Leapfrog: Certified Equivalence for Protocol Parsers

Ryan Doenges

Cornell University

Tobias Kappé
ILLC, University of Amsterdam

John Sarracino
Cornell University

USA Netherlands USA

rhd89@cornell.edu

Nate Foster
Cornell University
USA
jnfoster@cs.cornell.edu

Abstract

We present Leapfrog, a Coq-based framework for verifying
equivalence of network protocol parsers. Our approach is
based on an automata model of P4 parsers, and an algorithm
for symbolically computing a compact representation of a
bisimulation, using “leaps.” Proofs are powered by a certified
compilation chain from first-order entailments to low-level
bitvector verification conditions, which are discharged using
off-the-shelf SMT solvers. As a result, parser equivalence
proofs in Leapfrog are fully automatic and push-button.

We mechanically prove the core metatheory that under-
pins our approach, including the key transformations and
several optimizations. We evaluate Leapfrog on a range of
practical case studies, all of which require minimal config-
uration and no manual proof. Our largest case study uses
Leapfrog to perform translation validation for a third-party
compiler from automata to hardware pipelines. Overall, Leap-
frog represents a step towards a world where all parsers for
critical network infrastructure are verified. It also suggests
directions for follow-on efforts, such as verifying relational
properties involving security.

CCS Concepts: » Theory of computation — Automata
extensions; « Software and its engineering — Software
verification.

Keywords: P4, network protocol parsers, Coq, automata,
equivalence, foundational verification, certified parsers

ACM Reference Format:

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg
Morrisett. 2022. Leapfrog: Certified Equivalence for Protocol Parsers.
In Proceedings of the 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI °22),

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI 22, June 13-17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523715

t.kappe@uva.nl

jsarracino@cornell.edu

Greg Morrisett
Cornell University
USA
jgm19@cornell.edu

FJune 13-17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,
21 pages. https://doi.org/10.1145/3519939.3523715

1 Introduction

Devices like routers, firewalls and network interface cards
as well as operating system kernels occupy a critical role
in modern communications infrastructure. Each of these
implements parsing for a cornucopia of networking protocols
in its protocol parser. The parser is the network’s first line of
defense, responsible for organizing and filtering unstructured
and often untrusted data as it arrives from the outside world.
Due to their crucial role, bugs in parsers are a significant
source of crashes, vulnerabilities, and other faults [48].

Example Router Bug. Consider the following bug, which
was present in a commercial router developed by a leading
equipment vendor several years ago. Internally, the router
was organized around a high-throughput pipeline, which
most packets traversed in a single pass. However some pack-
ets had to be recirculated, meaning they took additional
passes through the pipeline before being sent back out on
the wire. The router used an internal state variable to de-
cide whether a packet should be recirculated. Usually this
state variable was initialized by vendor-supplied code. But,
as was discovered by a customer, it could also be erroneously
initialized from data in non-standard, malformed packets.
Hence, crafted packets could bypass the vendor-supplied ini-
tialization code, resulting in an infinite recirculation loop—a
denial-of-service (DoS) attack on the router and its peers.
In the presence of broadcast traffic, such a “packet storm”
would monopolize the router’s resources, rendering it unus-
able until it was rebooted.

An easy way to avoid this bug would be to modify the
router’s parser to filter away malformed packets, while still
accepting valid packets. However, to have full confidence in
the new parser, one would need to prove that it is equivalent
to the original, modulo malformed packets. Although parsers
tend to be simple, this would likely be a challenging verifica-
tion task—it requires reasoning about a relational property
across two distinct programs.

PLDI 22, June 13-17, 2022, San Diego, CA, USA

Parser Equivalence Checking. This paper studies rela-
tional verification of protocol parsers, focusing specifically
on equivalence of parsers expressed in terms of state ma-
chines. Semantic equivalence [15] is a fundamental problem
that underpins a wide range of practical verification tasks
including translation-validation [42], superoptimization [39],
and program synthesis [29]. As we will see in Section 7, the
algorithm that we develop for computing equivalence can
also be straightforwardly extended to other relational verifi-
cation challenges, including one inspired by the router bug
above (c.f. our external filtering case study in Section 7.1).

There are several technical challenges related to mechani-
cally and formally proving protocol parser equivalence. First,
we need a computational model for parsers that is expres-
sive enough to handle practical parsers, but also sufficiently
restricted to enable tractable formal verification. Second,
we need efficient reasoning techniques based on symbolic
representations and domain-specific insights to handle the
enormous state space of real-world parsers. Third, we need
effective automation and tool support so programmers can
avoid manually crafting sprawling proofs of equivalence.

Certified Tooling. The foundational guarantees offered
by proof assistants are highly desirable in error-prone do-
mains. However, achieving these guarantees is notoriously
hard, as proof assistants need an experienced engineer’s guid-
ance to prove all but the simplest goals. One way to scale
verification is to break systems into smaller components that
compose along shared specifications [2]. This allows indi-
vidual verification tasks to be solved in isolation, without
compromising top-level guarantees. Our hope is that push-
button verifiers can reduce total proof burden by certifying
some components automatically.

Consider the task of proving that a realistic parser meets a
functional specification, in the style of VST [3] proofs which
relate C programs to functional specifications. The parser
might be hand-optimized for performance reasons like the
vectorized parser in Figure 1, which makes it difficult to rea-
son about directly. With an automated equivalence checker,
we could justify replacing it with the simpler and easier to
verify reference implementation. Other problems like trans-
lation validation [36, 53] or proof-producing synthesis [55]
would similarly benefit from certified tooling.

Our Contribution: Leapfrog. We present Leapfrog,' a
new framework that addresses these challenges. It provides
an expressive automata model for parsers, with syntax in-
spired by P4 [10, 16], a networking DSL. The model captures
common programming idioms and offers a domain-specific
interface for packet parsing. We demonstrate its applicability
by encoding parsers for real-world protocols like IPv4 and
MPLS.

https://github.com/verified-network-toolchain/leapfrog

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

a1 {
extract(mpls, 32);
select(mpls[23:23]) {

a3 {
extract(old, 32);
extract(new, 32);

0 = ql select(old[23:23],
1= q2 new[23:23]) {
} (0, 9) = g3
} @, 1) => g4
a2 { a,)= as
extract(udp, 64); 3
goto accept }
} a4 {

extract(udp, 64);
goto accept

}
0 32 64 96 128 160 ® 1
T T extract(tmp, 32);
' ' udp := new ++ tmp;

R I M|

MPLS ubpP

goto accept

}

Figure 1. Reference (q1, q2) and vectorized (q3, q4, q5)
parsers for MPLS and UDP headers (depicted inset).

To establish the equivalence of Leapfrog parsers, we ex-
tend classical techniques based on bisimulations to work
with symbolic representations of the state space. We also
develop a novel up-to technique based on “leaps” that dra-
matically reduces the cardinality of the constructed relation.

We implement Leapfrog as a Coq library. This allows us to
mechanize our metatheory and produce certificates. Our al-
gorithm, which runs inside the Coq prover, produces reusable
Coq theorems of parser equivalence. At a technical level, our
Coq development combines classical techniques based on
predicate transformers, domain-specific optimizations, and
a plugin to interface with SMT solvers, to facilitate effective
automation. We apply Leapfrog to several benchmarks and
find that it is able to scale up to handle realistic protocols.

The contributions of this paper are as follows:

e We develop a parser model based on automata ex-
tended with domain-specific features (Section 3).

e We design efficient algorithms for establishing the
equivalence of parsers based on symbolic and up-to
techniques (Sections 4 and 5).

e We realize our approach in a Coq-based framework
for automatically constructing equivalence proofs (Sec-
tion 6). Crucially, our design integrates off-the-shelf
SMT solvers into a verification loop within Coq.

e We explore Leapfrog’s expressiveness and scalability
(Section 7), finding that it can handle common protocol
verification challenges and can perform translation
validation for an existing parser compiler.

Overall, we believe Leapfrog represents a promising step
toward the vision of certified proofs for protocol parsers.

Leapfrog: Certified Equivalence for Protocol Parsers

2 Overview

We now give a high-level overview of our automata model
and equivalence checking framework through an illustra-
tive example. Suppose we would like to parse packets with
MPLS [54] and UDP [46] headers. An MPLS header is a se-
quence of 32-bit labels. Rather than prefix this sequence with
its length, the MPLS format marks the end of the sequence
with a label whose 24th bit is 1. This is analogous to the role
of the null terminator in C strings. In our example, the MPLS
header is followed by an 8-byte UDP header.

We can parse this format in our P4 automata model of
parsers, which is based on a subset of P4. A P4 automaton is
a state machine that parses a packet bitstring into a collec-
tion of headers stored in global variables, ultimately either
accepting or rejecting the packet. Each state in a P4 automa-
ton contains a program that may assign to variables and
extract some number of bits from the front of the packet
into a variable. For instance, an extract(h, 64) operation
removes 64 bits from the front of the packet and stores them
into the header h. Next, the machine transitions to a new
state by branching on the contents of its header variables.
This is accomplished with either an unconditional transition
of the form goto state or a conditional transition of the
form select(e) { pat => state }. A select evaluates e
and transitions to the state associated with the first matching
pattern in pat.

We give two P4 automata for our format in Figure 1. The
first automaton is a reference parser with a state q1 that
parses MPLS and another state g2 that parses UDP. The
second automaton has been vectorized to parse two MPLS
labels at a time in state q3. When the second label is the
bottom of the stack, the vectorized parser goes on to handle
UDP normally (g4). If the first label is the bottom of the stack,
however, the vectorized parser marshals the 32 bits of the
ill-fated second label into UDP, along with the remaining 32
bits of UDP header data remaining in the packet (q5).

The two parsers in Figure 1 each use different names for
the header (e.g., mpls vs. old/new). Also, those headers are
overwritten multiple times—a real P4 parser would use an
array-like data structure called a header stack to store the
labels [16, Section 8.17]. Our language does not support
header stacks directly, although they can be emulated. Here,
we omit this detail for simplicity, and we focus on proving
that the parsers accept the same sets of packets. Leapfrog
can also be used to prove relational properties involving the
header values—see Section 7 for details.

