LOQJ: Weaving LOOM into Java

Nate Foster
University of Pennsylvania

joint work with
Kim Bruce
Williams College

Introduction

Java v1.5 has bounded polymorphism!

But still difficult to express binary methods naturally.

— A method is a binary method if it is intended to be used
with a parameter of the same type as the object it is
called from.

— Tricky to write methods with this property in languages
with inheritance.

MyType was key feature of TOOPLE, PolyTOIL, LOOM.

— Self-reflexive type.

Goal: add MyType to Java.

@ LOOJ: Weaving LOOM into Java - 2 ECOOP 2004

Introduction

e More precise goal: seamlessly integrate MyType with other
Java features including bounded polymorphism and
interfaces.

e Key challenge:

— In Java, objects are described by both class types and
interface types in the static type system.

— Interacts with MyType in interesting ways.

@ LOOJ: Weaving LOOM into Java - 3 ECOOP 2004

Binary Methods

Difficult to write binary methods with inheritance!

class C {boolean eq(C c){..}}

@ LOOJ: Weaving LOOM into Java - 4 ECOOP 2004

Binary Methods

Difficult to write binary methods with inheritance!

class C {boolean eq(C c){..}}

class D extends C {boolean eq(D d){..}}
class E extends C {boolean eq(E e){..}}

LOOJ: Weaving LOOM into Java - 4-a

ECOOP 2004

Binary Methods

Difficult to write binary methods with inheritance!

class C {boolean eq(C c){..}}

class D extends C {boolean eq(D d){..}}
class E extends C {boolean eq(E e){..}}

Desired | Actual
eq(new Ok Ok
eq(new Ok Ok

eq(new Ok
eq(new Ok

@ LOOJ: Weaving LOOM into Java - 4-b ECOOP 2004

A Type for this

Introduce ThisClass: denotes the class type of this.

With ThisClass, can write eq as a binary method:

class C {boolean eq(ThisClass tc){..}}
class D extends C {boolean eq(ThisClass tc){..}}

New definition: a method is binary iff it has a parameter of
type ThisClass.

@ LOOJ: Weaving LOOM into Java - 5 ECOOP 2004

A Type for this

Introduce ThisClass: denotes the class type of this.

With ThisClass, can write eq as a binary method:

class C {boolean eq(ThisClass tc){..}}
class D extends C {boolean eq(ThisClass tc){..}}

New definition: a method is binary iff it has a parameter of
type ThisClass.

ThisClass useful in other situations:

public ThisClass clone();

Can use a Factory<ThisClass> to encode behavior of This
constructors [Joy].

@ LOOJ: Weaving LOOM into Java - 5-a ECOOP 2004

Example: Linked-list Nodes

class Node<T> {
protected ThisClass next;
public Node(T t, ThisClass next) {..}
public ThisClass getNext() {

return next;

}

public void setNext(ThisClass next) {

this.next = next;

@ LOOJ: Weaving LOOM into Java - 6 ECOOP 2004

Example: Linked-list Nodes

class DblNode<T> extends Node<T> {
protected ThisClass prev;
public DblNode(T t, ThisClass next, ThisClass prev) {..
/* getPrev, setPrev elided */
public void setNext(ThisClass next) {
super .setNext (next) ;
if (next != null) { next.setPrev(this); }

}

@ LOOJ: Weaving LOOM into Java - 7 ECOOP 2004

Problems with ThisClass

public void breakIt(Node<T> nl, Node<T> n2) {
nl.setNext (n2);

Node<T> n;
DblNode<T> dn;
breakIt(dn, n);

@ LOOJ: Weaving LOOM into Java - 8 ECOOP 2004

Problems with ThisClass

public void breakIt(Node<T> nl, Node<T> n2) {
nl.setNext (n2);

Node<T> n;
DblNode<T> dn;
breakIt(dn, n);

—* dn.setNext(n) //error!

Calls setNext on a DblNode<T> with an argument of type
Node<T>, a hole!

@ LOOJ: Weaving LOOM into Java - 8-a ECOOP 2004

Exact Types

To fix hole, introduce exact types, written @T.

An expression with static type @T always refers to an object
with run-time type T (and not an extension of T).

Restrict binary method invocations to receivers whose type
is known exactly.

(Non-binary methods are typed as in Java).

Exact types can masquerade as non-exact types:

A FQT<:T

@ LOOJ: Weaving LOOM into Java - 9 ECOOP 2004

Type Checking Classes

When type checking a class with declaration:
class D extends C

we assume.
D extends C (as always)
ThisClass extends D

this:Q@ThisClass

@ LOOJ: Weaving LOOM into Java - 10 ECOOP 2004

Type Checking Method Invocations I

Recall setNext method from Node<T>:
setNext : QThisClass — void
e If binary method, receiver must be exact.

e Substitute receiver type for ThisClass in signature.

@ LOOJ: Weaving LOOM into Java - 11 ECOOP 2004

Type Checking Method Invocations I

Recall setNext method from Node<T>:
setNext : QThisClass — void
e If binary method, receiver must be exact.

e Substitute receiver type for ThisClass in signature.

