Bidirectional Programming

Languages

Nate Foster
University of Pennsylvania

April 2009

C =05

hange
q
D
Q
QO
@)

ate

ntegrate
ue

convert

pdate

exc
Ya
analyze

r

mashup

O

?s‘ transform
clean = O Ta :rreconcﬂe

a modlfyh|de4ﬂ

synchronize &

evolv
main

extract
summarlze

We can write complicated data transformations in C...

or Java...

) HuSanrna |

SR

Ll 5 PrE PO

or C++...

=t F=s

...or a tool specifically designed for the task!

Domain-specific languages

o Clean semantics

 Natural syntax

« Better tools

& g redact
convert £R) 8>
ates% & & mashup
O o =ytransform
:

Clean U curate : reCOnCIIe
modlfy h | de —

synchronize &

evolv
main

extract
summarlze

update

4

upda

Updated
74

Updated

e

Updated
74

The View Update Problem

In databases, this is known as the view update problem.

Database

View

-

Ei

>

Ni<|x|>|
=
5

[Bancilhon, Spryatos '81]

The View Update Problem In Practice

It also arises in data converters and synchronizers...

Common target
Replica in format A format Replica in format B

I
™ 7

Synchronized replica in Synchronized replica in
format A format B

[Foster, Greenwald, Pierce, Schmitt JCSS '07]— Harmony

The View Update Problem In Practice

...in picklers and unpicklers...

Binary file In-memory re;iresentation
s
L [F—{ [1]
D
:] L [F—{ []]
application
update
—— [T3—{]
—@—__ 3> 1]
L [F—{ [1]
Updated binary file

[Fisher, Gruber '05]— PADS

The View Update Problem In Practice

...in model-driven software development...

Java code UML model

Point
4>—> X rint
y rint
translate(int x,int y)

refactor

Point

X rint
4—4— y tint
translate(int x, int y,

moveTo(int x, int y)

Updated Java code

[Stevens '07]— bidirectional model transformations

The View Update Problem In Practice

...in tools for managing operating system configurations...

Configuration file Abstract tree
edit
operation

._4_:%

Updated file

[Lutterkort '08]— Augeas

Problem

How do we write these bidirectional transformations?

Problem: Why is it hard?

We want updates to the view to be translated “exactly” ...

4>_>

Problem: Why is it hard?

We want updates to the view to be translated “exactly” ...

4>_>

| Sy

Problem: Why is it hard?

...but some updates have many corresponding source updates...

4>_>

N |
[2)=

Problem: Why is it hard?

...while others have nonel

4>_>

Possible Approaches

4>—>

4—47

Bad: write the two transformations as separate functions.
e tedious to program
e difficult to get right

® a nightmare to maintain

Possible Approaches

Good: derive both transformations from the same program.
e Clean semantics: behavioral laws guide language design
e Natural syntax: parsimonious and compositional

e Better tools: type system guarantees well-behavedness

This talk: Goal

“Bidirectional programming languages are an
effective and elegant means of describing
updatable views"

This talk: Outline

1. Lenses

» Design goals

» Semantics
2. String Lenses

» Core operators

> Type system
3. Boomerang

» Ordered data

» lIgnorable data

» Implementation & Applications
4. Ongoing Work

» Updatable Security Views
5. Future Directions

» Data provenance

» Model transformations

[Foster, Greenwald, Moore, Pierce, Schmitt TOPLAS '07]

| enses

"Never look back unless
you are planning to go that way”
—H D Thoreau

Terminology

get

11

Terminology

put

11

Terminology

lens

11

Bidirectional vs. Bijective

Goal #1: lenses should be capable of hiding source data.

12

Bidirectional vs. Bijective

Goal #1: lenses should be capable of hiding source data.

* |n general, get may be non-injective

® and so put needs to take the original source as an argument

B L

put

(Of course, the purely bijective case is also very interesting.)

Choice of Put Function

Recall that for some view updates there are many corresponding
source updates.

