Life in the Fast Lane:
A Line-Rate Linear Road

Theo Jepsen
Universita della Svizzera italiana
Barefoot Networks

Nate Foster
Barefoot Networks
Cornell University

ABSTRACT

This paper explores the question: what abstractions are
needed to support a more general form of stateful process-
ing in programmable forwarding planes? It argues that we
should look for clues from the domain of stream processing.
As a case study, it describes an implementation of the Linear
Road benchmark for stream processing systems written in
P4. The artifact of our implementation, which runs on a pro-
grammable ASIC, provides a version of the benchmark that
far exceeds the throughput of any prior work. More impor-
tantly, the experience provides perspective on the challenges
for implementing stateful abstractions in P4.

CCS CONCEPTS

« Networks — In-network processing; « Information
systems — Database management system engines;

KEYWORDS

Programmable switches; Stream processing

ACM Reference Format:

Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster,
and Robert Soulé. 2018. Life in the Fast Lane: A Line-Rate Linear
Road. In SOSR ’18: SOSR °18: Symposium on SDN Research, March 28—
29, 2018, Los Angeles, CA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3185467.3185494

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSR 18, March 28-29, 2018, Los Angeles, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5664-0/18/03...$15.00
https://doi.org/10.1145/3185467.3185494

Masoud Moshref

Barefoot Networks

Antonio Carzaniga
Universita della Svizzera italiana

Robert Soulé
Universita della Svizzera italiana
Barefoot Networks

1 INTRODUCTION

Until recently, it was commonly believed that network hard-
ware needed to be simple and fixed; Performing computa-
tions in the data plane would make the network slow and
the hardware expensive. However, this view appears to be
changing, as a new generation of programmable switches
which match the performance of fixed function devices has
become commercially available [6, 32].

As a result, developers and network operators have be-
gun to question widely held assumptions about the division
of labor between the network and application layers [26].
Several recent projects have explored using this new hard-
ware to offload or accelerate services that traditionally live
outside the network. Some examples include consensus pro-
tocols [9, 10, 21], in-network caching [18], and conflict reso-
lution for transaction processing [20].

One common feature of all these applications is that they
depend on stateful computations to an extent that was not
originally expected or intended by hardware and language
designers focused primarily on the networking domain. If
this trend continues—as appears likely—then it is worth iden-
tifying which abstractions are needed to support a more
general form of stateful processing.

When trying to answer this question, a promising place to
look for clues is the domain of stream processing. The data-
base community, which developed stream processing, has
decades of experience with “programming with tables” [8].
Stream processing naturally generalizes the basic model of
computation offered by these devices to a graph, where the
edges are streams and the nodes are operators. In this model,
a stream is a continuous ordered sequence of data items (i.e.,
packets) and operators are stream transformers that may
have state and side-effects beyond the output streams they
produce (i.e., tables and actions) [15].

As a first step in this direction, we propose focusing on the
Linear Road benchmark for stream processing systems [4].
Linear Road is a streaming application that monitors vehicles
on a highway using five queries: three of which execute on
streaming data, and two of which execute on historical data.

https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3185467.3185494

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

Linear Road provides a good case study for stateful data plane
programming, since it is a relatively small, but semantically
rich example of stateful streaming computation.

Linear Road has been implemented on a number of stream
processing engines, including the STREAM data stream man-
agement system [5] from Stanford University; the Aurora
system [2] from Brandeis University, Brown University and
MIT; and IBM’s Infosphere Streams [17].

In this paper, we present an implementation of Linear Road
in P4. Implementing the query processing logic is challeng-
ing due to constraints imposed both in the language and in
the target hardware. On the language side, P4 is, by construc-
tion, not a Turing-complete language; it excludes looping
constructs, which are undesirable in hardware pipelines. This
makes it difficult to implement common relational operators,
such as join, which are used in the queries. At the hard-
ware level, there are restrictions on state accesses, available
storage, and depth of the processing pipeline.

We have implemented all five benchmark queries in a P4
program running on Barefoot Network’s Tofino ASIC [6].
The implementation can process over 4 billion events/sec-
ond. This is orders of magnitude faster than the most recent
published implementation of Linear Road [17].