Node<T> node;
ONode<T> exactNode;
@Db1Node<T> exactDblNode;

node.setNext //error!
exactNode.setNext : ONode<T> — void
exactDblNode.setNext : @DblNode<T> — void

@ LOOJ: Weaving LOOM into Java - 11-b ECOOP 2004

Type Checking Method Invocations II

Recall getNext method from Node<T>:

getNext : () — @ThisClass

Node<T> node;
ONode<T> exactNode;
@Db1Node<T> exactDblNode;

node.getNext : Node<T> result loses exactness
exactNode.getNext : ONode<T>
exactDblNode.getNext : @DblNode<T>

@ LOOJ: Weaving LOOM into Java - 12 ECOOP 2004

Formal Semantics and Implementation

e Proof of type safety for LOOJ core as extension of
Featherweight GJ [Igarashi, Pierce, Wadler 99].

— Models ThisClass and exact types (and generics).

— No interfaces (or assignment).

e Full language implemented as an extension of GJ compiler.
— Like GJ, translated to standard bytecodes by erasure.

— But also supports lightweight introspection:

*x Checked type casts.

x instanceof expressions.

* Arrays still a problem (nowhere to store type).
- Use wrapper class: Array<T>

@ LOOJ: Weaving LOOM into Java - 13 ECOOP 2004

Exact Types and Interfaces

e What is an exact interface type?

e Can an object with a class type be assigned to an exact
interface type?

@ LOOJ: Weaving LOOM into Java - 14 ECOOP 2004

Exact Types and Interfaces

What is an exact interface type?

Can an object with a class type be assigned to an exact
interface type?

Yes, if:

1. Interface is exactly the set of public methods declared in
the class.

2. Class names interface as its distinguished exact interface:

class C implements QI

If C has exact interface I then A F QC<:@T.

LOOJ: Weaving LOOM into Java - 14-a ECOOP 2004

ThisClass and Interfaces

What does ThisClass mean in an interface?

interface I {
boolean eq(ThisClass tc);
}
class C implements @I {
int x;
public boolean eq(ThisClass tc) { this.x

}

class D implements @I {
int vy,
public boolean eq(ThisClass tc) { this.y

}

@ LOOJ: Weaving LOOM into Java - 15 ECOOP 2004

ThisType

Allowing ThisClass in interfaces leads to holes:

@I i1l = new CQ);
@I i2 = new D(Q);
il.eq(i2);

@ LOOJ: Weaving LOOM into Java - 16 ECOOP 2004

ThisType

Allowing ThisClass in interfaces leads to holes:

@I i1l = new CQ);
@I i2 = new D(Q);
il.eq(i2);

—* new C().eq(new D())

@ LOOJ: Weaving LOOM into Java - 16-a ECOOP 2004

ThisType

Allowing ThisClass in interfaces leads to holes:

@I i1l = new CQ);
@I i2 = new D(Q);
il.eq(i2);

—* new C().eq(new D())

—* new D().x //error!

Our solution:
(1) Forbid uses of ThisClass in interfaces.

(2) Introduce ThisType: denotes the interface type of this.

@ LOOJ: Weaving LOOM into Java - 16-b ECOOP 2004

Type Checking Classes and Interfaces

When type checking a class with declaration:

class D extends C implements QI

We assume.:

D extends C

D implements QI
ThisClass extends D
this:Q@ThisClass
ThisType extends I

ThisClass implements Q@ThisType

@ LOOJ: Weaving LOOM into Java - 17 ECOOP 2004

Example with ThisType

interface I {
boolean eq(ThisType tt);
int getVal();

}

class C implements @I {

public boolean eq(ThisType tt) { this.x tt.getVal() }

}

class D implements @I {

public boolean eq(ThisType tt) { this.y tt.getVal() }

}

il.eq(i2);

@ LOOJ: Weaving LOOM into Java - 18 ECOOP 2004

Comparison

LOOM

LOOJ

classes are not types

structural type relations

MyType

class (names) are types
named type relations

ThisClass and ThisType

exact by default
#-types

matching

“slippery” by default
@-types

extends

no type-based operations

checked casts, instanceof

LOOJ: Weaving LOOM into Java - 19

ECOOP 2004

Related Work

Indexicals well studied in linguistics [Kaplan 70s].
MyType, matching: TOOPLE, PolyTOIL, LOOM [Bruce 90s].

Many proposals for extending Java with generics:

— Pizza/GJ [Bracha, Odersky, Wadler, Stoutamire 97, 98],
— NextGen [Allen, Cartwright, Steele, 98],

— PolyJ [Bank, Liskov, Myers 97],

— Translation LM [Natali, Viroli 00].

Early implementation of LOOJ [Burstein].
Optimized JVM verifier/optimizer for GJ/LOOJ [Gonzalez].

LOOJ: Weaving LOOM into Java - 20 ECOOP 2004

Summary

LOOJ is a conservative extension to Java with:
ThisClass: denotes the class type of this.
ThisType: denotes the interface type of this.