Tractable Equivalence Checking. Our equivalence al-
gorithm is inspired by Moore’s algorithm [31] applied to the
domain of P4 automata. It is a worklist-style algorithm that
begins with a coarse approximation of language equivalence
and iteratively refines it by analyzing the joint state space
of the two automata. P4 automata have finitely many states
and their header variables are fixed-size bitvectors, so their

PLDI 22, June 13-17, 2022, San Diego, CA, USA

h € H header names
n € N natural numbers
bo € {01} bitvector
e == h headers
| bv bitvectors
| e[ny:nz] bitslices
| e ++e concatenation
pat == bv exact match
| wildcard
q € QU {accept,reject} state names
c u= pat=gq select case
tz == goto(q) direct
| select(e){c} select
op == extract(h) extract
| h:=e assign
| opy; opy sequence
st u= q{op;tz} states (q € Q)
aut == st P4 automaton

Figure 2. Internal syntax for P4 automata.

configuration spaces are finite. However, because of the large
bitvectors encoded in their stores, P4 automata may have
an intractably large configuration space. For instance, the
automata in Figure 1 have a joint configuration space on
the order of 2128 ~ 1038 states! So, naive bisimulation-based
approaches will never be tractable for realistic automata.
We address this challenge by representing large relations
symbolically, rather than keeping track of concrete sets of
configuration pairs.

Furthermore, we prune the configuration space from the
start using a simple reachability analysis. This lets us avoid
spurious search steps through unreachable configurations.

In the automata-theoretic semantics of the reference MPLS
parser, the extract(udp, 64) call performs 64 steps that read
one bit of the packet into the buffer. The 64th step empties
the buffer into the udp header variable, and transitions to
the accept state. This bit-by-bit approach is needed to relate
parsers that read the packet in differently-sized chunks—
as is the case for states q1 and g3 in Figure 1. However, a
naive search for a bisimulation that treats each step sepa-
rately would have a huge symbolic state and too many SMT
queries. To counteract this, we introduce bisimulations with
leaps, which keeps the symbolic state compact and avoids
redundant SMT queries, processing multiple consecutive
steps in each iteration. Together, these optimizations make
it feasible to compute bisimulations for realistic parsers.

Certifying Parser Equivalence. To make Leapfrog us-
able in larger developments, we need it to produce reusable
proof certificates that can be checked by the Coq kernel. Ob-
taining full certificates of equivalence from a push-button
tool is a significant engineering challenge. Rather than write
a solver in Coq for our verification conditions, which sit
roughly in the first-order theory of bitvectors, we chose to
use external SMT solvers. This had engineering and per-
formance benefits, but getting Coq and external solvers to

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

work together still posed several challenges. First, existing
interfaces between Coq and SMT solvers did not meet our
needs. We tried using existing plugins for proving Coq theo-
rems with external solvers [4, 19], but found that they scaled
poorly or lacked support for key logical operators. To address
this, we developed a first-order theory of bitvectors in Coq,
as well as a plugin that pretty-prints this logic in SMT-LIB
format [7] and discharges the query using an off-the-shelf
solver. We did not implement proof reconstruction, which
converts the SMT solver refutation into a Coq proof term.
Consequently the solver output and our pretty-printer must
be trusted, although this restriction could be lifted in future
work.

Second, in order to target this low-level logic and improve
the scalability of our tool, we developed and verified a chain
of compilation steps that go from the high-level logic used
in our algorithm to the low-level logic sent to solvers. This
process compiles away features like finite maps, but also
performs algebraic simplifications and other rewrites to keep
the size and complexity of our SMT queries under control.

Third, in order to communicate with SMT solvers, our
algorithm needed to perform I/O, which Coq programs are
generally not allowed to do. Coq tactics, however, are al-
lowed to perform I/O, because the proof they produce is still
checked by the Coq kernel. We rephrased our algorithm as
a proof search problem (c.f. Figure 4) and developed a cus-
tom Coq tactic as an escape hatch, allowing the algorithm to
consult an SMT solver while still producing a Coq certificate
(modulo the soundness of the solver and our plugin).

3 Parser Model

We now describe P4 automata (P4As), an automata-theoretic
model close to P4’s parsing language [16]. A P4A is a state
machine that (1) decides whether to accept a packet and
(2) builds a data structure (the store) using the packet data.
The store consists of bitvectors called headers,? and is a rep-
resentation of the (partially) parsed packet used within the
parser, but also in later processing phases. If a P4A consumes
data in each state, it terminates on finite packets.3

For example, state q1 of the reference MPLS/UDP parser in
Figure 1 extracts 32 bits into the mpls header, before looping
back to g1 or transitioning to g2 to parse a UDP header.

Concretely, a P4A is composed of states, each of which
acts in two steps: first, it runs its internal program, which
consumes some bits from the packet and updates the headers;
then, it decides (based on the store) whether to accept (resp.
reject) the packet by transitioning to the accept (resp. reject)
state, or continue processing the remainder elsewhere. This
second step defines the state’s transitions.

%Initial header values are undefined in P4 [16, Sections 6.7 and 8.22]; our
semantics considers them part of the packet.
3Such a restriction is allowed by P4 specification [16, Sec. 12.10].

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

3.1 Syntax

The syntax for P4As is best understood by example. Con-
sider the two programs in Figure 1. Together, these contain
five states, named q1 through g5. Each state contains code,
consisting of assignments and extract statements, and end-
ing in a select or goto statement that defines the outgoing
transitions. Headers function as variables whose scope and
lifetime is shared between states. For instance, in g5, the
vectorized parser extracts bits into tmp, and then stores the
contents of new and tmp in udp, before accepting.

We formally define the syntax in Figure 2, parameterized
over a finite set of states Q, and a finite set of header names H.
Each header h € H has an associated size sz(h) € N*. We re-
frain from specifying these parameters explicitly, as they can
be inferred from the program text. For instance, in the P4A
on the left in Figure 1, Q = {q1,q92}, and H = {mpls, udp},
while header sizes are sz(mpls) = 32 and sz(udp) = 64.

P4As associate with each state ¢ € Q an operation block
op(q) and transition block tz(gq). Crucially, we require that
least one call to extract appears in the operations of each
state. This guarantees that each state makes some progress
on the packet, which ensures termination of both the parsing
process and our equivalence checking algorithm.

3.2 Semantics

To provide a semantics for P4As, we first assign a semantics

to the operation and transition code associated with each

state. We fix a P4A aut with states Q, headers H and sizes sz.

We write | bv| for the length of bv € {0, 1}*. We define S as the

finite set of functions s : H — {0, 1}* where |s(h)| = sz(h).
We first give a semantics to expressions.

Definition 3.1 (Expression Semantics). Let w,x € {0, 1}".
We write wx for their concatenation. If ny, ny € N, we write
w(nq:ny] for the zero-indexed substring starting at position
min(ny, |[w| — 1) and ending at min(ny, |w| — 1), inclusive.

Given an expression e, we inductively define its semantics
in the form of a function [e]g : S — {0, 1}", as follows:

[hle(s) =s(h) [e[ni:n2]]e(s) = [e]e(s)[n1:n2]
[bvle(s) =bv [er ++ e2] e (s) = [er] e(s)[e2] £ (5)

There is a straightforward typing judgement r-g, where g
e : n implies that |[e] g (s)| = n. We elide this definition.

Next, we give a semantics to operations and transitions,
which constitute the code that can appear inside states.

Definition 3.2 (Operation Semantics). Whens € S, h € H

and v € {0,1}*™ we use s[v/h] to denote the store where
s[o/h](h) = v, and s[v/h] (k') = s(h’) forall k' € H \ {h}.
For operations op, define |op| € N inductively, as follows:

|h==¢|=0 lextract(h)| = sz(h)
lopy; op,|l = llop, | + llop, |

Leapfrog: Certified Equivalence for Protocol Parsers

Intuitively, |op| is the exact number of bits necessary to
execute all extract statements that appear in op.

For each block of operations op, we define a partial func-
tion [op]o : S x {0,1}* = § x {0, 1}", as follows:

[h = e]o(s,w) = (s[o/h], w)
(if [e] & (s) = v and |o| = sz(h))

[extract(m)]o(s xy) = (sLe/hly) Gf lx| = sz(h))
[ops; opy]o(s, w) = [op,]o([opi]o(s. w))
There exists a type judgement +¢ such that if Fp op then
[oplo(s,w) € S x {€} for all bv € {0, 1}1°P1.

Definition 3.3 (Pattern and Transition Semantics). For a
pattern pat, define [pat]» C {0, 1}" by case distinction:

[bv]p = {bv} [lp ={0,1}"

Given a transition block tz, we define a partial function
[tz] 7 : S — Q U {accept, reject} inductively, as follows:

[select(e){}]+(s) = reject

¢ = [select(@){c)]r(s)

- Vi. v; t;
[select(e){pat = q; c}]7(s) = {q’ 0 e.[[_pa i
q" otherwise

[goto(q)]7(s) = q

Vi. [ei]e(s) = v;

As before, a straightforward type judgement 4 can be for-
mulated such that k4 iz implies that [#z] 7(s) is defined.

We now have the ingredients necessary to define the dy-
namics of a P4A in terms of a deterministic finite automaton
(DFA). To facilitate the comparison of P4As that consume
packets in differently-sized chunks, this DFA buffers until
it has read enough bits to execute the extract blocks as-
sociated with the current state. We first precisely define a
configuration of a P4A, as follows.

Definition 3.4 (Configurations). A configuration is a triple
(q,s,w) € (QU {accept, reject}) x S x {0, 1}".

where |w| < |op(q)| if ¢ € Q, and w = € otherwise. We
write C for the (finite) set of configurations, and F for the
accepting configurations: {{accept,s,e) € C : s € S}.

We can define a bit-by-bit step function on configurations,
which implements the idea of filling up the store before
actuating the transition, outlined above.

