KATch: A Fast Symbolic Verifier for NetKAT
PLDI, June 2024

Mark Moeller Cole Schlesinger
Jules Jacobs Steffen Smolka
Olivier Savary Belanger Nate Foster
David Darais Alexandra Silva

galois oogle

Verification in Network Routing Policies

SW|tCh -
\;-_;
A
—
§-A SWltCh % .

%_

Verification in Network Routing Policies

Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions

—
\E.m
-

Src Dest Next
“

1 3-5
2 4-6

%_.
= E '

=
, =
6

Verification in Network Routing Policies

Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions

S N\
.

Src Dest Next
“

Verification questions:

1 3-5
2 4-6

%_.
= © '

=
, =
6

Verification in Network Routing Policies

Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions

Verification questions:

S N\

Src Dest Next

%E-ﬂ Are all hosts reachable from
1 3-5 Switch
2 | 46 I - every other host?
\“ =
- -
:

=

Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions

S N\
Src Dest Next

1 3-5
2 4-6

\-.
|

Switch
C

=

.

\-.

Verification in Network Routing Policies

Verification questions:

Are all hosts reachable from
every other host?

Are slices isolated as
intended?

Network Verification with NetKAT (POPL 2014)

Network Verification with NetKAT (POPL 2014)

pqi=L|T|f=v|f#v|f<ov|dup|p+q|p-q|p”

Network Verification with NetKAT (POPL 2014)

Filter packets

p.gi=L|T({=0|f#D| feolduplp+qlp-qlp’

Network Verification with NetKAT (POPL 2014)

Filter packets

pgi=L|T({=0|f#F o) duplp+qlp-qlp’

Modify packets

Network Verification with NetKAT (POPL 2014)

Filter packets

p,q::=llT@ dup |p+qlp-qlp”

Modify packets

» NetKAT is sound, complete, and decidable

Network Verification with NetKAT (POPL 2014)

Filter packets

p,q::=l\T® dup |p+qlp-qlp”

Modify packets

» NetKAT is sound, complete, and decidable

* Program equivalence Is automata equivalenc

3

NetKAT and APKeep (NSDI 2020)

Full reachability

FEMECNILEEREOPRINEIKPICHEIR DR KK K R KK K x
a®
7 e’
102 - 'Q‘ <=
5 0.0
. 'az)
o®
®
10? - o
@
= ’ +
(d ",
- -
n 10° E -8 o THE
- © *+ +
i— +. 0 +
10_1 = —attisr
: I g
s g
L e Syst
10-2 - ey ystem
E R -k T + K
Lt apkeep
- +13 ¢ ® frenetic
1073 44 T x frenetic (timeout)
1 I 1 1 I 1 1 1 I 1 I 1 1 1 I
102 103 104 10° 106°

Size (atoms)

NetKAT and APKeep (NSDI 2020)

Full reachability

SJEBLERIRHEREHNRREK IR DK KO X K XXX X x
i Q>
102 - % at =
5 0o '
ae
o®
: ®
10? - o
é ® Qo o
: o
+
- @%® 2t
v 10° -
@ o “+ o+
@ + ¥
£ ik +
107+ = . T
RS
1 —:.-ii't';;'.!ﬂ':l"r'{*#r
R
102 i System
P ..7[;_!-. =
+++-|'-*'?"'PJ+¢'~ ' + apkeep
et + 4 e frenetic
1073 44 T x frenetic (timeout)
: L ' ' ' ' L ' ' ' ' L ' ' ' ' L | ' ' ' ' L
10° 103 104 10° 10°

Size (atoms)

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

3. Symbolic counterexamples

And it is performant!

