be forwarded to process packets. Alassifier7 is a sequence of rules each
through the network. Basic policies, written~ S, say that pack-  containing a switch-level patternand an actior:. While our high-
ets matching: should be forwarded to the switchesSn As with |evel semantics uses sets, classifiers are represented as seqoiences
predicates, we build complex policies by combining simple poli- - model rule priority: within a classifier, rules on the left have higher
cies using intersection and negation. Figure 3 defines the semanticsyriority than rules on the right.
of policies as a function from snapshato sets of switches' Al- Thepattern(z) component of a rule recognizes a set of packets,
though the policy language is syntactically simple, it is remarkably and hence is similar to (but less general than) a predicate in Net-
expressive. In particular, inspectors are a powerful tool thatean b cgre. We writep © = when packetn matches pattera. We hold
used to express a wide range of behaviors including load balancing, patterns abstract to model the variety of different matching capabil-
fine-grained access control, and many standard routing policies. jties in today’s switches. For example, OpenFlow switches support
prefix pattern matching on source and destination IP addrasses (
Machines. To understand how the network behaves over time, patterns liked110%) but only exact or full unconstrained matching
we define two abstract machines. Both machines forward pack- on most other headers. Some switches support various other ex-
ets according te- but they differ in how often the switches syn-  tended patterns, such as ranges of the fprmns].
chronize traffic statistics with the controller. Tegnchronous ma- An actionq is either a set of switchées, which forwards packets
chine defines an idealized implementation that, at all times, has to each switch in the set, d?, which forwards packets to the
perfect information about the traffic sent over the network. Of controller. Most switches support other actions such as modifying
course, it would be impractical to implement this machine in a header fields, but for simplicity we only model forwarding.
real network because, in general, it would require sending ev-  Given a packep and a classifief, we match the packet against
ery packet to the controller—if any packet were forwarded by a the classifier by finding the first rule whose pattern matches the
switch there would be a delay between when the packet was for- packet. We writef ~* z : « for the matching judgment. More
warded and when the controller state was augmented with infor- formally, we define classifier matching as follows; note that it
mation about that packet. Theesynchronous machingefines a selects the highest priority (leftmost) matching rule:
looser, more practical, implementation. Like the first machine, it
is policy-compliant—it forwards packets according to the policy— pEn v pEE1 PEZ
but it updates its state asynchronously instead of in lockstep with (21 Q1,0 ey Zim1 P QU1 20 Qg ey 20 20~ 25 @
each packet processed. Hence, it makes no guarantees about wha ) ) ) ]
it knows about the network’s traffic. While the synchronous ma- Molecula_r machine. We formalize the oper_atlonal semantics of
chine can be thought of as the best possible policy-compliant ma- the run-time system as molecular machinein the style of the
chine, the asynchronous machine can be thought of as the worstchemical abstract machine [2]. The machine’s components, called
policy-compliant machine. Any reasonable implementation will sit Moleculesare given on the left side of Figure 5. For simplicity, we
between the two. In other words, implementations should be policy @ssume that packets arriving at a switch may be processed in any
compliant, but users should not expect perfect synchrony—ttte cos order and do not model failures that cause packets to be dropped.
of implementing it would be prohibitive. In practice, synchroniza- ~ The moleculeC (7 | 32) represents the controller machine run-
tion with switches typically happens at periodic, timed intervals Ning the NetCore policy in stateX. The moleculeS (s | 7 | Z)
(modulo variances in the latency of communication) but for sim- represents switch with packet classifier and local switch statg.

plicity, we do not model time explicitly. The switch state records the patterns of rules that have been used to
Figure 4 defines both reference machines. They use the functionMatch packets but not yet queried and processed by the controller.
forward(S, p), which generates a multiset of transmissions, Real switches use integer counters as state; for simplicity, we rep-

resent these counters in unary using a multiset of patterns. A trans-
forward(S,p) = {{T(s|p)|seS[}. mission moleculdT (s | p) represents a packgeten route to switch



E-SWITCHPROCESS
F~P2:8  forward(S,p) =T

Pattern z S(s|712),T(s|p) =S (s|7|Zw {2l}), T’
Switch Action o = S| Q E-SWITCHHELP
Rule r == z2:q Tt 2:Q
Classifier 7 = (r1,...,m0) S(s|7|2),T(s|p)—>S(s|7|2Z),H(s|p)

Switch State Z == {z1,...,zn[}
Molecule m == C(7|%) |

E-CONTROLLER
[71(2,s,p) =S forward(S,p) =T’ Specialize((Z, s,p),7) = 7

S(s|7]2)]| .
T(s|p) | C(7%),S(s|7]2),H(s|p) =L C(r | Sw{(s,p)}),S(s| (7,7)]2),T
H (s | p)
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Observation o == -|s,p C(r3),SGl7[Zefzl) > C(r e {(p]).5(s]72)
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Figure 5. The run-time system.

