
LOOJ: Weaving LOOM into Java?

Kim B. Bruce1 and J. Nathan Foster2

1 Department of Computer Science
Williams College

Williamstown, MA USA 01267
email: kim@cs.williams.edu

2 Department of Computer & Information Science
University of Pennsylvania

Philadelphia, PA USA 19104
email: jnfoster@cis.upenn.edu

Abstract. LOOJ is an extension of Java obtained by adding bounded
parametric polymorphism and new type expressions ThisClass and
ThisType, which are similar to MyType in LOOM. Through examples
we demonstrate the utility of this language even over very expressive ex-
tensions such as GJ. The LOOJ compiler generates standard JVML code
and supports instanceof and casts for all types including type variables
and the other new type expressions. The core of the LOOJ type sys-
tem is sound, as demonstrated by a soundness proof for an extension of
Featherweight GJ. This paper also highlights difficulties that arise from
the use of both classes and interfaces as types in Java.

Keywords: object-oriented language design, static type systems, My-

Type, ThisClass, ThisType, formal semantics.

1 Introduction

Modularity and reusability are two core concepts in object-oriented program-
ming systems. Unfortunately, too often the type systems of object-oriented lan-
guages make it difficult to write modular, reusable code because they lack ex-
pressive power. Java’s type system is often criticized because it does not allow
explicit type abstractions and applications, making it impossible to write generic
data structures within the static type system. The many proposals for adding
parametric polymorphism to Java [AFM97,OW97,CGLS98,MBL97], including
GJ [BOSW98], aim to overcome this deficiency.3 However another limitation –
the lack of a precise type for this – makes it difficult to write many useful
programs. In this paper, we extend Java to a language LOOJ that includes two
constructs analogous to MyType, as well as bounded polymorphism and support
for weak reflection constructs.

? This work was partially supported by the National Science Foundation under grants
CCR-0306486 and CCR-9988210.

3 Parametric polymorphism based on GJ will be included in Java 1.5.

Contributions

We demonstrate that MyType can be added cleanly to an extension of Java
alongside bounded parametric polymorphism, producing a very expressive type
system. First, we introduce ThisClass, which closely captures the class type of
this. We also introduce exact types, which are needed to ensure that uses of
ThisClass are type safe. Second, we give a brief description of the LOOJ com-
piler that implements the language in a homogeneous, type-passing compilation
style. Our implementation supports the use of instanceof and type casts for
all type expressions including type variables. Third, we describe an extension to
Featherweight GJ [IPW01], which models a core subset of LOOJ, and its type
soundness proof. Fourth, we discuss some problems that result when ThisClass

is used in combination with interfaces and introduce ThisType to stand for the
interface type of this.

In the remainder of this section, we show some examples where the expres-
siveness of GJ falls short.

1.1 Motivation

We will present a formal definition of a binary method later; for now, consider
a binary method to be a method that has a parameter whose type is intended
to be the same as the type of the object it is used with. In what follows, we will
write all examples using a Java-like syntax, though we write method types using
→ notation instead of the syntax of methods in Java interfaces.

As our first example of a binary method, consider the setNext method in a
Node which represents singly-linked list elements with type:

setNext: Node → void

As the parameter has type Node, setNext meets our definition of binary method.
However, suppose we try to define a subclass DoubleNode of Node to represent

doubly-linked nodes. Then the inherited version of setNext still takes a param-
eter with type Node, even though its parameter should have type DoubleNode

if it is intended to remain a binary method in the subclass. The poor support
for binary methods in Java’s static type system allows programs to link singly-
linked nodes as the next field of a doubly-linked node. Clearly this behavior is
not what the programmer wants. She would be better off if she could specify
that setNext should only ever be applied to an argument whose type is the same

as the object that it is invoked on.
A similar problem arises in programs that create an object of the same type

as the currently executing object. Java’s standard library includes an interface
Cloneable that is implemented by classes which may be cloned.4 The clone

method has the type:

clone: () → Object

4 That classes which implement Cloneable can be safely cloned is enforced at runtime;
the interface itself is empty.

which is not precise enough to describe the high-level behavior that programmers
want of clone. The method’s return type, Object, gives no information about
the type of the object that it returns. As a result, if a programmer clones an
object with type C, she must cast the result of the clone method to C before
using it. Part of this problem could be fixed by allowing covariant changes in
the return types of methods.5 However, adding this flexibility does not solve
a more fundamental problem. Even if class C’s clone method is defined with
return type C, there is nothing to guarantee that each subclass will override the
method with a definition whose return type is its own type. If the programmer
neglects to override the method for a particular subclass, D, then she can invoke
its clone method and get an object whose type is C, not D. Again, the type
system is unable to express that a particular type, here the return type, is the
same as the type of the object that it is used with.

2 Introducing ThisClass and exact types

The two examples above share a common trait: the lack of a name for the
type of this in Java’s type system makes it very difficult to express important
properties about programs. In the example involving setNext and linked-list
nodes, the desired property is that singly-linked nodes are only ever linked in to
a list containing other singly-linked nodes. In the clone example, it is that clone
always returns an object with the same type as the object that it is invoked on.
Adding a primitive type for this, similar to the MyType construct in LOOM
[BFP97,Bru02], gives the flexibility needed to solve both of these problems and
others.

The ThisClass type in LOOJ is directly inspired by MyType in LOOM
(LOOJ also has a type ThisType, described in Section 5). However, because the
type system of LOOM differs from Java’s in two key ways, adding a construct like
MyType to Java requires some care. First, LOOM has structural type relations
whereas Java’s type relations are nominal. Second, in LOOM, classes and object
types are distinct. In Java, the two are conflated and a class is commonly used
both as the generator of an object and as its type. As a result of these differences,
finding a clean way of adapting LOOM’s MyType to Java so that the extended
type system is a natural fit with existing programming styles and idioms is not
immediately obvious.

We begin by introducing the type ThisClass, which stands for the class type
of this. If a class C defines a method m, then when m is used with an object whose
runtime type is C, any occurrences of ThisClass in the method’s type signature
may be safely assumed to be C. The power of ThisClass becomes apparent when
m is inherited in a subclass, D. In this case, occurrences of ThisClass in the same
method type are assumed to have all the features of D, not just those of C. This

5 Java’s type system does not allow changes to method signatures in subclasses; how-
ever, a covariant change in return type would be safe and is supported by the JVM;
it is allowed in GJ and will be allowed in Java 1.5 [BCK+01].

behavior – that ThisClass corresponds to the type of the runtime object that
it is actually used with – is the hallmark behavior of MyType.

