
Dissertation
Computer & Information Science

BIDIRECTIONAL PROGRAMMING LANGUAGES

John Nathan Foster

Technical Report MS-CIS-10-08
Department of Computer & Information Science

University of Pennsylvania

March 13, 2010

Abstract
The need to edit data through a view arises in a host of applications across many different
areas of computing. Unfortunately, few existing systems provide support for updatable
views. In practice, when they are needed, updatable views are usually implemented using
two separate programs: one to compute the view from the source and another to handle
updates. This rudimentary design is tedious for programmers, difàcult to reason about,
and a nightmare to maintain.

This dissertation describes bidirectional programming languages, which provide an
elegant mechanism for describing updatable views. Unlike programs written in an ordinary
language, which only work in one direction, programs written in a bidirectional language
can be run both forwards and backwards: from left to right, they describe functions that
map sources to views, and from right to left, they describe functions that map updated
views back to updated sources. Besides eliminating redundancy, these languages can be
designed to ensure correctness, guaranteeing by construction that the two functions work
well together.

Starting from the foundations, we identify a general semantic space of well-behaved
bidirectional transformations called lenses. Then, building on this foundation, we describe
a speciàc language for deàning lenses for strings with syntax based on the regular oper-
ators. We also present extensions to the basic framework that address the complications
that arise when lenses are used to manipulate sources containing inessential, ordered, and
conàdential data, and we describe the implementation of these features in the Boomerang
language.

BIDIRECTIONAL PROGRAMMING LANGUAGES

John Nathan Foster

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulàllment of the Requirements for the
Degree of Doctor of Philosophy

2009

Supervisor of Dissertation
Benjamin C. Pierce

Graduate Group Chairperson
Jianbo Shi

Dissertation Committee
Zachary G. Ives

Val Tannen
Philip Wadler

Steve Zdancewic

c⃝ 2010 John Nathan Foster

This report was typeset in Sabon by the author using the LATEX document processing system.

Preface

This report is a revised version of my PhD dissertation. Its technical content is essentially the same
as the submitted version but several aspects of its presentation have been improved. Speciàcally, an
early chapter àxing notation has been eliminated, with the material folded into the other chapters, and
Chapter 4 has been revised signiàcantly. Also, examples have been added, proofs streamlined, typos
àxed, and writing polished throughout.

Philadelphia, PA
March 13, 2010

v

Acknowledgments

Some dissertation projects go like this: the student arrives on campus, the adviser sets a topic, the
student disappears into the library, and emerges several years later with the ànished product. Mine,
thankfully, was nothing like this. The material described in this dissertation is the result of an extended
collaborationwith Benjamin Pierce and Alan Schmitt, with additional contributions fromDavi Barbosa,
Aaron Bohannon, Julien Cretin, Malo Deniélou, Michael Greenberg, Adam Magee, Stéphane Lescuyer,
Danny Puller, Alexandre Pilkiewicz, and Steve Zdancewic. I am lucky to count these talented individuals
as colleagues and friends and I gratefully acknowledge their contributions to this dissertation.

Throughout my time at Penn my adviser Benjamin Pierce, has always been available to brainstorm,
crank through a proof, hack on a piece of code, or polish some writing. Thank you for setting the bar
high, and for encouraging, nurturing, and providing help along the way.

Zack Ives, Val Tannen, Phil Wadler, and Steve Zdancewic all graciously agreed to serve on my
dissertation committee. I am grateful for the time they spent reading my proposal document and this
dissertation. Their many insightful comments and helpful suggestions have improved it in numerous
ways.

Kim Bruce gave me my àrst research experience as an undergraduate nearly ten years ago and has
been a mentor ever since. Alan Schmitt helped me navigate the transition to graduate school and has
continued to be a collaborator and close friend. Alan also hosted me during an enjoyable visit to INRIA
Rhône-Alpes in the spring of 2006. Ravi Konuru, Jérôme Siméon, and Lionel Villard were my mentors
during a productive internship at IBM Research in the summer of 2007.

To the members of Penn’s PLClub and Database Groups, thank you for creating a friendly and
stimulating research environment. To my close friends in the department, Colin Blundell, TJ Green,
Greg Karvounarakis, Micah Sherr, Nick Taylor, and Svilen Mihaylov, thank you for all the lunches,
coffee breaks, and pleasant distractions from work. Thank you to my running partners, Adam Aviv,
John Blitzer, Pavol Černý, and Jeff Vaughan for many miles of good conversation. To Dimitrios Vytin-
iotis, it’s been... OK :-) To Mike Felker and Gail Shannon, thank you for solving so many bureaucratic
puzzles.

To my family, especially Clare, Mollie, Tita Mary, Ahmad, my parents, stepparents, and grandpar-
ents, thank you for keeping me grounded and always believing in me.

To Sara, thank you for reminding me how fun life can be. I’ll meet you for coffee anytime.

Work supported in part by an National Science Foundation Graduate Research Fellowship and grants CPA-0429836 Har-
mony: The Art of Reconciliation, IIS-0534592 Linguistic Foundations for XML View Update, and CT-T-0716469 Manifest
Security. Any opinions, findings, and conclusions or recommendations expressed in this dissertation are those of the author
and do not necessarily reflect the views of the National Science Foundation.

vii

Contents

1 Introduction 1
1.1 The View Update Problem . 2
1.2 Bidirectional Programming Languages . 2
1.3 Goals and Contributions . 7
1.4 Acknowledgments . 9

2 Basic Lenses 11
2.1 Semantics . 11
2.2 Properties . 15
2.3 Syntax . 19
2.4 Summary . 35

3 Quotient Lenses 37
3.1 Semantics . 39
3.2 Syntax . 40
3.3 Loosening Lens Types . 54
3.4 Typechecking . 55
3.5 Examples . 57
3.6 Summary . 59

4 Resourceful Lenses 61
4.1 Semantics . 66
4.2 Syntax . 70
4.3 Alignments . 77
4.4 Extensions . 79
4.5 Summary . 85

5 Secure Lenses 87
5.1 Example . 89
5.2 Semantics . 92
5.3 Security-Annotated Regular Expressions . 94
5.4 Syntax . 97
5.5 Dynamic Secure Lenses . 102
5.6 Summary . 106

6 Boomerang 107
6.1 Syntax . 107
6.2 Typechecking . 113

viii

6.3 Implementation . 115
6.4 Augeas . 116
6.5 Grammars . 118
6.6 Summary . 121

7 Related Work 123
7.1 Foundations . 123
7.2 Programming Languages . 125
7.3 Databases . 128
7.4 Model Transformations . 129
7.5 Security . 130

8 Summary and Future Work 131
8.1 Data Model . 131
8.2 Syntax . 131
8.3 Audit . 132
8.4 Optimization . 132
8.5 Security . 133

Bibliography 135

Proofs 145
Basic Lens Proofs . 145
Quotient Lens Proofs . 153
Resourceful Lens Proofs . 167
Secure Lens Proofs . 184

ix

Chapter 1

Introduction

Most programs work in only one direction, from input to output. Indeed, as Baker observed when
he wrote “the S combinator cheerfully copies ... the K combinator knowingly kills” [Bak92], the very
fundamentals of computation often seem intrinsically unidirectional. However, the world is full of
situations where after computing the initial output of a program we need to be able to modify it and
then “compute backwards” to ànd a correspondingly modiàed input. There are numerous examples
across many different areas of computing where these bidirectional transformations are needed:

• Synchronization: bidirectional transformations bridge the gap between replicas in heterogeneous
formats [BMS08, KH06, FGK+07].

• Data Management: bidirectional transformations provide mechanisms for propagating updates
to views [FGM+07, BVP06, BS81, DB82] and for transforming data from one schema to another
in data exchange [MHH+01] and schema evolution [BCPV07].

• Software Engineering: bidirectional transformations provide a way to maintain the consistency
of software models and the underlying source code [Sch95, Ste07, XLH+07].

• Security: bidirectional transformations enable àne-grained data sharing of documents with a mix-
ture of public and private information [FPZ09].

• Serialization: bidirectional transformations translate between the on-disk and in-memory repre-
sentations of ad hoc [FG05] and binary data [Ken04, Ege05].

• Systems Administration: bidirectional transformations map between áat, low-level representa-
tions and more structured representations of operating system conàgurations [Lut08].

• Programming Languages: bidirectional transformations handle boxing and unboxing of run-time
values [Ben05, Ram03] and they map between programs written in different high-level languages
[EG07].

• User Interfaces: bidirectional transformations provide convenient interfaces for manipulating
complex documents [HMT08] and can be used to maintain the consistency of graphical user
interface elements [Mee98, GK07].

Unfortunately, although the need for bidirectional transformations is ubiquitous, the linguistic tech-
nology for deàning them is embarrassingly primitive. Most of the applications listed above are imple-
mented using two separate functions—one to transform inputs to outputs and another to map outputs
back to inputs—a rudimentary design that is tedious to for programmers, difàcult to reason about, and
a nightmare to maintain.

This dissertation proposes a different approach: languages in which every program can be run both
forwards and backwards—from left to right as a function mapping inputs to outputs and from right

1

to left as a function that propagates updated outputs back to updated inputs. Our thesis is that these
bidirectional programming languages are an effective and elegant mechanism for describing bidirectional
transformations.

1.1 The View Update Problem

Let us start by exploring some of the fundamental issues related to bidirectional transformations in the
context of databases, an area where they have been extensively studied because of their close connection
to the classic view update problem. Suppose that s is a source database, q is a query, and v = q(s) is the
view that results from evaluating q on s. (We will adopt this terminology throughout this dissertation,
referring to inputs as “sources” and outputs as “views”.) The view update problem is as follows: given
an update u that transforms the view from v to v′, calculate a source update t—the “translation” of
u—that transforms s to s′ and makes the following diagram commute.

..s .v

.s′ .v′

.q

.q

.t .u

Unfortunately, despite years of study, this problem remains largely unsolved. The reason it has proven
so challenging is that, in general, the view update u does not uniquely determine a source update t. For
example, when q is not injective, some updates to the view have many corresponding source updates.
It is possible to impose additional constraints on the problem to guide the choice of an update—e.g.,
requiring that t have “minimal side effects” on the source—but when the query and schema languages
are sufàciently expressive, calculating updates that satisfy these additional constraints is intractable
[BKT02]. Evenworse, when q is not surjective, some updates to the view yield structures that are outside
of the range of the query! It is not hard to see that it is impossible to propagate these update back to
the source—there is no t that makes the diagram commute. Some systems reject these “untranslatable”
updates, but doing this makes views “leaky abstractions”—it adds hidden constraints on how the view
may be updated that are only revealed when user attempts to propagate an update back to the source.

Because of these difàculties, views in relational systems are generally read-only (except for views
deàned by very simple queries). In situations where updatable views are needed, programmers have to
rely a variant of the rudimentary mechanism described above. They deàne a separate procedure called
a trigger and instruct the system to execute this procedure whenever the view is modiàed. Triggers
are arbitrary programs, so they can be used to implement every reasonable policy for propagating
updates, but they are not a very attractive solution. For one thing, to check that a trigger correctly
implements an updatable view, the programmer must perform intricate, manual reasoning about the
way that the trigger behaves in tandem with the query. Moreover, the trigger and query will necessarily
be redundant—each will embody (at least) the correspondence between the source and view—so they
will be difàcult to maintain when the schemas evolve.

1.2 Bidirectional Programming Languages

A better approach is to deàne the view and its associated update policy together. Bidirectional program-
ming languages are organized around this idea: every program denotes both a function that computes a
view as well as a function that propagates updated views back to updated sources. This eliminates the
need to write—and maintain!—two separate programs, as well as the need to do any manual reasoning

2

about correctness because the language can be designed to guarantee it. Themain challenge in the design
of a bidirectional language lies in balancing the tradeoffs between syntax that is rich enough to express
the queries and update policies demanded by applications and yet simple enough that correctness can
be veriàed using straightforward, compositional, and, ultimately, mechanizable checks.

To illustrate the tradeoffs between these two approaches, consider a simple example. Suppose that
the source is an XML document representing the names, dates, and nationalities of a collection of
classical music composers

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865-1956</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>
<nationality>American</nationality>

</composer>
<composer>
<name>Benjamin Briten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>

</composer>
</composers>

and the view is a list of lines of ASCII text representing the name and dates of each composer:

Jean Sibelius, 1865-1956
Aaron Copland, 1910-1990
Benjamin Briten, 1913-1976

After computing the initial view, we might want to edit it in some way—e.g., correcting the error in
Sibelius’s death date and the misspelling in Britten’s name

Jean Sibelius, 1865- ..1957
Aaron Copland, 1910-1990
Benjamin ..Britten, 1913-1976

and push the changes back into the original XML format:

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865- ..1957</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>

3

<nationality>American</nationality>
</composer>
<composer>
<name>Benjamin ..Britten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>

</composer>
</composers>

Here is a bidirectional program, written in the language of basic lenses described in Chapter 2, that
describes both transformations, from XML to ASCII and from ASCII to XML:

(* regular expressions *)
let WHITESPACE : regexp = [\n\t]
let ALPHA : regexp = [A-Za-z]+
let YEAR : regexp = [0-9]{4}

(* helper functions *)
let xml_elt (t:string) (l:lens) : lens =

del WHITESPACE*
. del ("<" . t . ">")
. l
. del WHITESPACE*
. del ("</" . t . ">")

let del_default (R:regexp) (u:string) : lens =
default (del R) (fun (x:string) -> u)

(* helper lens *)
let composer : lens =
xml_elt "composer"
(xml_elt "name" (copy (ALPHA . " " . ALPHA))
. ins ", "
. xml_elt "dates" (copy (YEAR . "-" . YEAR))
. xml_elt "nationality"

(del_default ALPHA "Unknown"))

(* main lens *)
let composers : lens =
xml_elt "composers"
(copy "" | (composer . (ins "\n" . composer)*))

In the forward direction, this program can be read an ordinary function on strings. The àrst few lines
deàne regular expressions (using standard POSIX notation) for whitespace, alphabetic strings, and
years. The helper function xml_elt deàned next takes a string t and a lens l as arguments and returns
a lens that processes an XML element named t. It àrst removes all of the XML formatting for the
element and then processes the children of the element using the lens l. The concatenation operator
(.) combines lenses in the obvious way. The del_default helper takes a regular expression R and a
string u as arguments and deletes a string matching R. The string u is used a default value in the reverse

4

direction. The composer lens deàned next instantiates xml_elt several times to construct a lens that
handles an XML element for a single composer. It copies the name of the composer, inserts a comma
and a space into the view, copies the birth and death dates, and deletes the nationality. The composers
lens processes a sequence of composer elements. It uses union (|) and Kleene star (*) to iterate the
composer lens over the list of composers, inserting a newline character between each line in the view.

Because this is a bidirectional program, we can also run it in the other direction. The backwards
function propagates the names and dates in the view and restores the nationalities from the original
source. The details of how this works are not important for now (see Chapter 2 for precise deànitions).
The key point is that we can use the same lens to combine a modiàed ASCII view with the original
XML source to obtain an updated XML source.

A natural question to ask at this point is whether bidirectional languages are worth the trouble.
After all, how hard could it be to just write the two functions as separate programs in a general-purpose
language? To explore this idea (and ultimately reject it), let us consider separate implementations of
the forward and backward transformations that make up the composers lens in the OCaml language.
The composers_forward transformation can be written as follows:

let composers_forward src =
let src_seq = children (parse_string src) in
List.fold_left
(fun acc src_i ->

let [xname;xdates;_] = children src_i in
let sep = if acc <> "" then "\n" else "" in
(acc ^ sep ^ pcdata xname ^ ", " ^ pcdata xdates))

""
src_seq

The parse_string, children, and pcdata functions come from a library for manipulating XML
structures. It parses the source src into an XML tree and then folds down the sequence of composer
elements, extracting the name and dates from each element and adding them to the view.

The corresponding composers_backward function is written in OCaml as follows:

let composers_backward view src =
let view_seq = split "\n" view in
let src_xseq = children (parse_string src) in
let rec aux acc view_seq src_xseq = match view_seq with
| [] ->

to_string (element "composers" (List.rev acc))
| view_h::view_t ->

let [name;dates] = split ", " view_h in
let xnationality,src_xt = match src_xseq with
| [] ->

("Unknown",[])
| src_xh::src_xt ->

(List.nth (children src_xh) 2,src_xt) in
let xname = pcdata_element "name" name in
let xdates = pcdata_element "dates" dates in
let xseq = [xname; xdates; xnationality] in
let xcomposer = element "composer" xseq in
aux (xcomposer::acc) view_t src_xt in

5

aux [] view_seq src_xseq

The functions pcdata_element, element, and to_string come from the same XML library that was
used to deàne the forward transformation. It takes the updated view view and the original source src
as arguments and weaves them together, propagating the names and dates in view and restoring the
nationalities from src.

One advantage of the lens program compared to the OCaml version is parsimony—we only need to
write one program instead of two. Another is that we can prove—automatically!—that the lens program
correctly implements an updatable view while the OCaml version would be easy to get wrong. The type
system for lenses presented in Chapter 2 ensures a number of natural well-behavedness properties—e.g.,
that the two functions are totally deàned functions on the sets of strings representing XML sources and
ASCII views, and that composing the forward and backward transformations in either order yields the
identity function. In contrast, to verify that the two OCaml programs implement the view correctly,
we would need to check these properties by hand. We can do this, of course, but it would involve a lot
of manual pencil-and-paper reasoning about fairly low-level properties—e.g., we would need to check
that lines concatenated in the aux loop of the composers_forward function are split the same way in
composers_backward, and so on.

Perhaps the most signiàcant advantage of the lens program is that it is much easier to maintain.
Suppose that we decided to change the representation of dates in the XML source from

<dates>1910-1990</dates>

to:

<born>1910</born>
<died>1990</died>

Updating the lens program to accommodate this change only requires a small change in the body of the
composer lens:

let composer : lens =
xml_elt "composer"
(xml_elt "name" (copy (ALPHA . " " . ALPHA))
. ins (", ")
. ..xml_elt "born" (copy YEAR)
. ..xml_elt "died" (copy YEAR)
. xml_elt "nationality"

(del_default ALPHA "Unknown"))

The transformations denoted by the lens both reáect the change and the typechecker veriàes the well-
behavedness properties automatically.