Beyond the artifact of our implementation of the bench-
mark in P4, the exercise provides a perspective on the chal-
lenges for implementing stateful abstractions in the P4 lan-
guage. We hope that by describing our experiences, we will
generate discussion within the larger community about the
requirements for stateful computations in P4 and data-plane
languages in general.

Overall, this paper makes the following contributions:

e It presents an implementation of the Linear Road stream
processing benchmark that can run at line speed.
o It describes general techniques for implementing stateful

processing on chips with an RMT architecture [7].

o It discusses the feasibility and limitations of the stateful
abstraction for stream processing in the data plane.

We first provide background on Linear Road (§2), before

describing the details of our implementation (§3). We then

present a general discussion (§4), followed by a brief evalua-

tion (§5), related work (§6), and concluding remarks (§7).

2 THE LINEAR ROAD BENCHMARK

Linear Road is a simulation of a hypothetical application
that computes tolls for vehicles on a highway system that
consists of L expressways traveling from east to west. Each
expressway is divided into 100 segments, each with five lanes,
including an entrance and an exit ramp. Vehicles pay a toll
when they drive on a congested highway (where the average
speed of all vehicles is under 40 mph in a 5 minute span).

T. Jepsen et al.

The benchmark queries receive input from both a set of
continuous streams of data, and some pre-loaded, historical
data referred to as relations. The four input data streams are:

o Position Report: a message periodically emitted by each
vehicle with its current speed and location.

e Account Balance Request: a request for the sum of tolls
assessed to a vehicle since the start of the simulation.

o Daily Expenditure Request: a request for the sum of tolls
on a specific day from the historical data.

o Travel Time Request: a request for the estimated travel time
between two segments.

The historical data includes the following two relations:

o TollHistory: for each day, for each vehicle, for each express-
way, the total of tolls assessed.

o SegmentHistory: for every minute, the average speed and
sum of tolls assessed in each segment of each expressway.

Each stream or relation has a schema that specifies the names
of the attributes. For example, a PositionReport stream has
the following schema:
(Time, VID, Spd, XWay, Seg, Lane, Dir)
where Time is the number of seconds since the start of the
simulation, VID is the vehicle’s identifier, Spd is the vehicle’s
current speed, and XWay, Seg, Lane, and Dir indicate the
vehicles location (expressway, segment, lane, and direction,
respectively). Arasu et al. provide a complete benchmark
specification [4].

The benchmark defines five queries that compute the out-
puts from the input streams and relations. In prose, these
queries are as follows:

o Toll Notification: Upon entering a segment of an express-
way, a vehicle should be notified of the toll for that seg-
ment, which is based on the segment’s level of congestion.

o Accident Alert: A vehicle travelling up to 4 segments up-
stream from an accident (detected as two or more vehicles
stopped in the same lane) should be notified.

o Account Balance: Upon requesting an account balance, a
vehicle should receive a response with the sum of tolls for
that vehicle since the beginning of the simulation.

o Daily Expenditures: A request for the sum of tolls for a
vehicle on a given day on a given expressway. This should
be computed from the TollHistory historical data.

o Travel Time Estimation: Given a time of day and day of
week, calculate the estimated travel time between two
segments (computed from SegmentHistory historical data).

As a workload, we use sample input data available on the
benchmark website [22].

3 P4 LINEAR ROAD

Using the P4 language, we implemented two versions of the
benchmark: one that runs in the software Behavioral Model,

Life in the Fast Lane: A Line-Rate Linear Road

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

» send_travel_est

travel_est_sub_seg |—>| travel_est_init |—>| travel_est_historyI
\ travel_est_recirc |

load_prev_valid

load_prev_lane %‘v'
A@L
X

\
load_prev_loc_id

N
X mow

didnt_move

load_prev_pos

update_volA

update_volB

update_stoppedA
/ update_stoppedB

update_stoppedC
(EL e [update_stoppedD

| send_toll_naotification |

calc_toll

update_toll
update_bal
‘ inc_accident_seg ‘ | set_bal_vid

detect_accident send_accnt_bal

send_accident_alert |
load_stopped

| daily_expenditure I

={ send_daily_expenditure |

Figure 1: Tables and control flow of P4 Linear Road. Colors indicate a particular implementation technique.

and one that runs on the Tofino ASIC. Below, we describe the
key implementation techniques, as well as some limitations
in our implementation.

