Merlin: A Language for Provisioning Network Resources

Robert Soulé” Shrutarshi Basu'
Robert Kleinberg'

“University of Lugano

ABSTRACT

This paper presents Merlin, a new framework for managing re-
sources in software-defined networks. With Merlin, administra-
tors express high-level policies using programs in a declarative lan-
guage. The language includes logical predicates to identify sets
of packets, regular expressions to encode forwarding paths, and
arithmetic formulas to specify bandwidth constraints. The Merlin
compiler maps these policies into a constraint problem that deter-
mines bandwidth allocations using parameterizable heuristics. It
then generates code that can be executed on the network elements
to enforce the policies. To allow network tenants to dynamically
adapt policies to their needs, Merlin provides mechanisms for del-
egating control of sub-policies and for verifying that modifications
made to sub-policies do not violate global constraints. Experiments
demonstrate the expressiveness and effectiveness of Merlin on real-
world topologies and applications. Overall, Merlin simplifies net-
work administration by providing high-level abstractions for spec-
ifying network policies that provision network resources.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Network operating systems
; D.3.2 [Language Classifications]: Specialized application lan-
guages

Keywords

Software-defined networking, resource management, delegation,
verification, Merlin.

1. INTRODUCTION

Network operators today must deal with a wide range of man-
agement challenges from increasingly complex policies to a prolif-
eration of heterogeneous devices to ever-growing traffic demands.
Software-defined networking (SDN) provides tools that could be
used to address these challenges, but existing APIs for SDN pro-
gramming are either too low-level or too limited in functionality
to enable effective implementation of rich network-wide policies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CoNEXT’ 14, December 2-5, 2014, Sydney, Australia.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2674989.

Parisa Jalili Marandi”
Emin Giin Sirer

Fernando Pedone”
Nate Foster!
fCornell University

As a result, there is widespread interest in academia and indus-
try in higher-level programming languages and “northbound” (i.e.,
application-facing) APIs that provide convenient control over the
full set of resources available in a network.

Unfortunately, despite several notable advances, there is still a
wide gap between the capabilities of existing SDN APIs and the
realities of network management. Current programming languages
focus mostly on packet forwarding and largely ignore functionality
such as bandwidth and packet-processing functions that can only
be implemented on middleboxes, end hosts, or with custom hard-
ware [20, 46, 65, 3, 50]. Network orchestration frameworks pro-
vide powerful mechanisms that handle a larger set of concerns in-
cluding middlebox placement and bandwidth [22, 34, 55, 58], but
they either fail to provide a programmable API to those mecha-
nisms, or expose APIs that are extremely simple (e.g., sequences
of middleboxes). Overall, the challenges of managing real-world
networks using existing SDN APIs remain unmet.

This paper presents a new SDN programming language designed
to fill this gap. This language, called Merlin, provides a collection
of high-level programming constructs for (i) classifying packets;
(ii) controlling forwarding paths; (iii) specifying packet-processing
functions; and (iv) provisioning bandwidth in terms of maximum
limits and minimum guarantees. These features go far beyond what
can be realized just using SDN switches or with existing languages
like Frenetic [20], Pyretic [47], and Maple [65]. As a result, imple-
menting Merlin is non-trivial because it involves determining allo-
cations of network-wide resources such as bandwidth—the simple
compositional translations used in existing SDN compilers cannot
be readily extended to handle the new features provided in Merlin.

The Merlin compiler uses a variety of techniques to determine
forwarding paths, map packet-processing functions to network el-
ements, and allocate bandwidth. These techniques are based on a
unified logical representation of the network that encodes the con-
straints of the physical topology as well as the constraints expressed
by the policy. For traffic with bandwidth constraints, the com-
piler uses a mixed-integer program formulation to solve a variant of
the multi-commodity flow optimization problem. For traffic with-
out bandwidth constraints, Merlin leverages properties of regular
expressions and finite automata to efficiently generate forwarding
trees that respect the path constraints encoded in the logical topol-
ogy. Handling these two types of traffic separately allows the com-
piler to provide a uniform interface to programmers while reducing
the size and number of expensive constraint problems it must solve.
The compiler also generates configurations for a variety of network
elements including switches, middleboxes, and end hosts.

Although the configurations emitted by the Merlin compiler are
static, the system also incorporates mechanisms for handling dy-
namically changing policies. Run-time components called negotia-

program below realizes this specification using a sequence of Mer-
lin policy statements, followed by a logical formula. Each state-
ment contains a variable that tracks the amount of bandwidth used
by packets processed with that statement, a predicate on packet
headers that identifies a set of packets, and a regular expression
that describes a set of forwarding paths through the network:

[x : (ip.src = 192.168.1.1 and

ip.dst = 192.168.1.2 and
tcp.dst = 20) -> .x dpi .x ;
y ¢ (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 21) -> .x ;
[z ¢ (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and

loc € Locations
t € Packet-processing functions
h € Packet headers
f € Header fields
v € Header field values
id € Identifiers
n € N
pol ::=[s1;...;8n), @ Policies
su=id:p—r Statements
¢ ::= max(e,n) | min(e, n) Presburger Formulas
| #1and ¢z | grorga|! ¢
ex=nlid|e+te Bandwidth Terms
az=.|claalalala"|la Path Expression
pu=pirandps | prorpz |!p1 Predicates
| h.f=wv|true] false
cu=loc|t Path Element

Figure 1: Merlin abstract syntax.

tors communicate among themselves to dynamically adjust band-
width allocations and verify that the modifications made by other
negotiators do not lead to policy violations. Again, the design of
Merlin’s policy language plays a crucial role. The same core lan-
guage constructs used by the compiler for mapping policies into a
constraint problem provide a concrete basis for analyzing, process-
ing, and verifying policies modified dynamically by negotatiors.
We have built a working prototype of Merlin, and used it to im-
plement a variety of practical policies that demonstrate the expres-
siveness of the language. These examples demonstrate that Mer-
lin supports a wide range of network functionality including sim-
ple forwarding policies, richer packet-processing functions such as
deep-packet inspection that are usually implemented on middle-
boxes, and policies that include bandwidth constraints. We have
also implemented negotiators that realize max-min fair sharing and

additive-increase multiplicative-decrease dynamic adaptation schemes.

Our experimental evaluation shows that the Merlin compiler can
provision and configure real-world datacenter and enterprise net-
works, and that Merlin can be used to obtain better application per-
formance for data analytics and replication systems.

Overall, this paper makes the following contributions:

e [t presents the design of high-level network management ab-
stractions realized in an expressive policy language that mod-
els packet classification, forwarding, and bandwidth.

e [t describes a novel compilation algorithm that selects for-
warding paths and allocates bandwidth using a mixed-integer
program formulation and constraint solver.

o It develops techniques for dynamically adapting policies us-
ing negotiators and accompanying verification techniques,
made possible by the language design.

The rest of this paper describes the design of the Merlin language
(§2), compiler (§3), and runtime transformations (§4). It then de-
scribes the implementation (§5) and presents the results from our
performance evaluation (§6).

2. LANGUAGE DESIGN

The Merlin policy language gives programmers a collection of
constructs that allow them to specify the intended behavior of the
network at a high level of abstraction. As an example, suppose that
we want to place a bandwidth cap on FTP control and data transfer
traffic, while providing a bandwidth guarantee to HTTP traffic. The

tcp.dst = 80) -> .x dpi x. nat .*],
max (x + y,50MB/s) and min(z,100MB/s)

The statement on the first line asserts that FTP traffic from the host
at IP address 192.168.1.1 to the host at address 192.168.1.2
must travel along a path that includes a packet-processing function
that performs deep-packet inspection (dpi). The next two state-
ments identify and constrain FTP control and HTTP traffic between
the same hosts respectively. The statement for FTP control traffic
does not include any constraints on its forwarding path, while the
HTTP statement includes both a deep-packet inspection (dpi) and
a network address translation (nat) constraint. The formula on the
last line declares a bandwidth cap (max) on the FTP traffic, and a
bandwidth guarantee (min) for the HTTP traffic.

Note that packet-processing functions may modify packet head-
ers. In this example policy, the nat function will re-write the packet
1P addresses. To allow such functions to coexist with predicates on
packet headers that identify sets of traffic, Merlin uses a tag-based
routing scheme that will be explained in Section 3.4. The rest of
this section describes the constructs used in this policy in detail.