Updating the OCaml program, however, requires multiple, coordinated changes to both func-
tions—something that is very easy to get wrong! Here is the revised OCaml deànition of the forward
function

let composers_forward src =
let src_seq = children (parse_string src) in
List.fold_left
(fun acc src_i ->

let [xname; ..xborn;xdied;_] = children src_i in

6

let sep = if acc <> "" then "\n" else "" in
(acc ^ sep ^ pcdata xname ^ ", " ^

..pcdata xborn ^ "-" ^ pcdata xdied))
""
src_seq

and here is the revised deànition of the backward function:

let composers_backward view src =
let view_seq = split "\n" view in
let src_xseq = children (parse_string src) in
let rec aux acc view_seq src_xseq = match view_seq with
| [] ->

to_string (element "composers" (List.rev acc))
| view_h::view_t ->

let [name;dates] = split ", " view_h in
..let [born;died] = split "-" dates in

let xnationality,src_xt = match src_xseq with
| [] ->

("Unknown",[])
| src_xh::xsrc_xt ->

(List.nth (children src_xh) 2,src_xt) in
let xname = pcdata_element "name" name in

..let xborn = pcdata_element "born" born in

..let xdied = pcdata_element "died" died in
let xseq = [xname; ..xborn; xdied; xnationality] in
let xcomposer = element "composer" xseq in
aux (xcomposer::acc) view_t src_xt in

aux [] view_seq src_xseq

After making these changes, we would then need to update and re-verify the well-behavedness proof
by hand. Thus, even for this almost trivial example, the solution written in the bidirectional language
is a much more attractive option.

1.3 Goals and Contributions

The goal of this dissertation is to demonstrate that bidirectional languages are an effective way of
deàning updatable views. Its contributions are divided between three broad areas:

1. Foundations: we identify a mathematical space of bidirectional transformations characterized by
natural behavioral laws that govern the handling of data in the source and view. These well-
behaved transformations, called lenses, provide the semantic foundation for the rest of this dis-
sertation.

2. Language Design: we develop a core language of lens primitives for strings and a type system
for this language that guarantees well behavedness. We also study extensions that address the
complications that come up when lenses are used to manipulate structures containing inessential,
ordered, and conàdential data.

7

3. Implementation: we describe the design and implementation of a full-blown functional program-
ming language based on our core lens primitives. This language, called Boomerang, includes a
variety of features designed to make it easy for programmers to construct large programs.

The rest of this chapter expands on each of these contributions in detail.

Foundations

Many systems that use updatable views take an informal approach to correctness. In contrast, a bidi-
rectional language can be designed to guarantee correctness by construction—indeed, this is one of their
main advantages. However, before we can talk about what it means for a bidirectional transformation
to be correct, we need to precisely characterize the properties we want them to have. The àrst contribu-
tion of this dissertation is a semantic framework of well-behaved bidirectional transformations called
lenses. This framework organizes the whole area of transformations that—in some way—implement
updatable views and lays a solid foundation for designing bidirectional languages. Chapter 2 deànes
the framework of basic lenses which are transformations obeying natural behavioral laws similar to the
conditions on view update translators that have been proposed in databases. Chapter 3 deànes quotient
lenses which relax the basic lens laws by allowing certain speciàed portions of the source and view to
be treated as “inessential.” This generalization is motivated by experience developing lenses for real-
world data formats which often contain unimportant details such as whitespace. Chapter 4 describes
resourceful lenses which address the critical issue of alignment that comes up when the source and view
are ordered structures. Resourceful lenses come equipped with new mechanisms for computing and
using alignments between the pieces of the view and the pieces of the underlying source. They also
obey new properties which ensure that they use alignment information correctly. Finally, Chapter 5
describes secure lenses, which extend basic lenses with additional guarantees about the conàdentiality
and integrity of data in the source and view.

Language Design

In order to interpret programs bidirectionally, we need to change the way that wewrite programs—some
constructs that make sense in unidirectional languages do not make sense as lenses. The second contri-
bution of this dissertation is a design for a core language of lenses with natural, compositional syntax
and a type system that guarantees the lens laws. For simplicity, we focus our efforts in this area on
languages for manipulating for strings rather than richer structures such as trees or complex values.
However, even though strings are simple structures, they still expose many fundamental issues. Addi-
tionally, because there is a lot of string data in the world—textual databases, structured documents,
scientiàc data, simple XML, and many different kinds of ad hoc data—having a language for devel-
oping lenses on strings is actually quite useful. Chapter 2 introduces the operators studied throughout
this dissertation. It includes generic operators (identity, constant, sequential composition), the regular
operators (union, concatenation, Kleene star), and some additional operators that we have found useful
in applications (àlter, swap, merge, etc.). Types play a central role in this language. Some operators
only make sense as lenses when certain side conditions are met and we use types to express and check
these conditions. To ensure that typechecking can be automated, we use regular languages as types.
Regular languages balance the tradeoffs between precision and decidability—they describe data for-
mats at a high level of detail, but all of the operations on regular languages we need for typechecking
are decidable. The later chapters in this dissertation all describe extensions of, or reànements to, this
basic language of string lenses: Chapter 3 extends it with new constructs (canonizers and quotient op-
erators) for dealing with ignorable data. Chapter 4 adds new features (chunks, keys, and thresholds)

8

for aligning data, and Chapter 5 extends the type system of the language with a more reàned analysis
that tracks information áow.

Implementation

The third contribution of this dissertation is an implementation of our ideas in a full-blown func-
tional programming language called Boomerang. This language, described in Chapter 6, demonstrates
our thesis that bidirectional languages are an effective way of deàning updatable views. Boomerang
includes a number of features designed to make it easier for programmers to develop large lens pro-
grams including àrst-order functions, an expressive type system, modules, unit tests, etc. Additionally,
Boomerang has several features speciàcally designed for describing string transformations: built-in
regular expressions, overloading, subtyping, and syntax for lenses based on grammars. We have imple-
mented a full working prototype of Boomerang and used it to develop lenses for a number of real-world
data formats. Although this prototype is not yet industrial strength (in particular, we have not made
any serious attempts to optimize for performance) it is robust enough to handle examples of realistic
size—e.g., our largest lens is a 4KLoc program that computes views over XML documents representing
scientiàc databases. Our design for Boomerang has recently been adopted in industry. Augeas [Lut08],
a tool developed by RedHat, Inc. for managing operating system conàgurations, is directly based on
Boomerang (it also includes some constructs for building trees). Augeas programmers have developed
lenses for nearly all of the standard conàguration àle formats usually found in a Linux system. This
independent application of our ideas provides additional evidence that the idea of lenses is robust and
that our design for Boomerang is sensible.

1.4 Acknowledgments

This dissertation describes work performed in cooperation with many different colleagues and por-
tions of it are based on papers written in collaboration with them. In particular, the semantics of
basic lenses described in Chapter 2 is based on an article by Foster, Greenwald, Moore, Pierce, and
Schmitt [FGM+07] and the string lenses presented in that chapter are based on material from a paper
by Bohannon, Foster, Pierce, Pilkiewicz, and Schmitt [BFP+08]. Chapter 3 is a revised version of a
paper by Foster, Pilkiewicz, and Pierce [FPP08]. Chapter 4 describes recent work with Barbosa, Cretin,
Greenberg, and Pierce [BCF+10]. Chapter 5 is based on a paper by Foster, Pierce, and Zdancewic
[FPZ09]. The design and implementation of Boomerang described in Chapter 6 was done in collab-
oration with Davi Barbosa, Julien Cretin, Michael Greenberg, Alexandre Pilkiewicz, Benjamin Pierce,
and Alan Schmitt. Boomerang’s precise type system was designed and implemented in cooperation
with Michael Greenberg. Its grammar notation was designed with help from Adam Magee and Danny
Puller. Finally, Chapter 7 is an expanded version of the survey originally published in the paper by
Foster, Greenwald, Moore, Pierce, and Schmitt [FGM+07]. Of course, any errors are mine.

9

Chapter 2

Basic Lenses

“Never look back unless you are planning to go that way.”

—Henry David Thoreau

This chapter presents the semantic space of basic lens and describes a core language of basic lenses
for strings. The main constructs in this language are based on ànite state string transducers [Ber79].
Although its computational power is somewhat limited, this language is a natural formalism that is
capable of expressing many useful transformations on strings. It also cleanly illustrates many of the
design choices and tradeoffs that arise in richer settings.

We begin the chapter by deàning the semantic framework of basic lenses in Section 2.1. We develop
some elementary properties of basic lenses in Section 2.2. Section 2.3 presents syntax and typing rules
for a core set of string lenses combinators. We conclude the chapter in Section 2.4.

2.1 Semantics

Before we can delve into language design, we need a framework in which we can say precisely when
a bidirectional transformation implements an updatable view correctly and when it does not. This
section presents a mathematical space of well-behaved bidirectional transformations called basic lenses
that captures an intuitive notion of correctness. Although we will primarily focus on lenses for strings
in this dissertation, the semantics of basic lenses can be formulated over arbitrary structures. Thus, in
this section, we work in a completely generic setting, parameterizing all of our deànitions on a universe
U of objects. Later in the chapter, we will instantiate the framework by picking U to be the set of strings.

2.1.1 Deànition [Basic Lens]: Fix a universe U of objects and let S ⊆ U and V ⊆ U be sets of sources
and views. A basic lens l from S to V comprises three total functions

l.get ∈ S → V
l.put ∈ V → S → S

l.create ∈ V → S

obeying the following laws for every s ∈ S and v ∈ V :

l.get (l.put v s) = v (PG)

l.get (l.create v) = v (CG)

l.put (l.get s) s = s (GP)

11

.

.

put/create

get

source view

updated
view

updated
source

lens

Figure 2.1: Basic Lens Architecture

The set of all basic lenses mapping between S and V is written S ⇐⇒ V .

The intuition behind the names get, put and create is that the get function “lifts” a view out of a
source structure, while put “pushes down” an updated view into the original source, yielding a new
source that reáects the modiàcations made to the view. We will often say “put v into s (using l)”
rather than “apply l’s put function to v and s”. Note that put takes the original source as an argument
because, in general, the get function may discard some of the source information in computing the
view. It weaves its two arguments together, propagating the information in the new view and restoring
any information discarded from the old source. The create function handles the special case where we
need to construct a source from a view, but we have no source to use as the original. It manufactures
a new source “from scratch,” àlling in any missing information with defaults. Figure 2.1 depicts the
components of a lens graphically.

Broadly speaking, lenses are designed to guarantee three main properties:

1. Lenses implement robust abstractions. Users can make arbitrary modiàcations to the view with-
out having to consider whether their changes are consistent with the underlying source.

2. Lenses propagate view updates “exactly” to the source.

3. When possible, lenses preserve any source information that is not reáected in the view.

Formally, these properties are ensured by the requirement that put be a total function and by the “round-
tripping” laws in Deànition 2.1.1, which govern the handling of data as it is mapped between the
source and view. The next few paragraphs describe how these formal conditions guarantee the informal
properties enumerated above and discuss their beneàts and tradeoffs.

Robustness A fundamental choice in the design of a bidirectional language is whether it handles every
update to the view or if it is allowed to treat certain updates as untranslatable. Hegner has coined the
terms “closed views” and “open views” to describe these alternatives [Heg90].

Systems that allow updates to fail have enormous áexibility, since the decision about whether to
propagate a given update to the view can be made dynamically, on a case-by-case basis. This allows
these systems to support transformations that would not be valid as lenses. However, allowing updates
to fail has a signiàcant drawback: it makes views “leaky abstractions” of the source. Users cannot use
a view like an ordinary data structures because whenever they modify the view, they need to consider
the possibility that propagating the update will fail.

The put component of every lens is a total function. Totality is a simple but powerful condition
which ensures that lenses are capable of doing something reasonable with every view and every source,

12

even when the view has been edited dramatically. In the applications where we use lenses—e.g., in
data synchronizers run in unsupervised modes of operation [FGK+07]—it critical that the abstraction
provided by the view be robust.

An interesting side effect of this choice is that, in practice, lens languages usually need to have very
precise type systems. The only way that a lens can free itself from the obligation to handle a particular
view is to exclude it from the set V mentioned in its type. Thus, lenses that manipulate the source and
view in complicated ways typically need to have types that describe those structures at a correspondingly
high level of precision.

Exact Translation Another fundamental consideration in the design of basic lenses is the set of con-
ditions that govern how updates must be handled. Most systems require that updates to the view be
translated “exactly” to the source—i.e., that the new source produced by put reáect all of the changes
made to the view. In the lens framework, the PG and CG laws guarantee this property.
Formally, they stipulate that given an updated view and an old source, the put function must yield a
new source that the get function maps back to the very same view, and similarly for the create function.

As an example of a transformation that does not obey PG and CG (it does obey G-
P), let S be the set of strings over a ànite alphabet Σ, let V be the set Σ∗ × N of pairs of strings and
natural numbers, and deàne functions get, put, and create as follows:

l.get u = (u, 0)
l.put (u′, n) u = u′

l.create (u′, n) = u′

If we apply put to an updated view (“abc”, 1) and an original source “xyz” it produces a new source
“abc”. However, if we then map this source back to a view using get we obtain (“abc”, 0), which is
different than (“abc”, 1). Intuitively, the reason that PG fails is that the put function does not
propagate all of the information contained in the view back to the source. As a result, some updates
to the view are lost when we run put followed by get. It is not hard to see that the PG law implies
that put must be injective with respect to its àrst argument—see Lemma 2.2.1 (2) below.

Source Integrity A third consideration in the design of lenses concerns the handling of source data
that is not exposed in the view. To the extent possible, we would like put to avoid making unnecessary
changes to the underlying source. However, in many situations, to accurately reáect the modiàcation
made to the view, put needs to modify the source, including the hidden parts that are not reáected in
the view.

It turns out that there are range of conditions one can impose to control the side effects that put
can have on the source. Basic lenses include a simple condition, embodied in the GP law, which
stipulates that the put function must restore the original source exactly whenever its arguments are a
view v and a source s that generates the very same view.

As example of a transformation that does not obey GP (it does obey PG and CG),
let S be the set Σ∗×N of pairs of strings and natural numbers, let V be the set Σ∗ of strings, and deàne
functions get, put, and create as follows:

l.get (u, n) = u
l.put u′ (u, n) = (u′, 0)

l.create u′ = (u′, 0)

If we use l to compute a view from (“abc”, 1) and immediately put it back, we get (“abc”, 0), which is
different than the source we started with. The problem with this transformation is that the put function
has extra side effects on the source—it sets the number to 0 even when the view has not been changed.

13

The GP law restricts the effects that put can have on the source by forcing it to have no effect at
all whenever it is possible for it to do so without violating the other laws.

It is tempting to go a step further and require that put always have “minimal” side effects, and not
only when the view has not been changed. Unfortunately, even stating this condition seems to require
building a notion of what constitutes an update into the semantics—we need to be able to compare
two updates to determine which one has a “smaller” effect. Lenses are designed to be agnostic to
the way that updates are expressed—the put function takes the whole state of the updated view as
input (in database terminology, a materialized view) rather than an explicit operation in an update
language. This state-based architecture makes it easy to deploy lenses in a variety of different contexts
since applications do not need to be retooled to manipulate views via special operations in an update
language. It also facilitates using lenses with data in non-standard and ad hoc formats, which do
not usually come equipped with canonical update languages. However, being state-based makes it
difàcult to impose conditions formulated in terms of updates. In particular, it leads us to only impose
the GP law, which can be stated abstractly and without assuming a particular notion of update.
Although GP only provides a relatively loose constraint on behavior, it is still a useful tool for
designing lens primitives. We have used it many times to generate, test, and reject candidate lenses.

Another idea for ensuring the integrity of source data is to require that the put function preserve
all of the information in the source that is not reáected in the view. This idea has been explored
extensively in the database literature, where it is known as the constant complement condition [BS81].
The idea is that the source S should be isomorphic to V ×C, a product consisting of the view V and a
“complement” C that contains all of the source information not reáected in the view. The get function
uses the function witnessing the isomorphism in one direction to transform the source s into a pair
(v, c) and then projects away c. The put function pairs up the new view v′ with the old complement
c and applies the other witness to the isomorphism to (v′, c) to obtain the new source. As the put
function is implemented by an injective function from V ×C to S, it follows that all of the information
contained in the complement is reáected in the new source—i.e., the complement is held constant. We
can formulate a law that captures the essence of the constant complement condition by stipulating that
the source obtained after doing two puts in a row must be the same as doing just the second:

l.put v′ (l.put v s) = l.put v′ s (PP)

Although this law does not mention complements, it forces put function to restore all of the hidden
information in the underlying source—i.e., a complement—because the intermediate source produced
by the àrst put must contain that information for it to be available for the second put. Unfortunately,
requiring that every lens obey PP is a draconian condition that rules out many transformations
that are indispensable in practice.

As an example, of a lens that does not obey PP, let S be the set (Σ∗ × N) list of lists of pairs
of strings and natural numbers, let V be the set Σ∗ list of lists of strings, and deàne functions get, put
and create as follows:

l.get [(u1, n1), . . . , (uk, nk)] = [u1, . . . , uk]
l.put [u′

1, . . . , u
′
l] [(u1, n1), . . . , (uk, nk)] = [(u′

1, n
′
1), . . . , (u

′
l, n

′
l)]

where n′
i =

{
ni for i ∈ {1, . . . ,min(l, k)
0 for i ∈ {k + 1, . . . , l}
l.create [u′

1, . . . , u
′
l] = [(u′

1, 0), . . . , (u′
l, 0)]

The get component of this lens takes a list of pairs of strings and numbers and projects away the
numbers. The put component takes a view and a source and weaves them together, propagating the
strings in the view and restoring the numbers from the source. To see why the PP law fails to hold

14

in general, observe that when the list of strings in the view has fewer elements than the source list, the
put function must discard some of the numbers in the source to satisfy PG. For example, putting
[“a”, “b”] into [(“a”, 1), (“b”, 2), (“c”, 3)] discards the 3 and yields [(“a”, 1), (“b”, 2)]. This accurately
reáects the change made to the view, but if we put [“a”, “b”, “c”] into this intermediate source we
obtain [(“a”, 1), (“b”, 2), (“c”, 0)], which is different than [(“a”, 1), (“b”, 2), (“c”, 3)], the source we
would have obtained if we had put this view into the original source without doing the àrst put.

Although we do not require that every basic lens obey the PP law, we pay special attention to
lenses that do, calling them very well behaved.

2.1.2 Deànition [Very Well Behaved Lens]: A lens l ∈ S ⇐⇒ V is very well behaved if and only if it
obeys the PP law for all views v and v′ in V and sources s in S.

Interestingly, the weaker integrity guarantee embodied in the GP law can be formulated as a special
case of PP. The PT law stipulates that the effect of doing two puts in a row using the same
view must be the same as doing just doing one put:

l.put v (l.put v s) = l.put v s (PT)

Every basic lens obeys the PT law—see Lemma 2.2.2.
Another important class of lenses are those whose put functions do not use their source argument

at all. We call such lenses oblivious.