Our forwarding-plane version of Linear Road depends on
the abstractions offered by the P4 language, which reflects
the structure of the target hardware—i.e., the RMT archi-
tecture [7]. A RMT architecture has a pipeline of logical
match-action units with local memory. Each match-action
unit imposes a strict ordering on operations; all data reads
must occur before all writes. There are also a number of
physical constraints, e.g., a fixed number of match units in
a pipeline; a limited amount of available SRAM and TCAM,;
and each TCAM can only return a single result from a match
(i-e., the highest priority match).

Our implementation runs on a single switch which re-
ceives and emits streams of UDP packets. A stream tuple is
encoded as a P4 header with fixed-width fields, including
a field that specifies the tuple type (e.g. a PositionReport or
AccidentAlert). Figure 1 illustrates the tables and control flow
of our P4 program. The arrows indicate the direction packets
flow through the pipeline. The colors indicate locations in the
pipeline where we use different implementation techniques.

3.1 Implementation Techniques

To cope with the above constraints, our implementation
relies on several techniques, which we describe below.

Incremental Operator Computations. All queries must per-
form their computations incrementally. That is, for every
input tuple (i.e., packet), the operator computes the differ-
ences in state relative to the previous operator invocation.
This approach reduces memory usage, as the query only
maintains a limited amount of incremental state. This tech-
nique is used in the orange tables in Figure 1.

For example, the Toll Notification query checks the number
of vehicles in a segment, as well as their average velocity. This
requires storing two state aggregates per segment: a counter

for the number of vehicles, and an average of their speeds. If
a Position Report indicates that a car crossed into a segment,
then the previous segment’s counter is decremented and the
next segment’s is incremented.

Explicit Loop Unrolling. P4 excludes looping constructs,
which are undesirable in hardware pipelines. Therefore, all
loops in our queries must be explicitly unrolled. For example,
the Accident Alert and Toll Notification queries must explicitly
check the next four segments for stopped cars, which is done
in the blue tables in Figure 1.

Multiple Register Arrays. Based on the report from Sharma
et al. [27], we assume that a single index of the same reg-
ister can be accessed (first a read, then a write) in a stage.
Therefore, to implement queries that need to access multi-
ple indexes, we partitioned the data into multiple registers
(highlighted red in Figure 1). For example, when a car crosses
from segment 5 to 6, the query must decrement the volume of
cars in the previous segment, and increment the next. Rather
than express this as segment[5]--; segment[6]++, we keep
two register arrays, one for even and one for odd segments:
segment0dd[5/2]--; segmentEven[6/2]++.

Pre-computed Historical State. The purple tables in Fig-
ure 1 store data for answering historical requests. Using
tables, rather than registers, simplifies look-ups, since the
match already implements the logic for reading by keys. The
controller inserts the tuples from TollHistory and Segmen-
tHistory into two separate tables. When the switch evaluates
a historical query, the row matching the query is selected.

The Travel Time Estimation query selects multiple rows
(one for each segment in a path). However, the match-action
paradigm only returns one table entry per lookup. To find
all the entries, our implementation recirculates the packet
through the egress pipeline: on each recirculation the sum
of estimated travel time is incremented with the next entry

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

in the table, and finally the sum is sent in the output packet.
This is indicated by the gray dashed arrow in Figure 1.

Another technique for selecting all the entries could be to
create multiple replicas of the packet, assigning each a differ-
ent key, and multicasting them to the egress pipeline. Each
replica would match a different entry in the table, and update
a common register. The final replica would read and output
the accumulated value from that register. This technique
would use the same amount of bandwidth as the one we im-
plemented, but have lower latency, since the replicas could
be processed in parallel. However, this would require an ad-
ditional stage and a register to accumulate the partial result
from each replica. It is only applicable if the accumulation
operation is commutative (due to parallelization).

We assume memory is local to a pipe and not shared be-
tween pipes. To increase the amount of memory available,
values can be partitioned among multiple pipes; if a query
arrives in a certain pipe, but requires values stored in another
pipe, the query can be recirculated to that pipe, as done in
NetCache [18]. Of course, this requires re-circulation, and
would therefore reduce throughput.

Over-allocation of Resources. Our implementation stores
vehicle state in registers. To lookup the state of a vehicle, the
VID is used as an index into the registers. If VIDs are sparse,
then register space will be wasted.