102 -

10*

Time (s)

Full reachability

| .)&’l QAN AN PAAULIR U RMIHLIXN PO RKEHKHK K K K AK K

7

+-
/ ¢
o® s
° o
> g" Q»"é‘iéfl#Q‘»?\‘\}"/‘,\/}»“\ o o e 4
e FRIORTYS coadadatitil + e
o Au PO D * AL,
. -'-\\'1;/3‘” | + apkeep
Y .,‘m;‘c'o’%\?; o ® frenetic
RN S ag4d .]
_ A,,mms%’w‘ x frenetic (timeout)
IR Cant ¢ katch
o @ «21"-& R ¢ katch-naive
:_ £ * katch-naive (timeout)
102 103 104 10° 10°

Size (atoms)

What’s hard about NetKAT equivalence?

Are these two NetKAT automata equivalent?

What’s hard about NetKAT equivalence?

Are these two NetKAT automata equivalent?

ey
WV WV Ng

0 0 f#0-g#1

S Is the set of states,

. Pk
Pk is the set of all packets € - 9 X Pk — 2

What’s hard about NetKAT equivalence?

Are these two NetKAT automata equivalent?
5:SxPk— S

ey
WV WV Ng

0 0 f#0-g#1

S Is the set of states,

. Pk
Pk is the set of all packets € - 9 X Pk — 2

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?

v
R

S Is the set of states,

. Pk
Pk is the set of all packets € - O X Pk — 2

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?

5:S %Pk - SPK
e
f=0+g+1
—~(0)

DROP
@ 0 f#0-g9#1

S Is the set of states,

. Pk
Pk is the set of all packets € - O X Pk — 2

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

>
PR

Ng

DROP
@ 0 f#0-g#1

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Wait! It’s not so simple...

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?

5: S %Pk — SPk
N
1)

. f=0+g+«1 .
WV g

0 f#0-g#1

S Is the set of states,

. Pk
Pk is the set of all packets € - SXPk— 2

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

. f=0+g+«1 .
WV g

DROP
m 0 f#0-g#1

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

W

Ng

DROP
@ 0 f#0-g#1

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

Checking Equivalence in NetKAT

Are these two NetKAT automata equivalent?
5:SXPk— S

N

"U

DROP
@

S Is the set of states,
Pk is the set of all packets

e:SxPk— 2k

NetKAT and APKeep (NSDI 2020)

Full reachability

FEMECNILEEREOPRINEIKPICHEIR DR KK K R KK K x
a®
7 e’
102 - 'Q‘ <=
5 0.0
. 'az)
o®
®
10? - o
@
= ’ +
(d ",
- -
n 10° E -8 o THE
- © *+ +
i— +. 0 +
10_1 = —attisr
: I g
s g
L e Syst
10-2 - ey ystem
E R -k T + K
Lt apkeep
- +13 ¢ ® frenetic
1073 44 T x frenetic (timeout)
1 I 1 1 I 1 1 1 I 1 I 1 1 1 I
102 103 104 10° 106°

Size (atoms)

10

Problem:
NetKAT is limited In practice

11

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

11

Represent Sets of Packets Symbolically

|

)
}f

12

Represent Sets of Packets Symbolically

13

(a €Pk|a.f=0)

\
0\
\
|

1

Binary Decision Diagram (BDD)

Represent Sets of Packets Symbolically

13

Represent Sets of Packets Symbolically

Set of all packets

Pk

14

Represent Sets of Packets Symbolically

Set of all packets

Pk

14

Represent Sets of Packets Symbolically

Set of all packets

Pk

Represent Transitions Symbolically

15

Represent Transitions Symbolically

15

Represent Transitions Symbolically

Circle-layers are filters
Symbolic Packet 0

Program (SPP)

‘/

15

Represent Transitions Symbolically

Symbolic Packet
Program (SPP)

v

\

0
\b
|
0 |
|
v

Circle-layers are filters

Diamond-layers are assignments

[N

WV N4

0 f#0-g#1

15

Represent Transitions Symbolically

Circle-layers are filters

\

Symbolic Packet 0
Program (SPP) \

%?

Diamond-layers are assignments

-

¢O - gF 1

15

Represent Transitions Symbolically

Circle-layers are filters

\

Symbolic Packet 0
Program (SPP) \

%?