2.1.3 Deànition [Oblivious Lens]: A lens l ∈ S ⇐⇒ V is oblivious if

l.put v s = l.put v s′

for all views v in V and sources s and s′ in S.

The components of an oblivious lenses are all bijective functions. Every oblivious lens is trivially very
well behaved, since the put function does not use its source argument.

2.2 Properties

Now we use the semantics of basic lenses to derive some simple properties. We establish a collection
of elementary facts about basic lenses and use these facts to give an alternate characterization of lenses
in terms of put functions.

2.2.1 Lemma: For every l ∈ S ⇐⇒ V , we have the following facts:

1. l.get and (uncurry l.put) are surjective functions,1

2. l.put is semi-injective in the following sense: for all views v and v′ in V and all sources s and s′

in S, if l.put v s = l.put v′ s′ then v = v′,

3. and l.create is an injective function.

Proof: Let l ∈ S ⇐⇒ V be a basic lens. We prove each fact separately.

1Recall that when f is a function in A → B → C, the function uncurry f is a function in A × B → C deàned as
uncurry f , λ(a, b) : (A × B). f a b. Note that the surjectivity of uncurry l.put and l.put are different conditions: the
former means that for every s ∈ S there exists a v ∈ V and s′ ∈ S such that l.put v s′ = s while the latter means that for
every g ∈ S → S there exists a v ∈ V such that the partially-applied function l.put v and g are equivalent.

15

1. Let v be a view in V and let s′ = (l.put v (l.create v)) be the source obtained by putting v into
l.create v. By the PG law for l we have l.get s′ = v. As v was arbitrary, we conclude that
l.get is surjective.

Similarly, let s be a source in S and let v = l.get s. By the GP law for l we have l.put v s = s.
By the deànition of uncurry we have (uncurry l.put) (v, s) = s. As s was arbitrary, we conclude
that uncurry l.put is surjective.

2. Let v and v′ be views in V and let s and s′ be sources in S such that l.put v s = l.put v′ s′. We
calculate as follows:

v = l.get (l.put v s) by PG for l
= l.get (l.put v′ s′) by assumption
= v′ by PG for l

That is, v = v′. We conclude that l.put is semi-injective.

3. Let v ∈ V and v′ ∈ V be views such that l.create v = l.create v′. We calculate as follows:

v = l.get (l.create v) by CG for l
= l.get (l.create v′) by assumption
= v′ by CG for l

That is, v = v′. We conclude that l.create is injective. �

Next we prove that every lens obeys the PT law.

2.2.2 Lemma: Let l be a basic lens in S ⇐⇒ V . Then l obeys the PT law.

Proof: Let l ∈ S ⇐⇒ V be a lens, v ∈ V a view, and s ∈ S a source. We calculate as follows

l.put v (l.put v s)
= l.put (l.get (l.put v s)) (l.put v s) by PG for l
= l.put v s by GP for l

and obtain the required equality. �

A natural question to ask is whether lenses are semantically complete—i.e., given a total and sur-
jective function g from S to V does there exist a lens l that has g as its get component? We answer this
question positively in the next lemma.

2.2.3 Lemma: For every total and surjective function g ∈ S → V there exists a basic lens l in S ⇐⇒ V
such that l.get = g.

Proof: Let g ∈ S → V be a total and surjective function from S onto V . For every v ∈ V , let v̂ denote
an arbitrary element of S satisfying g v̂ = v. As g is surjective, v̂ exists. We deàne the components of l
as follows:

l.get = g

l.put v s =
{

s if v = g s
v̂ otherwise

l.create v = v̂

16

By construction, we have l.get = g. We show that l is well behaved by proving each of the lens laws
directly:
I GetPut: Let s ∈ S. We calculate as follows

l.put (l.get s) s
= l.put (g s) s by deànition l.get
= s by deànition l.put

and obtain the required equality.

I PutGet: Let v ∈ V and s ∈ S. We calculate as follows

l.get (l.put v s)

=

{
l.get s if v = g s

l.get v̂ otherwise
by deànition l.put

=

{
g s if v = g s

g v̂ otherwise
by deànition l.get

= v as either v = g s by assumption
or v = g v̂ by deànition v̂

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

The next lemma gives an analogous completeness result for the reverse direction.

2.2.4 Lemma: For every total and semi-injective function p ∈ V → S → S such that uncurry p is
surjective and p v (p v s) = p v s for every v in V and s in S, there exists a basic lens l ∈ S ⇐⇒ V such
that l.put = p.

Proof: Let p ∈ V → S → S be a total and semi-injective function such that uncurry p is surjective
and p v (p v s) = p v s for every view v in V and source s in S. We will prove that for every source
s ∈ S there is a unique view v such that (p v s) = s. Let s be a source in S.

First we demonstrate that there is at least one such v. By the assumption that uncurry p is surjective,
there exists a view v ∈ V and source s′ ∈ S such that p v s′ = s. We calculate as follows

p v s
= p v (p v s′) by p v s′ = s
= p v s′ by p v (p v s′) = p v s′

= s by p v s′ = s

and obtain the desired equality.
Next we show that v is unique. Let v′ be a view in V satisfying p v′ s = s. As p is semi-injective,

we have v′ = v. Hence, v is unique.
Using these facts, we deàne a lens l from p. For every source s ∈ S, let ŝ ∈ V denote the unique

view v ∈ V satisfying p ŝ s = s. Deàne the components of l as follows:

get s = ŝ
put = p

create v = p v (representative(S))

17

where representative(S) denotes an arbitrary element of S. By construction, we immediately have
l.put = p. We prove that l is well behaved by showing each of the lens laws directly:
I GetPut: Let s ∈ S. We calculate as follows

l.put (l.get s) s
= p ŝ s by deànition l.get and l.put
= s by deànition ŝ

and obtain the required equality.

I PutGet: Let v ∈ V and s ∈ S. We calculate as follows

l.get (put v s)
= p̂ v s by deànition l.get and l.put
= ŝ′

where s′ = p v s
= v′ by deànition ·̂

where p v′ s′ = s′

= v by semi-injectivity of p and p v s = s′

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

Now we turn to the main technical result in this section: a semantic characterization of lenses en-
tirely in terms of put functions. We start by showing that the get component of every lens is determined
by its put component.

2.2.5 Lemma: For all basic lenses l1 ∈ S ⇐⇒ V and l2 ∈ S ⇐⇒ V , if l1.put v s = l2.put v s for every
view v in V and source s in S, then l1.get s = l2.get s for every source s in S.

Proof: Let l1 ∈ S ⇐⇒ V and l2 ∈ S ⇐⇒ V be lenses such that l1.put v s = l2.put v s for every view
v in V and source s in S. Let s be a source in S. We calculate as follows

l1.get s
= l2.get (l2.put (l1.get s) s) by PG for l2
= l2.get (l1.put (l1.get s) s) as l1.put = l2.put
= l2.get s by GP for l1

and obtain the required equality. �

Next, we show that the create component of every lens is consistent with its put component.

2.2.6 Lemma: For every lens l ∈ S ⇐⇒ V and view v in V there exists a source s in S such that
l.create v = l.put v s.

Proof: Let l ∈ S ⇐⇒ V be a lens and let v be a view in V . We calculate as follows

l.put v (l.create v)
= l.put (l.get (l.create v)) (l.create v) by CG for l
= l.create v by GP for l

and obtain the required equality, with l.create v as the source. �

18

Lens programmers often feel like they are writing the forward transformation (because the names of
primitives typically connote the forward transformation) and getting the backward transformation “for
free,” but these last few lemmas demonstrate that the opposite is actually true: they write the reverse
transformation and get the forward transformation for free. Lemma 2.2.5 shows that the get compo-
nent of a lens is determined by its put function. Lemma 2.2.6 shows that the create and put functions are
partially redundant—their behaviors could be merged into a single function put′ ∈ V → S option → S
where the optional S argument indicates whether to do a put or a create. Lemmas 2.2.1 and 2.2.4 pre-
cisely characterize the properties of put functions. Putting all these results together, we have a semantics
of lenses deàned only in terms of put′ functions. However, although put′ sufàces for a purely semantic
characterization of lenses, the construction of get in Lemma 2.2.4 is not effective—it requires ànding a
view v in V satisfying put′ v (Some s) = s. So, in the rest of this dissertation, we will work with the
original deànition of basic lenses and give the get, put, and create functions of each lens explicitly.

2.3 Syntax

With the semantics of basic lens in place, we now turn our attention to syntax. From this point on,
we will restrict our attention to objects drawn from the set Σ∗ of strings over a àxed alphabet Σ. Why
strings and not richer structures such as trees, relations, or complex values? There are many reasons.
First, strings expose many fundamental issues without the distractions of more complicated data model
(in particular, strings expose all of the issues having to do with ordered data—see Chapter 4). Second,
there is a lot of string data in the world, so it is convenient to have a language for deàning views over
strings directly, without àrst having to parse them into other formats. Third, programmers are already
familiar with standard string transformation languages based on regular expressions so a bidirectional
language also based on regular expressions should have broad appeal.

Before we can deàne the primitives in our language formally, we need to àx notation for strings,
languages, regular expressions, etc.

Notation

2.3.1 Deànition [Alphabet]: Fix a ànite set Σ = {c1, . . . , cn} of symbols (e.g., ASCII). We call the set Σ
the alphabet and we call symbols c ∈ Σ characters.

2.3.2 Deànition [String]: A string is a ànite sequence (c1 · · · ck) of characters in Σ. The set of all strings
over Σ is written Σ∗.

2.3.3 Notation [Empty String]: We write ϵ for the empty string.

2.3.4 Notation [Length]: We write |u| for the length of a string u ∈ Σ∗.

2.3.5 Notation [String Concatenation]: We write u·v for the concatenation of strings u and v.

2.3.6 Deànition [Language]: A language is a subset of Σ∗.

2.3.7 Notation [Representative]: The representative(·) function takes a language L as an argument,
which must not be empty, and yields a string belonging to L.

2.3.8 Deànition [Language Concatenation]: The concatenation of a language L1 and a language L2,
written L1·L2, is the language containing every concatenation of a string in L1 and a string in L2:

L1·L2 , {u·v | u ∈ L1 and v ∈ L2}

19

2.3.9 Deànition [Language Iteration]: The n-fold iteration of a language L ⊆ Σ∗, written Ln, is the
language containing every concatenation of n strings from L. It is deàned formally by induction on n
as follows:

L0 , {ϵ}
Li+1 , Li·L

Note that L1 = L0·L = {ϵ}·L = L.

2.3.10 Deànition [Kleene Closure]: The Kleene closure of L, written L∗, is the union of every iteration
of L:

L∗ =
∞∪
i=0

Li

Some of the primitives in our language require that every string belonging to the concatenation
of two languages have a unique factorization into a pair of substrings belonging to the concatenated
languages.

2.3.11 Deànition [Unambiguous Concatenation]: Two languages L1 and L2 are unambiguously con-
catenable, written L1·!L2, if for all strings u1 ∈ L1 and u2 ∈ L2 and all strings v1 ∈ L1 and v2 ∈ L2 if
(u1·u2) = (v1·v2) then u1 = v1 and u2 = v2.

Likewise, some of the primitives require that every string belonging to the Kleene closure of a
language have a unique decomposition into a list of substrings belonging to the iterated language.

2.3.12 Deànition [Unambiguous Iteration]: A language L ⊆ Σ∗ is unambiguously iterable, written L!∗,
if for all strings u1 ∈ L to um ∈ L and all strings v1 ∈ L to vn ∈ L, if (u1 · · ·um) = (v1 · · · vn) then
m = n and ui = vi for every i from 1 to n.

The types of the basic string lenses deàned in this chapter will be given by regular languages—a class
of languages that enjoys many desirable properties including closure under the boolean operators and
algorithms for deciding equivalence, inclusion, disjointness, and the ambiguity conditions just deàned.
We will describe regular languages using regular expressions.

2.3.13 Deànition [Regular Expressions]: The set of regular expressions over Σ is the smallest set gener-
ated by the following grammar

R ::= ∅ | u | R·R | R |R | R∗

where u ranges over strings (including ϵ) in Σ∗.

2.3.14 Deànition [Regular Expression Semantics]: The language [[R]] denoted by a regular expression
R is deàned by structural induction as follows:

[[∅]] , {}
[[u]] , {u}

[[R1·R2]] , [[R1]]·[[R2]]
[[R1 |R2]] , [[R1]] ∪ [[R2]]

[[R1
∗]] , [[R1]]∗

2.3.15 Deànition [Regular Language]: A language L is regular if and only if there exists a regular ex-
pression R in R such that L = [[R]].

20

2.3.16 Fact [Closure Properties]: Let L1 ⊆ Σ∗ and L1 ⊆ Σ∗ be regular languages. The following
languages are also regular [HU79]:

• the intersection (L1 ∩ L2) of L1 and L2,

• the difference (L1 − L2) of L1 and L2,

• the left (L1\L2) and right (L1/L2) quotient of L1 and L2 where

(L1\L2) , {v ∈ Σ∗ | ∃u ∈ L1. u·v ∈ L2}
(L2/L2) , {u ∈ Σ∗ | ∃v ∈ L2. u·v ∈ L1}

2.3.17 Fact [Emptiness]: It is decidable whether a regular language L ⊆ Σ∗ is empty [HU79]. As
regular languages are effectively closed under negation and intersection, it is also decidable whether
one regular language is included in another and whether two regular languages are equivalent.

Now we show that it is decidable if two regular languages are unambiguously concatenable and if
a regular language is unambiguously iterable.

2.3.18 Lemma: It is decidable whether the concatenation of two regular languages L1 and L2 is am-
biguous.

Proof: Let L1 and L2 be regular languages. Deàne languages S1 and P2 as follows:

S1 , (L1\L1) = {v | ∃u ∈ L1. u · v ∈ L1}
P2 , (L2/L2) = {u | ∃v ∈ L2. u · v ∈ L2}

Intuitively, S1 is the set of “sufàxes” that can be concatenated to the end of a word in L1 to produce
a word in L1 and P2 is the set of “preàxes” that can be concatenated to the beginning of a word in
L2 to produce a word in L2. We will prove that (S1 ∩ P1) − {ϵ} = {} if and only if L1 and L2 are
unambiguously concatenable.

(⇒) Suppose, for a contradiction, that ((S1 ∩ P2) − {ϵ}) = {} but L1 and L2 are not unambiguously
concatenable. Then there exist strings u1 ∈ L1 and u2 ∈ L2 and v1 ∈ L1 and v2 ∈ L2 such that
(u1·u2) = (v1·v2) and u1 ̸= v1 or u2 ̸= v2.

Without loss of generality, suppose that |u1| > |v1|. As (u1·u2) = (v1·v2) there exists a string
w ∈ Σ∗ such that w ̸= ϵ and u1 = (v1·w) and v2 = (w·u2). Hence, w ∈ (S1 ∩ P2) − {ϵ}, a
contradiction. We conclude that L1 and L2 are unambiguously concatenable.

(⇐) Suppose, for a contradiction, that L1 and L2 are unambiguously concatenable but ((S1 ∩ P2) −
{ϵ}) ̸= {}. Then there exists a string w ∈ Σ∗ such that w ̸= ϵ and w ∈ S1 and w ∈ P2. Moreover,
by the deànition of S1 and P2, there exist strings u1 ∈ L1 such that (u1·w) ∈ L1 and u2 ∈ L2

such that (w·u2) ∈ L2. Hence, as concatenation is associative, we have

(u1·w)·u2 = u1·(w·u2)

but u1·w ̸= u1 and u2 ̸= w·u2. This contradicts the assumption that the concatenation of L1 and
L2 is unambiguous so we conclude that ((S1 ∩ P2) − {ϵ}) = {}.

The required result is immediate as regular languages are closed under intersection and difference and
as emptiness is decidable for regular languages. �

21

2.3.19 Fact: It is decidable whether a regular language L ⊆ Σ∗ is unambiguously iterable.

Proof: Let L ⊆ Σ∗. We will prove that ϵ ̸∈ L and L·!L∗ if and only if L is unambiguously iterable.

(⇒) Suppose, for a contradiction, that ϵ ̸∈ L and L·!L∗ but L is not unambiguously iterable. Then
there exist strings u1 to um in L and v1 to vn in L such that (u1 · · ·um) = (v1 · · · vn) but either
m ̸= n or ui ̸= vi for some i between 1 and n. We will prove by induction on m that m = n and
ui = vi for i from 1 to n.

Case m = 0: From ϵ = (v1 · · · vn) and ϵ ̸∈ L we have that n = 0. We also have ui = vi for every
i from 1 to n vacuously.

Case m > 0: As (u1 · · ·um) = (v1 · · · vn) and ϵ ̸∈ L we have n > 0. As L·!L∗ we also have u1 =
v1 and (u2 · · ·un) = (v2 · · · vm). By the induction hypothesis, we have (m − 1) = (n − 1)
and ui = vi for i from 2 to n.

In either case we have a contradiction to the existence of u1 · · ·um and v1 · · · vn with m ̸= n or
ui ̸= vi for some i in 1 to n. We conclude that L is unambiguously iterable.

(⇐) Suppose, for a contradiction, that L is unambiguously iterable but either ϵ ∈ L or not L·!L∗. On
the one hand, if ϵ ∈ L, then we immediately have ϵ·ϵ = ϵ which contradicts the assumption that
L is unambiguously iterable. On the other hand, if it is not the case that L·!L∗, then there exist
strings u1 ∈ L and u2 ∈ L∗ and v1 ∈ L and v2 ∈ L∗ such that (u1·u2) = (v1·v2) but u1 ̸= v1 or
u2 ̸= v2. From these facts it follows that u1 ̸= v1 and u2 ̸= v2. However, as (u1·u2) ∈ L∗ and
(v1·v2) ∈ L∗ and L unambiguously iterable, we also have that u1 = v1, a contradiction. Hence,
we conclude that ϵ ̸∈ L and L·!L∗. �

Atomic Lenses

With this notation in place, we are now ready to deàne some lens primitives. The types of the source
and view for each primitive deàned in this chapter (with one exception, the dup E lens) are regular
languages. Working with regular languages ensures that we can build an efàcient typechecker that
veriàes all of the conditions needed to guarantee well behavedness automatically.

Let us warm up with a few primitives that do simple rewritings on strings.

Copy The copy lens is parameterized on a regular expression E ∈ R. It behaves like the identity
function on [[E]] in both directions. The components of copy are deàned precisely in the box below.

.

.

.
E ∈ R

copy E ∈ [[E]] ⇐⇒ [[E]]

.
get e = e
put e′ e = e′

create e = e

In the get direction, copy E copies a string belonging to (the language denoted by) E from the source
to the view. In the put direction, it copies the view and ignores its source argument. Intuitively, this
behavior makes sense: because the view is obtained by copying the source string verbatim, updates to
the view should also be propagated verbatim to the source. It is also forced by the PG law.