In order to ensure that methods type checked in superclasses are type safe
when used in subclasses, the type checker analyzes all fields and methods of a
class in a type context which includes the assumption that ThisClass extends
the class type that is currently being checked. When it checks an individual
method invocation, it substitutes the static class type of the object that the
method is being invoked on for all occurrences of ThisClass in the method’s
type signature. As an example, suppose that d is an expression of type D, and
that binMeth is a method defined in D with static type

binMeth: ThisClass → void

When the type checker analyzes the method invocation d.binMeth(o), it treats
the type signature of binMeth just like a method with type0

d.binMeth: D → void

That is, it checks that the static type of o extends D. Formal rules for type
checking ThisClass in a core calculus are given in the appendix.

Henceforth, we use the term binary method to refer to methods where
ThisClass appears in a negative (value consuming) position in its type sig-
nature.6 In particular, every method where ThisClass appears in the type of
one of its parameters is a binary method. In order to ensure that a binary method
invocation is safe, we need to be able to determine the precise class type that
the receiver will have at run-time. To see why this property is needed, consider
the following declarations:

class C { public void binMeth(ThisClass tc) { ... } }

class D extends C {

public void newMeth() {...};

public void binMeth(ThisClass tc) { ... tc.newMeth() ... }

}

void problem(C c1, C c2) {

c1.binMeth(c2);

}

problem(new D(), new C()); // error!

Note that method newMeth() does not occur in C, but is used in the redefinition
of binMeth in D.

If the line labelled “error” were legal in the LOOJ type system, then the
evaluation of binMeth in the body of problem would send the message newMeth

to an object of type C, which has no such method.

6 Later we extend this definition to include methods with parameter types involving
ThisType.

To avoid this problem, we introduce exact types to LOOJ. Normally a Java
expression with type C might at runtime contain an object with type C or any
extension of C. For an exact type, denoted with the @ symbol, we rule out this
second case; an expression whose static type is @C always refers to an object with
runtime type C. One can think of exact types as ruling uses of subsumption for
specific expressions.

With exact types, we can design a sound type system by requiring that
the receiver of each binary method invocation must have an exact type. This
restriction eliminates problems such as the one above where a binary method
call on a receiver whose type is not known exactly can lead to a hole in the static
type system. We cannot write the problem method, because c1 is used as the
call site for a binary method but c1’s type is not exact. If we change the type
of the first parameter of problem to @C, then the method body type checks, but
the type checker will rule out the invocation of problem with a first parameter
whose type is D.

We can summarize the typing properties of programs that use ThisClass as
follows. When type checking methods in a class C we assume that:

– this has type @ThisClass,

– ThisClass extends C.7

When type-checking message sends,

– The receiver of a binary method invocation must have an exact type.
– The type of a binary method invocation is obtained from the method’s type

signature by substituting the receiver’s static type for each occurrences of
ThisClass.

– The type of a (non-binary) method invocation where ThisClass appears in
the method’s type signature, but the receiver is not exact, is safe if ThisClass
appears only in positive (value producing) positions. We calculate the type
of such a method call from the method’s type signature by substituting the
receiver’s static type first for each occurrence of @ThisClass and then for
each remaining occurrence of ThisClass.

Exact types have uses beyond type checking binary methods in LOOJ. They
are also useful for writing homogeneous data structures. In general, exact type
expressions can be used to more precisely describe the shape of program compu-
tations. They do so, of course, at the cost of flexibility and extensibility at each
use because exact types prohibit uses of subtype polymorphism for particular
expressions. In certain programs, this tradeoff between increased precision and
flexibility of reuse may lean towards precision and away from flexibility – exact
types provide a primitive for specifying exact typing constraints.

7 To correctly model the semantics of the private access modifier, some care is re-
quired. Note that this and other expressions of type ThisClass have access to
private instance variables and methods of C, while expressions whose type is just
known to be an extension of C do not.

Java programs also use interfaces as types and we have also introduced a
construct, ThisType, that stands for the interface of this. As there are some
subtle negative interactions between interfaces and ThisClass, we postpone all
discussion of interfaces and ThisType for now. We will address these issues in
detail in Section 5. Meanwhile, we restrict our attention to Java programs that
do not use interfaces.

3 Motivating Examples Revisited

Our two motivating examples which caused problems in GJ’s type system are eas-
ily solved in LOOJ using ThisClass. For example, we can write Node’s setNext
method as:

setNext: @ThisClass → void

In this program, the static type system ensures that setNext is only ever passed
arguments whose type is the same as the object that the method is invoked on.
In particular, we cannot link a Node into a list consisting of elements of type
DoubleNode, as desired.

The example involving cloning also has a simple solution with ThisClass.
Instead of declaring the return type of the clone method as Object, we can
write it as @ThisClass. This declaration ensures that clone always returns an
object whose type is the same as the object that it was invoked upon, even when
it is used in a subclass. Note that with this type declaration, if clone is called
on a receiver with type @C then the result will have static type @C, while if it
is called on a receiver with type C, then the result will has static type C. This
last point illustrates that ThisClass may safely appear positively in a method’s
type signature even when the method is invoked with an unexact receiver.

However, it is not immediately obvious what we can write in the body of
clone in order to manufacture an object whose type is @ThisClass. We need
an expression whose type is C when the method is used with a C, and D when
used with a subclass D. We cannot simply call C’s constructor because an object
with type @C is not a subtype of @ThisClass. However, using a Factory pat-
tern [GHJV96], we can produce a new object with the correct type. Suppose
that the interface of a factory is:

interface Factory<T> {

@T create();

}

Then if C contains an instance variable thisClassFactory with type
Factory<ThisClass>, we can write

thisClassFactory.create();

as the body of clone. We can then add a new parameter to the constructors of
C to initialize the factory object:

public C(..., Factory<ThisClass> cfact) {

...

thisClassFactory = cfact;

}

When we create an instance of C, we can initialize cfact by passing the con-
structor an argument with type Factory<C>.8

We can use factory classes to code up many useful expressions. For example,
the expression new X() where X is a type variable, can be simulated by sending
a create message to an object with type Factory<X>. A previous version of
LOOJ supported special syntax for distinguished This constructors (an idea
originally due to Bill Joy). These were just factories that returned an object with
type @ThisClass. We have found that in practice, constructing the factories and
passing them to standard constructors explicitly is not prohibitively burdensome,
and so the current version of LOOJ does not support special This constructor
syntax. It remains simple to write expressions that have the same behavior as
This constructors in LOOJ using the Factory pattern with ThisClass.