Diamond-layers are assignments

-

T 1

Represent Transitions Symbolically

Circle-layers are filters

\

Symbolic Packet 0
Program (SPP) \

%?

Diamond-layers are assignments

-
i @
1 /S\\‘ ¢O - g#1

16

Represent Transitions Symbolically

\ Circle-layers are filters
Symbolic Packet 0

Program (SPP)

Diamond-layers are assignments
0

[N

WV N4

0 f#0-g#1

%?
4

|
|
|
i |

T

16

Represent Transitions Symbolically

Circle-layers are filters
Symbolic Packet 0

Program (SPP) ‘

Diamond-layers are assignments

I'V
- — in-gil

T

16

Operations on Symbolic Packet Programs (SPPs)

O O

|
1 | 1

3

I | |
| /
I
| \ \ | \ \
1 1\ 0o v 0 1\ 1 1
| \ \| \ /
Y | 1y | /
T

V
L T 1 T

pEf=0+g<1 g2f=1-g<0 (p ® g)*

Operations on Symbolic Packet Programs (SPPs)

SPPs are closed
under:
4+, -, %

and

na_a@

17

Symbolic Automaton Construction

Svmbolic Automaton Construction

Automata are also closed under
(using SPP operations!):
4+, -, %

and

na_a@

Automata equivalence:

18

KATch—first attempt

Time (s)

Full reachability

ATERCERIGAREIRRRLICHBIERCHLI DK RO K R AKEX X *
Y
0
=)
.f«‘o’
A %
L 4
| g o ©
@
S
"1).’
o T
° ++ H +
2 3+ ¥
+ 0T +
g ™ System
sk
opkeep
- Bap=fe iy :
+ _FL_IF&F-'T:T’:.&];- frenetic
++_F_qg.i:-~**"" : frenetic (timeout)
-!! .
o FE katch-naive
o T _ _
+ ¥ katch-naive (timeout)
| ' L | L ' | T T
102 103 104 10° 10°

Size (atoms)

19

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

20

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

20

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,j € l..ndo

SW=1-net*-sw=j=Z0Q

Number of queries
X n2

21

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,7j € 1..n do .
/ Number 01; qgueries

SW=1i-net* -sw=j=0Q X N

... and using NKPL features:

fori € 1..ndo
check (forward (sw=i - net*)) = (sw € 1..n) Number of queries
X N

21

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,j € l..ndo

SW=1-net*-sw=j=Z0Q

... and using NKPL features:

fori € 1..

n do
check = (sw € 1..n)

Compute output symbolic packet

Number 01; qgueries

XN

Number of queries
X N

21

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,j € l..ndo

SW=1-net*-sw=j=Z0Q

... and using NKPL features:

Compute output symbolic packet

Number 01; gueries

XN

fori € 1..n do “Any switch” symbolig packet

Number of queries
X N

21

Evaluation

107 -

10°

Time (s)

Full reachability

| .)&’l QAN AN PAAULIR U RMIHLIXN PO RKEHKHK K K K AK K

°* ¢
@ .,
200 ol 77 @ =5
v >~wﬁﬁaﬁaﬁ%§“”’§\ ¢
g PO \““ ’): & st ,
PR 2% L added ¥
o & @O T #'/'; _"?;M ¢ System
LA -
Y «‘m'}f'ﬂ*-i/- - ® frenetic
| A,A,Z@ggy;i;»f?&?é**‘ " x frenetic (timeout)
0‘0%’@&””” ¢ katch
@ ‘-?Y**ﬂ'*. :
o @ Qo ¥ ot ¢ katch-naive
:. - » katch-naive (timeout)
102 103 104 10° 106

Size (atoms)

22

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

23

Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

3. Symbolic counterexamples

23

Problem:
NetKAT is limited In practice

Automata equivalence: ps

3. Symbolic counterexamples

23

KATch: A Fast Symbolic Verifier for NetKAT
1. Symbolic packets and techniques
2. Extended NetKAT language