22

The typing rule in the box above can be read as a lemma asserting that if E is a regular expression
then copy E is a basic lens from [[E]] to [[E]]. As this is our àrst lens, we prove this lemma explicitly. We
include analogous well-behavedness proofs for each of the lens primitives deàned in this dissertation.
However, since they are largely calculational we defer the rest of these proofs to the appendix.

2.3.20 Lemma: Let E be a regular expression. Then copy E is a basic lens in [[E]] ⇐⇒ [[E]].

Proof: We prove each basic lens law separately.

I GetPut: Let e be a string in [[E]]. We calculate as follows

(copy E).put ((copy E).get e) e
= (copy E).put e e by deànition (copy E).get
= e by deànition (copy E).put

and obtain the required result.

I PutGet: Let e and e′ be strings in [[E]]. We calculate as follows

(copy E).get ((copy E).put e′ e)
= (copy E).get e′ by deànition (copy E).put
= e′ by deànition (copy E).get

and obtain the required result.

I CreateGet: Let e be a string in [[E]]. We calculate as follows

(copy E).get ((copy E).create e)
= (copy E).get e by deànition (copy E).create
= e by deànition (copy E).get

and obtain the required result. �

By inspection, copy E is an oblivious lens. It follows that it is also very well behaved.

Constant (and derived forms) The next lens behaves like the constant function in the get direction.
The lens const E u takes as arguments a regular expression E ∈ R and a string u ∈ Σ∗. In the get
direction maps every string in [[E]] to u and in the put direction it discards the view and restores the
original source. The create function maps u to an arbitrary string representative(E) ∈ [[E]]. The side
condition [[E]] ̸= {} in the typing rule below ensures that a representative exists. Note that const E u
satisàes the PG law because its view type is a singleton set.

.

.

.
E ∈ R [[E]] ̸= ∅ u ∈ Σ∗

const E u ∈ [[E]] ⇐⇒ {u}

.
get e =u
put u e = e
create u = representative(E)

2.3.21 Lemma: Let E be a regular expression and u a string such that [[E]] ̸= ∅. Then const E u is a
basic lens in [[E]] ⇐⇒ {u}.

23

We will often write E ↔ u instead of const E u, especially in examples. Note that the constant lens
is not oblivious, but it is very well behaved. This is easy to see because it propagates its entire source
argument in the put direction.

Several useful lenses can be expressed as derived forms using const:

..del E ∈ [[E]] ⇐⇒ {ϵ}
del E , E ↔ ϵ

..ins u ∈ {ϵ} ⇐⇒ {u}
ins u , ϵ ↔ u

The get component of del E takes any source string belonging to E and deletes it, adding nothing to
the view. Its put component restores the deleted string. Conversely, ins u inserts a àxed string u into
the view in the get direction and removes it in the put direction. We used these lenses in the composers
lens in Chapter 1 to delete parts of the source (e.g., (del ALPHA), which deletes the nationality of a
composer) and to add strings to the view (e.g., (ins ", "), which inserts a separator between the
names and dates of a composer).

Default The create component of the const lens we just described produces an arbitrary element of the
source type. In many situations, however, the choice of a default is important. The default combinator
gives programmers a way to control these choices. It takes a lens l ∈ S ⇐⇒ V and a total function
f ∈ V → S as arguments and overrides the create component of l with a call to put, using f to
manufacture a source string from the view.

.

.

.

l ∈ S ⇐⇒ V
f ∈ V → S

default l f ∈ S ⇐⇒ V

.
get s = l.get s
put v s = l.put v s
create v = l.put v (f v)

2.3.22 Lemma: Let l ∈ S ⇐⇒ V be a basic lens and f ∈ V → S a total function. Then default l f is a
basic lens in S ⇐⇒ V .

The default lens can be used to change the behavior of const. Suppose that we want to delete a
date from the source, as in the following example, written in the Boomerang language described in
Chapter 6.

let DATE : regexp = DIGIT{4} . ("-" . DIGIT{2}){2}
let l : lens = del DATE
test (l.get "2010-03-13") = ""

The àrst line deànes a regular expression for valid date strings and the second line deànes a lens that
deletes a date string from the source. The third line is a unit test. The Boomerang implementation
veriàes that the expressions on the left and right sides evaluate to the same value. We use these unit
tests throughout this dissertation to illustrate the behavior of speciàc lenses on simple examples. The
create function for l produces an arbitrary representative of the language denoted by DATE:

test l.create "" = "0000-00-00"

24

Obviously this string is not always the best choice for a default date. The default operator lets us to
override it with a better choice—e.g., the àrst day of the Unix epoch

let epoch (x:string) : string = "1970-01-01"
test (default l epoch).create "" = "1970-01-01"

or even the current date:

let today (x:string) : string =
Sys.exec "date +%Y-%m-%d|tr -d '\n'"

test (default l today).create "" = "2010-03-13"

Recall that the create function must be consistent with put by Lemma 2.2.6. We can use the default
combinator to equip a basic lens with every computable create function it can have and still be well
behaved.

Regular Operators

Next we present some operators that build bigger lenses out of smaller ones. The combinators described
in this section are based on the regular operators—union, concatenation, and Kleene star. Although
their details are somewhat tailored to strings, they illustrate essential issues that also come up with
richer structures—e.g., see the tree lenses deàned in the original paper on lenses [FGM+07].

Concatenation Let us start with concatenation, which is the simplest regular operator.

.

.

.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V1·!V2

l1·l2 ∈ (S1·S2) ⇐⇒ (V1·V2)

.
get (s1·s2) = (l1.get s1)·(l2.get s2)
put (v1·v2) (s1·s2)= (l1.put v1 s1)·(l2.put v2 s2)
create (v1·v2) = (l1.create v1)·(l2.create v2)

2.3.23 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that S1·!S2 and V1·!V2.
Then l1·l2 is a basic lens in (S1·S2) ⇐⇒ (V1·V2).

In the get direction, the concatenation lens splits the source string into two smaller strings that belong to
S1 and S2, applies the get components of l1 and l2 to these strings, and then concatenates the results to
form the view. The put and create functions are similar. To lighten the notation, we have written (s1·s2)
in the box above to indicate that s1 and s2 are strings belonging to S1 and S2 rather than making the
split function explicit. We use this convention throughout the rest of this dissertation. The languages
used to split the string will be clear from context.

The typing rule requires that the concatenation of the source types and the concatenation of the
view types each be unambiguously concatenable. This ensures two important properties:

1. The functional components of the lens, deàned using the convention just described, are well-
deàned functions.

2. The lens obeys the round-tripping laws.

25

To see what would gowrong if we omitted these conditions, consider the ill-typed transformation lambig :

lambig , (a ↔ a | aa ↔ aa)·(a ↔ b | aa ↔ b)

We assume that “↔” binds tighter than “ | ”, which is the union combinator on lenses and is deàned
next. The àrst issue with the lambig lens is that its get component is not even a function! According to the
speciàcation of the concatenation operator given above, lambig .get aaa = ab if we split aaa into a and
aa and lambig .get aaa = aab if we split it into aa and a. We might try to sidestep this issue by allowing
the programmer to specify a policy for choosing among the multiple possible parses of ambiguous
strings—e.g., using a shortest match heuristic we would split aaa into a and aa so lambig .get aaa would
only yield ab as a result. But the lens laws do not always hold when the source and view are split
heuristically. Intuitively, just because we split the source string using one policy does not mean we can
use the same policy to split the view. As an example, consider the (ill-behaved) lens lbogus deàned as k·k
where:

k , (a ↔ bb | aa ↔ a | b ↔ b | ba ↔ ba)

Using the shortest match policy to split the source we have:

lbogus .get aaa = (k.get a)·(k.get aa)
= bb·a
= bba

Then, using the same shortest match policy to split the view, we have

lbogus .put bba aaa = (k.put b a)·(k.put ba aa)
= b·ba
= bba
̸= aaa

which violates the GP law because the new source bba and the original source aaa are different.
It is easy to construct similar counterexamples to the PG law.

It turns out that the condition that the source types be unambiguously concatenable is essential
for ensuring the lens laws. However, the condition on the view types is not—we can replace the put
component of the concatenation lens with a more complicated version that uses its source argument to
check if the old and views can be split “in the same way” and use this to split the view if so.2 This put
function obeys the GP law because the old and new views are split the same way if possible, which
will always be the case when they are identical. On the same strings as above, the put of lbogus would
produce the original source string, as required by GP:

lbogus .put bba aaa = (k.put bb a)·(k.put a aa)
= a·aa
= aaa

Unfortunately, the same technique can not be used on the source side. The get function only takes a
single argument, so we have no way to force it to split the source “in the same way” as the strings

2Here is how this revised variant of the concatenation lens would work, as originally suggested by Julien Cretin. Call
the position of a split in the set of all possible splits (ordered lexicographically according to the lengths of the strings in the
pairs resulting from each split) its index. For example, the index of the split obtained using the shortest match is 0 and the
index of the longest match is the size of the set of all splits. Revise the put function so that the view is split by the index of
(l1.get s1, l2.get s2) if the index corresponds to a valid split and by any other index if not.

26

produced by l1 and l2’s put functions unless the concatenation of S1 and S2 is already unambiguous.
Consider the following example where we use the shortest match heuristic to split the source string:

lbogus .get (lbogus .put babb baa) = lbogus .get ((k.put ba b)·(k.put bb aa))
= lbogus .get (ba·a)
= lbogus .get (baa)
= (k.get b)·(k.get aa)
= (b·a)
= ba
̸= babb

The get function has no way to determine that bba needs be split into (ba·a) to satisfy PG so it
blindly uses shortest match, which yields a bad result. In general, it is impossible to give a sound typing
rule for the concatenation lens without the ambiguity condition on the source types because of such
examples where ambiguity can be exploited to cause part of the string generated by l1.put to be passed
to l2.get, or vice versa.

In fact, although it is interesting to observe that we could relax the typing rule to allow the concate-
nation of the view types to be ambiguous, we use the stricter condition originally stated. One reason
for this is that, as discussed in Section 2.1, the GP law is a rather weak constraint on behavior,
intended more as a loose guide than as a complete speciàcation of correctness. Splitting the view in
a different way when we know we are not in danger of violating GP obeys the letter of the law
but violates its spirit—i.e., the idea that the put function should preserve the integrity of the underlying
source string to the extent possible. The strict version of the typing rule preserves very well behaved-
ness—i.e., yields a very well behaved lens when applied to very well behaved arguments—while the
relaxed version does not. Another reason is that, in our experience, programmers are not very good at
reasoning about ambiguity. Most of the ambiguous concatenations we have encountered in real-world
examples have turned out to be bugs. We believe that programmers would ànd the relaxed version of
the concatenation lens unintuitive because minor edits could cause the view to be split in dramatically
different ways.

Union The union combinator behaves like a conditional operator on lenses.

.

.

.

S1 ∩ S2 = ∅
l1 ∈ S1 ⇐⇒ V1

l2 ∈ S2 ⇐⇒ V2

l1 | l2 ∈ (S1 ∪ S2) ⇐⇒ (V1 ∪ V2)

.

get s =

{
l1.get s if s ∈ S1

l2.get s if s ∈ S2

put v s =


l1.put v s if v ∈ V1 and s ∈ S1

l2.put v s if v ∈ V2 and s ∈ S2

l1.create v if v ∈ (V1 − V2) and s ∈ S2

l2.create v if v ∈ (V2 − V1) and s ∈ S1

create v =

{
l1.create v if v ∈ V1

l2.create v if v ∈ (V2 − V1)

27

2.3.24 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that the intersection
S1 ∩ S2 of the source types is empty. Then l1 | l2 is a basic lens in (S1 ∪ S2) ⇐⇒ (V1 ∪ V2).

Like a conditional in an ordinary, unidirectional language, the union lens selects one of its branches by
testing its inputs. The get function selects l1 or l2 by testing whether the source string belongs to S1 or
S2. The typing rule for union requires that these two types be disjoint, so the choice is deterministic.
The put function is more complicated, because the typing rule allows the view types to overlap. It àrst
tries to select one of l1 or l2 using the view and only uses the source to disambiguate if the view belongs
to both V1 and V2. The create function is similar, except that it uses l1 in cases where the view belongs
to V1 and V2 (it has no source argument to use). This is an arbitrary choice but it is not a limitation: to
use l2 instead, the programmer can use (l2 | l1). It does mean, however, that the union operator is not
commutative.

Because put is a total function, it needs to handle situations where the view comes from one side of
the union, say V1 − V2, and the source comes from the other side, say S2. The only way that the union
lens can be sure to produce a source that will map back to the same view is to use one of the components
of l1. This basic version of union simply discards the source and uses l1’s create function. However,
that this is not the only thing it could do—although the source belongs to S2 it might still contain
information that could be represented as a string belonging to S1. We might like the put function to
reintegrate this information with the new source. For example, consider the lens l deàned as follows

let l1 : lens = copy [A-Z] . del [0-9]
let l2 : lens = del [0-9]
let l : lens = (l1 | l2)

and suppose that we put A into 3 using (l1 | l2). We might like the put function to propagate the
A in the view and restore the 3 from the source, but it invokes l1’s create function, which àlls in the
number with a default:

test l.put "A" into "3" = "A0"

In the original paper on basic lenses [FGM+07], we described a union combinator with “àxup” func-
tions—mappings from S2 to S1 and from S1 to S2. The idea was that the put function would use these
functions to extract information from sources on one side of the union for use with views on the other
side of the union rather than discarding the source and invoking the create function. Semantically àxup
functions are exactly what is needed—one can show that the union combinator described in that pa-
per is most general. But syntactically they are quite cumbersome—the programmer has to write down
two additional total functions on the source types! We refrain from introducing àxup functions in
this chapter because resourceful lenses, discussed in Chapter 4, offer a different mechanism for passing
information from one side of a union to the other that seems to balance the semantic and syntactic
tradeoffs between these two extremes nicely.

By analogy with concatenation, one might wonder why we allow the view types to overlap in
the union lens. One reason for this choice is that, in our experience, programmers are much more
comfortable reasoning about disjointness than they are reasoning about ambiguity. Another reason is
that many examples depend on overlapping union. In general, the union lens only preserves very well
behavedness when the view types of the sublenses are identical, making it impossible to modify the view
from one side of the union to the other, or when the sublenses are both oblivious so there is no hidden
source data to preserve. For example, consider what happens when the edit changes the view from a
string on one side of the union to a string on the other side:

let l1 : lens = copy [a-m] . del [0-4]

28

let l2 : lens = copy [n-z] . del [5-9]
test (l1|l2).put "n" into "a1" = "n5"

Because the union lens discards the source string and invokes the create component of l1, the PP
law does not hold:

test (l1|l2).put "a" into ((l1|l2).put "n" into "a1") = "a0"
test (l1|l2).put "a" into "a1" = "a1"

It is tempting to add a condition to the typing rule for union to ensure that it preserves very well
behavedness. However, many of our examples depend on both the overlapping and disjoint forms of
union, so we use a typing rule that places no constraints on the view types.

Kleene Star The ànal combinator described in this section iterates a lens. It combines the behavior of
concatenation and union in the usual way.

.

.

.

S!∗ V !∗
l ∈ S ⇐⇒ V

l∗ ∈ S∗ ⇐⇒ V ∗

.

get (s1 · · · sn) = (l.get s1) · · · (l.get sn)
put (v1 · · · vn) (s1 · · · sm)= s′1 · · · s′n

where s′i =
{

l.put vi si i ∈ {1, . . . ,min(n,m)}
l.create vi i ∈ {m + 1, . . . , n}

create (v1 · · · vn) = (l.create v1) · · · (l.create vn)

2.3.25 Lemma: Let l ∈ S ⇐⇒ V be a basic lens such that S!∗ and V !∗. Then l∗ is a basic lens in
S∗ ⇐⇒ V ∗.

In the get direction, the Kleene star lens takes the source string, splits it (unambiguously) into a list of
substrings belonging to the source type of the iterated lens l, applies the get component to each string
in this list, and concatenates the results. The put and create functions are similar. Note that the put
function needs to handle situations where the source and view have different numbers of substrings. To
satisfy PG, the put function must produce a source string with the same number of substrings as
the view. When there are more source substrings than view substrings it discards the extras and when
there are more view substrings it processes the extras using l.create.

Because it sometimes discards parts of the source, Kleene star does not preserve very well behaved-
ness, as shown in the following example:

let l = copy [a-z] . del [0-9]
test l*.put "xyz" into (l*.put "xy" into "a1b2c3") = "x1y2z0"
test l*.put "xyz" into "a1b2c3" = "x1y2z3"

This is unfortunate but unavoidable: we either have to allow the put component of Kleene star to
discard parts of the source, sacriàcing very well behavedness, or we have to restrict put to only accept
views that have at least as many strings as the source, sacriàcing totality. Since we take totality to be
the more fundamental property, we choose the àrst option.

29

Extensions

The combinators described in the previous section correspond to unambiguous (due to the side con-
ditions in the typing rules) ànite state string transducers [Ber79]—a class of transformations that is
powerful enough to express a large collection of practical examples. Some applications, however, re-
quire just a little more power. It is not difàcult to extend our set of combinators with additional
primitives—the only thing we require is that their types be expressible as regular languages, to ensure
that typechecking remains decidable. In this section, we present a few of the other primitives that we
have found useful in applications built using basic lenses.

Composition It is often convenient to express a transformation as the sequential composition of two
simpler ones, even when it can be expressed as a more complicated single-pass transformation. The
composition operator puts two lenses in sequence.

.

.

.

l1 ∈ S ⇐⇒ U
l2 ∈ U ⇐⇒ V

l1;l2 ∈ S ⇐⇒ V

.
get s = l2.get (l1.get s)
put v s = l1.put (l2.put v (l1.get s))
create v = l1.create (l2.create v)

2.3.26 Lemma: Let l1 ∈ S ⇐⇒ U and l2 ∈ U ⇐⇒ V be basic lenses. Then l1;l2 is a basic lens in
S ⇐⇒ V .

The get component of the composition lens processes the source string by àrst applying the get functions
of l1 and l2 in that order. The put component applies the put functions of l1 and l2 in the opposite order
and uses l1’s get function to manufacture a string to use as the source argument for l2’s put. The create
function is similar. The typing rule for composition requires that the view type of l1 and the source type
of l2 be identical. This ensures that the intermediate strings belonging to U have the appropriate type.