Passing State Through Stages. A register array is stored in a
specific pipeline stage, and thus can only be accessed in that
stage. Since computation in a stage may require state that
is read in a previous stage, P4 metadata is used to pass state
between stages. After reading/writing state to a register, the
state is also written to a metadata field, so that it can be used
in a subsequent stage (e.g. for determining whether a query
evaluation has been triggered).

3.2 Deviations from Specification

Our hardware implementation diverges from the original
Linear Road specification in some relatively minor aspects:

Lane detection. The original specification requires that
an accident should be detected when two or more cars
are stopped in the same lane; our implementation checks
whether they are stopped in the same segment. This is due to
the restriction on the number of stages in a RMT machine.

Time-based Average. The original specification requires
that the queries calculate the average speed in a 5 minute
window. Doing so would require us to maintain values for 5
minutes. Maintaining a sliding window on an ASIC is difficult.
So, we use a hardware-supported low-pass filter (LPF) to

T. Jepsen et al.

calculate the average using single exponential smoothing .
Since a LPF is not window-based, we cannot compare it to
the specification’s window approach for accuracy.

4 TOWARDS A
GENERAL QUERY LANGUAGE

In the previous section, we described an implementation
of the Linear Road benchmark in P4. We chose to focus on
Linear Road for several reasons: (i) it has small scale in input
data stream and queries, making a switch-based deployment
feasible; (ii) it has a clearly defined semantics [4], allowing
us to verify the correctness of our implementations; and
(iii) it has been generally adapted to a number of streaming
engines (e.g., [2, 3, 5, 17]), indicating that it is representative
of stream processing applications.

However, the more general question this work addresses
is: how feasible would it be to implement general abstractions
from streaming languages targeting the RMT architecture via
P4? In this section, we expand our discussion to more general
abstractions from the domain of stream processing systems
that could be adapted for use in a programmable data plane.

There are, of course, many stream processing languages
(e.g., [3, 13, 24, 25, 29, 33]). Although they are all different, we
make two broad generalizations that we believe are useful.
First, many stream languages distinguish between two types
of inputs: data from time varying streams (which is updated
continuously) and data from relations (which is mostly static).
Second, many of them are based on streaming-specific exten-
sions to SQL, which in term is based on relational algebra [8].
Below, we organize our discussion along these lines.

4.1 Input Data

Because the handling and storage requirements for transient,
continuous data may differ significantly from historical data,
it is useful to distinguish between two types of inputs: time
varying streams and static relations.

Time Varying Streams. Time-varying streams are data that
arrives continuously in online fashion. Stream processing
systems try to process this data with high throughput and
low latency (average and tail). Programmable data planes are
well-suited to processing this type of data, as it is similar to
processing network packets. This data is typically associated
with a timestamp, which must be either an explicit attribute
(i.e., packet header field), or acquired from the hardware. P4
does not provide a built-in function for accessing a hardware
timestamp, but this can be exposed by the architecture, such
as Portable Switch Architecture (PSA).

Vavg, = aavg,_; + (1 — a)xy,, where weight 0 < @ < 1 for the nth

observation x,.

Life in the Fast Lane: A Line-Rate Linear Road

Static Relations. Static Relations are used to store historical
data. Depending on the needs of the query, this data may
or may not be pre-aggregated. There are two methods for
storing static data with different trade-offs: (i) as pre-loaded
data in action parameters stored in SRAM/TCAM match
tables, or (ii) in registers, index by a key coming from a
match table or a hash.

Match tables can only be programmed from the control-
plane which has limited throughput. Although they cannot
be used for instantaneous data, they perfectly suit the his-
torical data where the pre-loading latency is not critical.

Registers are more general and can be programmed and
queried from data-plane and control-plane. However, the
number of registers and the bitwidth that can be read in each
stage is an order of magnitude smaller than tables.

Beyond storing the data, there must be ways to quickly
access the data with one or more keys. For both methods,
keys can be generated from a match table or a hash function.
Match tables do not need to save all possible combinations for
historical data. Since the control-plane can pre-process the
data, it can program only the keys used in the match tables,
thus reducing memory consumption. On the other hand, if
we use the hash for key, we do not need the match table.
But, if key indexes are sparse, then memory might be over-
allocated. Depending on the hash function and key space,
there may be hash collisions. Depending on the needs of the
application, such collisions may or may not be tolerable.