s. Finally, a help moleculél (s | p) represents a request issued by pattern only specifiepart of a packet—perhaps its IP address or
switch s to the controller for assistance in processing papket VLAN tag, but not the packet itself. Hence the transfer operation
The operational semantics of the molecular machine is defined must fabricate those parts of the packets that are not specified in
by the inference rules on the right side of Figure 5. To lighten the the switch pattern, and the system as a whole must be correct no
notation in this figure, we drop the multiset braces when writing matter how the under-specified parts of a packet are fabricated.
a collection of molecules. In other words, we write;, mo, . .. This places an important constraint on the compiler: If the rules
instead of|m1, mo2, . ..[}. Each operational rule may optionally be  and their patterns are not specific enough then although one packet
labelled with arnobservatioro, which records when transmissions  may have matched a rule on a switch, a completely different packet
are processed. We use observations in Section 6 where we establismay be fabricated and passed back to the controller. Consequently,
equivalences between the molecular machine and the referencehe controller state will not model past network traffic sufficiently
machines defined in the last section. accurately and forwarding policies that depend upon past network
The rules E-8/ITCHPROCESsand E-SWITCHHELP model the traffic will not be implemented correctly.
work done by switches to process packets. The former rule is A second subtle issue with the E@CLECT rule is that the pat-
invoked when a packet matches a rule with a non-controller action terns of higher-priority rules partially overlap and take precedence
(a set of switches to forward to). In this case, the switch forwards over patterns from lower-priority rules. Hence, examining the pat-
the packet accordingly and records the rule pattern in its state. Thetern of a low-priority rule in isolation does not provide sufficient
latter rule is invoked when a packet matches a rule with a controller information to synthesize a packet that might have matched that
action. In this case, the switch generates a help molecule. rule. One must take all of the rules of the classifier, and their prior-
The rule E-@®@NTROLLER models the work done by the con- ity order, in to account when synthesizing a packet that may have
troller to process help molecules. The controller interprets the matched a pattern. The EECLECT rule does this through the use
packet using its NetCore policy, generating new transmissidns  of the full classifier matching judgement.
to be sent into the network, and adds the packet to its state. In ad-  Finally, note that the implementation does not actually fabricate
dition, the controller uses the NetCore compiler to generate new all of these packets—in practice, the switch passes integer coun-
rules to process future, similar packets on switches, instead of onters associated with patterns back to the controller. Still, this non-
the controller. The compiler is accessed through the call to the deterministic rule effectively captures a key correctness criterion
Specialize function, which generates the new rules for the switch for the system: The controller program cannot distinguish between
in question. We hold the definition of this function abstract for now; any of the packets that might be synthesized by the &iE&CT
it is defined precisely in the next section. rule and must be correct no matter which one is fabricated. Of
The rule E-®LLECT models the work done by the controller  course, this is also where the compiler’s use of header information
to transfer information about the packets that matched a particular comes in to play: the fabricated packets are only different in fields
switch-level rule from the switch to the controller state. More pre- that inspector functions (and other predicates) do not analyze.
cisely, it chooses a patteenfrom a switch state and then uses the
lookup judgement ~* z : « to synthesize a packetthat might
have matched the corresponding rule in the switch classifier. The 5. The NetCore Algorithms
pair of the packet and the switch are then stored in the controller
state as a past transmission that might have occurred.
The interesting part of this transfer is that the controller stores -« Classifier Generationgiven a NetCore policy, construct a set
full packets whereas switches only store sets of patterns and a  of classifiers, one for each switch in the network.

The NetCore system performs two distinct tasks:



Primitive intermediate formu = (h1: @W1) A...A (hp : @)
Three-valued boolearb ::= True | Maybe | False
Pattern intermediate formr = (u:z:b: H)
Policy intermediate formp == (u:z:51,52: H)

Z(s,h:w)={(h:w):O(h:w): True: ),
(:T:False: @)

) N [T True:g) ifs=s
I(S’SWItChS)_{(*:T:False:g) if s+ s’
T (s,inspecte f) =[] (u:: 2 :Maybe: (H; uH))

wheref : State[ H] x Switch x Packet[ H'] - Bool
and (Z (s,e)), = (ui: 2+ b : Hy)
I(s,eﬂe'):HH(uiAu; :zil‘lz; :bi/\b;- :HiUH;)
i J

where (T (s,e)), = (ui : zi : by + Hy)
and (I(s,e'))], =(uj: 25 : b5 Hj)

I(s,—\e) = H(Ul Lz _‘bi H,L>
where (Z (s,e)), = (us : 2; : b : Hy)

(wi:z:8,8:H;) if by =True

I(s,eeS):H (u; :2; : @,S: H;) if b; = Maybe
i (ui 2z :@,@: Hy) if b; = False
where (T (s,e)), = (ui: 2 : bi + Hy)
I(S,TOT'):HH(ui/\u; :Zil‘lz;- :S{,SQ:HZ-UHJ'-)
i g
where (Z (s,7)), = (u; : z; : S1s, S2i * Hy)
and (I(S,T'))j = (u; z; : Sij,Séj :H]'v)
andS{ :Sh‘ﬂS{j
andS; = SziﬂSéj
Z(s,-7)= H (i = z; : =524, ~S14 + H;)

where (Z (s, 7)), = (us : z; : S14, S2i * Hy)

z; + 815 if S1; = S2; andH; ¢ headers(z;)
C(s,m)=]] and consistent(, 1)
"1z : Q2 otherwise

whereZ (s,7) = p

and(p); = (u; : 2; : S14,S2; : H)

and consistent(g, 1) =

Vp.35.5 ~% (s : 2+ Sa, S20 : Hy) =
P~ ujc 2 2 Sii, Sai + Hy)
andheaders(z) = {h|p1 EzAp2 € z=p1(h) = p2(h)}

Figure 6. NetCore classifier generation.

* Reactive Specializationgiven a packet not handled by the
current classifier installed on a switch, generate additional rules
that allow the switch to handle future packets with similar
header fields without consulting the controller.

This section presents the key algorithms thatimplement these tasks.

5.1 Parameters

The NetCore system is parameterized on several structures: a lattice
of switch patterns, and two oracles that map primitive predicates
onto switch-level and wildcard patterns respectively. Abstracting
some of the low-level details of compilation makes it possible to
execute NetCore policies on many diverse kinds of hardware and
even use switches with different capabilities in the same network.
Formally, we assume that switch patterns form a bounded lattice.
A patternz; sits lower than (or equal to) another pattegn writ-
tenz; © z2, whenz; matches a subset of the packets matched by
z2. TheT element matches every packet and tldement matches
none. Abusing notation slightly, we write c z to indicate that
packetp matches pattern. To ensure that intersections are com-
piled correctly, we require that meets bract in the sense that
pcznzZifandonlyifpc zandpc 2.