As an example, recall the composers lens fromChapter 1. It requires that the name of each composer
be a string described by the regular expression (ALPHA . " " . ALPHA). It is not difàcult to extend
the lens so that the name can be an arbitrary string, but we need to be careful to respect the escaping
conventions of the XML andASCII formats. That is, we need to escape ‘&’, ‘<’, ‘>’, etc. characters on the
XML side and ‘,’, ′\n′, and ‘\’ characters on the ASCII side. If we already have lenses xml_unesc and
csv_esc that handle unescaping for XML and escaping for ASCII, then it is much simpler to compose
these lenses than would be to write an end-to-end escaping lens from scratch. Here is a revised version
of the composers lens that allows arbitrary strings as names:

let composer : lens =
xml_elt "composer"
(xml_elt "name" (..xml_unesc ; csv_esc)
. ins ", "
. xml_elt "dates" (copy (YEAR . "-" . YEAR))
. xml_elt "nationality"

(del_default ALPHA "Unknown"))

This lens maps the XML source

30

let rec str filter S xs = match xs with
| ϵ → ϵ
| x·xs ′ when x ∈ S → x·(str filter S xs ′)
| x·xs ′ when x ̸∈ S → str filter S xs ′

let rec str unfilter T ys xs = match ys, xs with
| , ϵ → ys
| , x·xs ′ when x ∈ T → x·(str unfilter T ys xs ′)
| ϵ, x·xs ′ when x ̸∈ T → str unfilter T ϵ xs ′

| y·ys ′, x·xs ′ when x ̸∈ T → y·(str unfilter T ys ′ xs ′)

Figure 2.2: Pseudocode for str filter and str unfilter.

<composer>
<name>Duke Ellington & His

Orchestra</name>
<dates>1899-1974</dates>
<nationality>American</nationality>

</composer>

to the ASCII view:

Duke Ellington & His\nOrchestra, 1899-1974

Note that the special characters in the name of Ellington’s group are transformed according to the
escaping conventions for each format.

Filter The next lens removes elements of the list of substrings of the source in the forward direction
and restores them in the reverse direction. The àlter operator takes regular expressions E and F as
arguments and produces a lens that àlters away the F s from a string consisting of Es and F s. Its get
and put functions are given by helper functions str filter and str unfilter, which are deàned in Figure 2.2.

.

.

.
[[E]] ∩ [[F]] = ∅ ([[E]] ∪ [[F]])!∗

àlter E F ∈ ([[E]] ∪ [[F]])∗ ⇐⇒ [[E]]∗

.
get s = str filter E s
put v s = str unfilter F v s
create v = v

2.3.27 Lemma: Let E and F be regular expressions such that the intersection [[E]] ∩ [[F]] of [[E]] and
[[F]] is empty and ([[E]] ∪ [[F]])!∗. Then àlter E F is a basic lens in ([[E]] ∪ [[F]])∗ ⇐⇒ [[E]]∗.

It is tempting to deàne àlter E F as (copy E | del F)∗ but the typing rules for Kleene star do not allow
it—the view type of the iterated lens is not unambiguously iterable because it contains the empty string.
Additionally, its put function would not behave the same—it would sometimes discard F s in the source
while str unfilter always restores all of the F s.

31

As an example illustrating the use of àlter, suppose that we wanted to compute a view containing
all the composers born in the 20th century. To achieve this, we revise the lens as follows. First, we
parameterize the composer lens so that it takes a regular expression representing the birth date:

let composer ..(BIRTH:regexp) : lens =
xml_elt "composer"
(xml_elt "name" (copy (ALPHA . " " . ALPHA))
. ins ", "
. xml_elt "dates" (copy (..BIRTH . "-" . YEAR))
. xml_elt "nationality"

(del_default ALPHA "Unknown"))

Next, we instantiate composer twice, once for composers born in the 20th century, and another time
for composers born in other centuries:

let YEAR_20c : regexp = "19" . DIGIT{2}
let composer_20c : lens = composer YEAR_20c
let composer_other : lens = composer (YEAR - YEAR_20c)

The main composers lens àlters away non-20th century composers (the function stype extracts a reg-
ular expression that represents the source type of a lens) and processes the remaining composers using
composer_20c.

let composers : lens =
xml_elt "composers"
(..filter (stype composer_20c) (stype composer_other);

(copy "" | ..composer_20c . (ins "\n" . ..composer_20c)*))

On the original XML source, this lens produces a view

Aaron Copland, 1910-1990
Benjamin Briten, 1913-1976

that does not contain an entry Sibelius, who was born in 1865. In the reverse direction, the àlter lens
always restores the àltered composers from the source. For example, here is the source obtained by
putting the empty string into the original source:

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865-1956</dates>
<nationality>Finnish</nationality>

</composer>
</composers>

Because its put function restores all of the àltered elements, àlter E F is a very well behaved lens.

Swap The get components of every lens we have deàned so far are expressible as one-way ànite state
string transducers [Ber79]. This class has a fundamental limitation: the restriction to ànite state means
that transformations cannot “remember” arbitrary amounts of data. In particular, we cannot use ànite-
state transducers to implement a variant of the composers lens whose get component inverts the order
of the name and dates in the view because the name can be arbitrarily long. Fortunately, lifting this

32

restriction poses no semantic problems. The swap combinator is like concatenation, but inverts the
order of strings in the view.

.

.

.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V2·!V1

l1 ∼ l2 ∈ (S1·S2) ⇐⇒ (V1·V2)

.
get (s1·s2) = (l2.get s2)·(l1.get s1)
put (v2·v1) = (l1.put v1 s1)·(l2.put v2 s2)
create (v2·v1)= (l1.create v1)·(l2.create v2)

2.3.28 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that (S1·!S2) and (V2·!V1).
Then (l1 ∼ l2) is a basic lens in (S1·S2) ⇐⇒ (V2·V1).

As in the concatenation lens, the get component of swap splits the source in two and applies the get
component of l1 and l2 to each. However, before it concatenates the results, it swaps them, which puts
the results in the opposite order. The put and create functions are similar: they split the view into two
strings, swap them, apply the put or create component of l1 and l2 to each, and concatenate the results.

To illustrate the use of swap, let us implement the variant of the composers lens described above
where the name and dates for each composer are swapped in the view:

let composer : lens =
xml_elt "composer"
((xml_elt "name" (copy (ALPHA . " " . ALPHA))

..~ (xml_elt "dates" (copy (YEAR . "-" . YEAR))
. ..ins ", "))

. xml_elt "nationality" (del_default ALPHA "Unknown"))

Compared to the previous version, this lens has two changes: First, we have moved the lens ins ", "
down so that it follows the lens for the dates element. Second, we have replaced the concatenation (.)
operator used to combine the lenses for the name and dates elements with swap (~). On the original
XML source, this lens computes the following view:

1865-1956, Jean Sibelius
1910-1990, Aaron Copland
1913-1976, Benjamin Briten

It turns out that the concatenation and swap lenses are both instances of a more general combinator,
permute, that is parameterized on a permutation σ on {1, . . . , n} and a list [l1, . . . , ln] of n lenses.
In the get direction, it splits the source string into n substrings, processes each substring using the
corresponding lens from the list, permutes the resulting list of strings using σ, and concatenates the
results. The put and create functions are similar. For concatenation, we take σ to be the identity
permutation on {1, 2} and let the list of lenses be [l1, l2]. For swap, we let σ be the transposition on
{1, 2} and again let the list of lenses be [l1, l2].

Merge The next operator merges two distinct pieces of the source. The merge lens is parameterized
on a regular expression E, which must be unambiguously concatenable with itself. Its get function
takes a source consisting of two Es and discards the second one. The put function has two cases. If the
two Es in the source are equal, then it propagates the view to both copies. If they are not equal, then
it propagates the view to the àrst copy and restores the second copy.

33

.

.

.
[[E]]·![[E]]

merge E ∈ ([[E]]·[[E]]) ⇐⇒ [[E]]

.

get (e1·e2) = e1

put e′ (e1·e2)=
{

(e′·e′) if e1 = e2

(e′·e2) otherwise
create e′ = e′·e′

2.3.29 Lemma: Let E be a regular expression such that ([[E]]·![[E]]). Then merge E is a basic lens in
([[E]]·[[E]]) ⇐⇒ [[E]].

We often use the merge lens to handle cases where the source contains two piece of data, the view
contains just one piece of data, and we want to update both pieces of source data consistently. For
example, suppose that the source string contains a start date and an end date

START:2010-03-13 END:2010-03-13

and the view contains only the end date:

2010-03-13

Here is a lens whose get component does this transformation:

let l : lens =
(del "START:"
. copy DATE
. del " END:"
. copy DATE);
merge DATE

It deletes the START and END: tags as well as the space, and merges the two date strings that remain.
The put function propagates updates to the view to both dates in the source if they are equal

test l.put "2010-02-14"
into "START:2010-03-13 END:2010-03-13"

= "START:2010-02-14 END:2010-02-14"

and only to the àrst date if they are different:

test l.put "2010-02-14"
into "START:2010-03-01 END:2010-03-13"

= "START:2010-02-14 END:2010-03-13"

Because merge sometimes uses the entire source and sometimes only uses part of it, it is not very well
behaved:

let l : lens = merge [A-Z]
test l.put "A" into (l.put "B" into "AB") = "AA"
test l.put "A" into "AB" = "AB"

34

Duplicate A natural question to ask at this point is whether we can have a lens whose get component
duplicates the source. By Lemma 2.2.3, we know that this question has a positive answer. The dup
lens takes a regular expression E as an argument which must be unambiguously concatenable with
itself. It makes two copies of the source string in the get direction and deletes the second copy in the
put direction.

.

.

.
[[E]]·![[E]]

dup E ∈ [[E]] ⇐⇒ {e1·e2 ∈ ([[E]]·[[E]]) | e1 = e2}

.
get e =(e·e)
put (e1·e2) e = e1

create (e1·e2) e = e1

2.3.30 Lemma: Let E be a regular expression such that [[E]]·![[E]]. Then dupE is a basic lens in [[E]] ⇐⇒
{e1·e2 ∈ ([[E]]·[[E]]) | e1 = e2}.

Semantically, dup is a perfectly valid basic lens. However, its type is not a regular language because
it involves an equality constraint. This constraint is essential for guaranteeing the PG law—if we
allow the put function to accept views where the two copies are different, then running put followed
by get sometimes yields a different view than the one we started with. However, since the type of dup
cannot be expressed using regular expressions (except when E is ànite), Boomerang does not support it.
We deàne it here for completeness and to illustrate the challenges that duplication raises in the context
of basic lenses. In the next chapter, we will deàne a variant of dup that has a regular type and is included
in Boomerang.

2.4 Summary

Basic lenses are a natural class of bidirectional transformations that provide a semantic foundation
for bidirectional programming languages. Their design emphasizes both robustness and ease of use,
guaranteeing totality as well as strong well-behavedness conditions formulated as round-tripping laws.
Many transformations can be interpreted as basic lenses including the identity and constant functions,
composition, iteration, conditional, product, and more.

35

Chapter 3

Quotient Lenses

“Good men must not obey the laws too well.”
—Ralph Waldo Emerson

The story described in the previous chapter is an appealing one... but unfortunately it is not perfectly
true! Most bidirectional transformations do not obey the basic lenses laws. Or rather, they obey them
in spirit—modulo “unimportant” details—but not to the letter. The nature of these details varies from
one application to another: examples include whitespace, artifacts of representing richer structures
(relations, trees, and graphs) as strings, escaping of atomic data (XML PCDATA and CSV), ordering of
àelds in record-structured data (BibTeX àelds and XML attributes), breaking of long lines of text, and
computed values (tables of contents and aggregates).

To illustrate, consider the composers lens again. The information about each composer could be
larger than comfortably àts on a single line of ASCII text. We might then want to relax the type of the
view to allow lines to be broken (optionally) using a newline followed by at least one space, so that

Jean
Sibelius, 1865-1957

and

Jean Sibelius, 1865-1957

would be accepted as equivalent, alternate presentations of the same view. But now we have a problem:
by Lemma 2, we know that the PG law is only satisàed when put is semi-injective. This means
that the composer lens must map these views, which we intuitively regard as equivalent, to different
sources—i.e., the presence or absence of linebreaks in the view must be reáected in the source. We could
design a lens that does this—e.g., storing the line break inside of the PCDATA

<composer>
<name>Jean
Sibelius</name>
<dates>1865-1957</dates>
<nationality>Finnish</nationality>

</composer>

but this “solution” isn’t very attractive. For one thing, it places an unnatural demand on the XML
representation—indeed, possibly an unsatisàable demand if the application using the source forbids
PCDATA containing newlines. For another, writing the lens that handles and propagates linebreaks

37

involves extra work. Moreover, this warping of the XML format and complicated lens programming
is all for the purpose of maintaining information that we don’t actually care about! A much better
alternative is to relax the lens laws to accommodate this transformation. Finding a way to do this
elegantly is the goal of this chapter.

Several different ways of treating inessential data have been explored in previous work.

1. Some systems adopt an informal approach, stating the lens laws in their strict form and explaining
that they “essentially hold”. To support this claim, these systems often provide a description of
how unimportant details are processed algorithmically. For example, the biXid language, which
describes conversions between XML formats using pairs of intertwined tree grammars, provides
no explicit guarantees about round-trip behavior but its designers clearly intend it to be “morally
bijective” [KH06]. The PADS system is similar [FG05]. Overall, this approach is often quite
reasonable, although it requires giving up formal properties.

2. Other systemsweaken the lens laws. The designers of the X language have argued that the PG
law should be replaced with a weaker “round-trip and a half” version [HMT08]:

s′ = put v s

put (get s′) s′ = s′
(PGP)

Their reason for advocating this law is to support a duplication operator. Having duplication
makes it possible to express many useful transformations as lenses—e.g., augmenting a document
with a table of contents—but because the duplicated data is not always preserved on round trips
(consider making a change to just one copy of the duplicated data), it breaks the PG law.
The weaker PGP law imposes some constraints on the behavior of lenses, but it opens the
door to a wide range of unintended behaviors—e.g., lenses with constant put functions, lenses
whose get component is the identity function and whose put component is put v s = s, etc.1

3. Other systems split bidirectional transformations into a “core component” that is a lens in the
strict sense and “canonization” phases that operate at the perimeters of the transformation and
standardize the representation of inessential data. See Figure 3.1. For example, in our previous
work on lenses for trees, the end-to-end transformations on concrete representations of trees in
the àlesystem only obey the lens laws up to an equivalence relation induced by a viewer—a parser
and pretty printer that map between raw strings and more structured representations [FGM+07].
Similarly, XSugar, a language for converting between XML and ASCII, guarantees that its trans-
formations are bijective modulo a àxed relation on input and output structures obtained by nor-
malizing “unordered” productions, “ignorable” non-terminals, and the representation of XML
[BMS08].2 This approach is quite workable when the data formats and canonizers are generic.
However, for ad hoc data such as textual databases, bibliographies, conàguration àles, etc., it
rapidly becomes impractical—the two components of the canonization transformation themselves
become difàcult to write and maintain. In particular, the schema of the data is recapitulated, re-
dundantly, in the lens and in each canonizer! In other words, we end up back in the situation
that lenses were designed to avoid.

1In the journal version of the paper [HMT08], they exclude such transformations by decorating the view with “edit tags”
and adding a new law stipulating that doing a put followed by a get must yield a “more edited” view.

2In XSugar, XML canonization is treated as a distinct “pre-processing” phase, but canonization of other ignorable data
is interleaved with the rest of the transformation; in this respect, XSugar can be regarded as a special case of the framework
proposed in this chapter.

38

.

.

get
canonize

choose

putchoose canonize

concrete
structures

abstract
structures

lenscanonizer canonizer

canonical
concrete

structures

canonical
abstract

structures

Figure 3.1: Lens architecture with “canonizers at the edges”

This chapter develops a more reàned account of the lens framework that allows us to state, precisely
and truthfully, that a bidirectional transformation is a well-behaved lensmodulo a particular equivalence
relation. The main advantages of this framework over the approach using viewers, as we will see, are
that it allows us to compose lenses that are only well behaved modulo equivalences and to deàne and
use canonizers anywhere in a lens program and not only at the perimeters.

The rest of this chapter is organized as follows. Section 3.1 presents the relaxed semantic space of
quotient lenses. Section 3.2 describes a number of generic combinators—coercions from basic lenses
to quotient lenses and from quotient lenses to canonizers, operators for quotienting a lens by a can-
onizer, and sequential composition. Section 3.2 deànes quotient lens versions of the regular oper-
ators—concatenation, union, and Kleene star. Section 3.2 introduces some new primitives that are
possible in the relaxed space of quotient lenses. Section 3.4 discusses typechecking for quotient lenses.
Section 3.5 illustrates some uses of quotient lenses on an example—a lens for converting between XML
and ASCII versions of a large genomic database. We conclude in Section 3.6.

3.1 Semantics

At the semantic level, the deànition of quotient lenses is a straightforward reànement of basic lenses.
Recall the deànition of an equivalence relation:

3.1.1 Deànition [Equivalence Relation]: A binary relation R ⊆ S × S is an equivalence relation if and
only if it is reáexive, symmetric, and transitive.

In a quotient lens, we enrich the types of the source and view with equivalence relations—instead
of S ⇐⇒ V , we write S/∼S ⇐⇒ V/∼V , where ∼S is an equivalence relation on S and ∼V is an
equivalence relation on V —and we relax the lens laws by requiring that they only hold up to ∼S and
∼V .

3.1.2 Deànition [Quotient Lens]: Let S ⊆ U and V ⊆ U be sets of sources and views and let ∼S and
∼V be equivalence relations on S and V . A quotient lens l comprises three total functions

l.get ∈ S → V
l.put ∈ V → S → S

l.create ∈ V → S

that obey the basic lens modulo ∼S and ∼V :

39

l.get (l.put v s) ∼V v (PG)

l.get (l.create v) ∼V v (CG)

l.put (l.get s) s ∼S s (GP)

Additionally, the components of every quotient lens must respect ∼S and ∼V :

s ∼S s′

l.get s ∼V l.get s′
(GE)

v ∼V v′ s ∼S s′

l.put v s ∼S l.put v′ s′
(PE)

v ∼V v′

l.create v ∼S l.create v′
(CE)

We write S/∼S ⇐⇒ V/∼V for the set of all quotient lenses between S (modulo ∼S) and V (modulo
∼V).

The relaxed round-tripping laws are just the basic lens laws on the equivalence classes S/∼S and V/
∼V . In fact, if we pick∼S and∼V to be equality—the ànest equivalence relation—they are equivalent to
the basic laws precisely. Note, however, that although we reason about the behavior of quotient lenses
as if they operated on equivalence classes, the component functions actually operate on members of the
underlying sets of sources and views—i.e, the type of get is S → V not S/∼S → V/∼V . The second
group of laws ensure that the components of a quotient lens treat equivalent structures equivalently.
They play a critical role in (among other things) the proof that the typing rule for the composition
operator is sound.