[y

13

Choice of Put Function

Goal #2: programmers should be able to choose a put function
that embodies an appropriate policy for propagating updates
back to sources.

“Bidirectionalization” appears attractive...

compile unidirectional
get program

S

bidirectionalize

put

...but does not provide a way to make this choice.
13

Totality

Recall that some view updates do not have any corresponding
source updates.

14

Totality

Goal #3: the put function should be a total function, capable of
doing something reasonable with every view and source.

1

Totality ensures that the view is a robust abstraction, but forces
us to use an extremely precise type system.

14

Well-Behaved Lenses

A lens | mapping between a set S of sources and V' of view is a
pair of total functions

lget ¢ S—V
lput ¢ V—-5—-5

obeying “round-tripping” laws
l.get (l.putvs)=v (PurGET)
l.put (l.gets)s=s (GETPUT)

for every s € Sand v e V.

15

Related Frameworks

Databases: many related ideas
e [Dayal, Bernstein '82] “exact translation”
e [Bancilhon, Spryatos '81] “constant complement”

e [Gottlob, Paolini, Zicari '88] “dynamic views"

User Interfaces: [Meertens '98] “constraint maintainers”

See [Foster et. al TOPLAS '07] for details...

16

Related Languages

Harmony Group @ Penn

e [Foster et al. TOPLAS '07] — trees

e [Bohannon, Pierce, Vaughan PODS '06] — relations
o [Foster et al. JCSS '07] — data synchronizer
Bijective languages

e [PADS Project © AT&T| — picklers and unpicklers
e [Hosoya, Kawanaka '06] — biXid

e [Braband, Mgller, Schwartzbach '05] — XSugar

Bidirectional languages

[PSD © Tokyo| — “bidirectionalization”, structure editors
[Gibbons, Wang © Oxford] — Wadler's views
[Voigtlaender '09] — bidirectionalization “for free”

[Stevens '07] — lenses for model transformations

17

[Bohannon, Foster, Pierce, Pilkiewicz, Schmitt POPL '08]

String Lenses

“The art of progress is
to preserve order amid change
and to preserve change amid order.”

—A N Whitehead

Data Model

strings
/ \

Why strings?

1. Simple setting — exposes fundamental issues

2. There's a lot of string data in the world

3. Programmers are already comfortable with regular operators
(union, concatenation, and Kleene star)

M

19

Computation Model

based on
regular operators
= =

Why strings?

1. Simple setting — exposes fundamental issues

2. There's a lot of string data in the world

3. Programmers are already comfortable with regular operators

(union, concatenation, and Kleene star)
19

Example: Redacting Lens (Get)

*08:30 Coffee with Sara (Starbucks)
12:15 PLClu (Seminar room)
*15:00 Workout (Gym)

08:30 BUSY
12:15 PLClu
15:00 BUSY

20

Example: Redacting Lens (Update)

*08:30 Coffee with Sara (Starbucks) 08:30 BUSY
12:15 PLClu (Seminar room) 12:15 PLClu
*15:00 Workout (Gym) 15:00 BUSY
=
<t

08:30 BUSY

12:15 PLClub

15:00 BUSY

16:00 Meeting

21

Example: Redacting Lens (Put)

*08:
12:
*15:

*08:
12:
*15:
16:

30
15
00

30
15
00
00

Coffee with Sara (Starbucks)
PLClu (Seminar room)
Workout (Gym)

!