The first oracle, called theompilation oracle©, maps primi-
tivesh : w into the pattern lattice. In many cases, the pattern gener-
ated byO (h : w) will match the set of packets described by w
exactly, but sometimes this is not possible. For example, Open-
Flow switches only support prefix wildcards for IP addresses, so
the best approximation of the non-prefix pattéraAddr : 1717 is
SrcAddr : 1777, We give the oracle some flexibility in selecting pat-
terns and only require it to satisfy two conditions: (1) it must return
an overapproximation of the primitive and (2) it must be mono-
tonic, in the sense it translates (semantically) larger primitives to
larger patterns. Formally, the requirements on compilation oracles
are as follows: (1Y%, s,p) € [h: w] impliesp = O (h:w) and
) [h:w] [ :w'] impliesO (h:w)= O (K :w').

The second oracle, called trefinement oraclé/, takes a prim-
itive h : w and a packep as arguments and produces a pattern
h = w'. Unlike the compilation oracle, which overapproximates
predicates, the refinement oracle underapproximates predicates, al-
lowing the compilation infrastructure to generate effective switch-
level rules for a subset of the pattern of interest. While there is gen-
erally one best overapproximation, there often exist many useful
underapproximations; in such cases, we disambiguate by selecting
the best underapproximation that matchped-or example, if we
were to refinéSrcAddr : 1717 (which can’t be compiled exactly on
OpenFlow) with a packet with source address 1111, we would gen-
erate the underapproximati@ncAddr : 1117, yet if we refined the
same predicate with a packet with source address 1010, we would
instead generatércAddr : 1017.

5.2 Classifier Generation

Ideally, given a policy, the NetCore compiler would generate a
classifier with the same semanticges; one that denotes the same
function on packets. But certain NetCore features, such as inspec-
tors and wildcard patterns (when not supported by the underlying
hardware), cannot be implemented on switches. So in general, the
generated classifier will only approximate the policy, and certain
packets will have to be processed on the controller.

The classifier generator works in two phases. In the first phase,
it translates high-level policies to an intermediate form containing
switch-level patterns and actions, as well as precise semantic in-
formation about the policy being compiled. In the second phase, it
builds a classifier by attaching actions to patterns, using the seman-
tic information produced in the first phase to determine whether
it is safe to attach forwarding actions to a pattern, or whether the
special controller actiof must be used instead.



The grammars at the top of Figure 6 define the syntax for the prioritized series of rules. Hence the second quadruple only rejects
intermediate forms used in classifier generation. The intermediate things the first does not match.
form for predicategu : z : b : H) contains four values: an “ideal” The case for switch predicatewitch s’ has two possible out-
patternw; a switch patternz; a three-valued booleat; and a comes: If the switchs whose classifier is being compiled is the
set of headerd?. The ideal pattern: represents the pattern we same as’, then the compiler generates an intermediate form that
would generate if the pattern lattice supported arbitrary wildcards. associates every packet willue. Otherwise, the compiler gener-
Ideal patterns are represented as a conjunction of header and wild-ates an intermediate form that associates every packeFalib.
card pairs. We writex for the unconstrained ideal pattern-e Intuitively, the classifier generated forspect e f must satisfy
an empty conjunction. The switch patterrrepresents the actual  three conditions. First, it should approximate the semantics. of
pattern generated by the compiler, which is an overapproximation Because the behavior gfis unknown at compile time, the approx-
of the ideal pattern in general. The three-valued booleandi- imation cannot be exact. Hence, the intermediate predicates gener-
cates whether packets matching the predicate should definitely beated for the inspector should contéitaybe, indicating that match-
accepted True), rejected False), or whether there is insufficient  ing packets should be sent to the controller for processing. Second,
information and a definitive answer must be made by the controller it should be structured so that it can identify packets matched by
(Maybe). To combine three-valued booleans, we extend the stan- the traffic filter predicate—i.e., the packets that must be present
dard boolean operators as follows: in the controller state to evaluafe Third, it should also be suffi-
ciently fine-grained to provide information about the set of headers
Maybe A False = False Maybe A True = Maybe H me):nione% in the ty;?e of, which represent the headers of pack-
Maybe A Maybe = Maybe —Maybe = Maybe ets in the state thaf examines. Hence, the compiler recursively

The set of headerH keeps track of the header fields (within pack- genterattr(]es a sr(]e(;{uencle O.f |niﬁrn:ﬁd|ate y:)lred(;ck;a\te‘seetrgmjl;[ﬂherllt-
ets in the controller state) that inspector functions may examine. erates througn It, replacing the thrée-valued boogan aybe

This header information is used to ensure the compiler generates®"d @dding? to the set of headed; in each(u; : bi : z; : Hy).
To generate intermediate forms for an intersectienn e2),

sufficiently fine-grained switch rules so that when information is . ; L : .
transferred from the switch to the controller (using the BeCeCT the compiler combines each. pair of |rj;ermed|ate pr_edlcate§ gener-
rule discussed in the previous section), the information is precise ated forel_ andes. Th_e resulting cIaSS|f|e_r captures intersection in
enough to guarantee the correctness of the inspectors. ]Ehe foIIO\c/ivmg tsehnse,. if a;hpacket mgulcrtmesn tg.e tflrsft |nte(rt'ned|?tﬁ
The intermediate form for policig. : z : S1,.52 : H) is similar orm and matcnes; in ,9 sécond intermediate torm, | ma/c es
to the form for predicates, but instead of a three-valued boolean, € form with patterr;nz; in the result, and likewise far; andu;.
Performing this construction naively would result in a combinato-

it records lower and upper bounds:(and S2) on the sets of . e ) h .
switches to which a packet might be forwarded. Intuitively, a proper 1@l blowup. However, itis often possible to exploit algebraic prop-
erties of patterns to reduce the size of the sequence in practice—see

forwarding rule can only be generated when we know exactl .
g y 9 y the examples below and also Section 7.

which switches to forward packets tog, when S; and S, are nally. th f d oredi . h hth
equal). In other cases, the compiler will generate a rule that sends _ nally, the case for negated predicates:iterates through the
sequence generated by the compiler daand negates the three-

ackets to the controller. . . . .
P valued boolean in each intermediate predicate.