3.2 Syntax

So much for semantics. The story in this chapter is much more interesting on the syntactic side.

Generic Operators

Let us begin by developing some generic operators for building quotient lenses out of basic lenses.

Lift Intuitively, it should be clear that quotient lenses are a generalization of basic lenses. The lift
operator, which converts a basic lens to a quotient lens, witnesses this fact.

.

.

.
l ∈ S ⇐⇒ V

lift l ∈ S/= ⇐⇒ V/=

.
get s = l.get s
put v s = l.put v s
create v = l.create v

3.2.1 Lemma: Let l ∈ S ⇐⇒ V be a basic lens. Then lift l is a quotient lens in S/= ⇐⇒ V/=.

40

.

.

U / ~U

canonize

choose

V / ~V

original lens

quotiented lens

canonizer

S / ~S

Figure 3.2: Adding a canonizer to a quotient lens (on the left)

The get, put, and create components of lift l are identical to the components of l. The equivalence
relations on the source and view are both equality. The proof that lift l is a well-behaved quotient lens
follows immediately from the basic lens laws for l.

Left and Right Quotient The next two operators provide a way to loosen up a lens, widening the set of
structures that it can handle and coarsening the equivalence on the source and view accordingly. These
operators are our primary means of building quotient lenses with non-trivial equivalence relations in
their types.

To illustrate how quotienting works, consider a simple example. Suppose that l is a quotient lens
from U/∼U to V/∼V where ∼U is a relatively àne equivalence—e.g., l could be a lifted basic lens
with U a set of “canonical strings” containing no extraneous whitespace and ∼U could be equality.
We want to build a new quotient lens whose source type is some larger set S—e.g., the same set of
strings, except with arbitrary whitespace in various places—and whose equivalence ∼S relates strings
that only differ in whitespace. To get back and forth between S and U , we need two functions. The
àrst, called canonize, maps elements of S to their “canonical representatives” in U—e.g., by discarding
extra whitespace. The other, called choose, maps canonical representatives in U to an element in its
inverse image under canonize in S—e.g., the canonical string itself, or perhaps a pretty printed version
with whitespace inserted according to a layout convention. Together, the canonize and choose functions
form a canonizer—see Figure 3.2.

Clearly, a canonizer is a bit like a lens (minus the put component). However, canonizers only need
to obey one round-tripping law.

3.2.2 Deànition [Canonizer]: Let S ⊆ U and U ⊆ U be sets of objects and let ∼U be an equivalence
relation on U .3 A canonizer q from S to U/∼U comprises two functions

q.canonize ∈ S → U
q.choose ∈ U → S

obeying

q.canonize (q.choose u) ∼U u (RC)

for every u ∈ U . That is, canonize is a left inverse of choose modulo ∼U . The set of all canonizers from
S to U/∼U is written S .

. U/∼U .

3We keep track of the equivalence on U because when we quotient a lens by a canonizer we need the equivalences to
match up. However, we do not keep track of the equivalence on S because it will be calculated in the typing rule.

41

A lens can be quotiented in two ways—on the left, which treats part of the source as ignorable, or
on the right, which treats part of view as ignorable. The left quotient operator, lquot, takes a canonizer
q and a quotient lens l as arguments and yields a quotient lens whose source type is coarsened using q.

.

.
.

q ∈ S .
. U/∼U

l ∈ U/∼U ⇐⇒ V/∼V

∼S , {(s, s′) ∈ S × S | q.canonize s ∼U q.canonize s′}
lquot q l ∈ S/∼S ⇐⇒ V/∼V

.
get s = l.get (q.canonize s)
put v s = q.choose (l.put v (q.canonize s))
create v = q.choose (l.create v)

3.2.3 Lemma: Let q be a canonizer S .
. U/∼U and let l be a quotient lens in U/∼U ⇐⇒ V/∼V . Then

lquot q l is a quotient lens in S/∼S ⇐⇒ V/∼V where s∼S s′ if and only if q.canonize s∼U q.canonize s′.

The get component of lquot canonizes the source string using q.canonize and then maps the canonical
version to a view using l.get. The put function canonizes its source argument using q.canonize and
puts the view into the resulting U using l.put. To produce the ànal source it uses q.choose. The create
function is similar. The equivalence relation ∼S on the source is the relation induced by q.canonize and
∼U—i.e., two sources are equivalent if q.canonize maps them to elements of U related by ∼U .

To illustrate left quotienting, recall the del E lens, which deletes a string in the get direction and
restores it in the put direction. In many situations, this is the behavior we want. However, if the data
being deleted is “unimportant”—e.g., whitespace—we might prefer to have the put function produce a
particular source instead. This would not be a well-behaved basic lens because it would violate GP,
but it is easy to have as a quotient lens.

let qdel (E:regexp) (e:string in E) : lens =
lquot
(canonizer_of_lens (del_default E e))
(copy "")

The canonizer of lens combinator is deàned later in this section. It converts a quotient lens to a
canonizer, using its get function for canonize and its create function for choose. The get component of
qdel E e àrst maps the source to the empty string using the canonizer and then copies the empty string
to the view while put function copies the empty string and then invokes the canonizer’s choose function,
which produces e as the ànal result. As an example, here is a lens that deletes an upper-case letter in
the get direction and produces “Z” in the put direction:

test (qdel [A-Z] "Z").get "A" = ""
test (qdel [A-Z] "Z").put "" into "A" = "Z"

The type of qdel E e is [[E]]/Tot([[E]]) ⇐⇒ {ϵ}/=, which records the fact that the lens treats every
source string as equivalent. The equivalence Tot([[E]]) is [[E]] × [[E]], the total relation on [[E]].

We often use qdel to standardize whitespace. For example, here is a variant of the xml_elt helper
function we deàned previously that produces pretty-printed XML in the put direction. It takes two
extra arguments, ws1 and ws2. The string ws1 controls the amount of whitespace before opening tags
and ws2 controls the whitespace before closing tags.

42

let full_xml_elt
(t:string) (ws1:string) (ws2:string) (l:lens) : lens =
qdel WHITESPACE* ws1

. del ("<" . t . ">")

. l

. qdel WHITESPACE* ws2

. del ("</" . t . ">")

We can instantiate full_xml_elt to obtain several other helper functions:

let xml_elt (t:string) (ws:string) (l:lens) : lens =
full_xml_elt t ws ws l

let xml_pcdata_elt (t:string) (ws:string) (l:lens) : lens =
full_xml_elt t ws "" l

let xml_outer_elt (t:string) (ws:string) (l:lens) : lens =
full_xml_elt t "" ws l

The xml_elt helper takes just one extra argument that controls the whitespace before both kinds of
tags. The xml_pcdata_elt helper handles elements containing PCDATA. It adds the speciàed whites-
pace before the opening tag but adds nothing before the closing tag. The xml_outer_elt helper handles
the outer-most element in a document. It adds no whitespace before the opening tag and the speciàed
whitespace before the closing tag. Using these helpers, we can rewrite the composer lens so that it
produces pretty-printed XML in the put direction:

let composer : lens =
xml_elt "composer" ..INDENT1
(..xml_pcdata_elt "name" ..INDENT2

(copy (ALPHA . " " . ALPHA))
. ins ", "
. ..xml_pcdata_elt "dates" ..INDENT2

(copy (YEAR . "-" . YEAR))
. ..xml_pcdata_elt "nationality" ..INDENT2

(del_default ALPHA "Unknown"))
let composers : lens =

..xml_outer_elt "composers" ..INDENT0
(copy EPSILON | composer . (ins NEWLINE . composer)*)

The strings INDENT0, INDENT1, and INDENT2, etc. contain increasing amounts of whitespace. In the
get direction this lens discards the whitespace between XML elements, just like the original version.
However, in the put direction, it produces pretty-printed XML—e.g., putting

Jean Sibelius, 1865-1957
Aaron Copland, 1910-1990
Benjamin Britten, 1913-1976

into a source with no indentation

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865-1957</dates>

43

<nationality>Finnish</nationality>
</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>
<nationality>American</nationality>
</composer>
<composer>
<name>Benjamin Briten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>
</composer>
</composers>

yields a pretty-printed result

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865-1957</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>
<nationality>American</nationality>

</composer>
<composer>
<name>Benjamin Britten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>

</composer>
</composers>

that also reáects the change made to the view. The original version of the lens would have restored the
whitespace from the source.

Right Quotient The right quotient operator, rquot, is symmetric to lquot. It quotients a lens l in S/
∼S ⇐⇒ U/∼U on the right using a canonizer q from V to U/∼U . Note that compared to lquot, the
canonizer is applied in the opposite direction. If we think of a canonizer as a weaker form of a lens, then
lquot is essentially just lens composition, while rquot is a kind of “head to head” composition—i.e.,
composing a function that discards information in the forward direction with a function that discards
information in the reverse direction—that would not make sense with basic lenses.

44

.

.
.

l ∈ S/∼S ⇐⇒ U/∼U

q ∈ V .
. U/∼U

∼V , {(v, v′) ∈ V × V | q.canonize v ∼U q.canonize v′}
rquot l q ∈ S/∼S ⇐⇒ V/∼V

.
get s = q.choose (l.get s)
put v s = l.put (q.canonize v) s
create v = l.create (q.canonize v)

3.2.4 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ U/∼U and q a canonizer in V .
. U/∼U . Then

rquot l q is a quotient lens in S/∼S ⇐⇒ V/∼V where v∼V v′ if and only if q.canonize v∼U q.canonize v′.

The get function àrst transforms the source to an intermediate view using l.get and then selects a repre-
sentative using q.choose. The put and create functions canonize the view using q.canonize and then use
l.put or l.create to compute the updated source.

Recall the basic lens ins e, which inserts a àxed string e into the view. The quotient lens, qins E e
behaves like ins e in the get direction but accepts any string in [[E]] in the put direction. We often use qins
to insert formatting into the view—e.g., if we áipped the composers lens around so that the source was
ASCII and the view was XML, we would use qins to insert the XML formatting. It is straightforward
to deàne qins using rquot:

let qins (E:regexp) (e:string) : lens =
rquot
(ins e)
(canonizer_of_lens (E <-> e))

The type of qins E e is {ϵ}/= ⇐⇒ [[E]]/Tot([[E]]). Although it does not obey the strict version of
PG, it does obey it modulo the equivalence relation speciàed in its type. To illustrate this point,
consider the following examples

let l : lens = copy ALPHA . qins " "* "" . copy (" " . ALPHA)
let s : string = "Aaron Copland"
test l.put "Aaron Copland" into s = s
test l.put "Aaron Copland" into s = s
test l.put "Aaron Copland" into s = s

and observe that the put function maps views that differ only in the amount of whitespace between
names to the same source.

Using qdel and qins, is straightforward to deàne a quotient lens version of the constant lens:

let qconst
(u:string) (E:regexp) (D:regexp) (v:string) : lens =
qdel E u . qins D v

In the get direction, qconst takes an E and maps it to v. In the put direction, it takes a D and maps it
to u. Its type, [[E]]/Tot([[E]]) ⇐⇒ [[D]]/Tot([[D]]), records the fact that it treats all sources and all views
as equivalent.

45

Subsumption The lquot and rquot operators allow us to quotient a quotient lens repeatedly on
either side, which has the effect of composing canonizers. We do this often in quotient lens pro-
grams—stacking up several canonizers, each of which canonizes a distinct aspect of the concrete or
abstract structures. The following rule of subsumption is often useful:

.
.

∼U is a reànement of ∼U ′

q ∈ V .
. U/∼U

q ∈ V .
. U/∼U ′

3.2.5 Lemma: Let q ∈ V .
. U/∼U be a canonizer and let ∼U ′ be an equivalence relation on U such

that ∼U ′ is a reànement of ∼U . Then q is also a canonizer in V .
. U/∼U ′ .

This rule allows the equivalence relation component of a canonizer’s type to be coarsened. For example,
if we want to quotient a lens l ∈ U/∼U ⇐⇒ V/∼V on the left using a canonizer q ∈ S .

. U/ =, we
can use this typing rule to promote q to S .

. U/∼U .

Composition The next operator puts two quotient lenses in sequence.

.

.

.

l1 ∈ S/∼S ⇐⇒ U/∼U

l2 ∈ U/∼U ⇐⇒ V/∼V

l1;l2 ∈ S/∼S ⇐⇒ V/∼V

.
get s = l2.get (l1.get s)
put v s = l1.put (l2.put v (l1.get s)) s
create v = l1.create (l2.create v)

3.2.6 Lemma: Let l1 ∈ S/∼S ⇐⇒ U/∼U and l2 ∈ U/∼U ⇐⇒ V/∼V be quotient lenses. Then l1;l2 is
a quotient lens in S/∼S ⇐⇒ V/∼V .

The components of l1;l2 are identical to the ones in the basic lens composition operator described in
the last chapter. However, they typing rule demands that the view type of l1 and the source type of l2
have the same equivalence relation ∼U . This raises an interesting implementation issue: to statically
typecheck the composition operator, we need to be able to decide whether two equivalence relations
are identical—see Section 3.4. To see what goes wrong if this condition is dropped, consider

l1 = copy {a} ∈ {a}/= ⇐⇒ {a}/=
l2 = copy ({a} | {b}) ∈ {a, b}/= ⇐⇒ {a, b}/=

and q ∈ {a, b} .
. {a}/= deàned by

q.canonize = a
q.choose a = a

If we let l = (rquot l1 q); l2, where the equivalence on the left is the total relation on {a, b} while the
relation on the right is equality, then PG fails:

l.get (l.put b b) = l.get a
= l2.get (q.choose (l1.get a))
= a
̸= b

46

Conversely, if we let l = l2; (lquot q l1), where the left equivalence is equality and the right equivalence
is the total relation on {a, b}, then GP fails. First, note that

l.get b = (lquot q l2).get(l2.get b)
= (l2.get (q.canonize (l2.get b))
= (l2.get (q.canonize b)
= (l2.get a)
= a

Then, using this equality, calculate as follows:

l.put (l.get b) b = l.put a b
= l2.put (q.choose (l1.put a (q.canonize (l2.get b)))) b
= l2.put a b
= a
̸= b

Intuitively, these failures make sense. It would be surprising if composition somehow managed to
respect the equivalences on the source and view even though l1 and l2 disagreed about the equivalence
relation in the middle.

Canonizer So far, we have seen how to lift basic lenses to quotient lenses, how to coarsen the equiv-
alence relations in the types of quotient lenses using canonizers, and how to compose them. We have
not, however, discussed where canonizers come from! Of course, we can always deàne them as primi-
tives—this is essentially the approach used in previous “canonizers at the perimeters” proposals, where
the set of viewers (i.e., parsers and pretty printers) is àxed. But here we can do something much bet-
ter: we can construct a canonizer using the get and create components of an arbitrary lens—indeed, an
arbitrary quotient lens!

.

.

.
l ∈ S/∼S ⇐⇒ U/∼U

canonizer of lens l ∈ S .
. U/∼U

.canonize s = l.get s
choose u = l.create u

3.2.7 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ U/∼U . Then the canonizer canonizer of lens l is
in S .

. U/∼U .

Building canonizers out of lenses gives us a pleasingly parsimonious design, making it possible to deàne
canonizers using whatever generic or domain-speciàc operators are already available for lenses. For
example, a composition operator on canonizers can be derived from the quotienting operators. The
type follows directly from the types of the copy, lquot, and canonizer of lens operators.

.

.

.
q1 ∈ S .

. U/= q2 ∈ U .
. V/=

(q1; q2) ∈ S .
. V/=

.(q1; q2) , canonizer of lens
(lquot q1 (lquot q2 (copy (canonized type q2))))

47

In general, the equivalence on U does not need to be the identity, but it must reàne the equivalence
induced by q2. Of course, it is also interesting to design primitive canonizers from scratch. The sin-
gle canonizer law imposes fewer restrictions than the lens laws, so we have considerable latitude for
developing canonizing transformations that would not be valid as lenses.

Regular Operators on Quotient Lenses

Having deàned the semantic space of quotient lenses and several generic operators, we now focus our
attention on quotient lenses for strings. The combinators presented in this section are direct general-
izations of the corresponding basic lens combinators deàned in the previous chapter. In particular, the
get, put, and create components of each operator are identical to the basic lens versions. To save space,
we do not repeat their deànitions. The typing rules, however, are different as they deàne equivalence
relations on the source and view.

Concatenation As in the previous chapter, let us start with concatenation, which is the simplest regular
operator. Before we can deàne the lens, we need to lift concatenation to relations:

3.2.8 Deànition [Relation Concatenation]: Let L1 and L2 be languages and let R1 and R2 be binary
relations on L1 and L2 respectively. The concatenation of R1 and R2 is the relation deàned as follows:
w (R1·R2) w′ if and only if there exist strings w1, w

′
1 ∈ L1 and w2, w

′
2 ∈ L2 with w = w1·w2 and

w′ = w′
1·w′

2 such that w1 R1 w′
1 and w2 R2 w′

2.

We need to be careful when we concatenate equivalence relations because, in general, the concatenation
operator does not preserve transitivity. Thus, the concatenation of two equivalence relations ∼1 and
∼2 may not be an equivalence. However, it will be an equivalence in two important cases

1. if the concatenation of L1 and L2 is unambiguous or

2. if ∼1 and ∼2 are both the identity relation.

Since the typing rule of the concatenation lens ensures that the concatenations of the underlying lan-
guages are unambiguous, the concatenation of the equivalence relations on the source and view are also
equivalences.

With this deànition in place, the typing rule for concatenation is simply:

.
.

l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 S1·!S2

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 V1·!V2

l1·l2 ∈ (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V1·V2)/(∼V1 ·∼V2)

3.2.9 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1·!S2 and V1·!V2. Then l1·l2 is a quotient lens in (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V1·V2)/(∼V1 ·∼V2).

Concatenation raises an interesting point: suppose that we have canonizers q1 and q2 and quotient
lenses l1 and l2 that we want to—in some order—concatenate and quotient on the left. There are two
ways we could do this: quotient l1 and l2 àrst using q1 and q2 and combine the results by concatenating
the resulting quotient lenses, or concatenate the quotient lenses and the canonizers àrst and then quo-
tient the results. Both constructions are possible in our framework and they yield equivalent quotient
lenses (when they are well-typed)4. We deàne the concatenation operator on canonizers later in this
chapter and prove this fact—see Lemma 3.2.15.

4Quotienting àrst is slightlymore áexible, since the concatenation of the original quotient lenses need not be unambiguous.

