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Optimistic Replication

e Many copies of distributed data stored on often
disconnected hosts

e Any copy may be updated at any time

e Hosts occasionally synchronize
— Merging updates that they agree on

— Resolving conflicting updates
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Optimistic Replication
Many copies of distributed data stored on often
disconnected hosts

Any copy may be updated at any time

Hosts occasionally synchronize
— Merging updates that they agree on

— Resolving conflicting updates

Many advantages: availability, scalability, quality control

Main challenge: synchronization

“...based on the optimistic presumption that conflicting updates

are rare, and that the contents are consistent enough with those

on other replicas.” —Saito & Shapiro (2002)
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= ARMONY Project

Research goal: Facilitate optimistic replication by building a
generic synchronization framework for heterogeneous,
tree-structured data.

This talk: Focus on Harmony’s synchronization algorithm.

e Local: intuitive, easy to predict behavior

e Schema-aware: preserves structural invariants
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Running Example




XML Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Stanford</org>
<email>freunds@cs.stanford.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Williams</org>
<email>kim@cs.williams.edu</email>
</vcard>
</xcard>
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Updated Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Williams</org>
<email>freund@cs.williams.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Williams</org>
<email>kim@cs.williams.edu</email>
</vcard>
</xcard>
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Another Update

<xcard>
<vcard>
<n>Kim</n>
<org>Pomona</org>
<email>kim@cs.pomona.edu</email>
</vcard>
<vcard>
<n>Steve</n>
<org>Stanford</org>
<email>freunds@cs.stanford.edu</email>
</vcard>
</xcard>

@ Exploiting Schemas in Data Synchronization - 6 NEPLS XV



Goal: Synchronized Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Williams</org>
<email>freund@cs.williams.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Pomona</org>
<email>kim@cs.pomona.edu</email>
</vcard>
</xcard>
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Data Model



Trees

Harmony'’s data model is unordered, edge-labeled trees where
every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.

2

email%+{kim©cs.williams.edu%»{}}

nFﬁ{KimF+{}}

OrgF+{WilliamSF+{}}

\
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Trees

Harmony'’s data model is unordered, edge-labeled trees where
every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.

)
email%+{kim©cs.williams.edukﬁ{}}

ni-{Kin-{} |

OrgF+{WilliamSF+{}}

\

Within a tree, we’ll abbreviate kx+—{} as k.
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Lists

Lists are encoded as “cons cells”: the list

[tl,tg,...,tn]

is represented by

(hd— t;
(hdl—> t2
t1lr—< hd+— ¢,

tl—< ... —
tlF%{nil}

\
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The XML element

<tag>
subelt; ... subelt,
</tag>

is represented by the tree

(subelt)

(subelt,,)
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Encoded Address Book

The original XML address book, encoded as a tree:

xcard—

nFﬁ;Stevehﬁﬂ}

orgr Stanfordk+ﬂ}

email — freunds@cs.stanford.eduk+ﬂ}

nkﬁ;Kimk+H}

vcard— Williams I—>Hi|

kim@cs.williams.edukﬁﬂ}
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Synchronization: Simple Algorithm




Notation

names, ranged over by k
a path p is a sequence of names
a tree is a finite map from names to trees

the contents of a tree t at some name k, written ¢(k), is
either a tree or L

write 7 for the set of all trees
write 7, =7 U{l}

X is a special tree that marks conflicts in the archive
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Simple Algorithm

sync € (TXJ_ x T, X TJ_) — (TXJ_ x T X TJ_)

sync(o,a,b) =

if a =bthen(a,a,b) — equal replicas: done
else if a = othen (b,b,b) - no change to a
else if b = othen (a,a,a) —no change tob
else if o = X then (0,a,b) - unresolved conflict
else if a = | then (X, a,b) — delete/modify conflict
else if b = 1| then (X, a,b) - delete/modify conflict
else — proceed recursively...

let (o(k), a'(k), V' (k)) = sync(o(k), a(k), b(k))

Vk € dom(a)U dom(b) in
(o',a’,b")
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Uh oh...

Two problems: (1) entries are not aligned
correctly; (2) synchronizer doesn’t preserve schemas!

' ' o |Kine[]

Pomona |
org—

Williams ]

freunds@cs.williams.edu+|]
xcardr— emalil —

kim@cs.pomona.edu—|]

nF+=steveF+H}

vcard— | orgr Stanfordheﬂ}

email — freunds@cs.stanford.edu%»ﬂ}
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Alignment and Lenses




Alignment

Alignment consists of identifying the parts of each replica that
represent the “same data”.
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Alignment

Alignment consists of identifying the parts of each replica that
represent the “same data”. Two approaches:

e Global alignment strategies analyze the entire replica to
come up with a “best alignment”. Usually heuristic (e.g.,
minimizing “edit distance”).

Examples: Diff-based tools.

e Local alignment strategies are simpler; e.qg., align the the
children with the same name.

— To be effective, we must pre-align the replicas so that
the common structure is exposed.
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Lenses

e Can pre-align replicas by transforming them before
synchronization.

- E.g., for XML address books encoded as trees, can
discard order and lift up a key from each entry.

e After synchronization, we must “undo” the transform to
recover the original format.

e Harmony includes a domain-specific language for writing
bi-directional transformations on trees, called lenses.