Predicate translation. The heart of classifier generation is the  pregicate translation examples. To illustrate some of the details
function Z (s, ), presented in Figure 6, which takes a predicate ot hredicate compilation, consider the translation of the inspector-
e and switchs as arguments and produces a sequence of interme-fee predicatde; N ey) wheree; is (hi : 07) andes is (ho : 11)
diate predicates that approximat®n s. One of the invariants of 4347, and h, are distinct headers. Assume that switch patterns
the algorithm is that it always generatesampletesequence—  gypport wildcards such @ on hy. The left and right sides of the

i.e, intermediate predicates whose patterns collectively match ev-jniersection generate the following intermediate predicates:
ery packet. In addition, the algorithm attempts to produce a se-

guence whose patterns separate packets into two sets—one with Z (s,e1) = ((h1:07) : (h1:07) : True: @), (+ : T : False : @)
packets that match the predicate being compiled and another with Z (s,e2) = ((h2 : 11) : (h2 : 11) : False : @), (x : T : True : @)

g:)osfgrtmé ?l?ngg:ﬁ:nc;\z;vler\;zlsgncsjpﬁls) ?t?et Z:ngi/tsh;ugggﬁgtlgni?'gg Note that the negation i flips the parts of the intermediate forms
' e . : 9 - analy: designated a3rue—i.e, it inverts the parts of the sequence that
the decisions made by inspectors—as far as the analysis is con-

cerned, inspectors are black boxes, and (2) certain primitive predi- match and do not match the predicate.
cates c’anngt be expressed recise‘l using switch F;tterns ?he in- Next, consider compilation of the intersection, and note that we
; EXp p 'y using P : simplify the results slightly using identities suchas T = z and
termediate predicates contain sufficient information for the com- - e
- > . u A * =y andb A True = b.
piler to reason about the precision of the rules it generates. We
write (Z (s,e)), = (ui : 2; : b; : H;) to indicate that compiling: ((ha ¢OZ Aha: 112?: (h1:07Mhy:11): True: @),
returns a sequence of intermediate predicates wHbssement is ((h1:07): (h1:07) : False: @),
(wi : 2 bi : H,), and ((h2:11) : (ha : 11) : False : @),
(* : T : False : @)
1:1 {ui:zi=bi: Hy) This classifier can then be simplified further, as the last three rules
overlap and are associated with the same three-valued boolean:
to denote the sequence of intermediate predicates out of compo-
nents(u; : z; : b; : H;) indexed byi. {(ha:07 Aho:11): (ha: 07 hy : 11) < True: &),
The first equation at the top of Figure 6 states that the compiler {x:7:False: 2)
_translates primitive predicatds : w into two interr_nediate pr_ed- Now suppose instead that the switch only has limited support for
icates:((h:w): O (h:w) : True: &), which contains the switch  wildcards and cannot represént: 0?. In this case, the compilation
pattern produced by the compilation oracle, &rd T : False : &),
which, by using ther pattern, ensures that the sequence is com- 2Note that the compiler does not add the Bétmentioned in the type of
plete. Like classifiers, these sequences should be interpreted as & H;. This set is used during specialization to determine “sirhpackets.




oracle provides an overapproximation of the pattern, saylence,
the intermediate predicate fer above would be as follows:

Z(s,e1)=((h1:0?):T:True:d),(x:T:False: )

For another example, consider compiling a predicate that in-
cludes an inspector such &sspect (hi : 00) f) N (he : 11).In
this case(h1 : 00) compiles similarly to the simple clauses above:

((h1:00) : (h1:00): True: @), (*: T : False : @)

If the set of headerg examines on the state i, the inspector
inspect (h; : 00) f compiles to the following:

((h1:00): (h1:00):Maybe: H),(x:T:Maybe: H)

Note that the definitive booleans above have been replaced with

Maybe, indicating that the controller will need to determine

whether packets match the predicate. However, when we inter-

sect the results of compiling, : 11 with the results of compiling
the inspector, we obtain the following:

((h1:00Ahg:11):(h1:00mM hy:11) : Maybe : H),
((h2:11) : (h2 : 11) : Maybe: H),

((h1:00): (h1:00):False: H),

(x:7:False: H)

Importantly, even though the inspector is uncertdie,, (it has
Maybe in each intermediate predicate), the result is not entirely un-
certain. Becauskn False is False even wherb is Maybe, intersect-

ing inspectors with definitive predicates can resolve uncertainty.

Likewise, asb v True is True, compiling the union of a definitive

Formal properties. For a classifier to be sound, it must satisfy
two properties: it must forward packets according to the policy, and
its rules must encode enough information about the packets that
match them to implement inspectors. The correctness of classifier
generation is captured in the following definition and lemma.

Definition 1 (Classifier Soundness)A classifier7 is sound on
switch s with respect tor if the following two criteria hold:

* Routing soundnessor all snapshot$3, s, p), if 7 ~F S then
[7](%,s,p) = S, and

* Collection soundnessor all packetg; andps, if # ~P1 2 : S
and7 ~P2 2 : S, then for all snapshot&s, s, p'),

[7] (Z e {(s,p)l "0 = [T] (S @ (s, p2) 1}, 5", ) -

Lemma 1 (Classifier Generation Soundnes§)lassifierC (s, 7) is
sound on switchs with respect tor.