Coffee with Sara (Starbucks)
PLClub (Seminar room)
Workout (Gym)

Meeting (Unknown)

08:
1156
15:

12

08:
12:
15:
16:

30

00

30
15
00
00

BUSY
PLClu
BUSY

BUSY
PLClub
BUSY
Meeting

22

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = (["\n\\OI | "\\(" | "\\)" | "\\\\")=
let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE
let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)
let public : lemns =
del SPACE .
copy TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lens =
del ASTERISK .
copy TIME .
default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lemns =
(public | private)
copy NL

(* main lens *)
let redact : lens = event*

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = (["\n\\OI | "\\C" | "\\)" | "\\\\")=
let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE
let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)
let public : lemns =
del SPACE .
copy TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lens =
del ASTERISK .
copy TIME .
default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lemns =
(public | private)
copy NL

(* main lens *)
let redact : lens = event*

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = (["\n\\OI | "\\(" | "\\)" | "\\\\")=
let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE
let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lemns =
del SPACE .
copy TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lens =
del ASTERISK .
copy TIME .
default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lemns =
(public | private)
copy NL

(* main lens *)
let redact : lens = event*

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = (["\n\\OI | "\\(" | "\\)" | "\\\\")=
let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE
let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)
let public : lemns =
del SPACE .
copy TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lens =
del ASTERISK .
copy TIME .
default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lemns =
(public | private)
copy NL

(* main lens *)
let redact : lens = event*

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = (["\n\\OI | "\\(" | "\\)" | "\\\\")=
let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE
let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)
let public : lemns =
del SPACE .
copy TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lens =
del ASTERISK .
copy TIME .
default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lemns =
(public | private)
copy NL

(* main lens *)
[let redact : lens = eventx*]

23

E«—d (Get)

(h|h)

(Get)

Type system ensures that choice is deterministic.

25

(h|h)

(Put)

Type system ensures that choice is deterministic.

25

[* (Get)

/>l<

(Get)

Sa=—

/>l<

(Put)

[l

m—a E

[* (Put)

Type system ensures that strings are split the same way.

26

String Lens Type System

Based on regular expression types...

27

String Lens Type System

Based on regular expression types...

copy E € [E] < [E] E— de|E] < {d}

heS«—W S1 A S
leS<=V de[S5] heS =V, ViV
default | d € § <— V (/1'/2)651~52<:>V1'V2

heS << W SiNS =40
heS <V, eSSV §'* Vaks

(h1h)eSUS, <= ViUV, I* e §* <= V*

S1 ' S (or $'*) means that the concatenation (or iteration) is unambiguous.

String Lens Type System

Based on regular expression types...

copy E € [E] < [E] E— de|E] < {d}

heS«—W S; A S
leS<=V de[S5] heS =V, ViV
default | d € § <— V (/1'/2)651~52<:>V1'V2

heS W SiNS =40
heS <V, eSSV §'* Vaks

(h1h)eSUS, <= ViUV, I* e §* <= V*

S1 ' S (or $'*) means that the concatenation (or iteration) is unambiguous.

String Lens Type System

Based on regular expression types...

copy E € [E] = [E] E— de|E] < {d}
/1651<:>V1

le SV d € [S] heS VW
default | d € S <— V (/1‘/2)651'52<:> 1 Vo

heS =W
he s o v; M
(/1|/2)€51U52<:>V1UV2 I* € §* «<—

S1 ' S (or $'*) means that the concatenation (or iteration) is unambiguous.

If | € S < V then [is a well-behaved lens.

Comparison: Separate Functions

' Helpers

urce to View

vf,ViéW to Source

28

Comparison: String Lens

29

[Bohannon, Foster, Pierce, Pilkiewicz, Schmitt POPL '08]
[Foster, Pierce, Pilkiewicz ICFP '08]

Boomerang

“Good men must not obey
the laws too well”

—R W Emerson

Challenge: Ignorable Data

Many real-world data formats contain inessential data.
e whitespace, wrapping of long lines of text

e order of fields in record-structured data

® escaping of special characters

e aggregate values, timestamps, etc.

In practice, to handle these details, we need lenses that are well
behaved modulo equivalence relations on the source and view.

l.get (l.put vs)~y v (PurGET)

l.put (l.gets)s ~s's (GETPUT)

Quotient Lenses

original lens
\

canonizer
\

\

quotiented lens

Y [~

32

Quotient Lenses

—
> > /\
> g
< <
< <
| | | g
N— ./
— —
B - >
» » >
<
< < < < <
<« <
(D —
AWE X
> g
{'] g
< <
< <
—

33

Challenge: Ordered Data

The lenses we have seen so far align data by position.