— Every well-typed program is “well-behaved”.

e (Also facilitates heterogeneous data synchronization.)
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Synchronization Architecture

Each replica is passed through a lens before and after
synchronization.
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Pre-aligning with lenses

nkﬁ;SteveF+H}

vcard— | org— Stanfordkﬁﬂ}

email — freunds@cs.stanford.edu%%ﬂ}

n+— K1m|—>[]}

vcard— Williams n—>[]}

kim@cs.williams.edu%%ﬂ]

hoist "xcard"
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Pre-aligning with lenses

:Stevek+ﬂ]

vcard— Stanfordkﬁﬂ}

freunds@cs.stanford.edu%%ﬂ}

:KimH[]}

orgr— WilliamSF+H}

email — kim@cs.williams.edu%%ﬂ]

hoist "xcard";

List.map (hoist "vcard")
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Pre-aligning with lenses

:Stevek+ﬂ}

Stanfordk+ﬂ}

freunds@cs.stanford.edukﬁﬂ}

;Kimk+ﬂ}

orgr— WilliamSF+H}

email — kim@cs.williams.eduk+ﬂ}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd []1))
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Pre-aligning with lenses

p )
email — freunds@cs.stanford.edu%%ﬂ}

n— Steve%»ﬂ}

| org— Stanford%%ﬂ}
; )
email — kim@cs.williams.edu%»ﬂ}

n Kim%»ﬂ}

orgr— WilliamSFeﬂ}

\

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1)))
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Pre-aligning with lenses

4 )
email — freunds@cs.stanford.edu}

Stanford}

\
kim@cs.williams.edu}

Kim}

L\
hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} [1));
pivot "n"
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Pre-aligning with lenses

B (

email — freunds@cs.stanford.edu}

Stever—<

kim@cs.williams.edu}

{
{Stanford}
{
{

Williams}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1));
pivot "n");
List.flatten; map(List.hd [])
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Pre-aligning with lenses

emallkﬁ kim@cs.williams.edu}

emallkﬁ freunds@cs.stanford.edu}
Stever—{

\

org%+{Williams}
orgkﬁ{Stanford}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1));
pivot "n"
List.flatten; map(List.hd [])
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Schema-Aware Synchronization




Mangled Results

The synchronization algorithm is still a bit too eager: it will
often merge changes in ways that yield mangled results.

0 {org%»{Williams}}

a {Orgk+{UC Santa Cruz}}

b = {org—{Pomona | }

, , Pomona
a, p— b p— Org|—>
UC Santa Cruz
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More Difficulties

Similarly, suppose we want every address book entry to contain
either an email address or an organization.

start with a record containing both email and org
delete email in one replica

delete org in the other replica

note that all three variants satisfy

now synchronize...

both deletions get propagated, yielding an ill-formed
result.
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A Simple Schema-Aware Synchronizer

bettersync(S,o0,a,b) =
let (o/,a’,b") = sync(o,a,b) in
if (a/ € S)or (b ¢&5)
then (X, a,b) — schema conflict
else (o', a’,b")

@ Exploiting Schemas in Data Synchronization - 21 NEPLS XV



A step too far...

This algorithm is too coarse-grained: A schema conflict
anywhere results in a synchronization failure everywhere!

We need to detect schema violations locally...
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Final Algorithm

sync(S,0,a,b) =
if a =0bthen(a,a,b) — equal replicas: done
else if a = othen (b,b,b) - no change to a
else if b = othen (a,a,a) —no change tob
else if o = X then (0,a,b) - unresolved conflict
else if a = 1 then (X, a,b) — delete/modify conflict
else if b = 1| then (X, a,b) - delete/modify conflict

else — preeeed recursively...
let (o'(k), a’(k), V' (K)) = Syn(k), a(k),b(k))
Vk € dom(a)U dom(b) in

if (dom(a’) € doms(S)) or (dom(b") & doms(S))
then (X, a,b) — schema conflict
else (o', d’, ")
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Path Consistency

To ensure that we can “project” a schema one a given name,
we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees
t,t’ € S and paths p, we have

tp) # L A t'(p)# L = tp—t(p)es,

where t[p — t'(p)] is the tree obtained by replacing the subtree
of ¢t at p by the corresponding subtree of ¢'.
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Path Consistency

To ensure that we can “project” a schema one a given name,
we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees
t,t’ € S and paths p, we have

tp) # L ANt(p)# L = tp—1t(p)eS,

where t[p — t'(p)] is the tree obtained by replacing the subtree
of ¢t at p by the corresponding subtree of ¢'.

Path-consistent schemas are a “semantic analog” of single-type
tree grammars used in W3C Schema. They are expressive
enough to describe a wide range of examples.
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Specification

A good synchronizer should...
. Never “back out” changes
. Never “make up” contents

. Stop at conflicting paths (leaving replicas in their current
states)

. Always leave the replicas in a well-typed form

safety conditions

. Propagate as many changes as possible without violating
above rules

maximality condition
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The (Theoretical) Punchline

Theorem: The final (schema-aware) synchronization algorithm
is safe and maximal.

Proof: See paper.
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The (Practical) Punchline

Bookmark Synchronizer Demo
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Implementation Status

e Core implementation and several demos running:
— bookmarks (Mozilla, Safari, Internet Explorer)
— XML address books

— structured text
e Unison integration coming soon.

e Public release this summer!
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