3. Symbolic counterexamples

Question time

24

25

Backup slides

Where is KAT negation?

p,q::=uT\f=v§:;)fwIdup\p+q\p-q|p*

1. KAT requires arbitrary tests to have negation!

2. We have only atomic negation, by
preprocessing negations inward using
DeMorgan’s laws

Brzozowski Derivatives directly from KAT!

e(p+q) = e(p) +e(q)
e(pnq) =e(p)Ne(q)
e(p@q) = e(p) de(q)
e(p—q) = e(p) = €e(q)
e(p-q) = e(p)-e(q)
e(p™) = e(p)*

e(dup) = L
e(f=0v) = f=0
e(f#v) = f+v
e(fev) = fev
e(T)=T
e(L) = L

6(p+q) =46(p)+5(q)
5(pNq) = 5(p)Nd(g)
S(p®q) = 5(p)®5(q)
o(p —q) =(p) =4(q)
6(p-q) =5(p)~q+e(p)-d(q)
5(p™) = e(p)*=d(p) p*

d(dup) = dup
0(f=0v) = 1
O(f+#v) = L
O(f«<v) =L
o(T) =L
o(L) = L

2¢€

Network Verification with NetKAT (POPL 2014)

Network Verification with NetKAT (POPL 2014)

pqi=L|T|f=v|f#v|f<ov|dup|p+q|p-q|p”

Network Verification with NetKAT (POPL 2014)

pqi=L|T|f=v|f#v|f<ov|dup|p+qlp-q|p”

1. Construct automata for policy and
specification.

Network Verification with NetKAT (POPL 2014)

pqi=L|T|f=v|f#o|f<ov|dup|p+qlp-qlp”

1. Construct automata for policy and
specification.

2. Verification is just automata equivalence!

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw = |

3(

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw = | - net*

3(

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw=1-net-sw=2

3(

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw=1-netx-sw=2=¢

3(

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw=1-netr-sw=2=¢g
sw=1-netx-sw=3=g
sw=1-net*-sw=4=¢g
sw=1-netx-sw=5=g

3(

Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw=1-netr-sw=2=¢g
sw=1-net*-sw=3=¢g
sw=1-net*x-sw=4=0
sw=1-netx-sw=5=g

Requires O(nz) equivalence
queries

3(

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=g

31

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=g

... and using NKPL features:

fori € 1..ndo

check (forward (sw=i - net™)) = (sw € 1..n)

31

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=g

... and using NKPL features:

fori € 1..ndo

check = (sw € 1..n)

Compute output symbolic packet

31

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=¢g

... and using NKPL features:

fori € 1..ndo “Any switch” symbolig packet

Compute output symbolic packet

31

NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=g

... and using NKPL features:

fori € 1..ndo “Any switch” symbolig packet

Compute output symbolic packet

Each query is equivalent to n original queries — requiring only O(n) queries! .

NetKAT Programming Language (NKPL)

Expressions

forward e, backward e

e1Mey, egder, e1—er

3 f e, v fe
Statements

checke; = e,
checke; # e,
print e

xX=e

fori € ny..n, doc

3z

NetKAT Programming Language (NKPL)

Expressions All-pairs reachability queries, naively:
forward e, backward e sw=1-net*-sw=2=0
eiNez, e;dey, e;—e; sw=1-net*-sw=3=0Q
élfe,‘;’fe sw=1-net*-sw=4=¢g
Statements

checke; = e,
checke; # e,
print e

xX=e

fori € ny..n, doc

NetKAT Programming Language (NKPL)

Expressions

forward e, backward e

e1Mey, egder, e1—er

3 f e, v fe
Statements

checke; = e,
checke; # e,
print e

xX=e

fori € ny..n, doc

All-pairs reachability queries, naively:

sw=1:net*x - sw=2=0g
sw=1:-net*x-sw=3=¢
sw=1:-net*-sw=4=g

... and using NKPL features:

fori € 1..ndo

check (forward (sw=i - net*)) = (sw € 1..n)