Note that the ASIC cannot guarantee that historical data
is persistent. However, in most streaming systems, the appli-
cation needs only to consult historical data when answering
a query (i.e., persistent storage is not a requirement). So, data
can be re-loaded into the device in the event of a memory
failure or device restart.

4.2 Query Operators

Many streaming languages are based on SQL, which is based
on relational algebra [8]. The standard relational operators
include set operations, such as union and difference; join op-
erations to correlate data; filter operations, such as selection
and projection, and aggregations. Streaming languages ex-
tend these operators with window operators, which convert
an input stream into a relation.

Set Operators. Some operators perform set operations,
such as union, difference or Cartesian product. Implement-
ing these set-based operators would require some form of
iteration. For example, one naive implementation strategy
would be to store data as “tables” in an array of registers.
In this strategy, each “row” could be implemented as a P4
metadata structure, and operators would iterate over these
structures to perform their computations. However, this de-
sign is impractical on a switch for two reasons. First, storing

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

Time-based Count-based Event-based

Sliding v
Tumbling v v v

Table 1: Categories of windowed operators. Checks in-
dicate windowing that is implementable in P4.

the individual tuples of the input stream requires a prohibi-
tive amount of memory (SRAM). Second, iterating over the
table rows would be difficult to express in P4 and could not
be done at line-rate, as it would likely require re-circulation

through the pipeline.

Join Operators. Performing a join in hardware can be im-
plemented if the sets being joined have constant sizes. In our
Linear Road implementation, the vehicle state registers are
joined on the VID. In this case, each register contains exactly
one entry for each VID, so this operation can be implemented
with a fixed amount of memory and without iterating.

Filtering Operators. Selections and projections are straight-
forward to implement as a single transformation. A selection
simply matches on a field, for which switch hardware is
specialized. Projections can be implemented by modifying
fields, or adding or removing new fields (i.e. with the P4
add_header () primitive). Depending on the computational
resources of the hardware (e.g. arithmetic operations sup-
ported by the ALU), some projections may not be possible.

Aggregation Operators. Aggregates, such as average, count,
sum and min/max, are computed over a window. The aggre-
gate operators that require a fixed-size window can be imple-
mented incrementally by updating the latest value, which is
stored in a register array. To index into the register array, the
input tuple’s key (or hash of the key) can be used as an index.
If the queries can tolerate bounded error, an approximate
data structure (sketch) can be used. For example, to count
the number of unique items, a cardinality estimator such as
linear counting [31] or hyperloglog [12] can be implemented
using hashing and registers in data plane [16, 28].

Window Operators. Many streaming queries require win-
dow operations, which intuitively convert a stream into a
relation. In general, there are many types of windows. Ta-
ble 1 provides a summary of the main categories. A window
may be sliding or tumbling. A sliding window is a series of
fixed-sized, overlapping, contiguous time slices. The window
advances by a slide size, and events outside of the slide are
evicted, while new events are added. A tumbling window is a
series of fixed-sized, non-overlapping, contiguous time slices.
At the end of each interval, the window “tumbles” and all

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

data items are evicted. Both sliding and tumbling windows
may be time-based, count-based, or event based.

In P4/Tofino, it is feasible to implement count-based and
tumbling windows as they both have a static size. Sliding
time-based and event-based windows, however, require a
dynamic window size, because the window can grow to an
arbitrary size during the interval or before the event. They
are thus impractical to implement, because of the memory
and iteration constraints already described.

Linear Road makes use of sliding time-based windows (e.g.
for calculating average speed in a 5 minute interval), and
count-based tumbling windows (e.g. counting vehicles in
the same segment). To approximate the sliding time-based
window for average speed, in our implementation we use
single exponential smoothing.

4.3 Summary

P4 primitives and data structures can be used to express
many operators, albeit some more cumbersomely (e.g. with
loop unrolling). We found that data planes are well-suited for
streaming operations that do not require looping and that re-
quire a bounded amount of state. Overall, the stream process-
ing model maps surprisingly well onto the P4 programmable
switch hardware abstraction. That we were able to imple-
ment the whole Linear Road benchmark demonstrates the
expressive power of this new programmable substrate.