Definition 3.5 (Configuration Dynamics). We define the
step function § : Cx{0,1} — Casfollows. Letc = (g, s, w) €
C.If g € Q, then we define §(c, b) by setting

[wb| < Jop(q)|
[op(@)]o(s.wh) = (s'.€)

Ste. b (g, s, wb)
©0) =1 [t2(@)7s). 5")

Otherwise, if g € {accept, reject}, then §(c, b) = (reject, s, €).

PLDI 22, June 13-17, 2022, San Diego, CA, USA

There exists a type judgement + 4 such that+ # aut implies
that 6 is well-defined and total; again, we omit its definition.*

To match the behavior of P4 parsers, accepting states
should not parse any further input. As a consequence a con-
figuration of the form (accept, s, €) steps unconditionally to
(reject, s, €).

Put together, (C, §, F) is a DFA. We can therefore define the
language semantics of our parser aut as a function [aut] # :
QxS — 2101 \where 2X denotes the set of subsets of a set
X. This semantics associates with each initial state and store
the set of bit-strings that lead to an accepting configuration.

Definition 3.6 (Multi-Step Configuration Dynamics). We
can lift § to §* : C x {0,1}" — C as follows:

5 (c,e) =c¢ 8" (c,bw) = 8 (8(c,b), w)
Given ¢ € C, we define its language L(c) C {0,1}" as follows:
L(c) ={w € {0,1}" : 6"(c,w) € F}
Given g € Q and s € S, we define [aut] #(q, s) = L(g,s, €).

Our semantics embeds the initial store in the start state.
Our equivalence checking procedure can help verify that
packet acceptance does not depend on the initial store value.

4 Symbolic Equivalence Checking

Many verification questions about P4As can be phrased as
questions about the underlying DFAs. For instance, let aut;
and aut, be the P4As from Figure 1, suppose we want to
verify that they accept the same packets when started from
certain initial states q1 and g3, regardless of their initial store.
To do this, we could check whether L(q1, s, €) = L(g3, so, €)
for all 51, s, € S. This problem is decidable, because S is finite
and language equivalence of DFAs is decidable [40].

Unfortunately, the DFA arising from a P4A may be ex-
tremely large: every g € Q contributes |S| x 21°P(@) =1 config-
urations. Even for simple parsers, this leads to an intractably
large configuration space. For instance, for the reference
MPLS parser on the left in Figure 1, |S| = 2%; a back-of-the-
envelope calculation then tells us that |C| > 10%.

Moreover, we anticipate that a large portion of the config-
uration space is reachable, and should therefore be taken into
consideration. This is because parsers tend to propagate ev-
ery bit of the packet into the store in order to facilitate packet
reconstruction for forwarding. Off-the-shelf algorithms for
DFAs are therefore unlikely to scale to this setting.

In this section, we develop an algorithm that can answer
several questions about P4As. This algorithm mitigates state
space explosion by representing configurations symbolically.
Our presentation focuses on deciding language equivalence
of configurations. As a consequence, the procedure can be

4Our requirement that each state extracts some bits is part of this typing
judgement, and in fact necessary in order for the definition of § to be useful.
Because a transition is triggered by the final bit, if |op(q) || = 0 for some
state, then there would be no way to actuate this transition.

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

x € Var variables
be == bv literal
| buf<,buf” left and right buffer
| h<,h” left and right header
| x variable
| be[ny:ny] slice
| bey ++ bes concat
p u= Dbey =bey bitvector equality
| q5.q left and right state assertion
| n<,n” left and right buffer length
¢ = L bottom
| p atomic predicate
| ¢1 = ¢2 implication

Figure 3. Syntax for relations on configurations.

thought of as a variation on Moore’s algorithm [40]. We
discuss more general applications in Section 7.

For the sake of simplicity, we fix a P4A aut with underly-
ing DFA (C, 6, F) for the remainder of this section. One can
compare configurations in two different P4As by taking their
disjoint sum, renaming states and headers as necessary.

4.1 A Symbolic Approach

A sound and complete method to show that two configu-
rations of our DFA (C, 8, F) accept the same language is to
demonstrate that they are related by a bisimulation [32], i.e.,
arelation R C C X C such that when ¢; R ¢z, (1) ¢; € F if and
only if ¢c; € F; and (2) 6(c1,b) R §(cz, b) for all b € {0, 1}.

A language equivalence checking algorithm for DFAs typ-
ically tries to build some form of bisimulation. Because C
may be very large, representing a bisimulation by listing its
constituent pairs becomes intractable quickly. Luckily, we
can write down bisimulations symbolically.

Example 4.1. Suppose aut is the disjoint sum of the MPLS
parsers displayed in Figure 1. Let R be the smallest relation
on C satisfying the following rules for all s1,s; € S:

we{0,1}*% xe{0,1} |x| <32 g € {accept,reject}

(a2, s, wx) R (5, 52, x) (g:s1.€) R(q,52,€)

R is a bisimulation, and thus all configurations related by R
have the same language. Clearly, this representation is much
more concise than listing the contents of R explicitly.

To systematically represent and manipulate symbolic re-
lations on configurations, we propose the syntax in Figure 3.
Its formulas are generated by equality assertions between
expressions built over the buffers and stores of both configu-
rations, as well as predicates about states and buffer lengths.
We also include variables x € Var for later use. We omit
conjunction (V) and disjunction (A) from the syntax to keep
our definitions brief. They are derivable from =— and L,
so we will still use them in the sequel as abbreviations.

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

Example 4.2. We can describe the pairs matching the sec-
ond rule from Example 4.1 using the following formula

¢ = (accept™ A accept™) V (reject™ A reject”)
Given n < 32, we can choose the formula ¢, to symbolize
the first rule from Example 4.1 where |x| = n:
dn=(n+32)"Ag2= An” Ag5” Abuf<[0:31] = buf”
In total, R is represented by the formula ¢ V ¢g V - - - V ¢h3;.
Definition 4.3. A valuation is a function o : Var — {0, 1}.
For every bitvector expression be and valuation o, we de-

fine [[be]]% : C X C — {0,1}" inductively as follows, where
c%,¢” € Care such that ¢® = (¢°,s%, w®) for s € {<,>}:

[V (c=,¢7) = bv [[buf§ﬂ;(c<,c>) =w

[x]%(c=,¢”) = o(x) [[hﬂ];(f, ¢”) =s>(h)
The cases for slices and concatenation are as in Definition 3.1.
For a formula ¢ and valuation o, define [$]% as the least
relation on C satisfying the following rules for all ¢<, ¢~ € C,
where ¢= = (¢g%,s%, w®), and n® = |[w>| for s € {<,>}:
e [g°]% ¢
< [g7]% ¢
cs [[n<]]01': c” C1 [[¢1]]OL- Cy — (1 [[(ﬁz]]i Co
c< [n7]% ¢ ¢ ¢ = $2]% 2
Let ¢ and ¢ be formulas. We write [¢] , for the relation on C

where ¢; [¢] , ¢, if and only if ¢; [¢]F c; for all valuations
o. Finally, we write ¢ £ ¢ when [¢] » C [Y] ,.

[[bez]]B(Ch €2,0) = [[bez]]B(Cl, €2,0)

C1 Hbel = bez]]‘z Co

Note that because there are finitely many configurations
and valuations, entailments are decidable. We will revisit
this particular decision problem in Sections 5 and 6.

We can now define symbolic bisimulations, as follows.

Definition 4.4 (Symbolic Bisimulation). A symbolic bisimu-
lation is a formula ¢ such that [¢] , is a bisimulation.

Finding a (symbolic) bisimulation is a sound and complete
method to establish language equivalence of states.

Lemma 4.5. For formulas @, the following are equivalent:

1. There exists a symbolic bisimulation i such that ¢ & .
2. There exists a bisimulation R such that [$] , C R.
3. If ¢y [¢] , c2, then L(c1) = L(cy).

4.2 The Weakest Symbolic Bisimulation

To search for a symbolic bisimulation, we turn to Moore’s
algorithm [40]. In its concrete formulation, this algorithm
approximates the largest (coarsest) bisimulation from above,
by iteratively removing non-bisimilar pairs. Eventually, the
process stops, at which point the remaining pairs must be
bisimilar; hence, the computed relation is the largest bisimu-
lation. Two configurations are related by some bisimulation

Leapfrog: Certified Equivalence for Protocol Parsers

Algorithm 1: Symbolic equivalence checking.

Input: A formula ¢ representing initial states.

Input: A set of formulas I s.t. for all ¢y, ¢, € C,
(Vo el.c; [¥] c2] © [c1 €F ¢y €F]

Input: A function WP s.t. for all ¢/, and ¢y, ¢z € C,

[Vb € {0.1). 8(c1.) [¥] (e)] & e | \ WP()] ez

Output: true if and only if for all ¢1,c; € C with
c1 [¢] ; ¢z, it holds that L(c;) = L(c,)

1R—0; Te1

2 while T # 0 do

3 pop ¥ from T

4 if not A R F ¢ then

5 R—RU{y}

6 T — TUWP(Y)

7 return true if ¢ £ A R, otherwise false

if and only if they are related by the largest bisimulation, so
the algorithm concludes with a simple containment check.

Moore’s algorithm can be made symbolic, by representing
the current overapproximation as a formula and successively
strengthening it, thus converging to the weakest symbolic
bisimulation. We present an abstract formulation of this
process in Algorithm 1. The algorithm has two parameters.

o The formulas in I constitute the initial overapproxima-
tion of the weakest symbolic bisimulation. In Section 7,
we consider instantiations of I that can be used to ver-
ify different but related properties.

o The function WP takes a formula ¢, and outputs a set
of formulas whose conjunction represents a weakest
precondition of ¢, in the sense that two configurations
are related by all formulas in WP(¢) if and only if they
step into configurations related by ¢.