48

Kleene Star As with concatenation, before we can deàne the quotient version of Kleene star, we need
to lift iteration to relations:

3.2.10 Deànition [Relation Iteration]: Let L be a regular language, and let R be a binary relation on L.

The iteration of R is deàned as follows: w R
∗

w′ if and only if there exist strings w1 to wn and w′
1 to

w′
n in L with w = (w1 · · ·wn) and w′ = (w′

1 · · ·w′
n) such that wi R w′

i for every i from 1 to n.

The iteration of an equivalence relation is not an equivalence in general, but it is when the underlying
language is unambiguously iterable or when the relation being iterated is the identity.

The typing rule for the Kleene star operator is as follows:

.
.

S!∗ V !∗
l ∈ S/∼S ⇐⇒ V/∼V

l∗ ∈ S∗/∼S
∗ ⇐⇒ V ∗/∼V

∗

3.2.11 Lemma: Let l ∈ S/∼S ⇐⇒ V/∼V be a quotient lens such that S!∗ and V !∗. Then l∗ is a
quotient lens in S∗/∼S

∗ ⇐⇒ V ∗/∼V
∗.

Union Some care is needed in designing a sound typing rule for the union operator. In particular,
because the view types may overlap, we need to be sure that the equivalence relations of the sublenses
relate the same strings in the intersection.

.

.

S1 ∩ S2 = ∅
l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2

∀v, v′ ∈ V1 ∩ V2. v ∼V1 v′ if and only if v ∼V2 v′

l1 | l2 ∈ (S1 ∪ S2)/(∼S1 ∪ ∼S2) ⇐⇒ (V1 ∪ V2)/(∼V1 ∪ ∼V2)

3.2.12 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1 ∩ S2 = ∅ and for every v and v′ in V1 ∩ V2 we have v ∼V1 v′ if and only if v ∼V2 v′. Then the
quotient lens l1 | l2 is in (S1 ∪ S2)/(∼S1 ∪ ∼S2) ⇐⇒ (V1 ∪ V2)/(∼V1 ∪ ∼V2).

The equivalence relations ∼S and ∼V are deàned as the union of the corresponding equivalences from
l1 and l2. The side conditions in the typing rule ensure that these are equivalences. Additionally, the
side condition on ∼V is essential for ensuring soundness. To see what would go wrong if we did not
include it, let v be a string in V1 ∩ V2 and let v′ be a string in V2 − V1 with v ∼V v′ and let s be a string
in S1 with (l1 | l2).get s ∼V v. By the deànition of l1 | l2, we have the following equalities:

(l1 | l2).put v s = l1.put v c as v ∈ V1 ∩ V2 and s ∈ S1

(l1 | l2).put v′ s = l2.create v′ c as v ∈ V2 ∩ V1 and s ∈ S1

By the PE law we also have:

(l1 | l2).put v s ∼S (l1 | l2).put v′ s.

But this is a contradiction—the codomain of l1.put is S1 and the codomain of l2.create is S2 and the
typing rule stipulates that these sets must be disjoint. Hence, the two strings cannot be related by
∼S1 ∪ ∼S2 .

Swap The typing rule for the swap operator is a straightforward generalization of the typing rule for
concatenation:

49

.
.

l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 S1·!S2

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 V2·!V1

l1 ∼ l2 ∈ (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V2·V1)/(∼V2 ·∼V1)

3.2.13 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1·!S2 and V2·!V1. Then l1 ∼ l2 is a quotient lens in (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V2·V1)/(∼V2 ·∼V1).

Regular Operators on Canonizers

Now we deàne canonizer versions of the regular operators. Since canonizers only have to satisfy the
RC law, we have some additional áexibility compared to the corresponding lens operators.

Concatenation Recall that the concatenation operator on quotient lenses requires that the concatena-
tions of the source and view types each be unambiguous. With canonizers, we only need the concatena-
tion on the source side to be unambiguous. The notation TrClose(R) used below denotes the smallest
transitive relation that contains R:

.

.
.

S1·!S2 p ∈ Πu : (U1·U2). {(u1, u2) ∈ U1 × U2 | u1·u2 = u}
q1 ∈ S1

.
. U1/∼U1

q2 ∈ S2
.

. U2/∼U2

q1·p q2 ∈ (S1·S2) .
. (U1·U2)/TrClose(∼U1 ·∼U2)

.
canonize (s1 · s2)= (q1.canonize s1)·(q2.canonize s2)
choose u =(q1.choose u1)·(q2.choose u2)

where p u = (u1, u2)

3.2.14 Lemma: Let q1 ∈ S1
.

. U1/∼U1 and q2 ∈ S2
.

. U2/∼U2 be canonizers such that S1·!S2 and
let p be a function in:

Πu : (U1·U2). {(u1, u2) ∈ U1 × U2 | u1·u2 = u}
Then q1·p q2 is a canonizer in (S1·S2) .

. (U1·U2)/TrClose(∼U1 ·∼U2).

The function p determines how strings in the concatenation U1·U2, which may be ambiguous, are split.
The dependent type for p ensures that it produces substrings that belong to U1 and U2. In examples,
we will elide p when the concatenation of U1 and U2 is unambiguous. We take the transitive closure of
∼U1 ·∼U2 to ensure that it is an equivalence relation.

Using this deànition, we can now prove the result we discussed earlier: canonizing and quotienting
(on the left) in either order yields equivalent quotient lenses

3.2.15 Lemma: Let

l1 ∈ U1/∼U1 ⇐⇒ V1/∼V1 q1 ∈ S1
.

. U1/∼U1

l2 ∈ U2/∼U2 ⇐⇒ V2/∼V2 q2 ∈ S2
.

. U2/∼U2

be quotient lenses and canonizers and suppose that

l , (lquot q1 l1)·(lquot q2 l2)
l′ , lquot (q1·q2) (l1·l2)

are well formed according to the typing rules given in this section. Then l and l′ are equivalent quotient
lenses.

50

Proof: Let l1 and l2 be quotient lenses and q1 and q2 be canonizers and deàne quotient lenses l and l′

as stated above and suppose that l and l′ are well typed. By the typing derivations for l and l′ we have
that V1·!V2 and U1·!U2. Using these facts, we prove that the components of l and l′ are equivalent:
I get: Let s = s1·s2 ∈ S1·S2 be a source. We calculate as follows

l.get (s1·s2)
= ((lquot q1 l1)·(lquot q2 l2)).get (s1·s2) by deànition l
= ((lquot q1 l1).get s1)·((lquot q2 l2).get s2) by deànition (·)
= (l1.get (q1.canonize s1))·(l2.get (q2.canonize s2)) by deànition lquot
= (l1·l2).get ((q1·q2).canonize (s1·s2)) as U1·!U2

= (lquot (q1·q2) (l1·l2)).get (s1·s2) by deànition lquot
= l′.get (s1·s2) by deànition l′

and obtain the required equality.

I put: Let v = v1·v2 ∈ V1·V2 be a view and s = s1·s2 ∈ S1·S2 a source. We calculate as follows

l.put (v1·v2) (s1·s2)
= ((lquot q1 l1)·(lquot q2 l2)).put (v1·v2) (s1·s2) by deànition l
= ((lquot q1 l1).put v1 s1)·((lquot q1 l1).put v2 s2) by deànition (·)
= (q1.choose (l1.put v1 (q1.canonize s1)))·

(q2.choose (l2.put v2 (q2.canonize s2))) by deànition lquot
= (q1·q2).choose

((l1·l2).put (v1·v2) ((q1·q2).canonize (s1·s2))) as U1·!U2

= (lquot (q1·q2) (l1·l2)).put (v1·v2) (s1·s2) by deànition lquot
= l′.put (v1·v2) (s1·s2) by deànition l′

and obtain the required equality.

I create: Similar to the proof for put. �

Kleene Star The iteration operator on canonizers is similar:

.

.

.

S!∗ p ∈ Πu : U∗. {[u1, . . . , un] ∈ U list | u1 · · ·un = u}
q ∈ S .

. U/∼U

q∗p ∈ S∗ .
. U∗/TrClose(∼U

∗)

.
canonize s1 · · · sn =(q.canonize s1) · · · (q.canonize sn)
choose u =(q.choose u1) · · · (q.choose un)

where p u = [u1, . . . , un]

3.2.16 Lemma: Let q ∈ S .
. U/∼U be a canonizer such that S!∗. Also let p be a function in:

Πu : U∗. {[u1, . . . , un] ∈ U list | u1 · · ·un = u}

Then q∗p is a canonizer in S∗ .
. U∗/TrClose(∼U

∗).

Note that U need not be unambiguously iterable. The p function takes a string belonging to U∗ and
splits it into a list of strings belonging to U .

Union The ànal regular operator forms the union of two canonizers.

51

.

.

.

S1 ∩ S2 = ∅
q1 ∈ S1

.
. U1/∼U1

q2 ∈ S2
.

. U2/∼U2

q1 | q2 ∈ (S1 ∪ S2) .
. (U1 ∪ U2)/TrClose(∼U1 ∪ ∼U2)

.

canonize s=

{
q1.canonize s if s ∈ S1

q2.canonize s otherwise

choose u =

{
q1.choose u if u ∈ U1

q2.choose u otherwise

3.2.17 Lemma: Let q1 ∈ S1
.

. U1/∼U1 and q2 ∈ S2
.

. U2/∼U2 be canonizers such that the inter-
section S1 ∩ S2 of the source types is empty. Then q1 | q2 is a canonizer in S1 ∪ S2

.
. (U1 ∪ U2)/

TrClose(∼U1 ∪ ∼U2).

The typing rule closes ∼U1 ∪ ∼U2 transitively to ensure that it is an equivalence.

Other Primitives

So far, we have focused on quotient lenses and canonizers that can be constructed from existing basic
lenses using the lifting and quotienting operators. Of course, we can also deàne new primitives di-
rectly—the semantic laws governing the behavior of quotient lenses and canonizers allow many trans-
formations that are not valid as basic lenses. This section deànes some quotient lenses and canonizers
that cannot be obtained by lifting and quotienting.

Duplication In many applications, it is useful to duplicate part of the source in the view. For example,
consider augmenting a document with a table of contents generated from section headings. Unfortu-
nately, as discussed at the end of Chapter 2, it is impossible to have a well-behaved basic lens that
duplicates the source at the type S ⇐⇒ (S·S) because if we edit just one copy of the duplicated data
the PG law will not be satisàed—no matter what the put function does, get will return a view
where the two copies are equal. We can have a duplication operator as a basic lens if we assign it the
more complicated type S ⇐⇒ {s·s′ ∈ S·S | s = s′}, but the types used in our implementation are
based on regular languages, which cannot express arbitrary equality constraints. Fortunately, it is easy
to deàne a duplication operator with a regular type as a quotient lens:

.

.
.

V1·!V2

l ∈ S/∼S ⇐⇒ V1/∼V1

f ∈ S → V2

dup1 l f ∈ S/∼S ⇐⇒ (V1·V2)/(∼V1 ·Tot(V2))

.
get s =(l.get s)·(f s)
put (v1·v2) s =(l.put v1 s)
create (v1·v2)= (l.create v1)

3.2.18 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ V1/∼V1 and let f be a function from S to V2 such
that V1·!V2. Then dup1 l f is a quotient lens in S/∼S ⇐⇒ (V1·V2)/(∼V1 ·Tot(V2)).

52

The dup1 lens takes a quotient lens l and a function f as arguments (f is often the get component of a
lens). In the get direction it duplicates the source string and passes one copy to l’s get function and the
other copy to f . The put function discards the portion of the view generated by f and invokes l’s put
function on the rest of the view. For example, the following lens duplicates a letter in the get direction:

let l : lens = copy [A-Z]
test (dup1 l (get l)).get "A" = "AA"

The put function simply discards the second copy:

test (dup1 l (get l)).put "BC" into "A" = "B"

The type of dup1 records the fact that it treats all strings in the part of the view generated by f as
equivalent.

A symmetric operator dup2 f l discards the àrst substring of the view in the put direction instead.
In both of these lenses, the handling of duplicated data is admittedly quite simple. In particular, unlike
the duplication operators proposed and extensively studied by [HMT08], put and create do not merge
the changes made to the duplicated data. Nevertheless, they sufàce for many examples that arise in
practice. For example, when f is an aggregation operator such as count E, which takes a string u in
[[E]]∗ and returns the number of substrings in E that u can be split into, discarding the aggregate value
while propagating the modiàcations made to the other copy makes sense.

Normalize The next combinator is a generic operator builds a canonizer from a function that maps
a set of strings onto a “normalized” subset of itself.

.

.
.

S0 ⊆ S ∀s ∈ S0. f s = s
f ∈ S → S0

normalize f ∈ S .
. S0/=

.canonize s= f s
choose s = s

3.2.19 Lemma: Let S and S0 be sets such that S0 ⊆ S. Also let f ∈ S → S0 be a function from S to
S0 such that f s = s for every s in S0. Then normalize f is a canonizer in S .

. S0/=.

The canonize function is the function f , and the choose component is the identity function on S0. The
constraint on f and the condition that S0 ⊆ S guarantee that the RC law holds.

As an example, consider a canonizer that puts the substrings of a longer string in sorted order. To
keep the notation simple, we will describe the binary version; generalizing to an n-ary sorting canonizer
is straightforward. Let S1 and S2 be regular languages such that S1·!S2 and S2·!S1. Let f be the
function from (S1·S2) ∪ (S2·S1) to S1·S2 that takes the concatenation—in either order—of a string
belonging to S1 and a string belonging to S2, and reorders the substrings so that the S1 substring comes
before the S2 substring. Formally, f is deàned by the following equations: f (s1·s2) = (s1·s2) and
f (s2·s1) = (s1·s2), where s1 ∈ S1 and s2 ∈ S2. Observe that f satisàes the side condition mentioned
in the typing rule for normalize because it behaves like the identity function on already-sorted strings.
Thus, the canonizer sort S1 S2 , normalize f is in (S1·S2∪S2·S1) . . (S1·S2)/=. We often use the n-ary
version of sort to standardize the representation of semantically-unordered data—e.g., XML attributes,
BibTeX àelds, etc.

53

Unwrap Many ad hoc textual formats require that long lines be broken by replacing a space character
with a newline followed by several spaces. For example, the UniProt genomic database (described in
Section 3.5) does not allow lines longer than 75 characters. The unwrap canonizer maps between
wrapped and unwrapped lines of text:

.

.
.

n ∈ N sp ∈ Σ∗ nl ∈ Σ∗
(Σ∗·nl·Σ∗) ∩ S0 = ∅

unwrap n S0 sp nl ∈ ([(sp ∪ nl)/sp]S0) .
. S0/=

.canonize s : replace nl with sp in s
choose s : replace sp with nl in s as needed to break lines longer than n

3.2.20 Lemma: Let n be a natural number, S0 a language, and sp and nl strings such that for every
string u in S0 the string nl does not occur in u. Then unwrap n S0 sp nl is a canonizer in ([(sp ∪
nl)/sp]S0) .

. S0/=.

Formally, the unwrap canonizer takes a number n, a set of strings S0, a “space” string sp, and a “new-
line” string nl as arguments. The canonize function unwraps blocks of text by replacing every occurrence
of the newline string with the space string. The choose function attempts to create well-wrapped lines
of text. It breaks lines longer than n characters by replacing the space string with the newline string as
needed. The typing rule for unwrap stipulates that nl must not appear in any strings in S0. The type of
uncanonized strings is obtained by widening S0 so that nl may appear anywhere that sp may.

3.3 Loosening Lens Types

We were originally motivated to study quotient lenses by the need to work “modulo insigniàcant de-
tails” when writing lenses to transform real-world data formats. However, as we began using quotient
lenses to develop larger examples we discovered a signiàcant—and completely unexpected—side ben-
eàt: quotient lenses allow us to assign many lenses coarser types than the strict lens laws allow, which
eases some serious tractability concerns.

Recall from Chapter 2 that because we require put to be a total function, the types of many lenses
need to be extremely precise. Totality is attractive for users because it ensures that any view can be put
back with any source. However, for exactly the same reason, totality makes it more difàcult to design
lens primitives—the put function must do something reasonable with every valid view and valid source,
so the only way that a lens can avoid having to handle certain structures is by excluding them from
its type. Thus, in practice, a lens language with a sufàciently rich collection of primitives needs to be
equipped with a correspondingly rich collection of types. There are some advantages to working with
very precise types—e.g., the Boomerang typechecker often ànds subtle source of ambiguity. But it also
imposes burdens because programmers must write programs that satisfy a very picky typechecker and
implementations must use algorithms that are computationally expensive. Fortunately, the increased
áexibility of quotient lenses and canonizers can be exploited to loosen types and alleviate both of these
burdens. This section describes three examples of this phenomenon.

The àrst example involves the unwrap transformation. The functions that map between unbroken
lines of text and blocks of well-wrapped lines are a bijection, so they satisfy the basic lens laws trivially.
Thus, we could deàne unwrap as a lens—either as a primitive, or using combinators (although the
combinator program would have to keep track of the number of characters on the current line so it

54

would be quite tedious to write). However, the type of this lens on the view side would be the set
of minimally-split, well-wrapped blocks of text (i.e., sequences of lines that must be broken exactly
at the margin column, or ones that must be broken at the column just before the margin because the
next two characters are not spaces, or lines that must be broken at the second-to-last column... and
so on). This type is complicated and cumbersome—both for programmers who must use it and for the
implementation, which must represent it. We could loosen the type to match the one we assigned to the
unwrap canonizer—i.e., arbitrary blocks of text, including ones with “extra” newlines—but changing
the type in this way also requires changing the put function in order to avoid violating the GP
law.5 Formulating unwrap as a canonizer rather than a lens, avoids all of these issues and results in a
primitive whose type and behavior are both simple.

The second example of a transformation whose type can be simpliàed using canonizers is sort. As
with unwrap, it is possible to deàne a basic lens version of sort. To sort S1 to Sk, we take the union of the
lenses that recognize every permutation of the Sis and use the permute lens to put them in sorted order.
This lens has the behavior we want, but its type on the source side is the set of all permutations of the
Sis—a type whose size grows as the factorial of k! Representing this type in the implementation would
rapidly become impractical. Fortunately, this combinatorial blowup can be avoided by widening the
concrete type to (S1 | . . . |Sk)∗. This approximates the set of strings that we actually want to sort, but
has an enormously more compact representation—one that grows linearly with k. Of course, having
widened the type in this way, we also need to extend the canonizer’s functional components to handle
this larger set of strings. In particular, we must extend canonize to handle the case where several or no
substrings belong to a given Ri. A simple choice that works well for many examples is to discard the
extras and àll in any missing ones with defaults.

