Exploiting Schemas in
Data Synchronization

Nate Foster (Penn)
Michael B. Greenwald (Lucent)
Christian Kirkegaard (BRICS)

Benjamin C. Pierce (Penn)
Alan Schmitt (INRIA)

[ARMONY

Optimistic Replication

e Many copies of distributed data stored on often
disconnected hosts

e Any copy may be updated at any time

e Hosts occasionally synchronize
— Merging updates that they agree on

— Resolving conflicting updates

@ Exploiting Schemas in Data Synchronization - 1 NEPLS XV

Optimistic Replication
Many copies of distributed data stored on often
disconnected hosts

Any copy may be updated at any time

Hosts occasionally synchronize
— Merging updates that they agree on

— Resolving conflicting updates

Many advantages: availability, scalability, quality control

Main challenge: synchronization

“...based on the optimistic presumption that conflicting updates

are rare, and that the contents are consistent enough with those

on other replicas.” —Saito & Shapiro (2002)

Exploiting Schemas in Data Synchronization - 2 NEPLS XV

= ARMONY Project

Research goal: Facilitate optimistic replication by building a
generic synchronization framework for heterogeneous,
tree-structured data.

This talk: Focus on Harmony’s synchronization algorithm.

e Local: intuitive, easy to predict behavior

e Schema-aware: preserves structural invariants

Exploiting Schemas in Data Synchronization - 3

NEPLS XV

Running Example

XML Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Stanford</org>
<email>freunds@cs.stanford.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Williams</org>
<email>kim@cs.williams.edu</email>
</vcard>
</xcard>

@ Exploiting Schemas in Data Synchronization - 4 NEPLS XV

Updated Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Williams</org>
<email>freund@cs.williams.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Williams</org>
<email>kim@cs.williams.edu</email>
</vcard>
</xcard>

@ Exploiting Schemas in Data Synchronization - 5 NEPLS XV

Another Update

<xcard>
<vcard>
<n>Kim</n>
<org>Pomona</org>
<email>kim@cs.pomona.edu</email>
</vcard>
<vcard>
<n>Steve</n>
<org>Stanford</org>
<email>freunds@cs.stanford.edu</email>
</vcard>
</xcard>

@ Exploiting Schemas in Data Synchronization - 6 NEPLS XV

Goal: Synchronized Address Book

<xcard>
<vcard>
<n>Steve</n>
<org>Williams</org>
<email>freund@cs.williams.edu</email>
</vcard>
<vcard>
<n>Kim</n>
<org>Pomona</org>
<email>kim@cs.pomona.edu</email>
</vcard>
</xcard>

@ Exploiting Schemas in Data Synchronization - 7 NEPLS XV

Data Model

Trees

Harmony'’s data model is unordered, edge-labeled trees where
every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.

2

email%+{kim©cs.williams.edu%»{}}

nFﬁ{KimF+{}}

OrgF+{WilliamSF+{}}

\

@ Exploiting Schemas in Data Synchronization - 8 NEPLS XV

Trees

Harmony'’s data model is unordered, edge-labeled trees where
every child of a node has a distinct name.

Equivalently, a tree is a partial function from names to trees.

)
email%+{kim©cs.williams.edukﬁ{}}

ni-{Kin-{} |

OrgF+{WilliamSF+{}}

\

Within a tree, we’ll abbreviate kx+—{} as k.

@ Exploiting Schemas in Data Synchronization - 8 NEPLS XV

Lists

Lists are encoded as “cons cells”: the list

[tl,tg,...,tn]

is represented by

(hd— t;
(hdl—> t2
t1lr—< hd+— ¢,

tl—< ... —
tlF%{nil}

\

@ Exploiting Schemas in Data Synchronization - 9 NEPLS XV

The XML element

<tag>
subelt; ... subelt,
</tag>

is represented by the tree

(subelt)

(subelt,,)

@ Exploiting Schemas in Data Synchronization - 10 NEPLS XV

Encoded Address Book

The original XML address book, encoded as a tree:

xcard—

nFﬁ;Stevehﬁﬂ}

orgr Stanfordk+ﬂ}

email — freunds@cs.stanford.eduk+ﬂ}

nkﬁ;Kimk+H}

vcard— Williams I—>Hi|

kim@cs.williams.edukﬁﬂ}

Exploiting Schemas in Data Synchronization - 11

NEPLS XV

Synchronization: Simple Algorithm

Notation

names, ranged over by k
a path p is a sequence of names
a tree is a finite map from names to trees

the contents of a tree t at some name k, written ¢(k), is
either a tree or L

write 7 for the set of all trees
write 7, =7 U{l}

X is a special tree that marks conflicts in the archive

@ Exploiting Schemas in Data Synchronization - 12 NEPLS XV

Simple Algorithm

sync € (TXJ_ x T, X TJ_) — (TXJ_ x T X TJ_)

sync(o,a,b) =

if a =bthen(a,a,b) — equal replicas: done
else if a = othen (b,b,b) - no change to a
else if b = othen (a,a,a) —no change tob
else if o = X then (0,a,b) - unresolved conflict
else if a = | then (X, a,b) — delete/modify conflict
else if b = 1| then (X, a,b) - delete/modify conflict
else — proceed recursively...