But, in practice, we often need to align data according to
different criteria—e.g., by key.

34

Challenge: Ordered Data

The lenses we have seen so far align data by position.

But, in practice, we often need to align data according to

different criteria—e.g., by key.

*08:30 Coffee with Sara (Starbucks) 08:
12:15 PLClu (Seminar room) 12:
*15:00 Workout (Gym) 15:

i :

*08:30 Coffee with Sara (Starbucks) 08:
*15:00 Unknown (Unknown) 15:
16:00 Meeting (Unknown) 16:

30
15
00

30
00
00

BUSY
PLClu
BUSY

BUSY
BUSY
Meeting

A Better Redact Lens

Similar to previous version but with a key annotations and a
combinator (<1>) that identifies “chunks”

(* helper lenses *)
let location : lens = default (del LOCATION) " (Unknown)"

let public : lemns =
del SPACE .
key TIME .
copy TEXT .
default (del LOCATION) " (Unknown)"

let private : lemns =

del ASTERISK .

key TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)" .
let event : lens =

(public | private)

copy NL

(* main lens *)
let redact : lens = <7 event>x*

A Better Redact Lens

Similar to previous version but with a key annotations and a
combinator (<1>) that identifies “chunks”

(* helper lenses *)
let location : lens = default (del LOCATION) " (Unknown)"

let public : lemns =
de R4 .
G me
default (del LOCATION) " (Unknown)"

let private : lemns =

K |
deTau TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)" .

let event : lens =
(public | private)
copy NL

(* main lens *)
let redact : lens

35

Dictionary Lenses

skeleton
~A
Lo e
dictionary

updated

source

residual ¥
dictionary

The put function works on a dictionary structure where chunks
are organized by key.

36

Challenge: Language Design

Writing big programs only using combinators would not be fun!

Boomerang is a full-blown functional language over the base
types string, regexp, lens, ...

Functional

Programming
Language

37

Additional Features

Boomerang has many other lens primitives

e partition e sequentially compose
e filter e columnize

® permute ® normalize

* sort e clobber

e duplicate ® probe

® merge ® etc.

and an extremely rich type system

* regular expression types e polymorphism
® dependent types e user-defined datatypes
* refinement types e modules

implemented in hybrid style [Flanagan '06][Findler, Wadler "09]

Challenge: Typechecker Engineering

Typechecking uses many automata-theoretic operations.

e “Expensive” operations like intersection, difference, and
interleaving are used often in practice

e Algorithms for checking ambiguity are computationally
expensive rarely implemented

Implementation strategy:
e Compile compact automata

e Aggresive memoization

The Boomerang System

Lenses

* Bibliographies (BibTeX, RIS)

Address Books (vCard, XML, ASCII)
Calendars (iCal, XML, ASCII)
Scientific Data (SwissProt, UniProtKB)

Documents (MediaWiki, literate source code)

Apple Preference Lists (e.g., iTunes)

e CSV

Libraries System

e Escaping e Stable prototype complete
e Sorting * Available under LGPL

o Lists Unison Integration

e XML e On the way...

Boomerang in Industry ‘ redhat

0
!"I' |l’a AUQECIS “a configuration APL."