5 EVALUATION

We implemented two versions of the benchmark using P4;4:
one that runs in the software Behavioral Model (BMv2) with
1,263 lines of code (LoC), and one that runs on the Tofino
ASIC with 1,335 LoC. The code could be easily converted
to P4;5. We created a Python library (560 LoC) that parses
the sample workload data available on the Linear Road web-
site [22], and outputs packets to be sent to the switch. The
BMv2 version of the code is publicly available?.

We deployed our Linear Road implementation on a 64-port
ToR switch, with Barefoot Network’s Tofino ASIC [6]. As
per standard practice in industry for benchmarking switch
performance, we used a snake test: each port is looped-back
to the next port, so a packet passes through every port before
being sent out the last port. This is equivalent to receiving 64
replicas of the same packet. To generate and receive traffic,
we used an Ixia XGS12-H hardware packet tester, connected
to the switch with 100G QSFP+ direct-attached copper cables.
We verified that P4 Linear Road can process over 4 billion
events/second. Furthermore, the P4 Linear Road packet pro-
cessing pipeline has a fixed latency that is orders of magni-
tude lower than that of software implementations.

Zhttps://github.com/usi-systems/p4linearroad

T. Jepsen et al.

For comparison, the most recent published implementa-
tion of Linear Road [17] running on a single node (dual-core
3GHz Xeon CPU with 2GB RAM) could handle around 2M
events/second with 1.67 seconds of latency. A more recent
streaming engine, Drizzle [30], does not evaluate Linear Road,
but reports 100M events/second for the Yahoo streaming
benchmark, using 128 r3.xlarge Amazon EC2 instances.
We report these numbers simply to give context for our per-
formance; this is not an apples-to-apples comparison because
these other systems have different capabilities (e.g. persistent
memory, complex transformations, and fault-tolerance).

6 RELATED WORK

P4 Benchmarks. Whippersnapper [11] is a P4 benchmark.
This paper describes an implementation of a benchmark as
a case study for stateful dataplane programming.

Implementations of Linear Road. Linear Road was first de-
scribed in a language-agnostic logical specification [4]. It
has since been implemented for various streaming systems.
Notably, a version written in CQL [3] ran on the Stanford
STREAM data stream management system [5]. It was used
to benchmark the Aurora [2] and Borealis [1] streaming
engines. Jain et al. describe an implementation written in
SPL [14] running on IBM’s Infosphere Streams [17].

Stateful Dataplane Applications. Several recent projects
have made heavy use of state in the forwarding plane to
offload or accelerate systems services. Marple [23] uses
stream processing techniques to process telemetry data on
switches. NetCache [18] implements a key-value store. Net-
Paxos [9, 10] offers consensus as a network service. Eris [20]
orders transactions in an optimistic-concurrency control sys-
tem to avoid aborts. Jose et al. [19] describe a congestion
control mechanism that leverages switch statistics.

7 CONCLUSION

This paper argues for using stream processing as a model
for the types of abstractions we will need to support general
stateful computations in programmable network hardware.
As a case study, it describes an implementation of Linear
Road benchmark in P4. This exercise not only provides a
line-rate implementation of Linear Road, but also helps to
identify constraints and challenges for stateful processing.
As developers and network operators continue to explore
ways to leverage this new hardware to offload or accelerate
services, this work highlights the pressing need for new
language abstractions.

Acknowledgments. We thank the anonymous SOSR re-
viewers and our shepherd, Anirudh Sivaraman, for their
valuable feedback. This work is supported in part by SNF
167173. We thank Changhoon Kim for helpful discussions.

https://github.com/usi-systems/p4linearroad

Life in the Fast Lane: A Line-Rate Linear Road

REFERENCES
[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

[10

[11

(13

(14

[15

[16

—

=

]

]

—

[t

[l

=

=

J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The design of the borealis stream processing
engine. In Conference on Innovative Data Systems Research (CIDR),
pages 277-289, Jan. 2005.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model
and architecture for data stream management. In The VLDB Journal,
volume 12, pages 120-139, Aug. 2003.

A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
semantic foundations and query execution. In The VLDB Journal,
volume 15, pages 121-142, June 2006.

A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts. Linear road: a stream data manage-
ment benchmark. In 30th International Conference on Very Large Data
Bases, pages 480-491. VLDB, Aug. 2004.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Principles of Database Systems
(PODS), pages 1-16, June 2002.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN. In
SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SSIGCOMM), pages 99-110, Aug.
2013.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz. "Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hardware for SDN". In
SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pages 99-110, Aug.
2013.

