
Matching Lenses

Davi M. J. Barbosa (Polytechnique)
Julien Cretin (Polytechnique/INRIA)

Nate Foster (Cornell)
Michael Greenberg (Penn)
Benjamin C. Pierce (Penn)

ICFP ’10

Example

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

Example

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

Example

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

Example

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

Example

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* Haskell 98

* LISP 58

* ML 73

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History=

List the inventors of the

following programming languages.

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

=Combinators=

Give the equations for S and K in

a combinatory algebra.

=Scoping=

Which of these terms are closed?

* ńx.ńy.x
* ńx.(ńy.y) y

* (ńx.ńz.x) ńx.ńy.z
=Lambda Calculus=

Give a weakly normalizing term

which is not strongly normalizing.

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

List the inventors of the

following programming languages.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

=Combinators (? pts)=

Give the equations for S and K in

a combinatory algebra.

(* TODO: write the answer *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* ńx.(ńy.y) y (* TODO: answer *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

Basic lens with complement

A lens l is between a source set S and a view set V , and over
a complement set C .

Notation: l ∈ S
C⇐⇒ V

Basic lens with complement

A lens l is between a source set S and a view set V , and over
a complement set C .

Notation: l ∈ S
C⇐⇒ V

The source S contains all the information (the full exam).

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

Basic lens with complement

A lens l is between a source set S and a view set V , and over
a complement set C .

Notation: l ∈ S
C⇐⇒ V

The view V has less information than the source (we don’t
show the answers and number of points).

=History=

* Haskell 98

* LISP 58

* ML 73

Basic lens with complement

A lens l is between a source set S and a view set V , and over
a complement set C .

Notation: l ∈ S
C⇐⇒ V

The complement C represents the missing information (the
answers and number of points).

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

Basic lens with complement

A lens comes with three functions: get,

res

and put.

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

get

res put

Basic lens with complement

A lens comes with three functions: get, res

and put.

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

get

res

put

Basic lens with complement

A lens comes with three functions: get, res and put.

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

getres

put

Basic lens with complement

l .get ∈ S → V
l .res ∈ S → C
l .put ∈ V → C → S

These functions obey two round-tripping laws, explaining the
interoperation between get, res and put.

l .get (l .put v c) = v (PutGet)

l .put (l .get s) (l .res s) = s (GetPut)

The alignment problem

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

get

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

edit

=History (5 pts)=

* LISP 58 (* Hudak,PJ,Wadler *)

* ML 73 (* McCarthy *)

* OCaml 87 (* Gordon,Milner *)

* Haskell 90 (* TODO: answer *)

put

The alignment problem

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

get

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

edit

=History (5 pts)=

* LISP 58 (* Hudak,PJ,Wadler *)

* ML 73 (* McCarthy *)

* OCaml 87 (* Gordon,Milner *)

* Haskell 90 (* TODO: answer *)

put

The alignment problem

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

get

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

edit

=History (5 pts)=

* LISP 58 (* Hudak,PJ,Wadler *)

* ML 73 (* McCarthy *)

* OCaml 87 (* Gordon,Milner *)

* Haskell 90 (* TODO: answer *)

put

The alignment problem

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

get

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

edit

=History (5 pts)=

* LISP 58 (* Hudak,PJ,Wadler *)

* ML 73 (* McCarthy *)

* OCaml 87 (* Gordon,Milner *)

* Haskell 90 (* TODO: answer *)

put

Challenges

I This problem is fundamentally heuristic
I “state-based” lens only sees the result of edit
I user intent must be inferred

I Appropriate heuristic depends on the application

I How to fit these heuristic behaviors into our principled
lens framework?

I how to formulate clean semantic laws involving “user
intent”?

Matching Lenses

Goals:

I General solution (applicable to many heuristics)

I Clean theory (core laws parametrized on heuristics)

Structures with chunks

In order to express the behavior of the put function in presence
of view edits, we need to add structure to the source, view and
complement types.

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

source

chunks

=History=

* Haskell 98

* LISP 58

* ML 73

view

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

resource

5 pts

rigid complement

whole complement

Plan

I Start with something simple
I get does not permute the items
I items are not nested
I only one sublens is used for all items

I Understand it fully

I Relax these simplifications

Simple matching lenses

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res
edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res
edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res

edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res

edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res
edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res
edit

align (heuristic)

put

Mechanism

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

5 pts

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

=History=

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

5 pts

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

=History (5 pts)=

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

get

res
edit

align (heuristic)

put

Matching lenses

A matching lens l is between S and V , and over a rigid
complement C and a basic lens k .

We split the complement in two parts: a rigid complement C ,
and a resource (reorderable part) {|N 7→ Ck |}.

whole complement
l .get ∈ S → V

l .res ∈ S → C × {|N 7→ Ck |}

l .put ∈ V → C × {|N 7→ Ck |} → S

rigid complement resource (reorderable part)

Matching lenses

A matching lens l is between S and V , and over a rigid
complement C and a basic lens k .

We split the complement in two parts: a rigid complement C ,
and a resource (reorderable part) {|N 7→ Ck |}.

whole complement
l .get ∈ S → V

l .res ∈ S → C × {|N 7→ Ck |}

l .put ∈ V → C × {|N 7→ Ck |} → S

rigid complement

resource (reorderable part)

Matching lenses

A matching lens l is between S and V , and over a rigid
complement C and a basic lens k .