Algorithm 1 builds the weakest symbolic bisimulation as a
set of conjuncts R, maintaining a frontier T of formulas to
be considered. The frontier is initially I. In each iteration,
we pop a conjunct ¢ from T and check if it is entailed by
AR.If AR E ¢, then {f constitutes a novel restriction, and
we add it to R. Because bisimulations are closed under steps,
we add the weakest preconditions of i/ to T, to be checked
later. If A R k ¢, including ¥ in R would not change A R, so
we move on. The loop terminates when T is empty; at this
point, A R will be the weakest symbolic bisimulation, and
the algorithm checks ¢ £ A R. We instantiate the parameters
momentarily; first, we show that the algorithm is correct.

Theorem 4.6. Algorithm 1 is correct.

Proof Sketch. For termination, note that in each iteration ei-
ther [A R] or T shrinks; hence, the algorithm must terminate.

For partial correctness, one can show the following invari-
ants: (1) if ¢ is a symbolic bisimulation, then ¢ £ ARA A T;

PLDI 22, June 13-17, 2022, San Diego, CA, USA

and (2) configurations related by A R A A T are equally ac-
cepting, and (3) configurations related by A R A A T step
into configurations related by /A R. Thus, when Algorithm 1
terminates, /A R must be the largest symbolic bisimulation,
and we can conclude by applying Lemma 4.5.]

4.3 Instantiating the Parameters

We now sketch how we instantiate the parameters of Algo-
rithm 1; the details are worked out in our Coq development.

For WP, the main idea is to focus on a particular sub-
class of formulas. First, we isolate assertions about the cur-
rent state; this lets us calculate weakest preconditions on a
state-by-state basis, by means of a traditional substitution-
based procedure on the formula using the associated program
text. Second, we isolate statements about buffer lengths; this
means that when a formula in our algorithm makes a claim
about the buffer contents, it does so in a context where the
buffer length is known. This simplifies the analysis and gen-
eration of formulas, because we do not have to cover cases
where slices go beyond the end of a bitvector.

Concretely, this format takes the following form.

Definition 4.7 (Templates). A template is a pair {g,n) €
(Q U {accept, reject}) x N where n < |op(q)| if ¢ € Q, and
n = 0 otherwise. The set of all templates is T. When t = (g, n)
and s € {<, >}, we write t* as shorthand for ¢ A n*.

A formula ¢ is pure when it does not contain state or buffer
length assertions; ¢ is template-guarded if it is of the form
tS Aty = where t;,1; € T and ¢ is pure.

Let ¢ be template-guarded. We compute WP(¢) by oper-
ating on the left- and right hand side, giving rise to functions
WP=< and WP”, whose definitions we omit. Each takes a for-
mula and a pair of state templates, as well as a fresh variable
x € Var to represent the bit to be read, and returns a formula.
The relevant correctness statement is as follows.

Lemma 4.8. Let ¢ be pure, let x € Var be fresh for ¢, and let
c<,¢” € Caswell ast € T. The following are equivalent:

1. Forallb € {0,1}, we have 5(c=,b) [t~ = ¢], c”.

2. Forallt’ € T,c= [’ = WP=(¢,t',t,x)] , .
A similar equivalence holds for WP~ . Furthermore, if ¢ is pure,
then so are WP= (¢, x, t’,t) and WP (§, x, t', t).

Using WP= and WP~, we can then provide a version of

WP that acts on and returns template-guarded formulas. Its
definition and correctness statement is as follows.

Lemma 4.9. Lett Aty = ¢ be template-guarded, and
let x be fresh in ¢. Define WP(t At; = @) as the smallest
set satisfying the following rule, for all t],t] € T:
¢" = WP (WP~ (¢', x, 15, 1), x, 1, t1)
[t Aty = ¢l e WP AL, = §)
Now WP fits the requirement from Algorithm 1, when restricted

to template-guarded formulas. Moreover, each of the formulas
inWP(t5 At = ¢) is template-guarded.

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

By the latter property, if all formulas in I are template-
guarded, then the formulas in R and T remain template-
guarded. We thus instantiate I as a set of template-guarded
formulas that rule out pairs containing both accepting and
non-accepting configurations, as follows.

Lemma 4.10. Let tyccept = {accept, 0). Define I as the small-
est set of formulas satisfying the following rule:

fLtp €T t1 = taccept &= 12 F laccept

[tS Aty = 1] el

Now [fits the requirement from Algorithm 1.

5 Optimizing the Algorithm

We now discuss two optimizations of Algorithm 1. The first
optimization refines WP and I such that fewer entailments
between formulas need to be checked (line 4). The second
optimization generalizes WP to compute multi-step weakest
preconditions, thereby strengthening the approximation of
the weakest symbolic bisimulation more quickly.

5.1 Abstract Interpretation

Algorithm 1 computes the weakest symbolic bisimulation,
which relates all language equivalent configurations, but it
cares only about the configurations related by ¢. We can com-
pute a symbolic bisimulation more loosely, by disregarding
unreachable (and hence, irrelevant) configuration pairs.

Example 5.1. Recall the symbolic bisimulation in Exam-
ple 4.2, which was sufficient to conclude language equiva-
lence of related configurations. There was no need to com-
pute the largest symbolic bisimulation, which involves many
configuration pairs unreachable from the pairs of interest.

Of course, computing the set of reachable pairs—even
symbolically—is tantamount to checking equivalence. In-
stead, we approximate it by analyzing the P4A to capture the
pairs of reachable configurations based on their templates.

To this end, let p(tz) denote the set of states appearing in
a transaction block tz. We define o : T — 27 as follows:

{{g,n+ 1)} qeQAn+1<sz(q)
o(q.n) = {p(tz(q)) x {0} geQAn+1=sz(q)
{(reject, 0) } q € {accept, reject}

When ¢ = (g,s,w) € C, write |c] for (q,|w|) € T, ie,
the unique template describing c. One can show that for all
ceCandb € {0,1}, we have [6(c,b)]| € o(|c]). In a sense,
this makes o an abstract interpretation of é.

Given a formula ¢, we define reachy as the smallest rela-
tion on T satisfying the following rules:

i[9z c2
Lc1] reachy [c2]

Usually, the pairs generated by the first rule can be inferred
from ¢. For instance, if we want to compare the languages of

t; reachy t

o(t1) X o(ty) C reachy

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

two initial states g; and g, then ¢ = g7 A0= Ag; A0, and
so the sole instantiation of the first rule yields (g1, 0) reachy
(g2, 0). Computing the full contents of reachy is then a matter
of applying the second rule until a fixpoint is reached.

Theorem 5.2. Let ¢ be a formula. Algorithm 1 remains cor-
rect for this ¢ if we set I to the smallest set satisfying the rule

3] reaCh¢> 1) t1 = taccept &= I2 # laccept

[thAt; = L]el

and for each template-guarded formula ts At; = y we set
WP(tS At; =) to the smallest set satisfying the rule

t; reachy t, Y = WPS(WP” (Y, x, t), t2), x, 11, t1)
[t Aty = ¢l e WP AL, = §)

where x € Var is some variable that is fresh for .

5.2 Leaps and Bounds

Algorithm 1 operates on a bit-by-bit basis. However, most
steps just fill up the buffer, and do not affect the state or
store. We exploit this to compute a different form of weakest
precondition, which takes as many steps as necessary to
execute a “real” state-to-state transition in the P4A.

The following auxiliary notion allows us to compute the
number of steps until the next transition.

Definition 5.3 (Leap Size). Letcy,c; € Candc; = (q;, i, wi);
we define the leap size #(c1, c2) € N as follows:

1 ql’ q2 e Q
ltz(q)] = [wi] 1 €0.9:2¢0
B(c1,c2) = { ltz(g2) | = [wal g1 €0Q.92€Q
min(|tz — |wyl,
(Itz(q)| = |w1 I

I£2(g2) | = |wal)

We can use leap size to define a notion of (symbolic) bisim-
ilarity that can take larger steps; this will help us to formally
justify the soundness of multi-step weakest preconditions.

Definition 5.4 (Bisimulation with Leaps). A bisimulation
with leaps is a relation R € C X C, such that for all ¢; R ¢,
(1) ¢; € Fifand only if ¢; € F, and (2) 6*(c1, w) R §*(c2, w)
for all w € {0,114+ A symbolic bisimulation with leaps
is a formula ¢ such that [¢] , is a bisimulation with leaps.

Bisimulations with leaps can be more concise because they
do not need to constrain configurations where both P4A are
just buffering input, waiting for the next transition.

Example 5.5. Recall the bisimulation from Example 4.1.
This relation contains the bisimulation with leaps R’, which
is the smallest relation satisfying the rules
w € {0,1}* q € {accept, reject}
(qza 31,W> R, <q5’ 32a6> <q’ 51,€> R, <qa S2, 6)

Bisimilarity with leaps is a sound and complete proof prin-
ciple for language equivalence, which we record as follows.

Leapfrog: Certified Equivalence for Protocol Parsers

Table 1. Concepts from earlier in this paper and their real-
izations in the implementation.

Paper name Coq name Implemented as

aut (Figure 2) Syntax.t
e (Figure 2), g expr

Dependent record
Type-indexed ind.

WP wp Gallina function
AREY interp_entailment Gallina function

o= AR interp_entailment’ Gallina function
Bisimilarity bisimilar Coinductive relation
Algorithm 1 pre_bisimulation Inductive relation
if AREY ... decide_entailment Liac

Lemma 5.6. Let ¢ be a formula. The following are equivalent:

1. There exists a symbolic bisim. with leaps { s.t. ¢ £ .
2. Ifc1 [§] 4 co, then L(cy) = L(cz).

We can adapt Algorithm 1 to calculate the weakest symbolic
bisimulation with leaps instead, if we adapt the axiomatiza-
tion of the weakest precondition operator, as follows.

Theorem 5.7. Algorithm 1 remains correct if we change the
condition on WP to require that, for all formulas ¢ and all
¢1, ¢z € C, the following equivalence holds:

Vw € {0, 1}#re) 5% (e, w) [¢] ; 8" (co,w)
& VY e WP(¢).c1 [¥] ; co

We can adapt the existing definition of WP to conform
to this specification: simply repeat WP< and WP~ as many
times as is indicated by the source templates t; and t,.

