
KATch: A Fast Symbolic Verifier for NetKAT

Mark Moeller
Jules Jacobs
Olivier Savary Belanger
David Darais

Cole Schlesinger
Steffen Smolka
Nate Foster
Alexandra Silva

PLDI, June 2024

Verification in Network Routing Policies

Switch  
B

Switch  
C

Switch  
D

1

2

3

4

5

6

2

Switch  
A

Verification in Network Routing Policies

Switch  
B

Switch  
C

Switch  
D

1

2

3

4

5

6

2

Switch  
A

Src Dest Next
Hop1 3-5 B

2 4-6 C

Forwarding policies: 
1. Filter/update packet fields 
2. Make forwarding decisions

Verification in Network Routing Policies

Switch  
B

Switch  
C

Switch  
D

1

2

3

4

5

6

2

Verification questions:

Switch  
A

Src Dest Next
Hop1 3-5 B

2 4-6 C

Forwarding policies: 
1. Filter/update packet fields 
2. Make forwarding decisions

Verification in Network Routing Policies

Switch  
B

Switch  
C

Switch  
D

1

2

3

4

5

6

2

Verification questions:

Are all hosts reachable from  
every other host?Switch  

A

Src Dest Next
Hop1 3-5 B

2 4-6 C

Forwarding policies: 
1. Filter/update packet fields 
2. Make forwarding decisions

Verification in Network Routing Policies

Switch  
B

Switch  
C

Switch  
D

1

2

3

4

5

6

2

Verification questions:

Are all hosts reachable from  
every other host?

Are slices isolated as
intended?

Switch  
A

Src Dest Next
Hop1 3-5 B

2 4-6 C

Forwarding policies: 
1. Filter/update packet fields 
2. Make forwarding decisions

Network Verification with NetKAT (POPL 2014)

3

Network Verification with NetKAT (POPL 2014)

3

Network Verification with NetKAT (POPL 2014)

3

Filter packets

Network Verification with NetKAT (POPL 2014)

3

Filter packets

Modify packets

Network Verification with NetKAT (POPL 2014)

• NetKAT is sound, complete, and decidable

3

Filter packets

Modify packets

Network Verification with NetKAT (POPL 2014)

• NetKAT is sound, complete, and decidable

• Program equivalence is automata equivalence
3

Filter packets

Modify packets

��� ��	 ��
 ��� ���
��"���������

��#	

��#�

��#�

���

���

���

��
�
��
��
�

 ��������������!

�!����
������
��������
��������������� ��

NetKAT and APKeep (NSDI 2020)

4

��� ��	 ��
 ��� ���
��"���������

��#	

��#�

��#�

���

���

���

��
�
��
��
�

 ��������������!

�!����
������
��������
��������������� ��

NetKAT and APKeep (NSDI 2020)

4

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

3. Symbolic counterexamples
5

Problem:  
NetKAT is limited in practice

And it is performant!

��	 ��
 ��� ��� ��

��$���� ����

��%

��%	

��%�

���

���

��	

��
�

��
��

�

�!������������� #

�#� ��
������
����� ��
����� ���� ����! �
�� ��
�� ������"�
�� ������"��� ����! �

6

What’s hard about NetKAT equivalence?
Are these two NetKAT automata equivalent?  

7

What’s hard about NetKAT equivalence?
Are these two NetKAT automata equivalent?  

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

7

What’s hard about NetKAT equivalence?
Are these two NetKAT automata equivalent?  

δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

7

Wait! It’s not so simple…

 
f=0; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0

DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0

 
f=0; g=0

DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0

 
f=0; g=0

DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0 f=0; g=0

 
f=0; g=0

DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0 f=0; g=0

 
f=0; g=0

DROP
DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0 f=0; g=0

 
f=0; g=0

DROP

f=0; g=1

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Wait! It’s not so simple…

 
f=0; g=0 f=0; g=0

 
f=0; g=0

DROP

f=0; g=1

DROP

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

8

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

 
f=1; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

 
f=1; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

 
f=1; g=0

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0
 
f=1; g=0

 
f=1; g=0

 
f=1; g=1

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0

DROP

 
f=1; g=0

 
f=1; g=0

 
f=1; g=1

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0

DROP

 
f=1; g=0

 
f=1; g=0

 
f=1; g=1 

f=0; g=1

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

 
f=0; g=1

Checking Equivalence in NetKAT

 
f=0; g=0

 
f=0; g=0

DROP

 
f=1; g=0

 
f=1; g=0

 
f=1; g=1 

f=0; g=1 
f=1; g=1

Are these two NetKAT automata equivalent?  
δ : S × 𝖯𝗄 → S𝖯𝗄

S is the set of states, 
 is the set of all packets𝖯𝗄 ϵ : S × 𝖯𝗄 → 2𝖯𝗄

DROP

9

 
f=0; g=1 

f=1; g=1

��� ��	 ��
 ��� ���
��"���������

��#	

��#�

��#�

���

���

���

��
�
��
��
�

 ��������������!

