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Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions
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Forwarding policies:
1. Filter/update packet fields
2. Make forwarding decisions
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Verification in Network Routing Policies

Verification questions:

Are all hosts reachable from
every other host?

Are slices isolated as
intended?
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Filter packets

p,q::=l\T® dup |p+qlp-qlp”

Modify packets

» NetKAT is sound, complete, and decidable

* Program equivalence Is automata equivalenc
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NetKAT and APKeep (NSDI 2020)
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Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

3. Symbolic counterexamples



And it is performant!
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NetKAT and APKeep (NSDI 2020)
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Represent Transitions Symbolically
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Operations on Symbolic Packet Programs (SPPs)
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Operations on Symbolic Packet Programs (SPPs)

SPPs are closed
under:
4+, -, %

and

na_a@
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Svmbolic Automaton Construction

Automata are also closed under
(using SPP operations!):
4+, -, %

and

na_a@

Automata equivalence:
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KATch—first attempt
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NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,j € l..ndo
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NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

fori,j € l..ndo

SW=1-net*-sw=j=Z0Q

... and using NKPL features:

Compute output symbolic packet

Number 01; gueries

XN

fori € 1..n do “Any switch” symbolig packet

Number of queries
X N
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Evaluation

107 -

10°

Time (s)

Full reachability

| .)&’l QAN AN PAAULIR U RMIHLIXN PO RKEHKHK K K K AK K

°* ¢
@ .,
200 ol 77 @ =5
v >~wﬁﬁaﬁaﬁ%§“”’§\ ¢
g PO \““ ’): & st ,
PR 2% L added ¥
o & @O T #'/'; _"?;M ¢ System
LA -
Y «‘m'}f'ﬂ\*-i/- - ® frenetic
| A,A,Z@ggy;i;»f?&?é\**‘ " x frenetic (timeout)
0‘0%’@&””” ¢ katch
@ ‘-?Y**ﬂ'*. :
o @ Qo ¥ ot ¢ katch-naive
:. - »  katch-naive (timeout)
102 103 104 10° 106

Size (atoms)

22



Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

23



Problem:
NetKAT is limited In practice

Contributions
(This work, PLDI 2024):

1. Symbolic packets and techniques

2. Extended NetKAT language

3. Symbolic counterexamples

23



Problem:
NetKAT is limited In practice

Automata equivalence: ps

3. Symbolic counterexamples

23



KATch: A Fast Symbolic Verifier for NetKAT
1. Symbolic packets and techniques
2. Extended NetKAT language

3. Symbolic counterexamples
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Backup slides



Where is KAT negation?

p,q::=uT\f=v§:;)fwIdup\p+q\p-q|p*

1. KAT requires arbitrary tests to have negation!

2. We have only atomic negation, by
preprocessing negations inward using
DeMorgan’s laws



Brzozowski Derivatives directly from KAT!

e(p+q) = e(p) +e(q)
e(pnq) =e(p)Ne(q)
e(p@q) = e(p) de(q)
e(p—q) = e(p) = €e(q)
e(p-q) = e(p)-e(q)
e(p™) = e(p)*

e(dup) = L
e(f=0v) = f=0
e(f#v) = f+v
e(fev) = fev
e(T)=T
e(L) = L

6(p+q) =46(p)+5(q)
5(pNq) = 5(p)Nd(g)
S(p®q) = 5(p)®5(q)
o(p —q) =(p) =4(q)
6(p-q) =5(p)~q+e(p)-d(q)
5(p™) = e(p)*=d(p)  p*

d(dup) = dup
0(f=0v) = 1
O(f+#v) = L
O(f«<v) =L
o(T) =L
o(L) = L

2¢€
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Network Verification with NetKAT (POPL 2014)

pqi=L|T|f=v|f#o|f<ov|dup|p+qlp-qlp”

1. Construct automata for policy and
specification.

2. Verification is just automata equivalence!
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Reachability Example (prior NetKAT)

We can check all-pairs reachability in NetKAT as follows:

sw=1-netr-sw=2=¢g
sw=1-net*-sw=3=¢g
sw=1-net*x-sw=4=0
sw=1-netx-sw=5=g

Requires O(nz) equivalence
queries
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NetKAT Programming Language (NKPL)

All-pairs reachability queries, naively:

sw=1:-net*x-sw=2=¢
sw=1:net*x - sw=3=¢g
sw=1:net*-sw=4=g

... and using NKPL features:

fori € 1..ndo “Any switch” symbolig packet

Compute output symbolic packet

Each query is equivalent to n original queries — requiring only O(n) queries! .



NetKAT Programming Language (NKPL)

Expressions

forward e, backward e

e1Mey, egder, e1—er

3 f e, v fe
Statements

checke; = e,
checke; # e,
print e

xX=e

fori € ny..n, doc
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NetKAT Programming Language (NKPL)

Expressions

forward e, backward e

e1Mey, egder, e1—er

3 f e, v fe
Statements

checke; = e,
checke; # e,
print e

xX=e

fori € ny..n, doc

All-pairs reachability queries, naively:

sw=1:net*x - sw=2=0g
sw=1:-net*x-sw=3=¢
sw=1:-net*-sw=4=g

... and using NKPL features:

fori € 1..ndo

check (forward (sw=i - net*)) = (sw € 1..n)