Intuitively, routing soundness ensures that the actions computed by
looking up rules in the classifierare consistent withr. Formally,

the condition states that if looking up a packein 7 on switch

s produces a set of switche$, then evaluating- on snapshots
containings andp also producesS. Note that this condition does
not impose any requirements if looking ypin 7 yields €2, as

the packet will be sent to the controller, which will evaluate

on p directly. Collection soundness ensures that the ruleg in
are sufficiently fine grained so that when the controller collects
traffic statistics from switches, the rule patterns contain enough
information to implement the policy’s inspectors. This is seen in
the E-GoLLECT rule in the molecular machine (Figure 5), which

clause with an inspector also eliminates uncertainty. And although fabricates packets that match the rule being collected. Collection
the calculus does not represent unions explicitly, its encoding oper- soundness ensures that fabricated packets are correct. Formally, it

ates as expected—a fact we exploit in reactive specialization.

Policy translation. The functionZ (s, 7), which translates a pol-
icy into intermediate form, is similar to the translation for pred-
icates. Figure 6 gives the formal definition of the translation. To
translate a basic policy — S, the compiler first generates a se-

requires that behave the same on all snapshots in which the state
3 has been extended with arbitrary packetsaandp. matching a
given rulez : S. Lemma 1 states that the classifiers generated by
the NetCore compiler are sound.

5.3 Reactive Specialization

quence frome, and then attaches a pair of actions representing The algorithm described in the preceding section generates classi-
lower and upper bounds for each rule. There are three cases: Iffiers that can be installed on switches. But as we saw, it has some

the three-valued booledn is true, it usesS as both the upper and
lower bounds. Ib; is false, it usess as the bounds. K; is Maybe,
it usesy as the lower bound an$l as the upper bound, which rep-

resents the range of possible actions. The translations of intersecte

and negated policies are analogous to the cases for predicates.

Classifier construction. The second phase of classifier genera-

tion analyzes the intermediate form of the policy and produces a

bona fide switch classifier. Th&(s, ) function that implements
this phase is defined in Figure 6. It first usE¢s, ) to gener-

ate a sequence of intermediate policies, and then analyzes eacf&

(u; : S14,52 : z; - H;) to generate a rule. There are two possible

substantial limitations. Dynamic policies that use inspectors cannot
be analyzed. And even for purely static policies, if the switch has

cgoor support for wildcards, the classifier needed to implement the

olicy may be large—much larger than would be practical to gener-
ate. To deal with these situations, we defi@active specialization
a powerful generalization of the simple, reactive, strategy imple-
mented manually by OpenFlow programmers. We define reactive
specialization using two operationspgram refinementvhich ex-
pands the policy relative to a new snapshot witnessed at the con-
troller, andpruning, which extracts new, effective rules from the
lassifier generated from the expanded policy.

outcomes for each intermediate policy in the sequence. First, if (1) Program refinement. When the controller receives a new packet

the boundsS:; andSy; are tight, (2)z; is sufficiently fine grained to
collect information about all headers#;, and (3) we get the same
switch bounds(S1;,52:) regardless of whether we match pack-
ets using the ideal primitives or the switch-level patterns, then it
is safe for the compiler to throw away the high-level semantic in-
formation (bounds and ideal primitives) and emit an effective rule
z; : S1;. Otherwise, it generates a rule with the controller action

that a switch could not handle, it interprets the policy with respect
to the packet, switch, and its current state. The idea in program
refinement is to augment the program with additional information
gleaned from this packet that can be used to build a specialized
classifier that handles similar packets on the switch in the future.
Figure 7 defines the refinement function. The key invariant of this
program transformation is that the semantics of the old and new

2. The formal conditions needed for this analysis are captured by policies are identical. However, syntactically, the new program will

consistent(g,7) andheaders(z). The predicateonsistent(3,1%) is
satisfied if looking up an arbitrary packet matching tfleswitch

typically have a different structure, as the transformation uses the
packet to unfold primitives and inspectors. This makes compilation

pattern yields the same switch bounds as looking it up using the more precise and the recompiled program more effective.

ideal pattern (where we extend classifier lookup to sequences of in-

termediate policies in the obvious way). The functteraders(z)
calculates the set of headers constrained fully by

The rules for refining a predicate appear at the top of Figure 7.
The first rule uses the refinement oratieto refine basic predi-
cates. Unlike the compilation oracle, which mayerapproximate



R((2,8,p),h:w)=(h:@)ulU(h:D,p)
R (z,switch s) = switch s
R ((2,s,p),inspecte f) =
(inspect e’ f)ue” if invariant (z, f) A f(z)
(inspect e’ f)~¢e” if invariant (z, f) A = f(z)
inspect ¢’ f if —invariant (z, f)
wheref : State[H] x Switch x Packet[H'] — Bool
andx = (3, s,p)
ande’ = R (z,¢e) u (R (x,e) nsimilar(s,p,H))
ande” = similar(s,p, H")
R(z,e1nez) =R (z,e1) NR(z,e2)

R (x,-e)=-R(x,e)

R (z,e > S)=R(z,e) > S
R(z,m1n72)=R(z,71)R(z,72)
R(ZE,—\T) :—\R(ﬁ,’]’)

‘ Specialize(x, 7) = 77‘

Specialize((X, s,p), T) = prune(7, p)
wherer = C (s, R ((Z,s,p),7))

Figure 7. NetCore refinement.

the predicate, the refinement oraclederapproximatest, so that

variant and evaluates to true on the current snapShpt, p), then
we refine it by taking the union of the inspector and the similarity
predicatesimilar(s, p, H'). The second case is similar, except that
the inspector doesot evaluate to true, and hence we refine the in-
spector by subtracting the similarity predicate. Finally, in the third
case, the inspector is not invariant so no sound refinement exists—
the decision returned by the inspector may change in the future if
the controller state changes. Hence, packets must continue being
diverted to the controller until the inspector becomes invariant.

The rules for refining intersectiofe; N e2) and negation-e
predicates and policies are all straightforward.