2.1 Syntax and semantics

The syntax of the Merlin policy language is defined by the gram-
mar in Figure 1. A policy is a set of statements, each of which spec-
ifies the handling of a subset of traffic, together with a logical for-
mula that expresses a global bandwidth constraint. For simplicity,
we require that the statements have disjoint predicates and together
match all packets. In our implementation, these requirements are
enforced using a simple policy pre-processor.

Statements. Each policy statement comprises several components:
an identifier, a logical predicate, and a regular expression. The
identifier provides a way to identify the set of packets matching
the predicate, while the regular expression specifies the forward-
ing paths and packet-processing functions that should be applied to
matching packets. Together, these abstractions facilitate thinking
of the entire network as a single switch that forwards traffic be-
tween its external ports (i.e., a “big switch” [35]), while enabling
programmers to retain precise control over forwarding paths and
bandwidth usage.

Logical predicates. Merlin supports a predicate language for
classifying packets. Atomic predicates of the form h.f = v denote
the set of packets whose header field h. f is equal to v. For instance,
in the example policy above, statement z contains the predicate that
matches packets with ip source address 192.168.1. 1, destination
address 192.168.1.2, and tcp port 80. Merlin provides atomic
predicates for a number of standard protocols including Ethernet,
IP, TCP, and UDP, and a special predicate for matching packet pay-
loads. Predicates can also be combined using conjunction (and),
disjunction (or), and negation (!).

Regular expressions. Merlin allows programmers to specify
the set of allowed forwarding paths through the network using regu-
lar expressions—a natural and well-studied formalism for describ-
ing paths through a graph (such as a finite state automaton or a
network topology). However, rather than matching strings of char-
acters, as with ordinary regular expressions, Merlin regular expres-
sions match sequences of network locations, including names of
packet-processing functions, as described below. The compiler is
free to select any matching path for forwarding traffic as long as the
other constraints expressed by the policy are satisfied. We assume
that the set of network locations is finite. As with POSIX regular
expressions, the dot symbol (.) matches any single location.

Packet-processing functions. Merlin regular expressions may
also contain names of packet-processing functions that may trans-
form the headers and contents of packets. Such functions can be
used to implement a variety of useful operations including deep
packet inspection, network address translation, wide-area optimiz-
ers, caches, proxies, traffic shapers, and others. The compiler deter-
mines the location where each function is enforced, using a map-
ping from function names to possible locations supplied as a pa-
rameter. The only requirements on these functions are that they
must take a single packet as input and generate zero or more pack-
ets as output, and they must only access local state. In particular,
the restriction to local state allows the compiler to freely place func-
tions without having to worry about maintaining global state.

Bandwidth constraints. Merlin policies use logical formulas
to specify constraints that either limit (max) or guarantee (min)
bandwidth. In addition to conjunction (and), disjunction (or), and
negation (!), Merlin supports an addition operator. The addition
operator can be used to specify an aggregate cap on traffic, such
as in the max (x + y, 50MB/s) term from the running example.
By convention, policies without a rate clause are unconstrained—
policies that lack a minimum rate are not guaranteed any band-
width, and policies that lack a maximum rate may send traffic at
rates up to line speed. Bandwidth constraints are expressed for-
mally using first-order logic with addition—a system known as
Presburger arithmetic. Note that other operators such as subtraction
and division do not make as much sense in the context of bandwidth
and that excluding multiplication ensures decidability.

Intuitively, a formula specifies the rate at which sources of vari-
ous types of traffic may emit packets. Assume the universe of rates
is [0, MAX] where MAX is given by physical constraints. Then
max (x, 100Mbps) says the rate of x traffic must be in the inter-
val [0, 100Mbps), whereas min (x, 100Mbps) says the rate of
x traffic must be in [100Mbps, MAX], assuming the source is at-
tempting to push that much data. Negation inverts the set of rates
allowed, so that !max (x, 100Mbps) isinfactmin (x, 100Mbps).

Bandwidth constraints differ from packet-processing functions
in one important aspect: they represent an explicit allocation of
global network resources. Hence, additional care is needed in com-
piling them.

Syntactic sugar. Merlin also supports several forms of syntac-
tic sugar that simplify the expression of complex policies including
set literals and several functions on sets. For example, the follow-
ing policy,

srcs := {192.168.1.1}

dsts := {192.168.1.2}

foreach (s,d) in cross(srcs,dsts):
tcp.dst = 80 —->
(.* dpi .*» nat .x) at min(100MB/s)

Physical topology
with vertices V

Statement NFA LP Graph
with states Q,- G;

1

Figure 2: Logical topology for the example policy. The thick,
red path illustrates a solution.

is equivalent to statement z from the example. The sets srcs and
dsts refer to singleton sets of hosts. The cross operator takes the
cross product of these sets. The foreach statement iterates over
the resulting set, creating a predicate from the source s, destination
d, and term tcp.dst = 80.

Summary. Overall, Merlin’s policy language enables direct ex-
pression of high-level network policies. Programmers write poli-
cies as though they were centralized programs executed on a single
network device. In reality, each policy consists of several compo-
nents that run on a variety of devices distributed throughout the net-
work. Collectively, these component constructs enforce the global
policy. The subsequent sections present these distribution and en-
forcement mechanisms in detail.

3. COMPILER

The Merlin compiler performs three essential tasks: (i) it trans-
lates global policies into locally-enforceable policies; (ii) it deter-
mines the paths used to carry traffic across the network, places
packet-processing functions on middleboxes and end hosts, and al-
locates bandwidth to individual flows; and (iii) it generates low-
level configuration instructions for network devices and end hosts.

To do this, the compiler takes as inputs the Merlin policy, a rep-
resentation of the physical topology, and a mapping from process-
ing functions to possible placements, and builds a logical topology
that incorporates the structure of the physical topology as well as
the constraints encoded in the policy. It then analyzes the logical
topology to determine allocations of resources and emits low-level
configurations for switches, middleboxes, and end hosts.

3.1 Localization

Merlin’s Presburger arithmetic formulas are an expressive way
to declare bandwidth constraints, but actually implementing them
leads to several challenges: aggregate guarantees can be enforced
using shared quality-of-service queues on switches, but aggregate
bandwidth limits are more difficult, since they require distributed
state in general. To solve this problem, Merlin adopts a pragmatic
approach. The compiler first rewrites the formula so that the band-
width constraints apply to packets at a single location. Given a
formula with one term over n identifiers, the compiler produces a
new formula of n local terms that collectively imply the original.
By default, the compiler divides bandwidth equally among the lo-

cal terms, although other schemes are permissible. For example,
the running example would be localized to:

[x ¢ (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 20) —-> .x dpi .x ;

y : (ip.src 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 21) -> .x ;

[z : (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 80) -> .x dpi x. nat .*],

max (x, 25MB/s) and

max (y,25MB/s) and

min (z,100MB/s)

Rewriting policies in this way involves an inherent tradeoff: lo-
calized enforcement increases scalability, but risks underutilizing
resources if the static allocations do not reflect actual usage. In
Section 4, we describe how Merlin navigates this tradeoff via a
run-time mechanism, called negotiators, that can dynamically ad-
just allocations.

3.2 Provisioning for Guaranteed Rates

The most challenging aspect of the Merlin compilation process
is provisioning bandwidth for traffic with guarantees. To do this,
the compiler encodes the input policy and the network topology
into a constraint problem whose solution, if it exists, can be used to
determine the configuration of each network device.

Logical topology. Recall that a statement in the Merlin lan-
guage contains a regular expression, which constrains the set of
forwarding paths and packet-processing functions that may be used
to satisfy the statement. To facilitate computing a set of paths that
satisfy these constraints, the compiler constructs an internal repre-
sentation with a directed graph G in which each path corresponds
to a physical path that respects the constraints expressed in a single
policy statement. The overall graph G for the policy is a union of
disjoint components G;, one for each statement i.