5.3 Combining Optimizations

The optimizations discussed are largely orthogonal. However,
their combination naturally gives rise to a third optimization,
where reachy is computed using leaps as well. This results
in an algorithm that computes a symbolic bisimulation with
leaps that does not constrain intermediate (buffering) con-
figurations. We refer to the Coq development for full details.

6 Implementation

We implement Leapfrog in Coq [8, 17] using the Equations
plugin [49, 50]. See Table 1 for a summary of how concepts
from the formal development in Sections 3 to 5 map to Coq
notions. Although an implementation in a different language
might be more efficient, our use of Coq produces rich se-
mantic automata definitions and reusable proofs of equiva-
lence. These artifacts are defined in Coq’s expressive higher-
order logic, so they can be reused and composed with other
mechanized logics hosted in Coq like the Mathematical Com-
ponents library [38] or verification tools like the Verified
Software Toolchain [1].

PLDI 22, June 13-17, 2022, San Diego, CA, USA

Inductive pre_bisimulation
: conf_rel — 1list conf_rel — 1list conf_rel —
Prop :=
| Skip: forall phi R psi T,
pre_bisimulation phi R T —
interp_entailment R psi —
pre_bisimulation phi R (psi :: T)
| Extend: forall phi R psi T,
pre_bisimulation (psi :: R) (T ++ wp psi) —
interp_entailment R psi —
pre_bisimulation R (psi :: T)
| Done: forall phi R,
interp_entailment' phi R —
pre_bisimulation phi R [].

Figure 4. Algorithm 1 as an inductive relation in Coq.

6.1 Automated Proof Search

The most direct way to implement algorithms in Coq is
by writing them as functions in Gallina, Coq’s functional
programming language, but unfortunately Gallina does not
have I/O. As a consequence a Gallina implementation of Al-
gorithm 1 would have to include a hand-written decision
procedure for entailments A R F /. We instead realize Algo-
rithm 1 in Coq as an inductive relation (Figure 4), so we can
rely on external SMT solvers to handle entailments. This has
the added benefit of sidestepping Coq’s termination checker.’
The algorithm is run by performing proof search within the
inductive relation, and each step of the search proceeds by
checking an entailment in the high-level automata logic.
While the logic of entailments is close to SMT’s theory of
bitvectors, it also has richer terms that need to be desugared
(for example a finite-map encoding of the program store,
constraints on the input packet length, constraints on the
automata states, etc.).

6.2 Reduction to SMT

To reach a low-level logic amenable to off-the-shelf solvers,
we simplify formulas before checking them, through a chain
of verified simplifications and translations (Figure 6).

This compilation turns formulas from the high-level logic
ConfRel into low-level first-order formulas over bitvectors,
FOL(BV). In order, the implementation performs (1) algebraic
simplifications, (2) template filtering, (3) FOL compilation,
and (4) store elimination. We now elaborate on each step.

First, we use smart constructors to apply local algebraic
simplifications. Each application of the weakest precondition
operator increases the size of a formula, so these simplifica-
tions help prevent the formulas from growing too quickly.

Second, we perform template filtering to discard unused
premises from entailments. Entailments have the form

Nt = vird = 4,

SIn particular, our pen-and-paper termination proof of Algorithm 1 does
not directly translate to Coq’s guarded primitive recursion [28].

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

Lemma small_filter_equiv:
lang_equiv_state
(P4A.interp IncrementalBits.aut)
(P4A.interp BigBits.aut)
IncrementalBits.Start
BigBits.Parse.
Proof.
solve_lang_equiv_state_axiom
IncrementalBits.state_eqdec
BigBits.state_eqdec
false.
Time Qed.

Figure 5. A Coq proof that the states Start and Parse
of two automata named IncrementalBits and BigBits
accept the same language (lang_equiv_state). The tac-
tic solve_lang_equiv_state_axiom takes decision proce-
dures for equality on the state sets of each automaton and
a flag controlling a tactic optimization for large problems
(here false).

where ¢ and all ¢; are templates. We discard any conjunct
with ¢; # ¢ and emit a simplified entailment ¢ £ A ¥ =
. This puts our goal in the logic ConfRelSimp.

Third, we embed ConfRelSimp into the more general
FOL(Conf) syntax, removing references to states. This frag-
ment is the first-order theory of bitvectors and finite maps.

Finally, the store elimination pass fits formulas into the
theory of bitvectors FOL(BV), by turning finite maps into
first-order variables. This is necessary because some SMT
solvers we targeted do not support the theory of finite maps.

6.3 Querying Solvers

The final FOL(BV) formula is serialized to SMT-LIB by a
custom Coq plugin and passed to an off-the-shelf SMT solver
that can be selected using a custom vernacular command.
Currently, we support Z3 [21], CVC4 [6], and Boolector [44].

Before implementing our own plugin, we tried existing
SMT integrations for Coq, including CoqgHammer [19] and
SMTCoq [4]. Neither solved our problem: CoqgHammer scaled
poorly due to its flexible SMT encoding and proof search
procedure, while SMTCoq performed better but lacked sup-
port for quantifiers. Note however that, in contrast with our
plugin, both of these tools perform proof reconstruction to
produce a Coq proof term from solver output. Consequently,
our proof search must trust the output of the SMT solver and
our plugin. A straightforward technique for doing this is to
directly admit the low-level goals once the plugin has given
the thumbs up. This is rather error-prone because it means
admit is used within automation, and moreover, it forces the
final proof to be Admitted by the Coq kernel. An alternative
is to use a pair of axioms for positive and negative validity
of formulas in the low-level logic and use the output of the
SMT solver to conditionally apply the axioms. While this
approach is less performant because the Coq kernel checks

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

. userinputs
H H
H H

Parser 1

Stuck Goal

N Pre-Bisim
(R, T)
Coqg
(i) ConfRel
REy

ConfRelSimp
FOL(Conf)
FOL(BV) Emm— Proof* M Disproof*

Plugin

(Trusted)

Solver SMT-LIB

(Trusted)

Figure 6. The Leapfrog implementation architecture. In each
iteration, a ConfRel formula is checked by reduction to SMT
via a chain of intermediate logics (at left). A Coq plugin
pretty-prints FOL(BV) syntax to SMT-LIB syntax and in-
vokes the SMT solver. The asterisk (*) on Proof and Disproof
(at right) indicates that the plugin does not produce proofs.
When the procedure halts, either the Coq goal is provable
(QED), or the goal is stuck and no certificate is produced.

the resulting term, it allows for closed proof terms and avoids
accidental misuse of admit in automation.

6.4 Soundness and Trusted Computing Base

The most important metatheoretic goal is to ensure that
our algorithm produces a certificate of equivalence only
when the input parsers are indeed equivalent. Towards this
goal, our certificate-producing equivalence checker has a
compact TCB, with soundness relying on the Coq definitions
of automata and automata equivalence, the correctness of
the SMT solver, the faithfulness of the pretty-printing plugin,
and the soundness of the Coq typechecker extended with
Streicher’s axiom K [51]. The SMT solver and plugin (and
the corresponding use of admit/axioms) are used only in the
proof search algorithm and could be removed from the TCB
by implementing proof reconstruction.

Our Coq development proves the soundness theorems
stated in the paper, but omits completeness and termination
arguments. Our proof search is really a semi-decision pro-
cedure: either the tactic finds a proof and produces a Coq
proof term, or it does not find a proof and no certificate is
produced. Trustworthy certificates, our main metatheoretic
goal, only require a mechanization of soundness. In fact, the
only termination or completeness bug we encountered arose
from incorrectly interpreting failed SMT queries as UNSAT,
which was a bug in the plugin and not in the algorithm itself.

Leapfrog: Certified Equivalence for Protocol Parsers

PLDI 22, June 13-17, 2022, San Diego, CA, USA

Table 2. Parsers in our evaluation: States gives the total number of states in both parsers, Branched gives the number of bits
in automata transition select statements, Total gives the number of bits across all variables, and Runtime and Memory give
the aggregate runtime and maximum resident size. An optimal verification algorithm would need to represent 2B states, while
an explicit state space would contain 2T states. An asterisk on the memory use indicates an out-of-memory exception.

Name States Branched (bits) Total (bits) Runtime (minutes) Memory (GB)
State Rearrangement 5 8 136 0.12 0.66
2 Variable-length parsing 30 64 632 953.42 405.64
% Header initialization 10 10 320 15.95 13.71
=~ Speculative loop 5 2 160 4.12 3.16
Relational verification 6 64 1056 1.68 2.07
External filtering 6 64 1056 1.18 1.71
E‘ Edge 28 52 3184 528.38 251.26
E Service Provider 22 50 2536 1244.5 499.80"
8§ Datacenter 30 242 2944 1387.95 404.50
. Enterprise 22 176 2144 217.93 66.13
2" Translation Validation 30 56 3148 746.2 350.48

7 Evaluation

We evaluate Leapfrog through case studies (listed in Table 2)
along two dimensions: (1) the utility of bisimulations for
solving problems of interest in networking (and, by exten-
sion, the expressiveness of Leapfrog), and (2) the applicability
of Leapfrog to real-world parsers (and, by extension, its scal-
ability to non-trivial inputs).

7.1 Utility

To evaluate whether equivalence checks are useful in the
networking domain, we identified six distinct verification
tasks, and showed how they can be solved with Leapfrog.

State Rearrangement. Because parser states translate to
hardware resources, it is common for compilers to merge and
split parser states, to optimize the write and branch behavior
for the particular hardware. We implemented a reference
parser for a stylized IP and UDP/TCP protocol in which the
prefix is 64 bits of IP and the suffix is either 32 bits of UDP or
64 bits of TCP (Figure 7). Note that the TCP and UDP headers
share a common prefix of 32 bits. We then implemented an
optimized parser that extracts the IP and common prefix,
and then branches to determine how to parse the remaining
bits. We used Leapfrog to show that the parsers accept the
same packets, even though they do so in different ways.