Exact types — ensure static and dynamic types agree.

Formal semantics — Featherweight LOO..
Implementation with lightweight introspection.

Familiar presentation of many features from LOOM.

@ LOOJ: Weaving LOOM into Java - 21 ECOOP 2004

Questions?

LOOJ: Weaving LOOM into Java - 22 ECOOP 2004

F-Bounded Polymorphism

With generics can write binary methods, but awkwardly:

class C<TC extends C<TC>> { boolean eq(TC tc) { .. } }
class D<TC extends D<TC>> extends C<TC> {
boolean eq(TC tc) { .. }
h
class ExactC extends C<ExactC> { }
class ExactD extends D<ExactD> { }

@ LOOJ: Weaving LOOM into Java - 23 ECOOP 2004

F-Bounded Polymorphism

With generics can write binary methods, but awkwardly:

class C<TC extends C<TC>> { boolean eq(TC tc) { .. } }
class D<TC extends D<TC>> extends C<TC> {
boolean eq(TC tc) { .. }

}

class ExactC extends C<ExactC> { }
class ExactD extends D<ExactD> { }

But tricky, verbose and many types:

C<ExactC> C<ExactD>
ExactC D<ExactD>
ExactD

In LOOJ: just two classes and C, @C, D, @D.

@ LOOJ: Weaving LOOM into Java - 23-a ECOOP 2004

Bounded Polymorphism and ThisType

interface I {
QThisType getNext();
void setNext (@ThisType tt);
}
class C,D implements @I {..}
class E<X extends I> {
private @X x;
public @X xGetNext() { return x.getNext(); }
}
QC c;
QE<C> e;
c.setNext(new D());
c = e.xGetNext(); //error! (RHS is @D)

@ LOOJ: Weaving LOOM into Java - 24 ECOOP 2004

LOQYJ Translation I

class C<T> {

public CO { .. }
. obj instanceof C<T> ..

}

new C<String>()

@ LOOJ: Weaving LOOM into Java - 25 ECOOP 2004

LOQY] Translation II

class C {
private PolyClass T$$class;
public C(PolyClass T$$class) {
this.T$$class = T$$class;

}

public boolean instance0f$$C(PolyClass T$$class) {
return this.T$$class.equals(T$$class);

}

(obj instanceof C)
&& ((C)obj) .instanceO0f$$C(T$Pclass)

}

new C(new PolyClass(String.class))

@ LOOJ: Weaving LOOM into Java - 26 ECOOP 2004

Featherweight LOOJ: Syntax

Classes CL
Constructors K
Methods

Expressions

Hash Types

M

e

Types T
H

N

Bound Types

class C(Z<N)<D(N) {Tf; KM}
C(Sg,Tf){super(g); this.f =f; }
(ZaN) Tm(TX){Te; }

e.f | x.m(H)(€) | new C(H)(e) | (T)e

LOOJ: Weaving LOOM into Java - 27 ECOOP 2004

Featherweight LOOJ: Method Type Lookup

CT(C) = class C(Z<N)<D(U) { ... M }
(Y<a0)Vm(VX){Te;} €M
mtype(m, C(T), QR) = [T/Z|[R/ThisClass|({(Y<0)V — V)

CT(C) = class C(Z<N)<D(U) { ... M }
(Y<aO)Vm(VX){T e;} €M
R not exact ThisClass does not appear in V. pos(V)
mtype(m, C(T),R) = [T/Z]|[R/@QThisClass, ThisClass|({Y<0)V — V)

@ LOOJ: Weaving LOOM into Java - 28 ECOOP 2004

Featherweight LOQO]J: Subtyping

A FS<:T A FT<:U
A FS<:U

A FT<:T

CT(C) = class C(Z<N)<D(U) { ... }
A FC(T)<:[T/Z]D(U)

A FX<:A(X)

A FQT<:T

LOOJ: Weaving LOOM into Java - 29

ECOOP 2004

Featherweight LOOJ: Expression Typing

A;T Feg : T mtype(m, bounda (To), To) = (Y<0)U — U
A FV ok AFV<:[V/Y]IO A;T'Fe:S ARS<:[V/Y[U
A;T Feom(V)(e) : [V/Y]U

CT(C) = class C(Z<N)<D(U) { ... } A FC(T) ok
A;T'Fe:S fields(C(T),@QC(T)) =Rf AFS<R
A; T Fnew C(T)(€) : QC(T)

A FT ok A;T ey : To A FTo<:T
A;T H(T)eo : T

@ LOOJ: Weaving LOOM into Java - 30 ECOOP 2004

Featherweight LOOJ: Method Typing

A = Z<:N,Y<:0,ThisClass<:C(Z)

A FT,T,0 ok A;X :T,this : QThisClass - e : S
A FS<:T CT(C) = class C(Z<N)<D(U) { ... }
override(m,D(U), (Y<0)T — T)

(Y<0) Tm(TX){1eo; } OKinC(Z«N)

@ LOOJ: Weaving LOOM into Java - 31 ECOOP 2004