E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377-387, June 1970.

H. T. Dang, M. Canini, F. Pedone, and R. Soulé. Paxos Made Switch-
y. SIGCOMM Computer Communication Review (CCR), 44:87-95, Apr.
2016.

H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé. NetPaxos:
Consensus at Network Speed. In ACM SIGCOMM Symposium on SDN
Research (SOSR), pages 59-73, June 2015.

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford, R. Soulé,
and H. Weatherspoon. Whippersnapper: A p4 language benchmark
suite. In ACM SIGCOMM Symposium on SDN Research (SOSR), pages
95-101, Apr. 2017.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the
analysis of a near-optimal cardinality estimation algorithm. In AofA:
Analysis of Algorithms, pages 137-156, June 2007.

B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo. SPADE: The
System S declarative stream processing engine. In ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages
1123-1134, June 2008.

M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Ku-
mar, M. Mendell, H. Nasgaard, S. Schneider, R. Soulé, and K.-L. Wu. IBM
streams processing language: Analyzing big data in motion. IBM Jour-
nal of Research and Development (IBMRD), 57(3/4):7:1-7:11, May/July
2013.

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A catalog
of stream processing optimizations. ACM Computing Surveys (CSUR),
46(4), Apr. 2014.

In-Network DDoS Detection. https://barefootnetworks.com/use-cases/
in-nw-DDoS-detection, 2017.

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

N. Jain, L. Amini, H. Andrade, R. King, Y. Park, P. Selo, and C. Venka-
tramani. Design, implementation, and evaluation of the linear road
bnchmark on the stream processing core. In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 431-442,
June 2006.

X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
Netcache: Balancing key-value stores with fast in-network caching.
In ACM Symposium on Operating Systems Principles (SOSP), pages
121-136. ACM, Oct. 2017.

L. Jose, L. Yan, M. Alizadeh, G. Varghese, N. McKeown, and S. Katti.
High speed networks need proactive congestion control. In Workshop
on Hot Topics in Networks (HotNets), Nov. 2015.

J. Li, E. Michael, and D. R. K. Ports. Eris: Coordination-free consistent
transactions using in-network concurrency control. In ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 104-120. ACM, Oct.
2017.

X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and M. J. Freedman. Be
fast, cheap and in control with switchkv. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 31-44,
Mar. 2016.

Linear Road. http://www.cs.brandeis.edu/~linearroad/.

S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim. Language-directed hardware design for
network performance monitoring. In SIGCOMM Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), pages 85-98. ACM, Aug. 2017.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: A not-so-foreign language for data processing. In ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages
1099-1110, June 2008.

R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, pages
277-298, 2005.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments
in System Design. ACM Transactions on Computer Systems (TOCS),
2:277-288, Nov. 1984.

N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy, J. Nel-
son, and S. Peter. Evaluating the power of flexible packet processing
for network resource allocation. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 67-82, Mar. 2017.
N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy, J. Nel-
son, and S. Peter. Evaluating the power of flexible packet processing
for network resource allocation. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 67-82, Mar. 2017.
W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamlt: A language
for streaming applications. In 11th International Conference on Compiler
Construction, pages 179-196, Apr. 2002.

S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and L Stoica. Drizzle: Fast and adaptable
stream processing at scale. In ACM Symposium on Operating Systems
Principles (SOSP), pages 374-389. ACM, Oct. 2017.

K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time
probabilistic counting algorithm for database applications. ACM Trans-
actions on Database Systems (TODS), 15(2):208-229, 1990.

XPliant Ethernet Switch Product Family. www.cavium.com/
XPliant-Ethernet- Switch-Product-Family.html.

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and
J. Currey. DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 1-14,
Dec. 2008.

https://barefootnetworks.com/use-cases/in-nw-DDoS-detection
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection
http://www.cs.brandeis.edu/~linearroad/
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

	Abstract
	1 Introduction
	2 The Linear Road Benchmark
	3 P4 Linear Road
	3.1 Implementation Techniques
	3.2 Deviations from Specification

	4 Towards a General Query Language
	4.1 Input Data
	4.2 Query Operators
	4.3 Summary

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