The regular expression a; in statement ¢ is over the set of loca-
tions and packet-processing functions. The first step in the con-
struction of G; is to map a; into a regular expression a; over the
set of locations using a simple substition: for every occurrence of
a packet processor, we substitute the union of all locations associ-
ated with that function. (Recall that the compiler takes an auxiliary
input specifying this mapping from functions to locations.) For ex-
ample, if h1, h2, and m1 are the three locations capable of running
deep packet inspection, then the regular expression .+ dpi .=*
would be transformed into . (h1|h2|ml) .. The next step is
to transform the regular expression @; into a nondeterministic finite
automaton (NFA), denoted M, that accepts the set of strings in the
regular language given by a;.

Letting L denote the set of locations in the physical network and
Q; denote the state set of M, the vertex set of G; is the Cartesian
product L x Q; together with two special vertices {s;, t; } that serve
as a universal source and sink for paths representing statement ¢
respectively. The graph G; has an edge from (u, q) to (v, q’) if and
only if: (i) v = v or (u,v) is an edge of the physical network,
and (ii) (g, ¢') is a valid state transition of M; when processing v.
Likewise, there is an edge from s; to (v, ¢') if and only if (¢°, ¢') is
a valid state transition of M; when processing v, where ¢° denotes
the start state of M. Finally, there is an edge from (u, q) to ¢; if
and only if ¢ is an accepting state of M. Paths in G, correspond
to paths in the physical network that satisfy the path constraints of
statement ¢, as captured in the following lemma.

(a) Shortest-Path (b) Min-Max Ratio (¢) Min-Max Reserved

Figure 3: Path selection heuristics. The edge labels in the
graphs indicate the remaining capacities after path selection.

LEMMA 1. A sequence of locations u1,uz, . . ., uk satisfies the
constraint described by regular expression a; if and only if G; con-
tains a path of the form s;, (u1,q1), (u2,q2), ..., (uk, qx), t; for
some state sequence qi, . ..,qk. A path in G; of this form will be
called a lifting of ui,uz, . .., ur henceforth.

PROOF. The construction of G; ensures that

Sis (u17q1)7 (u25q2)7 cey (uk7QK)7t’i

is a path in the graph if and only if (i) the sequence u1,...,ux
represents a path in the physical network (possibly with vertices of
the path repeated more than once consecutively in the sequence),
and (ii) the automaton M; has an accepting computation path for
u1, . .., ux with state sequence ¢°, ¢, .. ., qk. The lemma follows
from the fact that a string belongs to the regular language defined
by a; if and only if M; has a computation path that accepts that
string. [

Figure 2 illustrates the construction of the graph G; for a state-
ment with path expressionhl . dpi . nat .* h2,onasmall
example network. We assume that deep packet inspection (dpi)
can be performed at h1, h2, or m1, whereas network address trans-
lation (nat) can only be performed at m1. Paths matching the reg-
ular expression can be “lifted” to paths in G;; the thick, red path in
the figure illustrates one such lifting. Notice that the physical net-
work also contains other paths such as h1, s1, h2 that do not match
the regular expression. These paths do not lift to any path in G;. For
instance, focusing attention on the rows of nodes corresponding to
states g2 and ¢® of the NFA, one sees that all edges between these
two rows lead into node (m1,¢®). This, in turn, means that any path
that avoids m1 in the physical network cannot be lifted to an s;-t;
path in the graph G;.

Path selection. Next, the compiler determines a satisfying as-
signment of paths that respect the bandwidth constraints encoded
in the policy. The problem bears a similarity to the well-known
multi-commodity flow problem [1], with two additional types of
constraints: (i) integrality constraints demand that only one path
may be selected for each statement, and (ii) path constraints are
specified by regular expressions, as discussed above. To incor-
porate path constraints, we formulate the problem in the graph
G = |, G: described above, rather than in the physical network
itself. Incorporating integrality constraints into multi-commodity
flow problems renders them NP-complete in the worst case, but
a number of practical approaches have been developed over the
years, ranging from approximation algorithms [9, 11, 15, 37, 39],
to specialized algorithms for topologies such as expanders [7, 21,
36] and planar graphs [52], to the use of mixed-integer program-
ming [6]. Our current implementation adopts the latter technique.

Our mixed-integer program (MIP) has a {0, 1}-valued decision
variable x. for each edge e of G; selecting a route for each state-
ment corresponds to selecting a path from s; to ¢; for each ¢ and
setting x. = 1 on the edges of those paths, z. = 0 on all other
edges of G. These variables are required to satisfy the flow conser-
vation equations

1 ifv=s;
WeG Y me— Y we=4-1 ifv=t; ()
ecst(v) e€d—(v) 0 otherwise

where 6 (v), 6~ (v) denote the sets of edges exiting and entering
v, respectively. For bookkeeping purposes the MIP also has real-
valued variables ., for each physical network link (u,v), repre-
senting what fraction of the link’s capacity is reserved for state-
ments whose assigned path traverses (u, v). Finally, there are vari-
ables Tmax and Rmax representing the maximum fraction of any
link’s capacity devoted to reserved bandwidth, and the maximum
net amount of reserved bandwidth on any link, respectively. The
equations and inequalities pertaining to these additional variables
can be written as follows. For any statement 4, let %, denote
the minimum amount of bandwidth guaranteed in the rate clause of
statement 4. (r%,;, = 0 if the statement contains no bandwidth guar-
antee.) For any physical link (u, v), let ¢y, denote its capacity and
let E;(u,v) denote the set of all edges of the form ((u, q), (v, q’))
or ((v,q), (u,¢')) in Gi.

V(u,v) TuwCuv :Z Z TrninTe 2

i ecE;(u,v)

V(u,v) Tmax > Tuw 3
V(u, U) Rimax 2 TuvCuv C)]
Tmax < 1 ®)

Constraint 2 defines ., to be the fraction of capacity on link (u, v)
reserved for bandwidth guarantees. Constraints 3 and 4 ensure that
Tmax (respectively, Rmax) is at least the maximum fraction of ca-
pacity reserved on any link (respectively, the maximum net amount
of bandwidth reserved on any link). Constraint 5 ensures that the
path assignment will not exceed the capacity of any link, by assert-
ing that the fraction of reserved capacity does not exceed 1.

Path selection heuristics. In general, there may be multiple
assignments that satisfy the path and bandwidth constraints. To
indicate the preferred assignment, programmers can invoke Merlin
with one of three optimization criteria:

o Weighted shortest path: minimizes the total number of hops
in assigned paths, weighted by bandwidth guarantees:
min >, 35 0 e m u) % inTe. This criterion is appro-
priate when the goal is to minimize latency as longer paths
tend to experience increased latency.

e Min-max ratio: minimizes the maximum fraction of capacity
reserved on any link (i.e., "max). This criterion is appropriate
when the goal is to balance load across the network links.

e Min-max reserved: minimizes the maximum amount of band-
width reserved on any link (i.e., Rmax). This criterion is ap-
propriate when the goal is to guard against failures, since it
limits the maximum amount of traffic that may disrupted by
a single link failure.

The differences between these heuristics are illustrated in Figure 3
which depicts a simple network with hosts h1 and h2 connected

by a pair of disjoint paths. The left path comprises three edges of
capacity 400MB/s. The right path comprises two edges of capac-
ity 100MB/s. The figure shows the paths selected for two state-
ments each requesting a bandwidth guarantee of 50MB/s. Depend-
ing on the heuristic, the MIP solver will either select two-hop paths
(weighted shortest path), reserve no more than 25% of capacity on
any link (min-max ratio), or reserve no more than 50MB/s on any
link (min-max reserved).

The Merlin compiler finds solutions that use a single path for
each traffic class. While there exist approaches to multi-commodity
flow that take advantage of multiple paths, certain protocols (e.g.
TCP congestion control) assume that all packets in a given connec-
tion going from one host to another will traverse the same path.

3.3 Provisioning for Best-Effort Rates

For traffic requiring only best-effort rates, Merlin does not need
to solve a constraint problem. Instead, the compiler only needs to
compute sink-trees that obey the path constraints expressed in the
policy. A sink-tree for a particular network node forwards traffic
from elsewhere on the network to that node. Merlin does this by
computing the cross product of the regular expression NFA and the
network topology representation, as just described, and then per-
forming a breadth-first search over the resulting graph. To further
improve scalability, the compiler uses a small optimization: it uses
a topology that only includes switches, and computes a sink tree
for each egress switch. The compiler adds instructions to forward
traffic from the egress switches to the hosts during code generation.
This allows the BFS to be computed in O(|V||E|), where |V] is the
number of switches rather than the number of hosts.

