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Network Verification with NetKAT (POPL 2014)

• NetKAT is sound, complete, and decidable

• Program equivalence is automata equivalence
3
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Contributions  
(This work, PLDI 2024): 

 
1. Symbolic packets and techniques 

2. Extended NetKAT language

3. Symbolic counterexamples
5

Problem:  
NetKAT is limited in practice



And it is performant!
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SPPs are closed 
under: 

 
 

and  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Automata are also closed under 
(using SPP operations!): 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Automata equivalence: 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Compute output symbolic packet

“Any switch” symbolic packet

for  doi, j ∈ 1..n

∝ n2
Number of queries
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Backup slides
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Where is KAT negation?

1. KAT requires arbitrary tests to have negation!

2. We have only atomic negation, by 
preprocessing negations inward using 
DeMorgan’s laws
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Brzozowski Derivatives directly from KAT!
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1. Construct automata for policy and 
specification.

2. Verification is just automata equivalence!
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