Variable-Length Formats. Handling formats with vari-
able lengths, such as type-length-value (TLV) encodings,
is a common challenge in protocol parsing, because the
amount of data parsed in each state depends on a previously-
parsed values. We implemented a parser for Internet Protocol
options [5], a common variable-length networking format.
Our parser handles up to two generic options, with data-
dependent lengths that range from 0 bytes to 6 bytes. We
also implemented a custom parser for the Timestamp option,
in which a specialized parser extracts the fields specific to

its format. Again, we used Leapfrog to show that the parsers
accept the same packets, even though the header formats
are variable and they do so in different ways.

Header Initialization. A common error in P4 programs
is reading from uninitialized headers. In parsers, this can
happen when several paths converge on a common state,
and the programmer has forgotten to write to a given header
on one or more of the paths. For example, VLAN tags [34]
are an optional 4-byte format that can appear at the end of
an Ethernet frame. If the VLAN tag is present, its value can
be used to influence routing behavior. However, a common
bug is to accidentally branch on an uninitialized VLAN tag
when it was not present in the packet. To fix this bug, one
can assign a default value to missing VLAN tags. We imple-
mented a parser for Ethernet, optional VLAN, IP, and UDP,
that either parses a VLAN tag or fills it with a default value
if it is missing (Figure 9 of the appendix). We used Leapfrog
to check that the set of accepted packets is independent of
the initial store. This check succeeds, so we conclude that
the parser not depend on uninitialized headers.

Speculative Extraction. Many high-performance proto-
col parsers speculatively extract packet data and then make
control-flow decisions based off the contents of that data.
We implemented the example from Figure 1 with MPLS fol-
lowed by UDP, in which the body of the optimized MPLS
loop speculatively extracts two MPLS headers. If the first of
these indicates the end of the header, then the parser has
overshot the MPLS header, and the remaining data must be
reinterpreted as a UDP packet. We used Leapfrog to verify
that these parsers accept the same packets.

External Filtering. Another common idiom is to imple-
ment a lenient parser that accepts well-formed and mal-
formed packets, and then compensate with an external filter

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

parse_combined {
extract(ip, 64);
extract(pref, 32)

parse_ip {
extract(ip, 64);
select(ip[40:43]1) {

(0001) = select(ip[40:43]1) {
parse_udp (0001) =
(0000) = accept
parse_tcp (0000) =
} parse_suff
b 3
parse_udp { }

extract(udp, 32);
goto accept

b

parse_tcp {
extract(tcp, 64);
goto accept

}

parse_suff {
extract(suff, 32);
goto accept

}

Figure 7. Reference and combined parsers for a stylized IP
and TCP/UDP protocol.

(e.g., by dropping packets later). Recall that the last two bytes
of an Ethernet header are a type field that determines the
header that follows—e.g., IPv4, IPv6, or something else. We
implemented two parsers: a lenient parser that assumes the
input packet is IPv6 if it is not IPv4, and a strict parser that
explicitly checks the Ethernet type field and rejects other
types of packets. We modeled an external filter for the lenient
parser by picking an initial relation that not only requires
the states to be equally accepting, but to also terminate with
a store where the Ethernet type is IPv4 or IPv6. We then
computed a bisimulation modulo this initial relation and
prove that the two parsers are equivalent. This case study
shows that Leapfrog can do more than just relate the sets of
accepted packets: it can also relate the values in the stores.

Relational Verification. Leapfrog can also verify other
useful relational properties of parsers. For instance, consider
two parsers that extract data into differently named headers
(e.g., the example from Section 2), or even with different frag-
ments of the input packet scattered across the store. Leapfrog
can be used to phrase and verify relations between parser
stores. To demonstrate this, we verified that when the lenient
and strict parsers from the previous case both accept some
packet, there is a correspondence between the values in their
stores. We picked an initial relation that requires the values
for headers on the left to correspond to the values for head-
ers on the right, provided both configurations are accepting
and used Leapfrog to establish a pre-bisimulation. Compared
to language equivalence, these applications do not have as
much metatheory developed in Coq, where there is a lemma
connecting an appropriately configured pre-bisimulation to
language equivalence. However, we believe our technique is
sound and could be justified in Coq.

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

Separately from these six tasks, we used Leapfrog to com-
pare parsers that did not accept the same packets, such as
the two parsers of the external filtering task. This was done
as a sanity check to see if (1) the proof script still terminated
and (2) it did not erroneously claim to prove equivalence. A
failure would indicate a bug in our pen-and-paper analysis of
the algorithm, or our trusted codebase. Fortunately, Leapfrog
acts as expected, by reaching the end of the main loop, then
failing when trying to apply the Close step.

7.2 Applicability

To evaluate Leapfrog’s applicability to real-world parsers,
we encoded the benchmarks used by the developers of the
parser-gen tool [27]. It provides parsers for four different
scenarios: (1) Edge, for a gateway router, (2) Service Provider,
for a core router, (3) Datacenter, for a top-of-rack switch in a
cloud, (4) and Enterprise, for a router in a campus or company
network. Each of these parsers supports a different set of
protocols depending on its intended use.® We translated each
of these parsers into a corresponding P4A parser and used
Leapfrog to perform a self-comparison check—i.e., we verified
that each parser is equivalent to itself.

Next, we used Leapfrog to perform translation validation.
The parser-gen framework also comes with a compiler that
takes a parse graph (analogous to a P4A) and compiles it to
an efficient hardware representation. The compiler models
constraints at the hardware level (e.g., limiting the number
of bits that can be extracted or branched on in each state) and
incorporates sophisticated optimizations to make the best
use of limited resources (e.g., splitting and merging states).

We ran the parser-gen compiler on the parser for the
Edge router, which generated a hardware-level representa-
tion with states, instructions, and transitions encoded in a
table—see Figure 8. We then wrote a script to translate the
table representation back into a P4 automaton.” Finally, we
used Leapfrog to check the equivalence of the two parsers.

We were able to prove that the parser-gen compiler pre-
serves the semantics of the original Edge P4A automata.
Hence, Leapfrog was able to validate a third-party compiler’s
output on its own benchmark program. Note that we de-
signed Leapfrog before we had experience using parser-gen.

%We did not consider one of the parsers discussed in the parser-gen paper,
Big-Union, which models the combined features from all four scenarios. Un-
like the others, Big-Union does not model a typical scenario but is primarily
intended for bounding hardware requirements.

"While the two languages are similar, the parser-gen hardware representa-
tion is different enough from P4A (mainly due to unproductive states and
speculative lookahead transitions) to make the reverse translation fuzzy.
Of all of the parser-gen benchmarks, we found that Edge’s hardware table
was the closest to P4A and required the least amount of manual repair. This
technique could in principle be adapted to other parser-gen benchmarks;
while they are a bit larger and could stress Leapfrog’s scaling, the main
challenge is a robust translation from hardware tables to P4A.

Leapfrog: Certified Equivalence for Protocol Parsers

PLDI 22, June 13-17, 2022, San Diego, CA, USA

* parser-gen

T Back-translation

Match:
Match:
Match:
Match:

00,
00,
00,
01,

0,
00,
00,
0,

08,
88,
0,
0,

0,
47,
0,
0,

(Lff,
(Lff,
(Lff,
(Lff,

, ff, 00, 00, 00,
, ff, 00, 00, 00,
, 00, 01, 00, f0,
, 00, 00, 00, 00,

00],
00],
00],
00],

[0,
[0,
[04,
[04,

Match: ([ff, 00, 00, 00, 00, 00, 00, 00, 00], [04, 00, 00, 00, 00,

0,
0,
1,
0,

00,

00,
00,
0,
0,

20,

00, 00]) Next-State: 3/255 Adv: 14 Next-Lookup: [0, @, 0, @]
00, 00]) Next-State: 4/255 Adv: 16 Next-Lookup: [0, 2, 4, 6]
00, 00]) Next-State: 1/255 Adv: 6 Next-Lookup: [0, 0, 0, 0]
00, 00]) Next-State: 1/255 Adv: 2 Next-Lookup: [0, 0, 0, 0]
00, 00]) Next-State: 255/255 Adv: 2 Next-Lookup: [0, 0, 0, @]

Figure 8. The Edge stack case study. The original parser (left) is compiled to a table (below, most entries elided), which we
translate back into a parser (right) and prove equivalent to the original.

7.3 Discussion

Overall we find that Leapfrog can be applied to a diverse
set of practical scenarios. In the rest of this section, we dis-
cuss some of our experiences using the tool, including its
limitations and directions for future work.

Automation. In the early stages of this work, we derived
and validated the relevant bisimulations without automated
tactics. This turned out to be a significant proof burden—e.g.,
our manual equivalence proof for the State Rearrangement
case study took two weeks of work. In contrast, the push-
button Leapfrog proof takes only six seconds on a laptop.
Although Leapfrog could be adapted to be more interactive,
letting the user apply Skip or Extend and prove the required
entailment, we believe that its power lies in the convenience
offered by delegating goals to an SMT solver.

Leapfrog is particularly useful in situations where it is
difficult to see whether two parsers are equivalent, such as
in the translation validation experiment. While we spent a
few days trying to prove the translation validation parsers
equivalent on pen-and-paper, we were unsure that they were
actually equivalent until the Leapfrog proof succeeded.

SMT Solver Performance. SMT solvers have unpredictable
performance. We used Z3 for the queries in most of our
benchmarks, but sometimes needed to switch to CVC4. Over-
all we found that all of the queries were solved in at most
10 seconds, with 99% taking at most 5 seconds. It was easy
to switch between SMT solvers because we targeted a well-
supported subset of the SMT-LIB query format (namely the
theory of bitvectors).

Overall Performance. Like any verification tool, Leap-
frog has limitations. Scaling to large parsers is challenging
due to the combinatorial explosion of configurations. All
of the smaller experiments (up to around 10 states) were
interactive on stock hardware, finishing in < 5 minutes

and < 16 GB of memory. Most took several minutes. For
larger experiments, the larger state space lead to significantly
higher memory demands. Coq needed 400 GB of RAM to
verify the largest Applicability study (Datacenter) and ran
out of memory on the Service Provider study. Although this
is a lot, it’s unsurprising because the concrete state space for
the Applicability study would have around 2%4? elements.