3.4 Code Generation

Next, the Merlin compiler generates code to enforce the policy.
To do this, Merlin applies a form of program partitioning. Pro-
grammers write the high-level Merlin policy without regard to how
the policy is implemented on the devices distributed throughout the
network. The compiler partitions the policy into separate programs,
instructions, or configuration files that are deployed on the various
devices. The actual code is determined both by the requested func-
tionality and the type of target device.

e Switches. For basic forwarding, Merlin generates instruc-
tions for OpenFlow [45] enabled switches. For bandwidth
guarantees, Merlin generates device-specific port queue con-
figuration scripts. To install the OpenFlow instructions, Mer-
lin generates the code for a network controller written using
Frenetic’s OCaml OpenFlow libraries [19].

e Middleboxes. For functionality such as deep packet inspec-
tion, load balancing, or intrusion detection, Merlin gener-
ates Click [38] configuration scripts to declare what packet-
processing functions to apply, and the order in which to ap-
ply them. Other approaches are possible—e.g., Merlin could
generate Puppet [54] scripts to declare and manage virtual
machines that implement the specified functions.

o End hosts. Traffic filtering and rate limiting are implemented
using the standard Linux utilities iptables and tc.

Merlin can provide greater flexibility and expressiveness by di-
rectly generating packet-processing code, which can be executed
by an interpreter running on end hosts or on middleboxes. We have
also built a prototype that runs as a Linux kernel module and uses
the net £i1ter callback functions to access packets on the network
stack. The interpreter accepts and enforces programs that can filter

or rate limit traffic using a richer set of predicates than those offered
by iptables. Itis designed to have minimal dependencies on op-
erating system services in order to make it portable across different
systems. The current implementation requires only about a dozen
system calls to be exported from the operating system to the inter-
preter. In on-going work, we are exploring additional functionality,
with the goal or providing a general runtime as the target for the
Merlin complier. However, using end hosts assumes a trusted de-
ployment in which all host machines are under administrative con-
trol. An interesting, but orthogonal, problem is to deploy Merlin in
an untrusted environment. Several techniques have been proposed
to verify that an untrusted machine is running certain software. No-
table examples include proof carrying code [49], and TPM-based
attestations [16, 61].

Tag-based routing. Because Merlin controls forwarding paths
but also supports packet-processing functions that may modify head-
ers (such as NAT boxes), the compiler needs to use a forwarding
mechanism that is robust to changes in packet headers. Our cur-
rent implementation uses VLAN tags to encode paths to destination
switches, one tag per sink tree. All packets destined for that tree’s
sink are tagged with a tag when they enter the network. Subsequent
switches simply examine the tag to determine the next hop. At the
egress switch, the tag is stripped off and a unique host identifier
(e.g., the MAC address) is used to forward traffic to the appropri-
ate host. This approach is similar to the technique used in other
systems designed to combine programmable switches and middle-
boxes such as FlowTags [17].

To sum up, the Merlin compiler is designed with flexibility in
mind and can be easily extended with additional backends that cap-
italize on the capabilities of the various devices available in the
network. Although the expressiveness of policies is bounded by
the capabilities of the devices, Merlin provides a unified interface
for programming them.

4. DYNAMIC ADAPTATION

The Merlin compiler described in the preceding section trans-
lates policies into static configurations. Of course, these static con-
figurations may under-utilize resources, depending on how traffic
demands evolve over time. Moreover, in a shared environment,
network tenants may wish to customize global policies to suit their
own needs—e.g., to add additional security constraints.

To allow for the dynamic modification of policies, Merlin uses
small run-time components called negotiators. Negotiators are pol-
icy transformers and verifiers—they allow policies to be delegated
to tenants for modification and they provide a mechanism for ver-
ifying that modifications made by tenants do not lead to violations
of the original global policy. Negotiators depend critically on Mer-
lin’s language-based approach. The same abstractions that allow
policies to be mapped to constraint problems (i.e., predicates, regu-
lar expressions, and explicit bandwidth reservations), make it easy
to support verifiable policy transformations.

Negotiators are distributed throughout the network in a tree, form-
ing a hierarchical overlay over network elements. Each negotiator
is responsible for the network elements in the subtree for which it
is the root. Parent negotiators impose policies on their children.
Children may refine their own policies, as long as the refinement
implies the parent policy. Likewise, siblings may renegotiate re-
source assignments cooperatively, as long as they do not violate
parent policies. Negotiators communicate amongst themselves to
dynamically adjust bandwidth allocations to fit particular deploy-
ments and traffic demands.

4.1 Transformations

With negotiators, tenants can transform global network policies
by refining the delegated policies to suit their own demands. Ten-
ants may modify policies in three ways: (i) policies may be refined
with respect to packet classification; (ii) forwarding paths may be
further constrained; and (iii) bandwidth allocations may be revised.

Refining policies. Merlin policies classify packets into sets us-
ing predicates that combine matches on header fields using logi-
cal operators. These sets can be refined by introducing additional
constraints to the original predicate. For example, a predicate for
matching all TCP traffic:

ip.proto = tcp

can be partitioned into ones that match HTTP traffic and all other
traffic:

ip.proto = tcp and tcp.dst = 80
ip.proto = tcp and tcp.dst != 80

The partitioning must be total—all packets identified by the origi-
nal policy must be identified by the set of new policies.

Constraining paths. Merlin programmers declare path con-
straints using regular expressions that match sequences of network
locations or packet processing functions. Tenants can refine a pol-
icy by adding addition constraints to the regular expression. For ex-
ample, an expression that says all packets must go through a traffic
logger (LOG) function:

.x log .x

can be modified to say that the traffic must additionally pass through
a DPI function:

% log .x dpi .x

The requirement for a transformation that involves changing regu-
lar expressions to be valid is that the set of paths denoted by the new
expression must be a subset of the paths denoted by the original.

Re-allocating bandwidth. Merlin’s limits (max) and guaran-
tees (min) constrain allocations of network bandwidth. After a
policy has been refined, these constraints can be redistributed to
improve utilization. The requirement for a transformation that in-
volves changing bandwidth constraints to be valid is that the sum
of the new allocations must not exceed the original allocation.

Example. As an example that illustrates the use of all three trans-
formations, consider the following policy, which caps all traffic be-
tween two hosts at 7T00MB/s:

[x : (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2) -> .«],
max (x, 700MB/s)

This policy could be modified as follows:

[x ¢ (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 80) -> .x log .x ;

y ¢ (ip.src = 192.168.1.1 and
ip.dst = 192.168.1.2 and
tcp.dst = 22) -> .x ;

z : (ip.src = 192.168.1.1 and

ip.dst = 192.168.1.2 and
!'(tcp.dst=22|tcp.dst=80)) -> .x dpi .*],

max (x, 500MB/s)
and max(y, 100MB/s)
and max (z, 100MB/s)

It gives 500MB/s to HTTP traffic, which must flow through a log
box that monitors requests; it gives 100MB/s to SSH traffic, and it
gives 100MB/s to the remaining traffic, which must flow through a
dpi box.

4.2 Verification

Allowing tenants to make arbitrary modifications to policies would
not be safe. For example, a tenant could lift restrictions on forward-
ing paths, eliminate transformations, or allocate more bandwidth to
their own traffic—all violations of the global policy set down by the
administrator. Fortunately, Merlin negotiators can leverage the pol-
icy language representation to check policy inclusion, which can
be used to establish the correctness of policy transformations im-
plemented by untrusted tenants.

Intuitively, a valid refinement of a policy is one that makes it only
more restrictive. To verify that a policy modified by a tenant is a
valid refinement of the original, the negotiator simply has to check
that for every statement in the original policy, the set of paths al-
lowed for matching packets in the refined policy is included in the
set of paths in the original, and the bandwidth constraints in the re-
fined policy imply the bandwidth constraints in the original. These
conditions can be decided using a simple algorithm that performs a
pair-wise comparison of all statements in the original and modified
policies, (i) checking for language inclusion [28] between the reg-
ular expressions in statements with overlapping predicates, and (ii)
checking that the sum of the bandwidth constraints in all overlap-
ping predicates implies the original constraint.