Pruning. In general, after a policy has been refined and recom-
piled, some of the new rules will be useless—they will not pro-
cess additional packets on the switch. We prune away these useless
rules using a functioprune(7, p) that removes rules from that

(1) send packets to the controller (adding such rules does not im-
prove the efficiency of the switch), (2) have nothing to do with the
packetp (meaning they are irrelevant to specialization with respect
to p), or (3) overlap with a rule we removed earlier (to preserve the
semantics of the rules).

Putting it all together. We define reactive specialization (the
function Specialize at the bottom of Figure 7), by composing
refinement, recompilation, and pruning to generate a specialized
classifier from a snapshetand policyr.

Formal properties. We first establish that specialization, and
therefore reactive rule generation, is sound.

Lemma 2 (Specialization Soundness)f 7 is sound on switchs

with respect tor and7’ = Specialize((Z, s,p), 7), then(#',7) is
sound ons with respect tar.

To establish the other properties, we need a way of characterizing
the packets that go to the controller. We definedbetroller setof
a classifier* as follows:

QF)={p|F~"Q}.

the rest of the compilation infrastructure will be able to generate The second property we establish is that refinementdaotonic

an effective switch-level rule that matches the given packet. Be-
cause the new predicate is the union of the old predicate and an

That is, if we append reactive rules to a switch’s classifier, the
resulting classifier does not send more packets to the controller that

underapproxi_mati_on, the c_)verall semantics is unchanged. In somey, o original one. Formally,

cases, especially if the switch-supported patterns are weak, the best

underapproximation the refinement oracle can generate is an exactLemma 3 (Specialization Monotonicity) For all policies7 and
match predicate. In many other cases, however, if the switch sup-classifiers® and7’ such that’ = Specialize((%, s, p), 7) we have
ports prefix matching or wildcards, the refinement oracle will pro- Q((#,7)) < Q(7).

duce a predicate that matches many more packets.

The second rule refines switch predicate#tch s. Because the
switch predicate already reveals the maximum amount of informa-

tion, it cannot be refined further.

The rule for inspectors is the most interesting. It uses a simi-

The final property we establish is that under certain assump-
tions, appending reactive rules to a classifier results in strictly fewer
packets going to the controller. To make such a guarantee, we need
two conditions: First, the policy must berealizable—intuitively,

larity predicate that describes the set of packets sent to the samdt Must only use features that can be implemented on switehgs (

switch that agree on a set of headdrs

similar(s, p,H) = switch sn () (h: p(h)).
heH

We first refine the traffic filter predicateto add additional struc-

on an OpenFlow switch, the policy must not match on payloads).

Definition 2 (Realizable) A policy T is realizableif, for every sub-
termh : @ of 7 andp € [h: w], we have(X, s,p) € [U (h: w,p)]
ifand only ifpc O (U (h : w,p)).

ture for traffic collection. To ensure that the refined classifier has Realizability states that compiling an underapproximation of a

sufficiently fine-grained rules to collect the packets in the controller
state examined by, we form the union of the refined traffic filter
and the similarity predicateimilar(s,p,H), restricted to the re-

high-level predicate with respect to a packet matching the predicate
yields a switch-level rule that exactly corresponds to the predicate.
Second, all inspectors in the policy must be determinate. We for-

fined traffic filter. Next, we add additional information about the malize this by extending the notion of invariancdud invariance

inspector’s decision on the packeto the policy. Recall that if is
invariant with respect to a snapshogwhich includes the controller

Definition 3 (Fully Invariant) A policy 7 is fully invariant on X

state, switch, and packet) then it will return the same decision on all if for every subterm ofr of the forminspect e f and we have
similar packets in the future. In the first case, if the inspector is in- invariant ((3, s, p), f) for all switchess and packetg.



For policies satisfying these conditions, we can guarantee that the  Before we can state the quiescence theorem precisely, we need
packet used to refine and recompile the policy will never be sentto a few definitions and supporting lemmas. First, we say Mat

the controller again. is derived from policyr if (Init(S,7) w T) =* M, where—>*

is the reflexive, transitive closure of the single step judgement,
ignoring observations. Second, we lift the notion of full invariance
to machinesM; M is fully invariant if the controller’s policy is

fully invariant with respect to the controller's state. We also lift

] ) the notion ofcontroller seton classifiers to machinés:
6. System-wide Correctness Properties

QM) ={(s,p) |S(s|7|Z) e Mandp e Q(7)} .
This section uses the tools developed in the previous section to de- i .
liver our two central theoretical results: (1) a prooffafictional The first lemmacontroller set monotoniciystates that the set of

correctnessfor NetCore, and (2) a proof ajuiescenceanother packets that require processing on the controller never increases:
fundamental theorem which establishes that, when inspectors are emma 5 (Controller Set Monotonicity) If M is derived fromr
invariant, the network eventually reaches a state in which all pro- gngm 2, M7, thenQ(M’) € Q(M).

cessing occurs efficiently on its switches.

Lemma 4 (Specialization Progress)f 7 is realizable and fully
invariant on3, and# = Specialize((X, s,p),7), then for any

RV

classifierr, we havep ¢ Q((7',7)).

Functional correctness. Recall in Section 3 we defined two ide- Proof. Follows from specialization monotonicity. -

alized reference machines: the synchronous reference machine, Now we are ready to prove the key lemma needed for quies-
which at all times knows (and has recorded) information about cence. Thecontroller set progreséemma states that if the con-

every packet processed in the network, and the asynchronous refyjier program is realizable and has become fully invariant, then
erence machine, which nondeterministically learns about packetseyery time the controller processes a help molecule, the controller
processed in the network. To demonstrate the correctness of theget pecomes strictly smaller. In other words, every help molecule

NetCore compiler, we show that it inhabits the space between ¢ontains enough information (and the compiler is powerful enough
the asynchronous and synchronous reference machln.es. More fo i exploit it) for the E-@NTROLLER rule to generate useful new
mally, we prove that the asynchronous reference machine simulates;|assifier rules.