4 Type safety in LOOJ and an implementation

LOOJ is more than a mere design; we have implemented a compiler and devel-
oped a proof of static type safety for the language.

In previous work we provided both translational semantics [Bru02] and high-
level operational semantics [BFSvG03,BFP97] for object-oriented languages with
a MyType construct. For LOOJ we have proved soundness for a subset of the
language using the techniques introduced in Featherweight Java [IPW01]. Due
to space constraints we do not include the full proof in this paper. Instead, we
give the syntax, type-checking rules, and evaluation rules in the appendix, along
with a proof sketch of type soundness. An extended version of this paper that
contains the full type system and soundness proof is available as a companion
technical report [BF04].

The LOOJ compiler supports the additional type ThisClass and exact types
(as well as the new type ThisType to be discussed later). Moreover, unlike current
versions of GJ,9 our compiler supports instanceof expressions and type casts
for all types, including those involving type variables and ThisClass.

All legal Java programs are legal programs of LOOJ and produce the same
results. GJ and LOOJ differ on some minor points. In LOOJ, all instantiations of
type variables must be written explicitly, as opposed to, GJ where instantiations
of type abstractions private to methods are inferred. Our compiler does not

8 The static type of the “receiver” of a new expression is just the exact type of the class
type being created; hence, when we type check new C(...), it is safe to substitute
C for ThisClass in the constructor’s type signature. Calls of super constructors in
subclasses also use the subclass as the receiver type.

9 Future implementations of GJ, along the lines of NextGen [CGLS98], will address
these current limitations.

perform type reconstruction for invocations of polymorphic methods, as we prefer
explicit instantiations of type variables. More substantially, the compiler differs
in the translation style used to compile programs to Java bytecodes. Rather
than using pure erasure, the LOOJ compiler uses a homogeneous translation
originally proposed by Burstein [Bur98] that is based on erasure, but that also
annotates classes with private instance variables representing the runtime values
of type variables.

In our type-passing implementation, the private variables are initialized in
constructors by passing representations of class types obtained from Java’s re-
flection utilities. With this information, each object can determine the values of
its type variables at runtime. This is useful for performing lightweight introspec-
tive operations such as dynamically-checked type casts and instanceof type
tests. We believe that providing these operations for all types including generics,
ThisClass, and exact types is a closer fit with Java’s existing semantics. As an
example, consider this simple class:

class C<T> {

T myT;

public C() { }

}

A compiler that uses pure erasure to implement generics translates this fragment
to bytecodes equivalent to:

class C {

Object myT;

public C() { }

}

whereas the LOOJ compiler translates it to:

class C {

Object myT;

private PolyClass T$$class;

public C(PolyClass T$$class) {

this.T$$class = T$$class;

}

public boolean instanceOfC(PolyClass otherT$$class) {

return T$$class.equals(otherT$$class);

}

}

Here, PolyClass objects explicitly hold information about polymorphic types
in the same way that Class objects in Java hold information about Java types.
The LOOJ compiler uses these objects to implement operations that require
runtime type information, such as instanceof expressions, and type casts. The

translations of these expressions have the correct runtime semantics for most
types.10

For example, the expression

obj instanceof C<T>

is not allowed in GJ, because its erased version would be true whenever obj is
a C. It is translated in LOOJ to

((obj != null)

&& (obj instanceof C)

&& (((C)obj).instanceOfC(T$$class)))

It is easy to see that this expression is only true if obj is an instance of C<T>.
Similar translations are used to implement these and many similar expressions:

obj instanceof @ThisClass

((C<T>)obj)...

Unfortunately, the same technique cannot be extended to array types as there
is no uniform location where we can transparently hold the runtime representa-
tions of instantiations of type variables for array types. We provide a wrapper
class for arrays with polymorphic element types that can be used to simulate
the correct semantics for these operations if needed. Additionally, because the
runtime type representations of type variables are available, expressions such as

new T[n];

new ThisClass[n];

can be translated to expressions using Java’s reflection facilities to create an array
of the correct base type at runtime. GJ statically translates the first expression
(with a warning that the translation is unchecked) to a new array expression of
T’s bound.

More details about the LOOJ compiler are available in honors theses by
Burstein [Bur98] and Foster [Fos01].

5 Interfaces, ThisClass, and ThisType

Thus far, we have described how LOOM’s MyType can be mapped onto class
types in Java’s type system in ThisClass. However, we have carefully avoided
mentioning how ThisClass interacts with Java interfaces. In this section we
discuss some of the problems that result when ThisClass is used together with
interface types. We conclude that ThisClass should not appear in interfaces
and introduce the new type expression ThisType, to represent the interface of
this. Later we show how ThisType can be used to solve problems that arise
when programs using the the Visitor pattern are extended.

10 Runtime operations involving array types are not currently supported, as discussed
below.

5.1 ThisClass in interfaces

As a first attempt at expressing binary methods in interfaces, we might try to
write ThisClass directly in an interface. Unfortunately, it is not clear what such
a use of ThisClass would mean. Consider these source fragments:

interface I {

void binMeth(ThisClass tc);

}

class C implements @I {

// instance variable declarations

void binMeth(ThisClass tc) { ... }

}

class D implements @I {

// instance variable declarations

public void binMeth(ThisClass tc) { ... }

}

@I i1 = new D();

@I i2 = new C();

i1.binMeth(i2);

Notice that the class declarations state that both C and D implement @I. In
LOOJ, a class implements an interface exactly if its public methods are exactly

the methods in the interface. A class declaration may only declare a single exact
interface type (this restriction is a consequence of Java’s nominal type relations:
multiple exact interfaces would be structurally identical, but their names would
be distinct and hence, the two would be unrelated in the type system). As in
Java, classes may also implement as many non-exact interfaces as are desired.
The annotation of the classes with an exact interface informs the type checker
that objects from classes C and D can be used in contexts expecting objects of
type @I. As a result, the assignments above to i1 and i2 are legal.

In the example above, C and D are unrelated in Java’s by name inheritance
hierarchy except that they both implement I:

I

¡¡
implements

¡¡µ I@@
implements

@@
C D

The code for the implementations of binMeth in C and D may access their respec-
tive (and different) instance variables. Hence, it is not safe to invoke the binMeth
method of one on an object of the other type. But we cannot determine from
its type, @I, if i1 is a C or a D. We reluctantly conclude that we cannot reliably
identify the class type of the receiver of a binary method call at compile time if

the static type of the receiver is an interface. As a result, the last line of code
above is not legal in the LOOJ type system.11

It is often useful, however, to be able to write interfaces that include decla-
rations of binary methods. To facilitate this, we introduce a second version of
MyType, ThisType, which stands for the public interface type of the definition
where it occurs.