4.3 Adaptation

Bandwidth re-allocation does not require recompilation of the
global policy, and can thus happen quite rapidly. As a proof-of-
concept, we implemented negotiators that can provide both min-
max fair sharing and additive-increase, multiplicative decrease al-
location schemes. These negotiators allow traffic policies to change
with dynamic workloads, while still obeying the overall static global
policies. Changes in path constraints require global recompilation
and updating forwarding rules on the switches, so they incur a
greater overhead. However, we believe these changes are likely
to occur less frequently than changes to bandwidth allocations.

5. IMPLEMENTATION

We have implemented a full working prototype of the Merlin
system in OCaml and C. Our implementation uses the Gurobi Op-
timizer [25] to solve constraints, the Frenetic controller [19] to in-
stall forwarding rules on OpenFlow switches, the Click router [38]
to manage software middleboxes, and the ipfilters and tc util-
ities on Linux end hosts. Note that the design of Merlin does not
depend on these specific systems. It would be easy to instantiate
our design with other systems, and our implementation provides a
clean interface for incorporating additional backends.

Our implementation of Merlin negotiator and verification mech-
anisms leverages standard algorithms for transforming and analyz-
ing predicates and regular expressions. To delegate a policy, Mer-
lin simply intersects the predicates and regular expressions in each
statement the original policy to project out the policy for the sub-
network. To verify implications between policies, Merlin uses the
73 SMT solver [48] to check predicate disjointness, and the Dprle
library [27] to check inclusions between regular expressions.

6. EVALUATION

To evaluate Merlin, we investigated three main issues: (i) the
expressiveness of the Merlin policy language, (ii) the ability of

3500

Queues =
EXXXR

tc
—
3000 OpenFlow

2500

2000

1500

Number of Instruction

1000

500

0
Baseline Bandwidth Firewall Monitoring Combination
6 11 23 11 23

Merlinloc Merlinloc Merlinloc Merlinloc Merlin loc

Figure 4: Merlin expressiveness, measured using policies for
the Stanford campus network topology.

H
8
5
8

Aggregte —— Ring1-©- Ring2 -w-

Aggregte —— Ring1-&- Ring2 -¥-

vy
PTYTIVVY

Throughput (Mbps)

Throughput (Mbps)
. 388888

B AR AVAAECRY] v
55 T ¢ 400 #BoosPce0e0es0s
w]
& 200
L @
20 40 60 80 100 120 0 20 40 60 80 100 120
Number of clients Number of clients
() (b)

Figure 5: Ring-Paxos (a) without and (b) with Merlin.

Merlin to improve end-to-end performance for applications, and
(iii) the scalability of the compiler and negotiator components with
respect to network and policy size. We used two testbeds in our
evaluation. Most experiments were run on a cluster of Dell r720
PowerEdge servers with two 8-core 2.7GHz Intel Xeon proces-
sors, 32GB RAM, and four 1GB NICs. The Ring Paxos experi-
ment (§6.2) was conducted on a cluster of eight HP SE1102 servers
equipped with two quad-core Intel Xeon L5420 processors running
at 2.5 GHz, with 8 GB of RAM and two 1GB NICs. Both clusters
used a Pica8 Pronto 3290 switch to connect the machines. To test
the scalability we ran the compiler and negotiator frameworks on
various topologies and policies.

Overall, our experiments show that Merlin can effectively provi-
sion and configure real-world datacenter and enterprise networks,
that Merlin can be used to obtain better performance for big-data
processing applications and replication systems, and that Merlin
enables succinctly expressing rich network policies.

6.1 Expressiveness.

To explore the expressiveness of the Merlin policy languages,
we built several network policies for the 16-switch Stanford core
campus network topology [4]. We added 24 hosts to each of the
12 edge switches in the topology and identified each pair-wise ex-
change of traffic between hosts as a separate traffic class. Hence,
there are (24 12)% — (24 % 12) = 82,656 total traffic classes.
We then implemented a series of policies in Merlin, and compared
the sizes of the Merlin source policies and the outputs generated by
the compiler. This comparison measures the degree to which Mer-

lin is able to abstract away from hardware-level details and provide
effective constructs for managing a real-world network.
The Merlin policies we implemented are as follows:

1. All-pairs connectivity. This policy creates pair-wise forward-
ing rules for all hosts in the network. The policy is restricted
to only forwarding, and does not specify packet-processing
functions or provide bandwidth caps and guarantees. It there-
fore provides a baseline measurement of the number of low-
level instructions that would be needed in almost any non-
trivial application. The Merlin policy is only 6 lines long
and compiles to 145 OpenFlow rules.

2. Bandwidth caps and guarantee. This policy augments the
basic connectivity by providing 10% of traffic classes a band-
width guarantee of 1Mbps and a cap of 1Gbps. Such a guar-
antee would be useful, for example, to prioritize emergency
messages sent to students. This policy required 11 lines of
Merlin code, but generates over 1600 OpenFlow rules, 90 TC
rules and 248 queue configurations. The number of Open-
Flow rules increased dramatically due to the presence of the
bandwidth guarantees which required provisioning separate
forwarding paths for a large collection of traffic classes.

3. Firewall. This policy assumes the presence of a middlebox
that filters incoming web traffic connected to the network
ingress switches. The baseline policy is altered to forward
all packets matching a particular pattern (e.g., tcp.dst =
80) through the middlebox. This policy requires 23 lines of
Merlin code, but generates over 500 OpenFlow instructions.

4. Monitoring middlebox. This policy attaches middleboxes to
two switches and partitions the hosts into two sets of roughly
equal size. Hosts connected to switches in the same set may
send traffic to each other directly, but traffic flowing between
sets must be passed through a middlebox. This policy is use-
ful for filtering traffic from untrusted sources, such as student
dorms. This policy required 11 lines of Merlin code but gen-
erates 300 OpenFlow rules, roughly double the baseline.

5. Combination. This policy augments the basic connectivity
with a filter for web traffic, a bandwidth guarantee for cer-
tain traffic classes and an inspection policy for a certain class
of hosts. This policy requires 23 lines of Merlin code, but
generates over 3000 low-level instructions.

The results of this experiment are depicted in Figure 4. Over-
all, it shows that using Merlin significantly reduces the effort, in
terms of lines of code, required to provision and configure network
devices for a variety of real-world management tasks.

6.2 Application Performance

Our second set of experiments explore Merlin’s ability to ex-
press policies that are beneficial for real-world applications. As one
would expect, they show that bandwidth provisioning improves the
performance of data center applications. However, the experiments
are provide a proof-of-concept that Merlin policies can be used to
effectively manage data center traffic.

Hadoop. Hadoop is a popular open-source MapReduce [13] im-
plementation, and is widely-used for data analytics. A Hadoop
computation proceeds in three stages: the system (i) applies a map
operator to each data item to produce a large set of key-value pairs;
(ii) shuffles all data with a given key to a single node; and (iii) ap-
plies the reduce operator to values with the same key. The many-to-
many communication pattern used in the shuffle phase often results

700 ,
600 o
3
£ 500 [|
[

5 400 f o0]

j=}

v 300 o o 1
= o

= 200 o

o
100 | ,
— ‘ ‘

0 50 100 150 200

Switches

Figure 6: Compilation times for Internet Topology Zoo.

2 1000

15 750
500

0.5 250

Time to Solve (s)
o =
Time to Solve (s)

0
10K 50K 100K 150K 200K
Traffic Classes

im 50M 100M 150M 200M
Traffic Classes

() (b)

Figure 7: Compilation times for an increasing number of traffic
classes in a balanced tree topology for (a) all pairs connectivity,
(b) 5% of the traffic with guaranteed priority.

in heavy network load, making Hadoop jobs especially sensitive to
background traffic. In practice, this background traffic can come
from a variety of sources. For example, some applications use
UDP-based gossip protocols to update state, such as system mon-
itoring tools [64, 63], network overlay management [32], and even
distributed storage systems [64, 14]. A sensible network policy
would be to provide guaranteed bandwidth to Hadoop so jobs fin-
ish quickly, and give the UDP traffic only best-effort guarantees.