The optimizations discussed in Section 5 had a signifi-
cant impact. Specifically, our smallest State Rearrangement
benchmark went from 30 seconds and 1.7 GB of memory to
42 minutes and 36 GB of memory when leaps were disabled;
it did not finish without reachable state pruning.

Future Work. One way to improve the scalability of Leap-
frog in the future could be to investigate compositional rea-
soning techniques. Such techniques could facilitate divide-
and-conquer strategies, allowing Leapfrog to be applied to
larger parsers than our current implementation supports.

Another possibility is to vary the underlying algorithm.
One could imagine a symbolic treatment of Hopcroft and
Karp’s algorithm [32], which approximates a suitable bisimu-
lation from below, or Paige and Tarjan’s partition refinement
algorithm [45], which represents the current approximation
of the largest bisimulation in terms of its equivalence classes.
For the latter, one would need to estimate the number of
configurations in a symbolically represented equivalence
class to choose the next block to split.

The bulk of Leapfrog’s memory usage is occupied by the
proof object generated by our Ly, script. Alternatively, one
could implement the same algorithm in Gallina, axiomatizing
the decision procedure, and extract it to OCaml. While such
an approach is likely to be more efficient, it would also un-
dermine our goal of producing a proof object that is reusable
in a larger verification effort.

P4As are an abstraction of P4 parsers. For one thing, they
do not incorporate externs, which are architecture-specific

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

extensions that support, for instance, checksum algorithms
or persistent state. In addition, P4 parsers support arrays
(in the form of header stacks), subparser calls, and parser
lookahead, all of which are not part of our definition of P4
automata. More work is necessary to see whether P4As can
be extended to support or simulate these features.

In the future, we would like to use Leapfrog’s equivalence
checks to systematically perform translation validation on
other networking stacks. For example, one could imagine
writing a library of reference implementations for protocols
defined in RFCs, and checking that real-world implementa-
tions conform to those standards.

8 Related work

Automata Equivalence Checking. Our algorithm is a
variation on Moore’s classical algorithm to decide all-pairs
language equivalence in a DFA [40]. Moore’s approach was
later improved upon by partition refinement [31, 35, 45]. We
deviate from these classical procedures in two key aspects.

First, instead of using concrete data structures we use sym-
bolic ones. This idea goes back to Coudert et al. [18], and
has since been widely applied [11-14, 24]. These algorithms
use Binary Decision Diagrams (BDDs) as their symbolic rep-
resentation. Other authors favored a logical representation,
combined with decision procedures for the logic [26, 30].
Dehnert et al. [22] makes use of an SMT solver to decide
questions about the logical representations.

Second, instead of maintaining a list of equivalence classes,
we maintain a representation of an equivalence relation. The
earliest instance of this we have been able to track down is
due to Bouali and De Simone [13]. Mumme and Ciardo ob-
served that such an approach is particularly beneficial when
there tend to be a large number of equivalence classes [41].

Algorithms based on bisimulation up to congruence [9,
20] are similar in the sense that they mitigate state space
explosion—in this case, as a result of determinization. They
exploit the internal structure of the expanded state space
to terminate early, something that inspired us propose the
notion of a bisimulation with leaps.

Network Verification. The p4v verifier [37], the verifier
of Neves et al. [43], and Aquila [52] are push-button veri-
fiers for functional properties of P4 programs, including P4
parsers. They work by translating to a verification IR (ei-
ther guarded command language [25] or simple C) and then
analyzing the IR. None of these tools produce proofs, and
their translations are not proved sound with respect to a
reusable semantics of P4. Moreover, these tools verify func-
tional specifications about a single P4 program. Our work
is complementary because by contrast, our tool produces
relational proofs grounded in a reusable Coq semantics for
two P4 automata. Aquila includes a self-validation system for
finding semantic bugs in the verifier. Defining our semantics

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

in Coq allowed us to foundationally prove the absence of se-
mantic bugs, so while Leapfrog does not need self-validation,
it could be an oracle for validating other tools.

The Gauntlet translation validator checks program equiv-
alence for P4 programs without parsers or externs. We see
this work as complementary to Leapfrog, which focuses on
parser equivalence. Outside the parser, P4 programs have
loop-free control flow, complex data structures, and rich se-
mantic actions. Inside the parser, P4 programs have loops,
simpler data structures, and simpler semantic actions. Con-
sequently, parser verification is concerned with control flow
more than anything else, making it a different kind of verifi-
cation problem than verification for the rest of a P4 program.

Automatic Foundational Verification. SpaceSearch [56]
exposes a high-level solver interface to search large state
spaces. In contrast, our solver interface is lower level, and
our tool avoids extraction to produce a Coq certificate.

CreLLVM [36] instruments LLVM to produce translation
validation proofs in a relational Hoare logic, resulting in a
compact TCB and reusable Coq proof certificate. Leapfrog
has a similar TCB, but completeness (Theorem 4.6) means it
does not require proof hints.

The Narcissus [23] and EverParse [47] tools synthesize
correct parsers and serializers from high level descriptions
of packet formats using verified parser combinator libraries.
Synthesis and equivalence are related but distinct problems,
and our tool is complementary to synthesis tools. For in-
stance, a P4 parser generated by a parser synthesizer like
EverParse might be further optimized by a P4 compiler to
run on hardware. Leapfrog could validate the results of com-
pilation, preserving the guarantee offered by the synthesizer.

GPaco [33, 57] is a framework for modular coinductive
reasoning in Coq, which supports “up-to” bisimilarity tech-
niques. It is designed for interactive use and focuses on au-
tomating low-level proof steps. GPaco may be useful for
generalizing our mechanized metatheory for leaps.

Acknowledgments

We thank Glen Gibb for help understanding and using his
parser-gen framework. We received helpful feedback on
the writing from Glen Gibb, James R. Wilcox, Bill Harris, and
members of the Cornell programming languages group; we
thank them for their feedback.

R. Doenges and N. Foster were supported in part by the
National Science Foundation under grant FMiTF-1918396,
DARPA under contract HR0011-20-C-0107, and gifts from
Fujitsu, Google, InfoSys, and Keysight.

T. Kappé was partially supported by the European Union’s
Horizon 2020 research and innovation programme under the
Marie Sktodowska-Curie grant agreement No. 101027412
(VERLAN). J. Sarracino and G. Morrisett were supported by
DARPA contract HR0011-19-C-0073.

Leapfrog: Certified Equivalence for Protocol Parsers

References

(1]

[2

—

3

—

[4

[lam)

[5

—

l6

—

[7

—

8

[

[9

—

(10]

(11]

(12]

[13]

(14]

[15]

(16]

(17]

Andrew W. Appel. 2011. Verified Software Toolchain. In Proc. of
European Symposium on Programming (ESOP). 1-17. https://doi.org/
10.1007/978-3-642-19718-5_1

Andrew W. Appel, Lennart Beringer, Adam Chlipala, Benjamin C.
Pierce, Zhong Shao, Stephanie Weirich, and Steve Zdancewic. 2017. Po-
sition paper: the Science of Deep Specification. Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 375, 2104 (2017), 20160331. https://doi.org/10.1098/rsta.2016.0331
Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,
Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014.
Program Logics for Certified Compilers. Cambridge University Press.
Michaél Armand, Germain Faure, Benjamin Grégoire, Chantal Keller,
Laurent Théry, and Benjamin Werner. 2011. A Modular Integration
of SAT/SMT Solvers to Coq through Proof Witnesses. In Proc. of the
International Conference on Certified Programs and Proofs (CPP). 135-
150. https://doi.org/10.1007/978-3-642-25379-9_12

Internet Assigned Numbers Authority. 2018. Internet Protocol Version 4
(IPv4) Parameters. https://www.iana.org/assignments/ip-parameters/
ip-parameters.xhtml

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Ce-
sare Tinelli. 2011. CVC4. In Proc. of Computer Aided Verification (CAV).
171-177. https://doi.org/10.1007/978-3-642-22110-1_14

Clark W. Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB
Standard: Version 2.0. In Proc. of the 8th International Workshop on
Satisfiability Modulo Theories (SMT, Vol. 13). 14-14.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive Constructions.
https://doi.org/10.1007/978-3-662-07964-5

Filippo Bonchi and Damien Pous. 2013. Checking NFA Equivalence
with Bisimulations up to Congruence. In Proc. of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). 457-468. https://doi.org/10.1145/2429069.2429124

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. ACM SIGCOMM Comput. Commun.
Rev. 44, 3 (July 2014), 87-95. https://doi.org/10.1145/2656877.2656890
Ahmed Bouajjani, Jean-Claude Fernandez, and Nicolas Halbwachs.
1991. Minimal Model Generation. In Proc. of the 2nd International
Workshop on Computer Aided Verification (CAV). 197-203. https://doi.
org/10.1007/BFb0023733

Ahmed Bouajjani, Jean-Claude Fernandez, Nicolas Halbwachs, and
Pascal Raymond. 1992. Minimal State Graph Generation. Science of
Computer Programming 18, 3 (1992), 247-269. https://doi.org/10.1016/
0167-6423(92)90018-7

Amar Bouali and Robert de Simone. 1992. Symbolic Bisimulation
Minimisation. In Proc. of the 4th International Workshop on Computer
Aided Verification (CAV). 96-108. https://doi.org/10.1007/3-540-56496-
9.9

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and Lucius J. Hwang. 1992. Symbolic Model Checking: 10%°
States and Beyond. Information and Computation 98, 2 (1992), 142-170.
https://doi.org/10.1016/0890-5401(92)90017-A

Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019.
Semantic Program Alignment for Equivalence Checking. In Proc. of the
40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 1027-1040. https://doi.org/10.1145/3314221.
3314596

The P4 Language Consortium. 2021. P4 Language Specification, Version
1.2.2. Available at https://p4.org/p4-spec/docs/P4-16-v1.2.2.html.
The Coq Development Team. 2021. The Coq Reference Manual, version
8.14. Available electronically at http://coq.inria.fr/doc.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