We can rewrite the above example, replacing ThisClass with ThisType:

interface I {

void binMeth(ThisType tc);

}

class C implements @I {

void binMeth(ThisType tc) { ... }

}

class D implements @I {

public void binMeth(ThisType tc) { ... }

}

@I i1, i2;

i1.binMeth(i2);

Now the message send in the last line is safe because the parameter of binMeth
is an interface type, ThisType. As such, the method bodies of binMeth in C and
D may not access instance variables or non-public methods. They may, however,
invoke methods that are included in their exact interface from inside binMeth.

As with ThisClass, when type checking a method call involving ThisType

on an object obj, each occurrence of ThisType in the signature is replaced by
the interface type of the receiver. If the type of the receiver is a class, then the
exact interface associated with that class is used in the substitution.12 Note that
if I is extended by an interface J, then the meaning of ThisType within inherited
methods changes, just as the meaning of ThisClass changes when it is used in
subclasses.

The typing properties of programs provided earlier can be extended to a type
system with ThisType as follows. When type checking methods in a class C with
exact interface I, we are allowed to assume that:

– this has type @ThisClass,
– ThisClass extends C.
– ThisType extends I,
– ThisClass implements @ThisType, and

11 It would be type safe to allow ThisClass in parameter positions of methods in
interfaces if we also required that the receiver of any invocation of that method
must be an exact class type. In LOOJ, we use a conceptually simpler rule that
forbids the use of ThisClass in interfaces and instead will provide ThisType as a
MyType construct for interface types.

12 In our implementation, the compiler synthesizes the public interface of a class if
ThisType is used with the class, but an exact interface is not declared by the pro-
grammer.

– C implements @I.

A consequence of the last two items is that a value with type @C can be used in
a context expecting a value of type @I and a value with type @ThisClass can
be used in a context expecting a value of type @ThisType.

5.2 Visitors and ThisType

The addition of ThisType provides a natural way to write programs containing
both binary methods and interfaces. We illustrate this point by showing an
example where using ThisType and interfaces solves a challenging problem.

Suppose that we wish to write a statically type-safe, extensible interpreter
for integer expressions in a GJ-like language. By extensible, we mean that when
we extend the language with some new syntactic forms, the new interpreter
can reuse all of the existing code for interpreting the initial language without
modification. This example is adapted from [Bru03]; a survey of various solutions
to the problem can be found in Torgersen’s recent paper [Tor04].

The initial language we interpret is a very simple language of integer con-
stants and negations. We use the Visitor pattern [GHJV96] to implement our
interpreter and each visitor returns values of type int. The classes ConstForm

and NegForm, representing constants and negations, respectively, both implement
the interface

interface Form {

int visit(Visitor v);

}

A visitor is an interface that has methods for processing each of the forms in the
language, producing an integer value as its result:13

interface Visitor {

int constCase(ConstForm cf);

int negCase(NegForm nf);

}

The visit method in each formula class sends a message to the corresponding
method of the visitor. For example, the code for visit method in NegForm is

public int visit(Visitor v) {

return v.negCase(this);

}

When a visit message is sent to a formula, dynamic dispatch results in a mes-
sage being sent to the appropriate case in the visitor.

The advantage of separating the syntax from the visitors that implement
particular high level operations (e.g., evaluation, type checking, pretty printing)

13 More generally, the Visitor interface would be parameterized by the return type.

is that it is very easy to add new operations on syntax trees by adding new
visitors. However, it is difficult to extend the syntax with new forms without
modifying the original definitions. For example, if we want to add a new form
PlusForm, representing abstractly the concrete syntax e1 + e2, we cannot reuse
our existing visitor. To see why it is hard, first consider how we might write the
new form and extended visitor to process it:

class PlusForm implements @Form {

@Form lhs, rhs;

public int visit(ExtVisitor ev) {

ev.plusCase(this);

}

}

interface ExtVisitor extends Visitor {

int plusCase(PlusForm pf);

}

Unfortunately as written, this code will not pass the GJ type checker because
the interface of all syntactic forms, Form, requires each class that implements it
to define a method named visit with type

visit: Visitor → int

and the visit method of PlusForm has a different type. But if we write the visit
method for PlusForm with the required type, then we cannot invoke plusCase

from the visitor on it because the Visitor interface does not include it!
A natural next step is to introduce type variables to abstract the type of the

visitor that is used to process each syntactic element. Following this approach,
we might rewrite the definitions of visitors and syntactic forms like this:

interface Visitor {

...

int negCase(NegForm<Visitor> nf);

}

interface Form<V extends Visitor> {

int visit(V v);

}

class NegForm<V extends Visitor> implements @Form<V> {

@Form exp;

public int visit(V v) {

v.negCase(this); // error!

}

}

However when we try to type-check this code, we get an error because of GJ’s
invariant subtyping rule for parameterized class types. The visitor has a method
negCase with type:

negCase: NegForm<Visitor> → int

and the occurrence of this in the expression

v.negCase(this)

has type NegForm<V>,14 and NegForm<V> is not a subtype of NegForm<Visitor>.
Thus introducing a type variable to stand for the type of the visitor does not

lead to a natural solution to the extensible interpreter problem.15

Though the problem does not obviously contain binary methods, it can be
solved by using ThisType as the instantiation of the type variable V in the
definitions of visitors. We can revise the definition of the visitor class to the
following:

interface Visitor {

int constCase(ConstForm<ThisType> cf);

int negCase(NegForm<ThisType> nf);

}

Now the visit methods for each of the syntactic forms in the language can be
written as follows (we give the case for NegForm<V> only, the others are similar):

class NegForm<V extends Visitor> implements @Form<V> {

...

public int visit(@V v) { return v.negCase(this); }

}

The problematic expression from above, v.negCase(this), no longer leads to a
type error as witnessed by the following reasoning steps:

– The method negCase has type

negCase: NegForm<ThisType> → int

– As v has type @V,16 where V is a type variable with bound Visitor, when
we type check the message send to v, we replace ThisType with V:

[V/ThisType](NegForm<ThisType> → int) = NegForm<V> → int

– Recall that the class NegForm<V> is type checked under the assumptions that
this has type @ThisClass and ThisClass extends NegForm<V>. Thus this
can be used as the parameter to v.negCase in the visit method, as desired.