With Merlin, we implemented this policy using just three state-
ments. To show the impact of the policy, we ran a Hadoop job
that sorts 10GB of data, and measured the time to complete it on a
cluster of four servers, under three different configurations:

1. Baseline. Hadoop had exclusive access to the network.

2. Interference. We used the iperf tool to inject UDP packets,
simulating background traffic.

3. Guarantees. We again injected background traffic, but guar-
anteed 90 percent of the capacity for Hadoop.

The measurements demonstrate the expected results. With exclu-
sive network access, the Hadoop job finished in 466 seconds. With
background traffic causing network congestion, the job finished in
558 seconds, a roughly 20% slow down. With the Merlin policy
providing bandwidth guarantees, the job finished in 500 seconds,
corresponding to the 90% allocation of bandwidth.

Ring-Paxos. State-machine replication (SMR) is a fundamental
approach to designing fault-tolerant services [41, 57] that is used at
the core of many current systems (e.g., Google’s Chubby [8], Scat-
ter [23], Spanner [12]). State machine replication provides clients
with the abstraction of a highly available service by replicating the
servers and regulating how commands are propagated to and exe-
cuted by the replicas: (i) every nonfaulty replica must receive all
commands in the same order; and (ii) the execution of commands
must be deterministic.

80 2500
2000
1500
1000

60

40

20 500

Time to Solve (s)
Time to Solve (s)

0
10K 50K 100K 150K 200K
Traffic Classes

(a) (b)

0
M 50M 100M 150M 200M
Traffic Classes

Figure 8: Compilation times for an increasing number of traffic
classes in a fat tree topology for (a) all pairs connectivity, (b) 5%
of the traffic with guaranteed priority.

Because ordering commands in a distributed setting is a non-
negligible operation, the performance of a replicated service is of-
ten determined by the number of commands that can be ordered
per time unit. To achieve high performance, the service state can
be partitioned and each partition replicated individually (e.g., by
separating data from meta-data), but the partitions will compete for
shared resources (e.g., common nodes and network links).

We assessed the performance of a key-value store service repli-
cated with state-machine replication. Commands are ordered using
an open-source implementation of Ring Paxos [44], a highly ef-
ficient implementation of the Paxos protocol [42]. We deployed
two instances of the service, each one using four processes. One
process in each service is co-located on the same machine and all
other processes run on different machines. Clients are distributed
across six different machines and submit their requests to one of
the services and receive responses from the replicas.

Figure 5 (a) depicts the throughput of the two services; the ag-
gregate throughput shows the accumulated performance of the two
services. Since both services compete for resources on the com-
mon machine, each service has a similar share of the network, the
bottlenecked resource at the common machine. In Figure 5 (b), we
specified a guarantee of 60 percent of the capacity for Service 2.
Note that this guarantee does not come at the expense of utiliza-
tion. If Service 2 stops sending traffic, Service 1 is free to use the
available bandwidth.

Summary. Overall, these experiments show that Merlin policies
can concisely express real-world policies, and that the Merlin sys-
tem is able to generate code that achieves the desired outcomes for
applications on real hardware.

6.3 Compilation and Verification

The scalability of the Merlin compiler and verification frame-
work depend on both the size of the network topology and the
number of traffic classes. Our third set of experiment evaluate the
scalability of Merlin under a variety of scenarios.

Compiler. The measured the compilation time of the Merlin com-

piler on three different sets of network topologies.

1. Topology Zoo. The Internet Topology Zoo [29] dataset con-
tains 262 topologies that represent a large diversity of net-
work structures. We treated each node in the Topology Zoo
graph as a switch, and attached one host to each switch. The
topologies have an average size of 40 switches, with a stan-
dard deviation of 30 switches. We measured the compila-
tion time needed by Merlin to determine pair-wise forward-
ing rules for all hosts in each topology. In other words, the

policy provides basic connectivity for all hosts in the net-
work. The results are shown in Figure 6.

2. Balanced Trees. We used the NetworkX Python software
package [51] to generate balanced tree topologies. In a bal-
anced tree, each node has n children, except the leaves. We
treated internal node as switches, and leaf nodes as hosts. We
varied the depth of the tree from 2 to 3, and the fanout (i.e.,
number of children) over a range of 2 to 24, to give us trees
with varying numbers of hosts and switches. We identified
each pair-wise exchange of traffic between hosts as a sepa-
rate traffic class. We measured the compilation time for two
different policies for an increasing number of traffic classes.
Figure 7 (a) shows the time to provide pair-wise connectiv-
ity with no guarantees, and Figure 7 (b) shows the time to
provide connectivity when 5% of the traffic classes receive
bandwidth guarantees.

3. Fat Trees. Finally, we used the NetworkX to generate fat tree
topologies [2]. A fat tree contains a set of pods. Each pod
of size n has two layers of n/2 switches. To each switch
in a lower layer, we attached two hosts. Each pair-wise ex-
change of traffic between hosts is a separate traffic class. We
increased the pod size n to create larger numbers of traffic
classes. Figure 8 (a) shows the compilation time to provide
pair-wise connectivity with no guarantees, and Figure 8 (b)
shows the time to provide connectivity when 5% of the traffic
classes receive bandwidth guarantees. To provide more detail
for fat tree topologies, Figure 9 shows a sample of topology
sizes and solution times for various traffic classes, along with
a finer-grained accounting of compiler time.

The results in Figure 6 show that for providing basic connectiv-
ity, Merlin scales well on a diverse set of topologies. The compiler
finished in less than 50ms for the majority of topologies, and less
than 600ms for all but one of the topologies. To improve the read-
ability of the graph, we elided the largest topology, which has 754
switches and took Merlin 4 seconds to compile. In practice, we ex-
pect that this task could be computed offline. To put the results in
context, a similar experiment was used to evaluate VMware’s NSX,
which reports approximately 30 minutes to achieve 100% connec-
tivity from a cold boot [40].

Figures 7 and 8 show the impact of bandwidth guarantees on
compilation time. As expected, the guarantees add significant over-
head. The worst case scenario that we measured, shown in Figure 8
(b), was a network with 184, 470 total traffic classes, with 9, 224 of
those classes receiving bandwidth guarantees. Merlin took around
41 minutes to find a solution. To put that number in perspective,
B4 [31] only distinguishes 13 traffic classes. Merlin finds solu-
tions for 100 traffic classes with guarantees in a network with 125
switches in less than 5 seconds.

Figure 9 shows more detail about where the compiler time is
spent. The LP construction column measures how long it takes
to create the LP problem. Our prototype implementation writes
the problem to a file on disk before invoking the solver in a sep-
arate process. So, much of this time is attributed to string alloca-
tions and file I/O. The LP solution column measures how long it
takes the solver to find a solution to the LP problem. As expected,
this is where most of the time is spent as we increase the problem
size. The Best-Effort solution column measures how long it takes
to find paths with best-effort guarantees for the remaining traffic.
The compiler spends little time finding paths that do not provide
guaranteed rates.

These experiments show that Merlin can provide connectivity
for large networks quickly and our mixed-integer programming ap-

Traffic Classes | Hosts | Switches | LP construction (ms) | LP solution (ms) | Best-Effort solution (ms)

870 30 45 25 22 33

8010 90 80 214 160 36

28730 170 125 364 252 106

39800 200 125 1465 1485 91

95790 310 180 13287 248779 222
136530 370 180 27646 1200912 215
159600 400 180 29701 1351865 212
229920 480 245 86678 10476008 451

Figure 9: Number of traffic classes, topology sizes, and details of compilation time for fat tree topologies with 5% of the traffic classes
with guaranteed bandwidth.

Number of Statements

Number of Regular Expression Nodes

21 4000 21 : :
20 B 3000 | 20t H H{ E
o Jit n n T
£ ot £ £
T 19 {}? S 2000 | S 19 f ,,,{---‘}"‘f
£ ¥t g 2 e
£l L £ £
At . FI
18 +¥ 1000 - e] 18+t
17 0 bazm=t 17
0 2000 4000 6000 8000 10000 0 200 400 600 800 1000 0 2000 4000 6000 8000 10000

Number of Allocations

Figure 10: Time taken to verify a delegated policy for an increasing number of delegated predicates, increasingly complex regular
expressions, and an increasing number of bandwidth allocations.

proach used for guaranteeing bandwidth scales to large networks
with reasonable overhead.