We split the complement in two parts: a rigid complement C ,
and a resource (reorderable part) {|N 7→ Ck |}.

whole complement
l .get ∈ S → V

l .res ∈ S → C × {|N 7→ Ck |}

l .put ∈ V → C × {|N 7→ Ck |} → S

rigid complement resource (reorderable part)

ChunkGet

We add new laws guiding how the lens operate.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* Haskell 98

* LISP 58

* ML 73

get k.get

ChunkPut

We add new laws guiding how the lens operate in presence of
view edits.

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

* OCaml 87 (* TODO: answer *)

* Haskell 90 (* Hudak,PJ,Wadler *)

* LISP 58

* ML 73

* OCaml 87

* Haskell 90

McCarthy

Gordon,Milner

NULL

Hudak,PJ,Wadler

put

k.put

Heuristics

We can now get benefit of our framework, by considering
several heuristics.
We have implemented heuristics that minimize a cost function
on an alignment search space.

diffy setlike

Syntax of the example

let subject = field true . "\n"

let exercise1 =

let q = setlike 0 "question" in

topic . subject . <q:key question > +

let exercise2 =

topic . subject

. default

(del ("(* " . field true . " *)\n"))
"(* TODO: write the answer *)\n"

let main_lens =

let e1 = setlike 0 "exercise1" in

let e2 = setlike 0 "exercise2" in

(<e1:key (align exercise1) >

| <e2:key (align exercise2) >)*

module Example =

let field (b:bool) =

let c = [A-Za-z0-9():,.?] | "" in

let w =

match b with

| true -> [\n]
| false -> ’ ’

:regexp

in (c | c . (c | w)* . c)

let topic =

copy ("=" . field false)

. default

(del (" (" . [?1-9] . " pts)"))

" (? pts)"

. copy "=\n"

let question =

copy ("* " . field false)

. default

(del (" (* " . field false . " *)"))

" (* TODO: answer *)"

. copy "\n"

Extensions

Nested chunks

We can handle several levels of chunks.

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

Tags

We can also have several kinds of chunks which are processed
in different ways.

=History (5 pts)=

List the inventors of the

following programming languages.

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=Scoping (2 pts)=

Which of these terms are closed?

* ńx.ńy.x (* Yes *)

* (ńx.ńz.x) ńx.ńy.z (* No *)

=Lambda Calculus (3 pts)=

Give a weakly normalizing term

which is not strongly normalizing.

(* (ńx.ńy.y) ((ńx.x x) ńx.x x) *)

k1

k2

Composition

=History (5 pts)=

* Haskell 98 (* Hudak,PJ,Wadler *)

* LISP 58 (* McCarthy *)

* ML 73 (* Gordon,Milner *)

=History=

* Haskell 98

* LISP 58

* ML 73

Hudak,PJ,Wadler

McCarthy

Gordon,Milner

History

Haskell

LISP

ML

98

58

73

get get

res res

Related work

Positional

I Focal — [TOPLAS ’07]

I semantic bidirectionalization — [Vogtlaender ’09]

I syntactic bidirectionalization — [Matsuda ’07]

I point free lenses — [Pacheco and Cunha ’10]

Update-based

I most databases

I X and Inv — [Hu, Mu and Takeichi ’04]

I constraint maintainers — [Merteens ’98]

I u-lenses — [Diskin, Xiong and Czarnecki ’10]

Dictionary lenses

Idea: use keys for alignment [POPL ’08]

Mechanism: build a dictionary, thread it through put

Limitations:

I we don’t necessarily have keys,

I the update can change keys, and

I weird composition

Benefits of matching lenses:

I modularity

I enable use of global heuristics

I stronger semantic laws

Conclusion

I The alignment problem was an often eluded and not well
understood issue arising whenever we handle a list of
items in a lossy way, which is the case in many
applications.

I The notion of chunks allows to precisely tell which parts
of the source are linked.

I Abstracting the alignment from the lens’s work makes the
distinction between them clear.

I The behavior of put with edits on the view is now
specified in the semantic using new laws

I The lens theory still remains quite simple

Thank You!

Collaborators: Davi Barbosa, Nate Foster, Michael Greenberg,
Benjamin Pierce

Boomerang contributors: Aaron Bohannon, Martin Hofmann,
Alexandre Pilkiewicz, Alan Schmitt, and Daniel Wagner.

Want to play? Boomerang is available for download:

I Source code (LGPL)

I Binaries for OS X, Linux

I Research papers

I Tutorial, manual and demos

http://www.seas.upenn.edu/~harmony/

http://www.seas.upenn.edu/~harmony/

Extra slides

Matching lens laws (1/2)

locations(s) = locations(l .get s) (GetChunks)

c , r = l .res s

locations(s) = dom(r)
(ResChunks)

n ∈ (locations(v) ∩ dom(r))

(l .put v (c , r))[n] = k .put v [n] (r(n))
(ChunkPut)

n ∈ (locations(v) \ dom(r))

(l .put v (c , r))[n] = k .create v [n]
(NoChunkPut)

skel(v) = skel(v ′)

skel(l .put v (c , r)) = skel(l .put v ′ (c , r ′))
(SkelPut)

Matching lens laws (2/2)

l .get (l .create v r) = v (CreateGet)

n ∈ (locations(v) ∩ dom(r))

(l .create v r)[n] = k .put v [n] (r(n))
(ChunkCreate)

n ∈ (locations(v) \ dom(r))

(l .create v r)[n] = k .create v [n]
(NoChunkCreate)

skel(v) = skel(v ′)

skel(l .create v r) = skel(l .create v ′ r ′)
(SkelCreate)

l .get (l .put v (c , r)) = v (PutGet)

l .put (l .get s) (l .res s) = s (GetPut)