Extending the interpreter to handle PlusForm is now straightforward:

interface ExtVisitor extends Visitor {

int plusCase(PlusForm<ThisType> pf);

}

14 More accurately, this has some type that extends NegForm<V>.
15 A more subtle error arises if Visitor takes a type parameter and Form uses F-

bounded polymorphism. See [Bru03] for more on various attempts at type-checking
this example.

16 We declare v’s type exactly because it is used as the call site for a binary method.

The definition of PlusForm<V> also follows naturally:

class PlusForm<V extends ExtVisitor> implements @Form<V> {

...

public int visit(@V v) { return v.plusCase(this); }

}

This class can be type checked using similar derivation steps as described above.
The interpreters are written as classes which implement the appropriate vis-

itor interface. An interpreter for the smaller language looks like this:

class Interp implements @Visitor {

public int constCase(ConstForm<ThisType> cf) {

return cf.value;

}

public int negCase(NegForm<ThisType> nf) {

return (0 - nf.exp.visit(this));

}

}

ThisType is used in the instantiations of the classes representing syntactic forms
in the methods so that the extended interpreter can reuse the code for interpret-
ing all of the old forms. This satisfies the extensibility requirement that was set
out in the beginning. The extended interpreter is also easy to write:

class ExtInterp extends Interp implements @ExtVisitor {

public int plusCase(PlusForm<ThisType> pf) {

int lval = pf.lhs.visit(this);

int rval = pf.rhs.visit(this);

return lval + rval;

}

}

In fact, the solution to the visitor problem with ThisType is not yet ideal, as
we would also like to be able to parameterize visitors by their return type in order
to write other visitors (e.g., type checkers, pretty printers, etc.). A more detailed
discussion of this problem along with a suggested solution using a generalization
of MyType to mutually recursive types is given in [Bru03].

5.3 Bounded polymorphism and ThisType

In GJ, one can declare type variables with bounds that restrict the types that can
be used to instantiate them. GJ’s rules for bounded type variable instantiation
state that if the bound is a class, then any class that extends that class may
instantiate its variable. If the bound is an interface, then any interface that
extends the type, or any class that implements the interface type may instantiate
it. In GJ, a type variable such as V in the Form class might be instantiated with
an interface type or a class type at runtime.

This convenient conflating of the notions of an interface extending another
and a class implementing an interface runs into difficulties in the presence of
ThisType. As a result, in LOOJ, if I is an interface and a class or interface
declares a type variable T extending I, then only interfaces can be used to in-
stantiate T. For example, with the Form interface, we may instantiate V with
Visitor or ExtVisitor, but not with a class C.

The following example illustrates why this restriction is needed:

interface Iter {

@ThisType getNext();

void setNext(@ThisType newNext);

}

class C implements @Iter { ... }

class D implements @Iter { ... }

class E<X extends Iter> {

@X x;

public void setX(@X newX) { this.x = newX; }

public @X getX() { return x; }

public @X peekAhead() {

return x.getNext();

}

}

This code is excerpted from a program that iterates across some values; similar
examples come up in many different data structures.

The body of method peekAhead is clearly type safe: as x has type @X,
x.getNext() also has type @X (as always, we replace occurrences of ThisType
by the interface type of the receiver, X). However, this leads to problems if we
attempt to instantiate type variable X of class E with a class type. Consider the
following program fragment:

void hole(@E<C> e) {

@C c;

@D d;

c.setNext(d); // (1)

e.setX(c); // (2)

c = e.peekAhead(); // (3)

}

The line marked (1) type checks because setNext, when invoked on an object
with type @C, has type

c.setNext: @I → void

and d has type @D, and hence @I. The line marked (2) is unproblematic because
setX has the following type when used with an @E<C>:

e.setX: @C → void

and c has type @C. The line marked (3) also type checks, because

e.peekAhead: void → @C

and c has type @C. But note that here, peekAhead actually returns an object
with type @D! Thus, this code allows us to assign a D to a C – a hole.

To avoid this problem we must modify the rules from GJ for instantiating
type variables. Unlike GJ’s more flexible rule, which allows type variables that
are bounded by interface types to be instantiated with either classes or interfaces,
in LOOJ such a type variable may only be instantiated with an interface type.17

We believe that the loss in expressiveness at the level of bounded polymor-
phism is not prohibitively great, while the gains from making the restriction
on instantiation, which allows us to use ThisType with receivers that are type
variables, are significant. In practice, we have found that a natural programming
style is to use either ThisClass or ThisType to describe the type of this, but
rarely to mix both types in programs. The first style rarely uses interfaces, as
is common with many Java programs; the second only uses classes to generate
objects and rarely uses them as types, emulating the programming style of a
language like LOOM. Instead all classes are declared with the exact interfaces
that they define and interfaces are used as types in the program.

6 Summary and Related Work

In this paper we have described an extension to Java, LOOJ, that supports
bounded polymorphism, exact types and new type expressions ThisClass and
ThisType to represent, respectively, the class and interface of this. The lan-
guage and type system is an extension of that of GJ except that parameterized
methods must be instantiated with a parameter (they are not inferred as in GJ)
and, if a type parameter is declared with a bound that is an interface, then it
may only be instantiated with interfaces. Unlike GJ, LOOJ supports the use of
instanceof and type casts with types that involve type variables. Our LOOJ
compiler generates standard bytecodes that can be run on any standard JVM.
We also include a sketch of the proof of soundness of Featherweight LOOJ, an
extension of Featherweight Java that includes ThisClass and exact types.

This extension was directly inspired by our earlier work on the languages
LOOM [BFP97] and PolyTOIL [BSvG95], which both support a MyType con-
struct. (See also [Bru02] for more on MyType). Because Java allows both classes
and interfaces to be used as types, we added both ThisClass and ThisType

to the language. The use of both classes and interfaces as types added compli-
cations to LOOJ that did not arise in the design of LOOM or PolyTOIL. In

17 There are several additional points in the design space; in particular, we could make
a distinction between class and interface types in the bound declaration syntax. For
example, we considered introducing the syntax C<T implements I>. However, in
LOOJ we chose the simplest design and instead require that type variables bounded
by an interface type are only ever instantiated with interface types.

particular, occurrences of ThisClass in the parameter types of methods in in-
terfaces are difficult to make sense of. Another complication that did not arise in
LOOM stems from the useful notational ambiguity of GJ that allows programs
to instantiate type variables whose bound is an interface type with a class type.
Both of these complications are a result of allowing both classes and interfaces
to be used as types. We would prefer that only interfaces be used as types, but
we realize that many programmers like the convenience of using classes as types.