Verifying negotiators. Delegated Merlin policies can be mod-
ified by negotiators in three ways: by changing the predicates, the
regular expressions, or the bandwidth allocations. We ran three
experiments to benchmark our negotiator verification runtime for
these cases. First, we increased the number of additional predi-
cates generated in the delegated policy. Second, we increased the
complexity of the regular expressions in the delegated policy. The
number of nodes in the regular expression’s abstract syntax tree is
used as a measure of its complexity. Finally, we increased the num-
ber of bandwidth allocations in the delegated policy. For all three
experiments, we measured the time needed for negotiators to verify
a delegated policy against the original policy. We report the mean
and standard deviation over ten runs.

The results, shown in Figure 10, demonstrate that policy verifi-
cation is extremely fast for increasing predicates and allocations.
Both scale linearly up to tens of thousands of allocations and state-
ments and complete in milliseconds. This shows that Merlin ne-
gotiators can be used to rapidly adjust to changing traffic loads.
Verification of regular expressions has higher overhead. It scales
quadratically, and takes about 3.5 seconds for an expression with
a thousand nodes in its parse tree. However, since regular expres-
sions denote paths through the network, it is unlikely that we will
encounter regular expressions with thousands of nodes in realistic
deployments. Moreover, we expect path constraints to change rel-
atively infrequently compared to bandwidth constraints.

Dynamic adaptation. Merlin negotiators support a wide range
of resource management schemes. We implemented two common
approaches: additive-increase, multiplicative decrease (AIMD), and
max-min fair-sharing (MMES). Both implementations required two

components: a negotiator which ran on the same machine as the
SDN controller, and end-host software, which monitors per-host
bandwidth usage, and sends requests to the negotiator.

With AIMD, the end-host components send requests to the ne-
gotiator to incrementally increase their bandwidth allocation. The
negotiator maintains a mapping of hosts to their current bandwidth
limits. When the negotiator receives a new request, it attempts to
satisfy the demand. If, however, satisfying the demand violates the
global policy, it then exponentially reduces the allocation for the
host. After computing the new allocations, the negotiator generates
the updated Merlin policies, which are processed by the compiler
to generate new t ¢ commands that are installed on the end-hosts.

With MMES, the end-host components declare resource require-
ments ahead of time by sending demands to the negotiator. The
negotiator maintains a mapping of hosts to their demands. When
the negotiator receives a new demand, it re-allocates bandwidth for
all hosts. It does this by attempting to satisfy all demands starting
with the smallest. When there is not enough bandwidth available to
satisfy any further demands, the left-over bandwidth is distributed
equally among the remaining tenants. Once the new allocations are
computed, the negotiator generates a new policy that reflects those
allocations. The new policy is processed by the compiler to gener-
ate new queue configurations for switches, and t ¢ commands for
end hosts. The queues configurations ensure that satisfied demands
are respected, and the t c commands ensure that the remaining traf-
fic does not exceed the allocation specified by the original policy.

Figure 11 (a) shows the bandwidth usage over time for two hosts
using the AIMD strategy. Figure 11 (b) shows the bandwidth usage
over time for four hosts using the MMFS negotiators. Host h1 com-
municates with h2, and h3 communicates with h4. Both graphs
were generated on our hardware testbed. Overall, negotiators allow
the network to quickly adapt to changing resource demands, while
respecting the global constraints imposed by the policy.

600

550 1
500 .
450
400
350
300
250
200 |
150 P
100

Throughput (Mbits/s)

(a)

Throughput (Mbit's)

500

10 15 20 25 30
Time (s)

(b)

Figure 11: (a) AIMD and (b) MMFS dynamic adaptation.

7. RELATED WORK

An earlier workshop paper presented a preliminary design for
Merlin including sketching the encoding of path selection as a con-
straint problem, and presenting ideas for language-based delegation
and verification [62]. This paper expands our earlier work with a
complete description of Merlin’s design and implementation, and

an experimental evaluation.

A number of systems in recent years have investigated mech-
anisms for providing bandwidth caps and guarantees [5, 60, 53,
33], implementing traffic filters [30, 56], or specifying forwarding
policies at different points in the network [20, 24, 47, 26]. Mer-
lin builds on these approaches by providing a unified interface and
central point of control for switches, middleboxes, and end hosts.

SIMPLE [55] is a framework for controlling middleboxes. SIM-
PLE attempts to load balance the network with respect to TCAM and
CPU usage. Like Merlin, it solves an optimization problem, but it
does not specify the programming interface to the framework, or
how policies are represented and analyzed.

The APLOMB [59] system allows network operators to specify
middlebox processing services that should be applied to classes of
traffic. The actual processing of packets is handled by virtual ma-
chines deployed in a cloud-based architecture. Merlin is similar,
in that policies allow users to specify packet-processing functions.
However, Merlin does not directly target cloud-services. Moreover,
Merlin allocates paths with respect to bandwidth constraints while

APLOMB does not.

Many different programming languages have been proposed in
recent years including Frenetic [20], Pyretic [46], and Maple [65].
These languages typically offer abstractions for programming Open-
Flow networks. However, these languages are limited in that they
do not allow programmers to specify middlebox functionality, allo-
cate bandwidth, or delegate policies. An exception is the PANE [18]
system, which allows end hosts to make explicit requests for net-
work resources like bandwidth. Unlike Merlin, PANE does not pro-
vide mechanisms for partitioning functionality across a variety of
devices and delegation is supported at the level of individual net-

work flows, rather than entire policies.

The Merlin compiler implements a form of program partition-
ing. This idea has been previously explored in a variety of other
domains including secure web applications [10], and distributed

computing and storage [43].

8. CONCLUSION

The success of programmable network platforms has demon-
strated the benefits of high-level languages for managing networks.
Merlin complements these approaches by further raising the level
of abstraction. Merlin allows administrators to specify the func-
tionality of an entire network, leaving the low-level configuration
of individual components to the compiler. At the same time, Merlin

provides tenants with the freedom to tailor policies to their particu-
lar needs, while assuring administrators that the global constraints
are correctly enforced. Overall, this approach significantly simpli-
fies network administration, and lays a solid foundation for a wide
variety of future research on network programmability.

Acknowledgements

The authors wish to thank Ricardo Padilha for his help with setting
up experiments. This work is partially funded by the following
grants: NSF CNS-1111698, CNS-1413972, SHF-1422046, CCF-
1253165, ONR N00014-12-1-0757, AFOSR 9550-09-1-0100, and
a gift from Fujitsu.

9.
[1]
[2]

%
4

(6]

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc., 1993.

M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 63-74, Aug. 2008.

C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic Foundations for
Networks. In Symposium on Principles of Programming Languages,
pages 113-126, Jan. 2014.

Automatic test packet generation.
https://github.com/eastzone/atpg.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
Predictable Datacenter Networks. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 242-253, Aug. 2011.

C. Barnhart, C. A. Hane, and P. H. Vance. Using
Branch-and-Price-and-Cut to Solve Origin-Destination Integer
Multicommodity Flow Problems. Operations Research,
48(2):318-326, Mar. 2000.

A.Z. Broder, A. M. Frieze, and E. Upfal. Static and Dynamic Path
Selection on Expander Graphs: A Random Walk Approach. In
Symposium on Theory of Computing, pages 531-539, May 1997.
M. Burrows. The Chubby Lock Service for Loosely-coupled
Distributed Systems. In Symposium on Operating Systems Design
and Implementation, pages 335-350, Nov. 2006.

A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation
Algorithms for the Unsplittable Flow Problem. In International
Workshop on Approximation Algorithms for Combinatorial
Optimization, pages 51-66, Sept. 2002.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and

X. Zheng. Secure Web Applications via Automatic Partitioning. In
Symposium on Operating Systems Principles, pages 31-44, Oct.
2007.