the NetCore molecular machine and the molecular machine simu-

lates the synchronous reference machine. Lemma 6 (Controller Set Progress)-or every realizable policy
Given a set of switche$ and a policyr, we initialize the and fully invariantM derived fromr, if M -2 M’ is an instance of
molecular machine as follows: E-CoNTROLLERthenQ(M') c Q(M).
Init(S,7) ={C(r|2)f w{S(s|C(s,7)[2)]s¢eS5]. Proof. Follows from specialization progress. O

The next theorem establishes the relationship between the reference

and molecular machines Quiescence follows from these lemmas, as the total number

of possible packets is finite. The precise statement of quiescence

Theorem 1(Functional CorrectnessGiven a set of switcheS, an says that the run-time systemay (as opposed toloe9 quiesce,
initial set of transmission¥ such thafT (s | p) € T impliess € S, because the machine may non-deterministically choose to continue
and a molecular machin® = Init(.S, 7) w T, we have: forwarding packets using the switches instead of processing the

remaining help molecules. Formally, a machine configuralibn
may quiescéf there exists a configuratiol’ such thatM —* M’
and the rule E-ONTROLLER is not used in any derivation in

) ) . ) _ the operational semantics starting frém. With this definition in
Proof sketchWe describe the first simulation only; the second is  hand, we can state quiescence.

similar. The simulation relation between the asynchronous machine ] ) )

and the molecular machine satisfies the following: (1) each switch's Theorem 2(Quiescence) For every realizable policy and fully
classifier on the molecular machine is sound with respeet (@) invariantM derived fromr, we have thaM may quiesce.

there exists an observation-preserving bijection between pending

transmissions in the asynchronous machine and transmissions and . Implementation and Evaluation

help molecules in the molecular machine, and (3) there exists an . _—
observation—preserving bijection between the processed transmis-we have implemented a prototype NetCore compiler in Haskell us

sions in the asynchronous machine and the switch states in the'"d the ideas presented in this paper. The core algorithms are for-

molecular machine. The initial state satisfies these criteria by clas- m;tiitrii)lr;:\?jrrgrsaglfezb?t;]?gtn%?(ig;13:::3( tlgtitllcset:\r:t?;tsév?kt\(;hcom-
sifier generation soundness. Now, consider taking a transition. If it p : y

forwards a packet, the first bijection is preserved by routing cor- ﬁ:!set;;%;g Ll‘cf)?rae ?é\j‘{v'tcehc?ggzgsgﬁ&es@?gee tﬁ?; Y rr;asri:t)edoergglees
rectness; if it collects a pattern, the second bijection is preserved by yp P pprop :

: o 2 - We have built two back-ends, both targeting OpenFlow switches.
collection soundness; finally, if it generates reactive rules, they are ) i, -
sound by specialization soundness. 0 The first generates coarse-grained wildcard rules. The other back-

end, used for comparison, generates the kind of exact-match rules

. Th . h d hat the N used in our earlier work on Frenetic [9] and most hand-written
Quiescence. The quiescence theorem demonstrates that the Net- \ oy applications [11].

Core compiler effectively moves work off of the controller and onto

switches, even when the program is expressed in terms of pattern®Optimizations. The implementation uses a number of heuristic
the switch cannot implement precisely and inspector functions the optimizations to avoid the combinatorial blowup that would result
compiler cannot analyze. Formally, quiescence states that if all of from compiling classifiers naively. For example, it applies algebraic
the inspectors in the program are invariant, then the NetCore com-rewritings on-the-fly to remove useless patterns and rules and re-
piler will eventually install rules on switches that handle all future duce the size of the intermediate patterns and classifiers it needs to
traffic—i.e., eventually, the system can reach a configuration where manipulate. The compilation algorithms identify and remove pat-
no additional packets need to be sent to the controller. terns completely “shadowed” by other patterns and patterns whose

* The asynchronous machiiie, @, T, @) weakly simulates\/.
* M weakly simulates the synchronous machimez, T).
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Figure 8. Experimental results.

effect is “covered” by a larger pattern with lower priority but the piler on nearly all of the benchmarks. On the SPE benchmark,
same actions. Although these heuristics are simple, they go a longthe full compiler generates a classifier that completely handles the
way toward ensuring reasonable performance in our experience. policy, so no packets are sent to the controller. (The line for the
full compiler overlaps with the x-axis.) The microflow compiler,
of course, diverts a packet to the controller for each distinct mi-
croflow, generating 13.7k rules in total. On the SPQE benchmark,
the full compiler generates wildcard rules (using reactive special-
ization) that handle all future traffic from each unique host after
eeing a packet from it. These rules handle many more packets than
the exact-match rule produced by the microflow compiler. On this
benchmark, it is worth noting that the classifiers produced by the
full compiler are larger than the ones produced by the microflow
compiler, especially initially. This is due to the fact that the full
. compiler generates multiple rules in response to a single controller
only generates exact-match rules, a.Iso knowmésoflow rules) packet, attempting to cover a broad space of future similar pack-
compilers on the following programs: ets, whereas the microflow compiler predictably generates a single
- Static Policy Experiment (SPE) implements the simple static ~ microflow for each controller packet. One can see that the work
policy described at the beginning of Section 2. This benchmark done by the full compiler pays off in terms of the number of pack-
measures the (in)efficiency of compilation strategies based on ets that must be diverted to the controller. Moreover, over time, the
generating exact-match rules. size of the microflow compiler-generated classifier approaches that
of the full compiler. Lastly, the IPE benchmark demonstrates that
the full compiler generates more effective classifiers than the mi-
croflow compiler, even in the presence of inspector functions that it
cannot analyze directly. Note that a large number of packets must
be diverted to the controller in any correct implementation—until
they authenticate, the inspector is not invariant for any host. How-
ever, the full compiler quickly converges to a classifier that pro-
* Inspector Policy Experiment (IPE). forwards packets and col-  cesses all traffic directly on the switch.
lects traffic statistics using the authentication application pre-
sented in Section 2. This benchmark measures the performance
of a more realistic application implemented using inspectors.