PLDI 22, June 13-17, 2022, San Diego, CA, USA

Olivier Coudert, Christian Berthet, and Jean Christophe Madre. 1989.
Verification of Synchronous Sequential Machines Based on Symbolic
Execution. In Proc. of Automatic Verification Methods for Finite State
Systems. 365-373. https://doi.org/10.1007/3-540-52148-8_30

Lukasz Czajka and Cezary Kaliszyk. 2018. Hammer for Coq: Automa-
tion for Dependent Type Theory. Journal of Automated Reasoning 61,
1-4 (jun 2018), 423-453. https://doi.org/10.1007/s10817-018-9458-4
Loris D’Antoni, Zachary Kincaid, and Fang Wang. 2018. A Symbolic
Decision Procedure for Symbolic Alternating Finite Automata. In Proc.
of the 33rd International Conference on the Mathematical Foundations
of Programming Semantics (MFPS). 79-99. https://doi.org/10.1016/j.
entcs.2018.03.017

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An Efficient SMT
Solver. In Proc. of the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). 337-340.
https://doi.org/10.1007/978-3-540-78800-3_24

Christian Dehnert, Joost-Pieter Katoen, and David Parker. 2013. SMT-
Based Bisimulation Minimisation of Markov Models. In Proc. of the 14th
International Workshop on Verification, Model Checking, and Abstract
Interpretation (VMCAI). 28-47. https://doi.org/10.1007/978-3-642-
35873-9_5

Benjamin Delaware, Sorawit Suriyakarn, Clément Pit-Claudel,
Qianchuan Ye, and Adam Chlipala. 2019. Narcissus: Correct-by-
Construction Derivation of Decoders and Encoders from Binary For-
mats. Proceedings of the ACM on Programming Languages 3, ICFP,
Article 82 (July 2019), 29 pages. https://doi.org/10.1145/3341686
Salem Derisavi. 2007. A Symbolic Algorithm for Optimal Markov
Chain Lumping. In Proc. of the 13th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
139-154. https://doi.org/10.1007/978-3-540-71209-1_13

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and
Formal Derivation of Programs. Commun. ACM 18, 8 (Aug. 1975),
453-457. https://doi.org/10.1145/360933.360975

Yuan Feng, Yuxin Deng, and Mingsheng Ying. 2014. Symbolic Bisimula-
tion for Quantum Processes. ACM Transactions on Computational Logic
15, 2, Article 14 (May 2014), 32 pages. https://doi.org/10.1145/2579818
Glen Gibb, George Varghese, Mark Horowitz, and Nick McKeown. 2013.
Design Principles for Packet Parsers. In Proc. of the 9th ACM/IEEE Sym-
posium on Architecture for Networking and Communications Systems
(ANCS). 13-24. https://doi.org/10.1109/ANCS.2013.6665172

Eduardo Giménez. 1994. Codifying Guarded Definitions with Recursive
Schemes. In Proc. of the International Workshop on Types for Proofs and
Programs (TYPES). 39-59. https://doi.org/10.1007/3-540-60579-7_3
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program
Synthesis. Foundations and Trends® in Programming Languages 4, 1-2
(2017), 1-119. https://doi.org/10.1561/2500000010

Matthew Hennessy and Huimin Lin. 1995. Symbolic Bisimulations.
Theoretical Computer Science 138, 2 (1995), 353-389. https://doi.org/
10.1016/0304-3975(94)00172-F

John Hopcroft. 1971. An nlog n Algorithm for Minimizing States in a
Finite Automaton. In Proceedings of an International Symposium on
the Theory of Machines and Computations. Academic Press, 189-196.
https://doi.org/10.1016/B978-0-12-417750-5.50022- 1

John Hopcroft and Richard M. Karp. 1971. A Linear Algorithm for
Testing Equivalence of Finite Automata. Technical Report TR 71-114.
Cornell University, Ithaca, NY. https://hdl.handle.net/1813/5958
Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013.
The Power of Parameterization in Coinductive Proof. In Proc. of the 40th
annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL). 193-206. https://doi.org/10.1145/2480359.
2429093

IEEE Computer Society. 2018. IEEE Standard for Local and Met-
ropolitan Area Network-Bridges and Bridged Networks. IEEE Std
802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) (2018), 1-1993. https:
//doi.org/10.1109/IEEESTD.2018.8403927

PLDI ’22, June 13-17, 2022, San Diego, CA, USA

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

Paris C. Kanellakis and Scott A. Smolka. 1983. CCS Expressions, Finite
State Processes, and Three Problems of Equivalence. In Proc. of the
2nd Annual ACM Symposium on Principles of Distributed Computing
(PODC). 228-240. https://doi.org/10.1145/800221.806724

Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee,
Sanghoon Park, Mark Dongyeon Shin, Yonghyun Kim, Sungkeun Cho,
Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. 2018. Crellvm:
Verified Credible Compilation for LLVM. In Proc. of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). 631-645. https://doi.org/10.1145/3192366.3192377

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and
Nate Foster. 2018. P4v: Practical Verification for Programmable Data
Planes. In Proc. of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM). 490-503. https://doi.org/10.
1145/3230543.3230582

Assia Mahboubi and Enrico Tassi. 2021. Mathematical Components.
Zenodo. https://doi.org/10.5281/zenodo.4457887

Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program.
In Proc. of the 2nd International Conference on Architectual Support for
Programming Languages and Operating Systems (ASPLOS). 122-126.
https://doi.org/10.1145/36177.36194

Edward F. Moore. 2016. Gedanken-Experiments on Sequential Ma-
chines. Princeton University Press, 129-154. https://doi.org/doi:
10.1515/9781400882618-006

Malcolm Mumme and Gianfranco Ciardo. 2011. A Fully Symbolic
Bisimulation Algorithm. In Proc. of the 5th International Workshop on
Reachability Problems (RP). 218-230. https://doi.org/10.1007/978-3-
642-24288-5_19

George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proc. of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation (PLDI). 83-94. https:
//doi.org/10.1145/349299.349314

Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, and Marinho
Barcellos. 2018. Verification of P4 Programs in Feasible Time Using
Assertions. In Proc. of the 14th International Conference on Emerging
Networking EXperiments and Technologies (CoONEXT). 73-85. https:
//doi.org/10.1145/3281411.3281421

Aina Niemetz, Mathias Preiner, and Armin Biere. 2014. Boolector 2.0.
Journal on Satisfiability, Boolean Modeling and Computation 9, 1 (2014),
53-58. https://doi.org/10.3233/5at190101

Robert Paige and Robert Endre Tarjan. 1987. Three Partition Refine-
ment Algorithms. SIAM J. Comput. 16, 6 (1987), 973-989. https:
//doi.org/10.1137/0216062

Jon Postel. 1980. User Datagram Protocol. RFC 768. https://doi.org/
10.17487/RFC0768

Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet,
Nikhil Swamy, Tej Chajed, Nadim Kobeissi, and Jonathan Protzenko.

Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

2019. EverParse: Verified Secure Zero-Copy Parsers for Authen-
ticated Message Formats. In 28th USENIX Security Symposium
(USENIX Security). 1465-1482. https://www.usenix.org/conference/
usenixsecurity 19/presentation/delignat-lavaud

Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Michael E.
Locasto. 2013. Security Applications of Formal Language Theory. IEEE
Systems Journal 7, 3 (2013), 489-500. https://doi.org/10.1109/JSYST.
2012.2222000

Matthieu Sozeau. 2010. Equations: A Dependent Pattern-Matching
Compiler. In Interactive Theorem Proving (ITP), Matt Kaufmann and
Lawrence C. Paulson (Eds.). 419-434. https://doi.org/10.1007/978-3-
642-14052-5_29

Matthieu Sozeau and Cyprien Mangin. 2019. Equations Reloaded:
High-Level Dependently-Typed Functional Programming and Proving
in Coq. Proceedings of the ACM on Programming Languages 3, ICFP,

Article 86 (Jul 2019), 29 pages. https://doi.org/10.1145/3341690
Thomas Streicher. 1993. Investigations into Intensional Type Theory.

Habilitiation Thesis, Ludwig Maximilian Universitdt (1993). https:
//www2.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf
Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen,
Yu Zhou, Li Dai, Feng Yan, Mengjing Ma, Ming Tang, Jie Lu, Xionglie
Wei, Honggiang Harry Liu, Ming Zhang, Chen Tian, and Minlan Yu.
2021. Aquila: A Practically Usable Verification System for Production-
Scale Programmable Data Planes. In Proc. of the 2021 ACM SIGCOMM
2021 Conference (SIGCOMM). 17-32. https://doi.org/10.1145/3452296.
3472937

Jean-Baptiste Tristan and Xavier Leroy. 2009. Verified Validation of
Lazy Code Motion. In Proc. of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). New York,
NY, USA, 316-326. https://doi.org/10.1145/1542476.1542512

Arun Viswanathan, Eric C. Rosen, and Ross Callon. 2001. Multiprotocol
Label Switching Architecture. RFC 3031. https://doi.org/10.17487/
RFC3031

Yasunari Watanabe, Kiran Gopinathan, George Pirlea, Nadia Polikar-
pova, and Ilya Sergey. 2021. Certifying the Synthesis of Heap-
Manipulating Programs. Proceedings of the ACM on Programming
Languages 5, ICFP, Article 84 (Aug. 2021), 29 pages. https://doi.org/10.
1145/3473589

Konstantin Weitz, Steven Lyubomirsky, Stefan Heule, Emina Torlak,
Michael D. Ernst, and Zachary Tatlock. 2017. SpaceSearch: A Library
for Building and Verifying Solver-Aided Tools. Proceedings of the ACM
on Programming Languages 1, ICFP, Article 25 (Aug. 2017), 28 pages.
https://doi.org/10.1145/3110269

Yannick Zakowski, Paul He, Chung-Kil Hur, and Steve Zdancewic.
2020. An Equational Theory for Weak Bisimulation via Generalized
Parameterized Coinduction. In Proc. of the 9th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs (CPP). 71-84.
https://doi.org/10.1145/3372885.3373813