There have been many proposals for extensions of Java involving bounded
polymorphism. including GJ [BOSW98], Pizza [OW97], NextGen [CGLS98],
and PolyJ [MBL97], however none of these has included constructs similar to
ThisClass or ThisType. Our use of instance variables to hold PolyClass ob-
jects for each type variable in order to support instanceof and type casts was
originally proposed in Burstein [Bur98], and further refined in Foster [Fos01]. Vi-
roli and Natali [VN00] independently proposed a similar scheme. Their scheme
provided optimizations that could be adopted in our implementation to improve
efficiency. NextGen, and it more recent offspring, MixGen [ABC03], both support
instanceof and type casts using a relatively efficient heterogeneous translation
that results in a different (though compact) class being generated for each in-
stantiation of a parameterized class.

We have also designed languages with a generalized MyType construct for
groups of mutually recursive classes. An early version is reported in [BV99],
while a more powerful version is sketched in [Bru03], which also includes much
more detail on solutions to typing visitors (the so-called “Expression problem”).

In related work, Gonzalez [Gon03] has designed and implemented a verifier
for the JVM that accepts annotated bytecode generated by a variant of the
LOOJ compiler. After verifying the bytecode, all type information is stripped
away and standard JVML bytecode is executed. As the type variable information
is available to the verifier, we can eliminate many of the casts inserted by the
GJ compiler that the type system guarantees will succeed. While we have not
yet run careful benchmarks, we expect that this change will result in increased
performance over the GJ compiler. An advantage of this approach is that the
efficiency of existing high performance JVML JITs can be improved by replacing
their existing verifiers with verifiers that are aware of the extended type system.

Acknowledgements We wish to thank the anonymous ECOOP reviewers,
Stephen Freund, and Alan Schmitt for very helpful comments on an earlier draft.

References

[ABC03] Eric Allen, Jonathan Bannet, and Robert Cartwright. A first-class approach
to genericity. In Proc. OOPSLA 2003, pages 96–114, 2003.

[AFM97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type pa-
rameterization to the java language. In Proc. OOPSLA 1997, pages 49–65,
1997.

[BCK+01] Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Mar-
tin Odersky, Sven-Eric Panitz, David Stoutamire, Kresten Thorup,
and Philip Wadler. Adding generics to the Java programming lan-
guage. http://jcp.org/aboutJava/communityprocess/review/jsr014/

index.html, 2001.
[BF04] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into Java.

Technical Report MS-CIS-03-38, University of Pennsylvania, 2004. http://
www.cis.upenn.edu/~jnfoster/papers/MS-CIS-03-38.ps.

[BFP97] Kim B. Bruce, Adrian Fiech, and Leaf Petersen. Subtyping is not a good
“match” for object-oriented languages. In Proc. ECOOP 1997, pages 104–
127. LNCS 1241, Springer-Verlag, 1997.

[BFSvG03] Kim B. Bruce, Adrien Fiech, Angela Schuett, and Robert van Gent. Poly-
TOIL: A type-safe polymorphic object-oriented language. ACM TOPLAS,
25(2):225–290, 2003.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java programming
language. In Proc. OOPSLA 1998, 1998.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Languages: Types and Se-

mantics. MIT Press, Cambridge, MA, 2002.
[Bru03] Kim B. Bruce. Some challenging typing issues in object-oriented languages.

In Electronic notes in Theoretical Computer Science, volume 82(8), 2003.
[BSvG95] Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-

safe polymorphic object-oriented language, extended abstract. In Proc. of

ECOOP 1995, pages 27–51. LNCS 952, Springer-Verlag, 1995.
[Bur98] Jon Burstein. Rupiah: An extension to Java supporting match-bounded

parametric polymorphism, ThisType, and exact typing. Williams College
Senior Honors Thesis, 1998.

[BV99] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-driven language
design: Statically type-safe virtual types in object-oriented languages. In
Electronic notes in Theoretical Computer Science, volume 20, 1999.

[CGLS98] Robert Cartwright and Jr. Guy L. Steele. Compatible genericity with run-
time types for the Java programming language, 1998.

[Fos01] John N. Foster. Rupiah: Towards an Expressive Static Type System for

Java. Williams College Senior Honors Thesis, 2001.
[GHJV96] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1996.

[Gon03] Robert Gonzalez. In the World of Type Checking, Smarter Is Faster.
Williams College Senior Honors Thesis, 2003.

[IPW01] Atushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450,
May 2001. An earlier version appeared in Proc. OOPSLA 1999.

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameterized
types for Java. In Proc. POPL 1997, pages 132–145, 1997.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proc. POPL 1997, pages 146–159, 1997.

[Tor04] Mads Torgersen. The expression problem revisited. In Proc. of ECOOP

2004, 2004. To appear.
[VN00] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: an

approach to translation based on reflective features. In Proc. OOPSLA

2000, pages 146–165, 2000.

Featherweight LOOJ

The formal language Featherweight Java only models a small subset of Java –
notably it does not include imperative features or interfaces – but has a corre-
spondingly simple dynamic semantics and soundness proof. Its main virtue is
that it is easy to extend. In their original paper, its designers extend it imme-
diately by modelling the core features of GJ in the Featherweight GJ (FGJ)
calculus.

In this section, we describe an extension to FGJ with ThisClass and exact
types. The extended calculus, Featherweight LOOJ (FLJ), formalizes the core of
the LOOJ type system. Much of what follows is similar to and assumes familiarity
with FGJ. That FLJ is such a modest extension to FGJ is, we claim, a virtue,
and suggests that ThisClass would be easy to add to many Java-like languages.
To keep the presentation compact, we highlight the important differences while
eliding some of the less interesting details that are the same in both calculi. As
noted earlier, the full system and soundness proof is available in an accompanying
technical report [BF04].

The essential difference between GJ and LOOJ is that the latter includes
ThisClass. Accordingly, the most substantial differences in the core calculi FGJ
and FLJ appear in the parts of the type system that deal with fields and methods
whose type involves ThisClass. As we have described in earlier sections, uses of
ThisClass are type checked statically by substituting the type of the receiver of a
message send (or field access) for occurrences of ThisClass. Hence, in the calculi,
the key differences arise in the auxiliary definitions that define the operations for
looking up the fields (fields), method type and method body (mtype and mbody)
of members of a class. Other major differences have to do with tracking exact
types in the type system. In particular we do not wish to allow instantiation
of type variables by exact types, or to allow doubly-exact types. Ensuring these
well-formedness constraints induces some notational complexity. Most of the rest
of the complexity of FLJ is directly inherited from FGJ.