let (o(k), a'(k), V' (k)) = sync(o(k), a(k), b(k))

Vk € dom(a)U dom(b) in
(o',a’,b")

@ Exploiting Schemas in Data Synchronization - 13 NEPLS XV

Uh oh...

Two problems: (1) entries are not aligned
correctly; (2) synchronizer doesn’t preserve schemas!

' ' o |Kine[]

Pomona |
org—

Williams]

freunds@cs.williams.edu+|]
xcardr— emalil —

kim@cs.pomona.edu—|]

nF+=steveF+H}

vcard— | orgr Stanfordheﬂ}

email — freunds@cs.stanford.edu%»ﬂ}

@ Exploiting Schemas in Data Synchronization - 14 NEPLS XV

Alignment and Lenses

Alignment

Alignment consists of identifying the parts of each replica that
represent the “same data”.

@ Exploiting Schemas in Data Synchronization - 15 NEPLS XV

Alignment

Alignment consists of identifying the parts of each replica that
represent the “same data”. Two approaches:

e Global alignment strategies analyze the entire replica to
come up with a “best alignment”. Usually heuristic (e.g.,
minimizing “edit distance”).

Examples: Diff-based tools.

e Local alignment strategies are simpler; e.qg., align the the
children with the same name.

— To be effective, we must pre-align the replicas so that
the common structure is exposed.

@ Exploiting Schemas in Data Synchronization - 15 NEPLS XV

Lenses

e Can pre-align replicas by transforming them before
synchronization.

- E.g., for XML address books encoded as trees, can
discard order and lift up a key from each entry.

e After synchronization, we must “undo” the transform to
recover the original format.

e Harmony includes a domain-specific language for writing
bi-directional transformations on trees, called lenses.

— Every well-typed program is “well-behaved”.

e (Also facilitates heterogeneous data synchronization.)

@ Exploiting Schemas in Data Synchronization - 16 NEPLS XV

Synchronization Architecture

Each replica is passed through a lens before and after
synchronization.

@ Exploiting Schemas in Data Synchronization - 17 NEPLS XV

Pre-aligning with lenses

nkﬁ;SteveF+H}

vcard— | org— Stanfordkﬁﬂ}

email — freunds@cs.stanford.edu%%ﬂ}

n+— K1m|—>[]}

vcard— Williams n—>[]}

kim@cs.williams.edu%%ﬂ]

hoist "xcard"

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

:Stevek+ﬂ]

vcard— Stanfordkﬁﬂ}

freunds@cs.stanford.edu%%ﬂ}

:KimH[]}

orgr— WilliamSF+H}

email — kim@cs.williams.edu%%ﬂ]

hoist "xcard";

List.map (hoist "vcard")

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

:Stevek+ﬂ}

Stanfordk+ﬂ}

freunds@cs.stanford.edukﬁﬂ}

;Kimk+ﬂ}

orgr— WilliamSF+H}

email — kim@cs.williams.eduk+ﬂ}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd []1))

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

p)
email — freunds@cs.stanford.edu%%ﬂ}

n— Steve%»ﬂ}

| org— Stanford%%ﬂ}
;)
email — kim@cs.williams.edu%»ﬂ}

n Kim%»ﬂ}

orgr— WilliamSFeﬂ}

\

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1)))

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

4)
email — freunds@cs.stanford.edu}

Stanford}

\
kim@cs.williams.edu}

Kim}

L\
hoist "xcard";

List.map (hoist "vcard";

List.flatten; map(List.hd []; List.hd [];

map (const {} [1));
pivot "n"

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

B (

email — freunds@cs.stanford.edu}

Stever—<

kim@cs.williams.edu}

{
{Stanford}
{
{

Williams}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1));
pivot "n");
List.flatten; map(List.hd [])

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Pre-aligning with lenses

emallkﬁ kim@cs.williams.edu}

emallkﬁ freunds@cs.stanford.edu}
Stever—{

\

org%+{Williams}
orgkﬁ{Stanford}

hoist "xcard";
List.map (hoist "vcard";
List.flatten; map(List.hd []; List.hd [];
map (const {} [1));
pivot "n"
List.flatten; map(List.hd [])

@ Exploiting Schemas in Data Synchronization - 18 NEPLS XV

Schema-Aware Synchronization

Mangled Results

The synchronization algorithm is still a bit too eager: it will
often merge changes in ways that yield mangled results.