Evaluation. To evaluate our implementation, we built an instru-
mented version of the run-time system that collects statistics about
the sizes of the classifiers generated by the compiler and the amoun
of traffic handled on switches (as opposed to the controller). Be-
cause space for classifiers is a limited resource on switches, an
because the cost of diverting a packet to the controller slows down
its processing by orders of magnitude, these metrics quantify some
of the most critical performance aspects of the system.

We compared the performance of the “full” (which makes use
of all OpenFlow rules, including wildcards) angflow” (which

* Static Policy with Query Experiment (SPQE) forwards
packets using the same policy as in SPE but also collects traf-
fic statistics for each host. Due to this collection, this program
cannot be directly compiled to a switch classifier—at least,
not without expanding alt.3 billion possible hosts! Thus, this
benchmark measures the efficiency of reactive specialization.

To drive these experiments, we generated packets @si2g], a 8. Related Work
tool that synthesizes realistic packet traces from several statisticalBuilding on ideas first proposed in Ethane [4] and 4D [10],
parameters. We ran each experiment on 100K packets in total. ForNOX [11] was the first concrete system to popularize what is cur-
the SPE and SPQE benchmarks, we generated traffic with 1024 ac+ently known as software-defined networking. It provides an event-
tive hosts sending packets to an external network for 30 secondsdriven interface to OpenFlow [17] and requires that programmers
each. For the IPE benchmark, we generated traffic with 254 hostswrite reactive programs using callbacks and explicit, switch-level
(a class C network) sending traffic to the authentication server and packet-processing rules. There are nhumerous examples of network
an external network for 30 seconds each. The results of the exper-applications built on top of NOX using microflows [12, 13, 27],
iments are shown in Figure 8. The graphs on the top row show the but relatively few that use wildcard rules (though Wang'’s load bal-
number of packets that “missed” and had to be sent to the controller ancer [26] is a nice example of the latter).
against the total number of packets processed. Likewise, the graphs Networking researchers are now actively developing next-
on the bottom row show the size of the compiled classifier, in terms generation controller platforms. Some of them, such as Beacon [1]
of number of rules, versus total packets. The table at the right gives (designed for Java) and Nettle [25] (designed for Haskell) pro-
the final results after all 100K packets were processed. vide elegant OpenFlow interfaces for new programming languages.
In terms of the proportion of packets processed on switches, Others, such as Onix [15], and Maestro [3] improve scalability and
the full OpenFlow compiler outperforms the microflow-based com- fault tolerance through parallelization and distribution. None of



these systems automatically generate reactive protocols or provide [6] M. Cristea, C. Zissulescu, E. Deprettere, and H. Bos. -BEL To-
formal semantics or correctness guarantees like NetCore does. wards language support for reconfigurable packet proagssim

Both NetCore and NDLog [16] use high-level languages to pro- SAMOS pages 201-212, Jul 2005.
gram networking infrastructure, but the similarities end there. ND- [7] S. Egorov and G. SavchulSNORTRAN: An Optimizing Compiler for
Log programs are written in an explicitly distributed style whereas Snort RulesFidelis Security Systems, 2002.
high-level NetCore programs are written as if the program has an [g] D. Erickson et al. A demonstration of virtual machine maifn an
omniscient, centralized view of the entire network. The NetCore OpenFlow network, Aug 2008. DemoACM SIGCOMM
implementation automatically partitions work onto a distributed set 9] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Relfo
of switches and synthesizes a reactive communication protocol that A, Story, and D. Walker. Frenetic: A network programming laage.
simulates the semantics of the high-level language. In ICFP, Sep 2011.

Part of the job of the NetCore compiler is to generate efficient [10] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Ruxi;
packet classifiers. Most previous research in this area (see Tay-  G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
lor [24] for a survey) focuses on static compilation. The NetCore to network control and managemeSIGCOMM CCR35:41-54, Oc-
compiler generates classifiers in the face of non-static policies, with tober 2005.
unknown inspector functions, and synthesizes a distributed switch- [11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N.Kdown,
controller implementation. Bro [21], Snortran [7], Shangri-La [5] and S. Shenker. NOX: Towards an operating system for network
and FPL-3E [6] compile rich packet-filtering and monitoring pro- SIGCOMM CCR38(3), 2008.
grams, designed to secure networks and detect intrusions, down td12] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeowndaR. Jo-
special packet-processing hardware and FPGAs. The main differ- hari. Plug-n-Serve: Load-balancing web traffic using OpewFAug
ence between NetCore and all of these systems is that they are lim- ~ 2009. Demo ahCM SIGCOMM
ited to a single device. They do not address the issue of how to pro-[13] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumi§harma,
gram complex, dynamic policies for a collection of interconnected S. Banerjee, and N. McKeown. ElasticTree: Saving energyaita d
switches and they do not synthesize the distributed communication ~ c¢enter networks. IINSD|, Apr 2010.
patterns between the switches and controller. [14] L. Jose, M. Yu, and J. Rexford. Online measurement of larajfic

Active Networking, as in the SwitchWare project [23], shares aggregates on commodity switches Hot-ICE, Mar 2011.
many high-level goals with Software-Defined Networking, but the [15] T. Koponen, M. Casado, N. Gude, J. Stribling, L. PoutléyM. Zhu,
implementation strategy is entirely different. The former uses smart R. Ramanathan, Y. lwata, H. Inoue, T. Hama, and S. Shenker.: Onix
switches to interpret programs encapsulated in packets, while the A distributed control platform for large-scale productiogtworks. In
latter uses dumb switches controlled by a remote host. OSDI Oct 2010.

[16] B. Loo, J. Hellerstein, I. Stoica, and R. RamakrishnareclBrative
routing: Extensible routing with declarative queries. StGCOMM
pages 289-300, 2005.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkaeterson,
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