The syntax of FLJ is shown in Figure 1. Following the syntactic conventions
of FJ, we abbreviate extends with /, and return with ↑; T is used as short-
hand for T1, ...Tn, T f abbreviates T1f1, ...Tnfn, etc. Term contexts Γ are partial
functions from variables to types; similarly, type contexts ∆ map type variables
and ThisClass to their bounds. The class table CT is assumed to be fixed, and
maps class names to their definitions.

We adopt the syntactic convention introduced in FJ that x ranges over the
set of variable names and the special variable this. Similarly, X ranges over the
set of type variables and the special type ThisClass. The metavariables Y and
Z, however, only range over type variable names. For example, the declared type
variables of a class, Z, may not include ThisClass. The syntax also enforces the
following restriction: the bound of a type variable declaration may not contain
ThisClass, ThisType or an exact type. Otherwise the syntax is a straightforward
extension of FGJ.

The auxiliary definitions fields and mtype define the fields of a class and the
type of a method respectively. Note that some of the definitions make use of a

Syntax

Classes CL ::= class C〈Z / N〉 / D〈N〉 { T f; K M }
Constructors K ::= C(S g, T f) { super(g); this.f = f; }
Methods M ::= 〈Z / N〉 T m(T x) { ↑ e; }
Expressions e ::= x | e.f | x.m〈H〉(e) | new C〈H〉(e) | (T)e
Types T ::= H | @H

Hash Types H ::= X | C〈H〉
Bound Types N ::= C〈Z〉 | C〈N〉

Field Lookup

fields(Object,) = ∅ (F-Obj)

CT(C) = class C〈Z / N〉 / D〈U〉 { S f; ... } fields(D〈U〉, @ThisClass) = Y g

fields(C〈T〉, @R) = [T/Z][R/ThisClass](Y g, S f)
(F-@Cl)

R not exact CT(C) = class C〈Z / N〉 / D〈U〉 { S f; ... }
fields(D〈U〉, @ThisClass) = Y g pos(Y S)

fields(C〈T〉, R) = [T/Z][R/@ThisClass, ThisClass](Y g, S f)
(F-Cl)

Method Type Lookup

CT(C) = class C〈Z / N〉 / D〈U〉 { ... M } 〈Y / O〉V m(V x){↑ e; } ∈ M

mtype(m, C〈T〉, @R) = [T/Z][R/ThisClass](〈Y / O〉V → V)
(MT-@Cl)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... M } 〈Y / O〉V m(V x){↑ e; } ∈ M

R not exact ThisClass does not appear in V pos(V)

mtype(m, C〈T〉, R) = [T/Z][R/@ThisClass, ThisClass](〈Y / O〉V → V)
(MT-Cl)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... M } 〈Y / O〉V m(V x){↑ e; } 6∈ M

mtype(m, C〈T〉, @R) = [T/Z][R/ThisClass](mtype(m, D〈U〉, @ThisClass))
(MT-@Sup)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... M }
〈Y / O〉V m(V x){↑ e; } 6∈ M mtype(m, D〈U〉, @ThisClass) = 〈Y / O〉V → V

R not exact ThisClass does not appear in V pos(V)

mtype(m, C〈T〉, R) = [T/Z][R/@ThisClass, ThisClass]〈Y / O〉V → V
(MT-Sup)

Positive Occurrences of ThisClass

pos(Object) pos(X)
pos(T)

pos(@T)

ThisClass does not appear in T

pos(C〈T〉)

Fig. 1. FLJ Syntax and Auxiliary Definitions

non-standard substitution operation. When we write the substitution expression:

[R/@ThisClass, ThisClass]T

we mean the operation that substitutes R for each occurrence of @ThisClass in
T and R for each remaining ThisClass in T.18

The definitions of mbody , which looks up the body of a method, bound∆,
which looks up the bound of a type in ∆, and override, which ensures that a
class correctly overrides a method, are very similar to their versions in FGJ and
are elided here. Figure 1 shows the definitions of fields, mtype, and pos. The defi-
nition mtype takes three arguments: the method’s name, the class where we start
searching for its definition, and the type of the receiver of the method invocation
and returns the method’s type. The definition of fields is similar; it takes the type
of the class and the type of the receiver of the field access and returns the types
and names of the fields. In each of these definitions, occurrences of ThisClass
in the signature are replaced by the type of the the receiver. Finally, pos asserts
that ThisClass only appears positively in a type. In particular pos(ThisClass)
and pos(@ThisClass) are defined but pos(C〈ThisClass〉) is not, because C〈Z〉
might have a method that takes a parameter of type Z and thus, use ThisClass

negatively.19

Note that when used with an unexact receiver, mtype and fields can be
undefined if, for example, ThisClass appears in a negative position in the type
signature.

The evaluation relation for FLJ is given in Figure 2. Note the minor change
from FGJ that a cast expression reduces if the object’s type (which at runtime is
known exactly) is a subtype of the specified type, T, in an empty type context.20

We elide the congruence rules EC-Field, EC-Invk-Recv, EC-Invk-Arg, and
EC-New-Arg, which are all similar to the versions given in FGJ.

Well-Formed Types The rules for well-formed types are given in Figure 2.
The interesting cases here involve exact types: rule WF-@ states that an exact
type is well-formed if its non-exact version is well-formed and not an exact type
(this prevents us from forming doubly-exact types such as @@T). Similarly, the
types used to instantiate a class’s type variables must not be exact, as specified
by rule WF-Class.

18 This is not quite the same as sequential or simultaneous substitution. In the com-
piler, this special substitution operation is realized by first renaming occurrences of
ThisClass in R to a fresh name, performing the two substitutions simultaneously,
and then renaming the occurrences in R back to ThisClass.

19 A more complicated definition of pos could allow pos(C〈ThisClass〉) by examining
the definition of C〈Z〉 and ensuring that Z is only used positively in C. We use the
simpler but more restrictive rule.

20 To retain consistency with FJ, we use the word “subtype” and symbol <: to stand for
the transitive closure of the extension operator in Java. However, the actual relation
defined is more similar to matching (see [Bru02,BFP97]) than subtype.