Configuration file Abstract tree
re

[: >~
J st
L b

N
Updated file

41

Boomerang in Industry ‘ redhat

0
3 'Jj Auge(js “a configuration API.”

aliases.aug fstab.aug monit.aug rsyncd.aug sysctl.aug
aptpreferences.aug gdm.aug ntp.aug samba.aug util.aug
aptsources.aug group.aug openvpn.aug services.aug vsftpd.aug
bbhosts.aug grub.aug pam.aug shellvars.aug webmin.aug
darkice.aug hosts.aug passwd.aug slapd.aug xinetd.aug
dhclient.aug inifile.aug php.aug soma.aug Xorg.aug
dnsmasq.aug inittab.aug phpvars.aug spacevars.aug yum.aug
dpkg.aug interfaces.aug postfix_main.aug squid.aug

dput.aug limits.aug postfix_master.aug sshd.aug

exports.aug logrotate.aug puppet.aug sudoers.aug

Also used in

e Puppet — declarative configuration management tool
e Show — SQL-like queries on the filesystem
® Netcf — a network configuration library

Ongoing Work

43

Security Views

Confidential source Regraded view

1

44

Updatable Security Views

Confidential source

Y
Updated
confidential source

[Foster, Pierce, Zdancewic CSF '09]

Regraded view

edit by
untrusted
user

44

Requirements for Updatable Security Views

Confidential source Regraded view
S E—
edit by
untrusted
user
 EEE—
Updated

confidential source

[Foster, Pierce, Zdancewic CSF '09]

1. Confidentiality: get does not leak secret data
2. Integrity: put does not taint endorsed data

44

Non-interference

Requirements can be formulated as non-interference properties.

Secret

> \ -

Public

] -
Tainted

Secure Lenses

To distinguish high and low-security data we use equivalences
e ~, — “agree on k-public data”
e ~~, — "“agree on k-endorsed data”

46

Secure Lenses

To distinguish high and low-security data we use equivalences
e ~, — “agree on k-public data”
e ~~, — "“agree on k-endorsed data”

described using annotated regular expressions.

Ru=0]u|RR | RIR | R* |@

46

Secure Lenses

To distinguish high and low-security data we use equivalences
e ~, — “agree on k-public data”
e ~~, — "“agree on k-endorsed data”

described using annotated regular expressions.

R:=0|u| RR | RIR | R* |R:R)

A secure lens obeys refined laws:

S~y s

l.get s ~, l.get s’ (GETNOLEAK)

v = (l.get s) (GETPUT)
l.putvs=s

(See paper for a dynamic approach to integrity tracking.)

46

Future Directions

47

Data Provenance

48

Data Provenance

—

-7

4>—>

Provenance is metadata that describes the origin and causal

history of pieces of data.

T

48

Data Provenance

o o
. o 4>—>

Provenance is metadata that describes the origin and causal
history of pieces of data.

In the context of lenses, provenance is useful

e for fine-grained tracking of confidentiality and integrity
[Foster, Green, Tannen PODS '08]

e for incremental view maintenance

® as an additional input to the put function

48

Model Transformations

Java code UML model

Point
X rint
y:int

translate(int x,int y)

1 refactor
Point
X rint
y:int
translate(int x, int y)
moveTo(int x, int y)

™
Updated Java code

Much interest in the software engineering community in using
lenses for bidirectional model transformations [Stevens '07]
[Czarnecki, Foster, Hu, Lammel, Schiirr, Terwilliger ICMT '09]

Requires lenses for richer structures — e.g., graphs.
49

Conclusion

“Bidirectional programming languages are an effective and
elegant means of describing updatable views”

Lenses

e Semantic space of well-behaved bidirectional transformations
® Provides foundation for bidirectional languages

Boomerang

® | anguage for lenses on strings

e Natural syntax based on regular operators

e Extensions to handle ordered and ignorable data

e Type system guarantees well-behavedness and totality

Implementation & Applications

® |enses for a number of real-world formats
® Adoption in Augeas
e Updatable security views

50

Thank You!

Collaborators: Benjamin Pierce, Alexandre Pilkiewicz, Aaron
Bohannon, Michael Greenberg, and Alan Schmitt.

Want to play? Boomerang is available for download.
Source code (LGPL)

Precompiled binaries for Linux, OS X, Windows
Research papers

Tutorial and demos

http://www.seas.upenn.edu/~harmony/

51

http://www.seas.upenn.edu/~harmony/