�!����
������
��������
��������������� ��

NetKAT and APKeep (NSDI 2020)

10

11

Problem:  
NetKAT is limited in practice

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

11

Problem:  
NetKAT is limited in practice

 
f=1; g=1

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

12

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

Represent Sets of Packets Symbolically

Represent Sets of Packets Symbolically

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

13

Represent Sets of Packets Symbolically

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

13

{α ∈ 𝖯𝗄 ∣ α . f = 0}
f

⊤

0

⊥

Binary Decision Diagram (BDD)

Represent Sets of Packets Symbolically

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

14

𝖯𝗄
Set of all packets

Represent Sets of Packets Symbolically

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

14

f

⊤

0 g

1

⊥

𝖯𝗄
Set of all packets

Represent Sets of Packets Symbolically

 
f=0; g=0
 
f=1; g=0 

f=0; g=1 
f=1; g=1

14

f

⊤

0 g

1

⊥

𝖯𝗄
Set of all packets

∅

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters
Symbolic Packet 
Program (SPP)

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

15

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

16

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

16

f

0

g

0

⊤

1

g

1

⊥

Represent Transitions Symbolically

Circle-layers are filters

Diamond-layers are assignments

Symbolic Packet 
Program (SPP)

16

SPPs are canonical!

f

1

g

1

⊤

0

⊥

q ≜ f=1 ⋅ g←0

Operations on Symbolic Packet Programs (SPPs)

p ≜ f=0 + g←1

f

0

g

0

⊤

1

g

1

⊥

f

1

g

1

⊤

0 1

g

1

(p ⊕ q)⋆

17

f

1

g

1

⊤

0

⊥

q ≜ f=1 ⋅ g←0

Operations on Symbolic Packet Programs (SPPs)

p ≜ f=0 + g←1

f

0

g

0

⊤

1

g

1

⊥

f

1

g

1

⊤

0 1

g

1

(p ⊕ q)⋆

17

SPPs are closed
under: 

 
 

and  

+, ⋅ , ⋆

∩ , − , ⊕

Symbolic Automaton Construction

18

Symbolic Automaton Construction

18

Automata are also closed under
(using SPP operations!): 

 
 

and  
 

Automata equivalence: 

+, ⋅ , ⋆

∩ , − , ⊕

KATch—first attempt

��	 ��
 ��� ��� ��

��$���� ����

��%

��%	

��%�

���

���

��	

��
�

��
��

�

�!������������� #

�#� ��
������
����� ��
����� ���� ����! �
�� ������"�
�� ������"��� ����! �

19

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

20

Problem:  
NetKAT is limited in practice

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

20

Problem:  
NetKAT is limited in practice

NetKAT Programming Language (NKPL)

𝗌𝗐 = i ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = j ≡ ∅

All-pairs reachability queries, naively:

21

for doi, j ∈ 1..n

∝ n2
Number of queries

… and using NKPL features:

∝ nNumber of queries
for doi ∈ 1..n

NetKAT Programming Language (NKPL)

𝗌𝗐 = i ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = j ≡ ∅

All-pairs reachability queries, naively:

21

for doi, j ∈ 1..n

∝ n2
Number of queries

… and using NKPL features:

∝ nNumber of queries
for doi ∈ 1..n

NetKAT Programming Language (NKPL)

𝗌𝗐 = i ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = j ≡ ∅

All-pairs reachability queries, naively:

21

Compute output symbolic packet

for doi, j ∈ 1..n

∝ n2
Number of queries

… and using NKPL features:

∝ nNumber of queries
for doi ∈ 1..n

NetKAT Programming Language (NKPL)

𝗌𝗐 = i ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = j ≡ ∅

All-pairs reachability queries, naively:

21

Compute output symbolic packet

“Any switch” symbolic packet

for doi, j ∈ 1..n

∝ n2
Number of queries

Evaluation

��	 ��
 ��� ��� ��

��$���� ����

��%

��%	

��%�

���

���

��	

��
�

��
��

�

�!������������� #

�#� ��
������
����� ��
����� ���� ����! �
�� ��
�� ������"�
�� ������"��� ����! �

22

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

23

Problem:  
NetKAT is limited in practice

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

3. Symbolic counterexamples
23

Problem:  
NetKAT is limited in practice

Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

3. Symbolic counterexamples
23

Problem:  
NetKAT is limited in practice 

 

Automata equivalence: 

KATch: A Fast Symbolic Verifier for NetKAT 
 

1. Symbolic packets and techniques 

2. Extended NetKAT language

3. Symbolic counterexamples

24

Question time

25

Backup slides

26

Where is KAT negation?

1. KAT requires arbitrary tests to have negation!

2. We have only atomic negation, by
preprocessing negations inward using
DeMorgan’s laws

27

Brzozowski Derivatives directly from KAT!

28

Network Verification with NetKAT (POPL 2014)

29

Network Verification with NetKAT (POPL 2014)

29

Network Verification with NetKAT (POPL 2014)

1. Construct automata for policy and
specification.

29

Network Verification with NetKAT (POPL 2014)

1. Construct automata for policy and
specification.

2. Verification is just automata equivalence!
29

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

30

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

30

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

30

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

30

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

…

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 5 ≡ ∅

30

Reachability Example (prior NetKAT)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅

We can check all-pairs reachability in NetKAT as follows:

…

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 5 ≡ ∅

Requires equivalence
queries

O(n2)
30

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

31

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

… and using NKPL features:

31

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

… and using NKPL features:

31

Compute output symbolic packet

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

… and using NKPL features:

31

Compute output symbolic packet

“Any switch” symbolic packet

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

… and using NKPL features:

31Each query is equivalent to n original queries — requiring only O(n) queries!
Compute output symbolic packet

“Any switch” symbolic packet

NetKAT Programming Language (NKPL)

32

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

32

NetKAT Programming Language (NKPL)

𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 2 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 3 ≡ ∅
𝗌𝗐 = 1 ⋅ 𝗇𝖾𝗍⋆ ⋅ 𝗌𝗐 = 4 ≡ ∅…

All-pairs reachability queries, naively:

… and using NKPL features:

32