Evaluation

CT(C) = class C〈Z / N〉 / D〈U〉 { ... } fields(C〈T〉, @C〈T〉) = Q f

new C〈T〉(e).fi → ei
(E-Field)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... } mbody(m〈Y〉, C〈T〉, @C〈T〉) = (x, e0)

new C〈T〉(e).m〈Y〉(d) → [d/x, new C〈T〉(e)/this]e0
(E-Invk)

∅ ` @C〈T〉<:T

(T)new C〈T〉(e) → new C〈T〉(e)
(E-Cast)

Well-Formed Types

∆ `Object ok (WF-Obj)
X ∈ dom(∆)

∆ `X ok
(WF-Var)

∆ `T ok T not exact

∆ `@T ok
(WF-@)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... }
∆ `T ok ∆ `T<:[T/Z]N None of T exact

∆ `C〈T〉 ok
(WF-Class)

Subtyping

∆ `T<:T (S-Refl) ∆ `X<:∆(X) (S-Var) ∆ `@T<:T (S-Exact)

∆ `S<:T ∆ `T<:U

∆ `S<:U
(S-Trans)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... }

∆ `C〈T〉<:[T/Z]D〈U〉
(S-Super)

Method Typing

∆ = Z<:N, Y<:O, ThisClass<:C〈Z〉
∆ `T, T, O ok ∆; x : T, this : @ThisClass ` e0 : S

∆ `S<:T CT(C) = class C〈Z / N〉 / D〈U〉 { ... } override(m, D〈U〉, 〈Y / O〉T → T)

〈Y / O〉 T m(T x) { ↑ e0; } OK in C〈Z / N〉

Class Typing

Z<:N ` N, D〈V〉, T ok fields(D〈V〉, @ThisClass) = U g

M OK in C〈Z / N〉 K = C(U g, T f) { super(g); this.f = f; }

class C〈Z / N〉 / D〈V〉 { T f; K M } OK

Fig. 2. FLJ Semantics, Well-formedness, Subtyping, Class and Method Typing

Expression Typing

∆; Γ `x : Γ(x) (T-Var)

∆; Γ `e0 : T0 fields(bound∆(T0), T0) = T f

∆; Γ `e0.fi : Ti
(T-Field)

∆; Γ `e0 : T0 mtype(m, bound∆(T0), T0) = 〈Y / O〉U → U

∆ `V ok ∆ `V<:[V/Y]O ∆; Γ `e : S ∆ `S<:[V/Y]U

∆; Γ `e0.m〈V〉(e) : [V/Y]U
(T-Invk)

CT(C) = class C〈Z / N〉 / D〈U〉 { ... }
∆ `C〈T〉 ok ∆; Γ `e : S fields(C〈T〉, @C〈T〉) = R f ∆ `S<:R

∆; Γ `new C〈T〉(e) : @C〈T〉
(T-New)

∆ `T ok ∆; Γ `e0 : T0 ∆ `T0<:T

∆; Γ `(T)e0 : T
(T-UCast)

∆ `T ok ∆; Γ `e0 : T0 ∆ `T<:T0 T0 6= T

∆; Γ `(T)e0 : T
(T-DCast)

∆ `T ok ∆; Γ `e0 : T0 ∆ `T0 6<:T, T6<:T0 stupid warning

∆; Γ `(T)e0 : T
(T-SCast)

Fig. 3. FLJ Expression Typing

The subtyping rules for FLJ are given in Figure 2. The only interesting
difference here is the addition of S-Exact. It says that an exact type is a subtype
of its unexact version. Intuitively, this makes sense: we can use an object of type
@T anywhere that we expected an object whose type was T.

The rule for typing classes and methods are given in Figure 2. Note that
methods are type checked in a context where ThisClass extends the class that
the method appears in, and where this is assumed to have type @ThisClass.

Figure 3 gives the rules for typing expressions. The most interesting cases
are for field access and method invocation. Because they are similar, we explain
only method invocation here. Recall that a binary method may only be invoked
on a receiver whose type is known exactly. In rule T-Invk, the type of the
receiver, T 0, of the method call is passed to mtype. If T 0 is exact, then mtype

substitutes it for ThisClass in the signature before returning the method type.
If T 0 is not exact and ThisClass appears in a negative position, then mtype

is undefined. Otherwise it substitutes T 0 for @ThisClass and then substitutes
T 0 for ThisClass. Finally, we check that the types of the actual parameters
are subtypes of the types of the formal parameters. Typing for fields is similar.
Rule T-New states that a new expression has the exact class type of the object
created. The rule T-DCast is more flexible than the GJ version because LOOJ

is not implemented by erasure, so unlike GJ, we do not need to rule out casts
that would fail at the source level but succeed in their compiled versions.

Featherweight LOOJ Properties Because of space limitations, we only give
the statements of the relevant lemmas and theorems.

Lemma 1 (Inversion).

1. If ∆ `S<:@T with no exact types appearing in ∆, then S is @T.
2. If pos(T) then either T is ThisClass or @ThisClass, or else ThisClass does

not appear in T.

Lemma 2 (Fields Lookup). If ∆ ` S<:T and fields(bound∆(T), T) = C f then
fields(bound∆(S), S) = D g and ∀i ≤ #(f),∆ `Di<:Ci and fi = gi

Lemma 3 (MType Lookup). If ∆ ` S<:T and mtype(m,bound∆(T), T) =
〈Y / O〉C → C then mtype(m,bound∆(S), S) = 〈Y / O〉C → C′ and ∆, Y<:O ` C′<:C

Lemma 4 (Substitution). If ∆1, X<:N,∆2 ` S<:T and ∆1 ` U<:[U/X]N and
∆1 ` U ok and none of U exact and none of X ∈ ∆1 then

1. ∆1, [U/X]∆2 ` [U/X]S<:[U/X]T
2. ∆1, [U/X]∆2 ` [U/X]T ok
3. Additionally, if ∆1, X<:N,∆2; Γ ` e : T then ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S

for some S such that ∆1, [U/X]∆2 ` S<:[U/X]T
4. And if ∆; Γ, x : T ` e : T and ∆; Γ `d : S and ∆ `S<:T then ∆; Γ `[d/x]e : S

for some S such that S<:T

Theorem 1 (Preservation). If ∆; Γ `e : T and e → e′ then ∆; Γ `e′ : T′ and
∆ `T′<:T.

Theorem 2 (Progress). Suppose that ` e : T

1. If the expression e contains new C〈T〉(e).f as a sub-expression then
fields(C〈T〉,@C〈T〉) = T f and f ∈ f.

2. If the expression e contains new C〈T〉(e).m〈V〉(d) as a sub-expression then
mbody(m〈V〉, C〈T〉,@C〈T〉) = (x, e0) and #(x) = #(d).

Theorem 3 (Type Soundness). If ` e : T and e →∗ e′ and e′ is a normal
form, then either e′ is a value, or it contains a failed cast.

While Featherweight LOOJ omits imperative features, typing problems with
instance variables generally also arise with parameters, so we are confident that
the addition of instance variables will add no new difficulties.