J. Chuzhoy and S. Li. A Polylogarithmic Approximation Algorithm
for Edge-Disjoint Paths with Congestion 2. In IEEE Symposium on
Foundations of Computer Science, pages 233-242, Oct. 2012.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,

S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,

D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,

C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s
Globally-distributed Database. In Symposium on Operating Systems
Design and Implementation, pages 251-264, Oct. 2012.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Symposium on Operating Systems Design and
Implementation, pages 137-150, Dec. 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s Highly Available Key-Value Store.
In Symposium on Operating Systems Principles, pages 205-220, Oct.
2007.

Y. Dinitz, N. Garg, and M. X. Goemans. On the Single-Source
Unsplittable Flow Problem. Combinatorica, 19(1):17-41, Jan. 1999.

https://github.com/eastzone/atpg

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]
(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and

A. Krishnamurthy. ETTM: A Scalable Fault Tolerant Network
Manager. In Symposium on Networked Systems Design and
Implementation, pages 7-21, Mar. 2011.

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul.
Enforcing Network-wide Policies in the Presence of Dynamic
Middlebox Actions Using Flowtags. In Symposium on Networked
Systems Design and Implementation, pages 533-546, Apr. 2014.

A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.
Participatory Networking: An API for Application Control of SDNs.
In Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 327-338, Aug. 2013.
N. Foster, A. Guha, et al. The Frenetic Network Controller. In The
OCaml Users and Developers Workshop, Sept. 2013.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker. Frenetic: A Network Programming
Language. In International Conference on Functional Programming,
pages 279-291, Sept. 2011.

A. M. Frieze. Disjoint Paths in Expander Graphs via Random Walks:
A Short Survey. In Workshop on Randomization and Approximation
Techniques in Computer Science, pages 1-14, Oct. 1998.

A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward
Software-Defined Middlebox Networking. In Workshop on Hot
Topics in Networks, pages 7-12, Oct. 2012.

L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and

T. Anderson. Scalable Consistency in Scatter. In Symposium on
Operating Systems Principles, pages 15-28, Oct. 2011.

P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet Routing.
SIGCOMM Computer Communication Review, 39(4):111-122, Aug.
2009.

Gurobi Optimization Inc. The Gurobi optimizer.
http://www.gurobi.com.

T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker.
Practical Declarative Network Management. In Workshop: Research
on Enterprise Networking, pages 1-10, 2009.

P. Hooimeijer. Dprle decision procedure library.
http://www.cs.virginia.edu/~phdu/dprle/.

J. Hopcroft and J. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

The Internet Topology Zoo. http: //www.topology-z00.0rg.
S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith.
Implementing a Distributed Firewall. In Conference on Computer
and Communications Security, pages 190-199, Nov. 2000.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,

S. Stuart, and A. Vahdat. B4: Experience with a Globally Deployed
Software Defined WAN. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 3—14, Aug. 2013.

M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-based
Fast Overlay Topology Construction. Computer Networks,
53(13):2321-2339, Jan. 2009.

V. Jeyakumar, M. Alizadeh, D. Mazi¢res, B. Prabhakar,

A. Greenberg, and C. Kim. EyeQ: Practical Network Performance
Isolation at the Edge. In Symposium on Networked Systems Design
and Implementation, pages 297-312, Apr. 2013.

D. A. Joseph, A. Tavakoli, I. Stoica, D. Joseph, A. Tavakoli, and

I. Stoica. A Policy-aware Switching Layer for Data Centers. In
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 51-62, Aug. 2008.
N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "One Big
Switch" Abstraction in Software-defined Networks. In International
Conference on Emerging Networking Experiments and Technologies,
pages 13-24, Dec. 2013.

J. Kleinberg and R. Rubinfeld. Short Paths in Expander Graphs. In
IEEE Symposium on Foundations of Computer Science, pages 86-95,
Oct. 1996.

J. M. Kleinberg. Single-Source Unsplittable Flow. In /[EEE
Symposium on Foundations of Computer Science, pages 68-77, Oct.
1996.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47

[48]

[49]

[50]

(511
[52]

[53]

[54]
[55]

[56]

[57]

(58]

[59]

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. Transactions on Computer Systems,
18(3):263-297, Aug. 2000.

S. G. Kolliopoulos and C. Stein. Approximation Algorithms for
Single-Source Unsplittable Flow. SIAM Journal on Computing,
31(3):919-946, June 2001.

T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,

B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff,

R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,

D. Wendlandt, A. Yip, and R. Zhang. Network Virtualization in
Multi-tenant Datacenters. In Symposium on Networked Systems
Design and Implementation, pages 203-216, Apr. 2014.

L. Lamport. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7):558-565,
July 1978.

L. Lamport. The Part-Time Parliament. Transactions on Computer
Systems, 16(2):133-169, May 1998.

J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers.
Fabric: A Platform for Secure Sistributed Computation and Storage.
In ACM SIGOPS European Workshop, pages 321-334, Oct. 2009.
P. Marandi et al. Ring Paxos: A high-throughput atomic broadcast
protocol. In International Conference on Dependable Systems and
Networks, pages 527 —536, May 2010.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Computer
Communication Review, 38(2):69-74, Mar. 2008.

C. Monsanto et al. Composing Software-Defined Networks. In
Symposium on Networked Systems Design and Implementation,
pages 1-13, Apr. 2013.

C. Monsanto, N. Foster, R. Harrison, and D. Walker. A Compiler and
Run-time System for Network Programming Languages. In
Symposium on Principles of Programming Languages, pages
217-230, Jan. 2012.

L. D. Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337-340, 2008.

G. C. Necula. Proof-Carrying Code. In Symposium on Principles of
Programming Languages, pages 106—119, Jan. 1997.

T. Nelson, M. Scheer, A. D. Ferguson, and S. Krishnamurthi. Tierless
Programming and Reasoning for Software-Defined Networks. In
Symposium on Networked Systems Design and Implementation, Apr.
2014.

NetworkX. https://networkx.github.io.

H. Okamura and P. D. Seymour. Multicommodity Flows in Planar
Graphs. Journal of Combinatorial Theory, Series B, 31(1):75-81,
1981.

L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,

S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Network in
Cloud Computing. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages
187-198, Aug. 2012.

Puppet. http://puppetlabs.com.

Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.
SIMPLE-fying Middlebox Policy Enforcement Using SDN. In
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 27-38, Aug. 2013.
M. Roesch. Snort—Lightweight Intrusion Detection for Networks. In
Conference on System Administration, pages 229-238, Nov. 1999.
F. B. Schneider. Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial. Computing Surveys,
22(4):299-319, Dec. 1990.

V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and
Implementation of a Consolidated Middlebox Architecture. In
Symposium on Networked Systems Design and Implementation,
pages 24-38, Apr. 2012.

J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, pages 13-24, Aug. 2012.

http://www.gurobi.com
http://www.cs.virginia.edu/~ph4u/dprle/
http://www.topology-zoo.org
https://networkx.github.io
http://puppetlabs.com

[60]

[61]

[62]

A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
Performance Isolation for Cloud Datacenter Networks. In Workshop
on Hot Topics in Cloud Computing, pages 1-8, June 2010.

E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,

D. Williams, and F. B. Schneider. Logical Attestation: An
Authorization Architecture for Trustworthy Computing. In
Symposium on Operating Systems Principles, pages 249-264, Oct.
2011.

R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster. Managing
the Network with Merlin. In Workshop on Hot Topics in Networks,
Nov. 2013.

[63]

[64]

[65]

R. Subramaniyan, P. Raman, A. D. George, M. A. Radlinski, and
M. A. Radlinski. GEMS: Gossip-Enabled Monitoring Service for
Scalable Heterogeneous Distributed Systems. Cluster Computing,
9(1):101-120, Jan. 2006.

R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust
and Scalable Technology for Distributed System Monitoring,
Management, and Data Mining. Transactions on Computer Systems,
21(2):164-206, Feb. 2003.

A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:
Simplifying SDN Programming Using Algorithmic Policies. In
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 87-98, Aug. 2013.

	Introduction
	Language Design
	Syntax and semantics

	Compiler
	Localization
	Provisioning for Guaranteed Rates
	Provisioning for Best-Effort Rates
	Code Generation

	Dynamic Adaptation
	Transformations
	Verification
	Adaptation

	Implementation
	Evaluation
	Expressiveness.
	Application Performance
	Compilation and Verification

	Related Work
	Conclusion
	References