0 {org%»{Williams}}

a {Orgk+{UC Santa Cruz}}

b = {org—{Pomona | }

, , Pomona
a, p— b p— Org|—>
UC Santa Cruz

@ Exploiting Schemas in Data Synchronization - 19 NEPLS XV

More Difficulties

Similarly, suppose we want every address book entry to contain
either an email address or an organization.

start with a record containing both email and org
delete email in one replica

delete org in the other replica

note that all three variants satisfy

now synchronize...

both deletions get propagated, yielding an ill-formed
result.

@ Exploiting Schemas in Data Synchronization - 20 NEPLS XV

A Simple Schema-Aware Synchronizer

bettersync(S,o0,a,b) =
let (o/,a’,b") = sync(o,a,b) in
if (a/ € S)or (b ¢&5)
then (X, a,b) — schema conflict
else (o', a’,b")

@ Exploiting Schemas in Data Synchronization - 21 NEPLS XV

A step too far...

This algorithm is too coarse-grained: A schema conflict
anywhere results in a synchronization failure everywhere!

We need to detect schema violations locally...

@ Exploiting Schemas in Data Synchronization - 22 NEPLS XV

Final Algorithm

sync(S,0,a,b) =
if a =0bthen(a,a,b) — equal replicas: done
else if a = othen (b,b,b) - no change to a
else if b = othen (a,a,a) —no change tob
else if o = X then (0,a,b) - unresolved conflict
else if a = 1 then (X, a,b) — delete/modify conflict
else if b = 1| then (X, a,b) - delete/modify conflict

else — preeeed recursively...
let (o'(k), a’(k), V' (K)) = Syn(k), a(k),b(k))
Vk € dom(a)U dom(b) in

if (dom(a’) € doms(S)) or (dom(b") & doms(S))
then (X, a,b) — schema conflict
else (o', d’, ")

@ Exploiting Schemas in Data Synchronization - 23 NEPLS XV

Path Consistency

To ensure that we can “project” a schema one a given name,
we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees
t,t’ € S and paths p, we have

tp) # L A t'(p)# L = tp—t(p)es,

where t[p — t'(p)] is the tree obtained by replacing the subtree
of ¢t at p by the corresponding subtree of ¢'.

Exploiting Schemas in Data Synchronization - 24

NEPLS XV

Path Consistency

To ensure that we can “project” a schema one a given name,
we need to consider only schemas of a restricted form.

Definition: A schema S is path consistent iff, for all trees
t,t’ € S and paths p, we have

tp) # L ANt(p)# L = tp—1t(p)eS,

where t[p — t'(p)] is the tree obtained by replacing the subtree
of ¢t at p by the corresponding subtree of ¢'.

Path-consistent schemas are a “semantic analog” of single-type
tree grammars used in W3C Schema. They are expressive
enough to describe a wide range of examples.

Exploiting Schemas in Data Synchronization - 24 NEPLS XV

Specification

A good synchronizer should...
. Never “back out” changes
. Never “make up” contents

. Stop at conflicting paths (leaving replicas in their current
states)

. Always leave the replicas in a well-typed form

safety conditions

. Propagate as many changes as possible without violating
above rules

maximality condition

@ Exploiting Schemas in Data Synchronization - 25 NEPLS XV

The (Theoretical) Punchline

Theorem: The final (schema-aware) synchronization algorithm
is safe and maximal.

Proof: See paper.

@ Exploiting Schemas in Data Synchronization - 26 NEPLS XV

The (Practical) Punchline

Bookmark Synchronizer Demo

Exploiting Schemas in Data Synchronization - 27

NEPLS XV

Implementation Status

e Core implementation and several demos running:
— bookmarks (Mozilla, Safari, Internet Explorer)
— XML address books

— structured text
e Unison integration coming soon.

e Public release this summer!

@ Exploiting Schemas in Data Synchronization - 28 NEPLS XV

Acknowledgments

Collaborators on this work: Michael Greenwald, Christian
Kirkegaard, Benjamin Pierce, and Alan Schmitt.

Other Harmony contributors: Malo Denielou, Owen Gunden,
Sanjeev Khanna, Christian Kirkegaard, Keshav Kunal, Stéphane
Lescuyer, Jonathan Moore, Thang Nguyen, and Zhe Yanag.

HARMONY

http://www.cis.upenn.edu/~bcpierce/harmony

@ Exploiting Schemas in Data Synchronization - 29 NEPLS XV