The ànal example involves the duplication operator. As discussed in Chapter 2, it is possible to
have duplication as a basic lens the view type must include an equality constraint to satisfy PG.
By deàning dup1 and dup2 as quotient lenses, we obtain a primitive with a much simpler—in fact,
regular—type.

3.4 Typechecking

The examples in the previous section showed how quotient lenses ease certain aspects of typecheck-
ing. However, quotient lenses complicate other aspects because the typechecker needs to keep track
of equivalence relations on the source and view. Also, the typing rules for left and right quotienting,
sequential composition, and union all place constraints on the equivalence relations mentioned in the
types of sublenses. For example, to check that the composition l;k is well typed, it needs to verify that
the equivalence on l’s view is identical to the equivalence on k’s source.

This section describes two different strategies for implementing these rules. The àrst uses a coarse
analysis, simply classifying equivalences according to whether they are or are not the equality relation.
Surprisingly, this very simple analysis captures our most common programming idioms and turns out to
be sufàcient for all of the applications we have built. The second approach is more reàned: it represents
equivalence relations by rational functions that induce them. This works, in principle, for a large
class of equivalence relations including most of our canonizers (except for those that do reordering).
Unfortunately, it requires representing and deciding equivalences for ànite state transducers, which
appears prohibitively expensive.

5If we take a block of text containing extra newlines, map it to a single line of text by get, and immediately map it back
to a block by put, then the GP law stipulates that the extra newlines must be restored exactly. Thus, the put function
cannot just insert the minimum number of newlines needed to avoid spilling over into the margin; it must restore the extra
newlines from the original source.

55

The àrst type system is based on two simple observations: àrst, most quotient lenses originate as
lifted basic lenses, and therefore have types whose equivalence relations are both equality; second,
equality is preserved by many of our combinators including all of the regular operators, swap, sequen-
tial composition, and even (on the non-quotiented side) the left and right quotient operators. These
observations suggest a coarse classiàcation of equivalence relations into two sorts:

τ ::= Identity | Any

We can now restrict the typing rules for our combinators to only allow sequential composition, quo-
tienting, and union of types whose equivalence relation type is Identity . Although this restriction is
draconian (it disallows many quotient lenses that are valid according to the typing rules presented in ear-
lier sections), it turns out to be surprisingly successful in practice—we have not needed anything more in
many thousands of lines of lens programs. There are two reasons for this. First, it allows two quotient
lenses to be composed, whenever the uses of lquot are all in the lens on the left and the uses of rquot on
the right, a very common case. And second, it allows arbitrary quotient lenses (with any equivalences)
to be concatenated as long as the result is not further composed, quotiented, or unioned—another very
natural idiom. This is the typechecking algorithm implemented in our Boomerang language.

In theory, we can go further by replacing the Identity sort with a tag carrying an arbitrary rational
function f—i.e., a function computable by a ànite state transducer[Ber79]:

τ ::= Fst of f | Any

Equivalence relations induced by rational functions are a large class that includes nearly all of the
equivalence relations that can be formed using our combinators—everything except quotient lenses
constructed from canonizers based on sort and swap. Moreover, we can decide equivalence for these
relations.

3.4.1 Notation [Induced Equivalence Relation]: Let f ∈ A → B be a rational function. Denote by ∼f

the relation {(x, y) ∈ A × A | f(x) = f(y)}.

3.4.2 Lemma: Let f ∈ A → B and g ∈ A → C be rational and surjective functions. Deàne a rational
relation h ⊆ C × B as f ◦ g−1. Then ∼g ⊆ ∼f if and only if h is functional.

Proof: Let us expand the deànition of h

h(c) = {f(a) | a ∈ A and g(a) = c}

Observe that, by the surjectivity of g we have h(c) ̸= ∅.

(⇒) Suppose that ∼g ⊆ ∼f .

Let b, b′ ∈ h(c). Then by the deànition of h, there exist a, a′ ∈ A with b = f(a) and b′ = f(a′)
and g(a) = c = g(a′). We have that a ∼g a′, which implies that a ∼f a′, and so b = b′. Since b
and b′ were arbitrary elements of h(c), we conclude that h is functional.

(⇐) Suppose that h is functional.

Let a, a′ ∈ A with a ∼g a′. Then there exists c ∈ C such that g(a) = g(a′) = c. By the deànition
of h, and our assumption that h is functional, we have that f(a) = h(c) = f(a′) and so a ∼f a′.
Since a and a′ were arbitrary, we conclude that ∼g ⊆ ∼f . �

3.4.3 Corollary: Let f and g be rational functions. It is decidable whether ∼f = ∼g.

56

Proof: Recall that rational relations are closed under composition and inverse. Observe that ∼f = ∼g

if and only if both f ◦ g−1 and g ◦ f−1 are functional. Since these are both rational relations, the result
follows using the decidability of functionality for rational relations [Bla77]. �

The condition mentioned in union can also be decided using an elementary construction on rational
functions. Thus, this àner system gives decidable typechecking for a much larger set of quotient lenses.
Unfortunately, the constructions involved seem prohibitively expensive to implement.

3.5 Examples

Most of the examples discussed in this chapter have focused on fairly simple transformations—e.g.,
handling whitespace. In this last section, we illustrate the use of quotient lenses in a larger transfor-
mation that maps between XML and ASCII versions of the UniProtKB/Swiss-Prot protein sequence
database. We originally implemented this transformation as a basic lens, but found that although the
lens handled the essential data correctly, it did not handle the full complexity of either format. On
the XML side, the databases had to be a certain canonical form—e.g., with attributes in a particular
order—while on the ASCII side, it did not conform to the UniProt conventions for wrapping long lines
and did not handle àelds with duplicated data. We initially considered implementing custom viewers to
handle these complexities, but this turned out to be almost as difàcult as writing the lens itself, due to
the slightly different formatting details used to represent lines for various kinds of data. Re-engineering
the program as a quotient lens was a big improvement.

To get a taste of programming with quotient lenses, let us start with a simple example illustrat-
ing canonization of XML trees. In the XML presentation of UniProt databases, patent citations are
represented as XML elements with three attributes:

<citation type="patent" date="1990-09-20"
number="WO9010703"/>

In ASCII, they appear as RL lines:

RL Patent number WO9010703, 20-SEP-1990.

The bidirectional transformation between these formats is essentially bijective—the patent number can
be copied verbatim to the line, and the date can be transformed from YYYY-MM-DD to DD-MMM-YYYY—but
because the formatting of the element may include extra whitespace and the attributes may appear in
any order, building a lens that maps between all valid representations of patent citations in XML and
ASCII formats is more complicated than it might seem at àrst.

A bad choice (and the only choice available with basic lenses) would be to treat the whitespace and
the order of attributes as data that should be explicitly discarded by the get function and restored by
the put. This complicates the lens, which then has to explicitly manage all this irrelevant data. Slightly
better would be to write a canonizer that standardizes the representation of the XML tree and compose
this with a lens that operates on the canonized data to produce the ASCII form. But we can do even
better by combining the functionality of the canonizer and the lens into a single quotient lens. It uses
some helper functions and library code described below.

let patent_xml : lens =
ins "RL " .
Xml.attr3_elt_no_kids NL2 "citation"

"type" ("patent" <-> "Patent number" . space)

57

"number" (escaped_pcdata . comma . space)
"date" date .

dot

This lens transforms concrete XML to abstract ASCII in a single pass. The àrst line inserts the RL tag
and spaces into the ASCII format. The second line is a library function from the Xmlmodule that encap-
sulates details related to the processing of XML elements. The àrst argument, a string NL2, is a constant
representing the second level of indentation. The attr3_elt_no_kids function passes this argument to
the qdel lens, which uses it to construct the whitespace before the open tag for the XML element in the
put direction. The second argument, citation, is the name of the element. The remaining arguments
are the names of the attributes and the lenses used for processing their corresponding values. These are
given in canonical order. Internally attr3_elt_no_kids sorts the attributes to put them in this order.
The space, comma, and dot lenses insert the obvious characters; escaped_pcdata handles unescaping
of PCDATA; the date lens performs the bijective transformation on dates illustrated above.

The next example illustrates quotienting on the ASCII side. In the XML format, taxonomic lineages
of source organisms are represented like this

<lineage>
<taxon>Eukaryota</taxon>
<taxon>Lobosea</taxon>
<taxon>Euamoebida</taxon>
<taxon>Amoebidae</taxon>
<taxon>Amoeba</taxon>

</lineage>

while in ASCII, they are áattened onto lines tagged with OC:

OC Eukaryota; Lobosea; Euamoebida; Amoebidae; Amoeba.

The code that converts between these formats is:

let oc_taxon : lens =
Xml.pcdata_elt NL3 "taxon" esc_pcdata

let oc_xml : lens =
ins "OC " .
Xml.elt NL2 "lineage"
(iter_with_sep oc_taxon (semi . space)) .

dot

The àrst lens, oc_taxon, processes a single taxon element using a library function pcdata_elt that
extracts encapsulated PCDATA from an element. As in the previous example, the NL3 argument is a
constant representing canonical whitespace. The second lens, oc_xml, processes a lineage element. It
inserts the OC tag into the ASCII line and then processes the children of the lineage element using a
generic library function iter_with_sep that iterates its àrst argument using Kleene-star, and inserts its
second argument between iterations. The dot lens terminates the line. The lineage for amoeba shown
above is compact enough to àt onto a single OC line, but most lineages are not:

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
OC Euteleostomi; Mammalia; Eutheria; Euarchontoglires;
OC Primates; Haplorrhini; Catarrhini; Hominidae; Homo.

58

The quotient lens that maps between single-line OC strings produced by oc_xml and the ànal line-
wrapped format:6

let oc_q : canonizer =
unwrap 60 (vtype oc_xml) " " "\nOC "

let oc_line : lens =
rquot oc_xml oc_q

The vtype primitive extracts the view part of the type of a quotient lens.
Lastly, let us look at two instances where data is duplicated. In a few places in the UniProt database,

there is data that is represented just once on the XML side but several times on the ASCII side. For
example, the count of the number of amino acids in the actual protein sequence for an entry is listed as
an attribute in XML

<sequence length=" ..262" ...>

but appears twice in ASCII, in the ID line

ID GRAA_HUMAN Reviewed; ..262 AA.

and again in the SQ line:

SQ SEQUENCE ..262 AA; 28969 MW;

Using dup2, we can write a lens that copies the data from the XML attribute and onto both lines in the
ASCII format. The backwards direction of dup2 discards the copy on the ID line, a reasonable policy
for this application, since it is generated information.

Another place where duplication is needed is when data is aggregated. The ASCII format of the
information about alternative splicings of the gene is

CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative initiation; Named isoforms= ..2;
CC Name=Long; Synonyms=Cell surface;
CC IsoId=P08037-1; Sequence=Displayed;
CC Name=Short; Synonyms=Golgi complex;
CC IsoId=P08037-2; Sequence=VSP_018801;

where the Named isoforms àeld in the second line is the count of the number of Name blocks that follow
below. The quotient lens that produces these lines uses dup2 and count to generate the appropriate
integer in the get direction and simply discards the integer in the put direction.

3.6 Summary

Quotient lenses generalize basic lenses, allowing their forward and backward transformations to treat
certain speciàed portions of the source and view as “inessential”. This extension, while simple at the
semantic level, turns out have an elegant syntactic story based on canonizers and quotienting operators.
The resulting system is parsimonious—the same primitives can be used as lenses and as canonizers—and
compositional—unlike previous approaches, where canonization is kept at the edges of transforma-
tions, canonizers can be freely interleaved with the processing of data. Moreover, the áexibility offered

6In this example, we have split lines at the 60th column to make them àt onto the page. In a real UniProt instance, the
lines would be split at the 75th column instead.

59

by quotient lenses make it possible to deàne additional primitives such as duplication and sorting op-
erators and simpliàes the typing rules for several operators, which addresses some serious engineering
concerns. Our experience indicates that canonizers and quotient lenses are essential for building lenses
for real-world data formats.

60

Chapter 4

Resourceful Lenses

“The art of progress is to preserve order amid change
and to preserve change amid order.”

—Alfred North Whitehead

Alignment is a fundamental issue in bidirectional languages. Intuitively, to correctly propagate an
update to a view, the put component of a lens needs to be able to match up the pieces of the modiàed
view with the corresponding pieces of the underlying source. Unfortunately, the basic and quotient
lenses we have seen so far have extremely limited capabilities with respect to alignment—they match
up data by position. When the update to the view preserves the positional association between pieces
of the source and pieces of the view this simple strategy works well, but when the update breaks the
association it does not—the put function restores information extracted from pieces of the source to
completely unrelated pieces of the view.

To illustrate the problem, consider the composers example again. Suppose that the source is a string
representing the same XML document as before

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865-1956</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>
<nationality>American</nationality>

</composer>
<composer>
<name>Benjamin Briten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>

</composer>
</composers>

and the view is the corresponding block of ASCII text:

Jean Sibelius, 1865-1956

61

Aaron Copland, 1910-1990
Benjamin Briten, 1913-1976

If the update only modiàes composers in place and perhaps adds new entries to the end of the view,
the simple positional alignment strategy used in basic lenses works well. For example, if we change
Sibelius’s death date from “1956” to “1957”, correct the spelling of Britten’s name from “Briten” to
“Britten”, and add a new line for Tansman, then the put function combines

Jean Sibelius, 1865- ..1957
Aaron Copland, 1910-1990
Benjamin ..Britten, 1913-1976

..Alexandre Tansman, 1897-1986

with the original source and yields an updated XML tree that reáects the changes made to the view:

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865- ..1957</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name>Aaron Copland</name>
<dates>1910-1990</dates>
<nationality>American</nationality>

</composer>
<composer>
<name>Benjamin ..Britten</name>
<dates>1913-1976</dates>
<nationality>English</nationality>

</composer>
..<composer>

..<name>Alexandre Tansman</name>
..<dates>1897-1986</dates>

..<nationality>Unknown</nationality>
..</composer>

</composers>

However, if the update breaks the positional association between pieces of the source and view, the
behavior of the put function is highly unsatisfactory. For example, if we correct Sibelius’s death date
and Britten’s name as above and swap the order of Britten and Copland, then the put function combines

Jean Sibelius, 1865- ..1957
..Benjamin Britten, 1913-1976

..Aaron Copland, 1910-1990

with the original source and produces a mangled source

<composers>
<composer>

62

<name>Jean Sibelius</name>
<dates>1865- ..1957</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name> ..Benjamin Britten</name>
<dates> ..1913-1976</dates>
<nationality>American</nationality>

</composer>
<composer>
<name> ..Aaron Copland</name>
<dates> ..1910-1990</dates>
<nationality>English</nationality>

</composer>
</composers>

where the nationality has been taken from Copland’s element and spliced into Britten’s element, and
vice versa.

This is a serious problem, and a pervasive one: it is triggered whenever the get function discards
information and the update to the view does not preserve the positional correspondence between pieces
of the source and view. It is a show-stopper for many of the applications we want to write using lenses.
Of course, what we would like is for the put function to align the composers in the source and view
using some criteria other than their absolute position. For example, it could match up composers with
the same name. On the same inputs as above, a lens that aligned composers in this way would produce
a source in which each nationality is restored to the appropriate composer:

<composers>
<composer>
<name>Jean Sibelius</name>
<dates>1865- ..1957</dates>
<nationality>Finnish</nationality>

</composer>
<composer>
<name> ..Benjamin Britten</name>
<dates> ..1913-1976</dates>
<nationality> ..English</nationality>

</composer>
<composer>
<name> ..Aaron Copland</name>
<dates> ..1910-1990</dates>
<nationality> ..American</nationality>

</composer>
</composers>

Unfortunately, neither basic lenses nor quotient lenses provide the means to achieve this effect. Devel-
oping mechanisms that lens programmers can use to specify and use strategies for aligning information
in the source and view is the goal of this chapter.

Our solution is to provide programmers with a way to identify the locations of chunks in the source
and view as well as a way to specify the strategy to use to align chunks in the put direction. The

63

.

.

.. ..

.. ..

.. ..

.. ..

..

.

.

.. ..

.. ..

.. ..

.. ..

..

.

.

.. ..

.. ..

.. ..

.. ..

. ..

.

.

.. ..

.. ..

.. ..-

.. ..

. ..+
(a) positional (b) min. edit distance (c) non-crossing (d) operation-based

Figure 4.1: Alignment strategies

idea is for the put function to use the speciàed policy to compute an association—formally, a partial
injection—between chunks in the original view and the updated view. It then combines this association
with the association between chunks in the source and view realized by the get function to obtain an
end-to-end association between chunks in the original source with chunks in the updated view and uses
this alignment to put back corresponding chunks with each other.

Here is a lens written using the extensions described in this chapter that has the desired behavior
for the composers example:

let composer : lens =
xml_elt "composer"
(xml_elt "name"

(..key (copy (ALPHA . " " . ALPHA)))
. ins ", "
. xml_elt "dates" (copy (YEAR . "-" . YEAR))
. xml_elt "nationality"

(del_default ALPHA "Unknown"))

let composers : lens =
xml_elt "composers"
(copy "" | ..<composer> . (ins "\n" . ..<composer>)*)

Compared to the original version of the lens we have made two changes. First, we have enclosed both
occurrences of the composer lens in angle brackets, indicating that each composer should be treated as
a reorderable chunk. Second, we have wrapped the lens that copies the name of each composer to view
with a special primitive key. This indicates that the lens should use the name to align the enclosing
chunk. We do not actually demand that keys be unique—i.e., these are not keys in the strict database
sense so when several chunks have the same key the relative alignment of those chunks is positional.
The net effect of these changes is that the put function aligns composers by name, as desired.

To make these features work as expected, we extend the framework of basic lenses in several ways.
Operationally, we decouple the handling of rigidly ordered and reorderable information by dividing the
representation of source information provided to the put function into two pieces: a rigid complement
that records the source information that should be handled positionally and a resource that stores the
information extracted from the reorderable chunks in the source. The resource provides a means of
supplying a lens with explicit alignment information since its elements can be rearranged to yield a
pre-aligned structure in which each element matches up with the appropriate chunk in the view. To
generate these structures, we augment lenses with a new component called res. The architecture of
these resourceful lenses is depicted graphically in Figure 4.2.

64

.

.

rigid complement

resource

original
source

res

.

.

rigid complement

resource

updated
source

original
view

updated
view

(a) res function (b) put function

Figure 4.2: Resourceful Lens Architecture

Semantically, we enrich the types of resourceful lenses with explicit notions of what constitutes a
reorderable “chunk,” andwe add new behavioral laws that capture essential constraints on the handling
of chunks. These laws stipulate that lenses must carry chunks in the source through to chunks in the
view, and vice versa. They can be used to derive other natural properties—e.g., that resourceful lenses
translate reorderings to reorderings.

Finally, at the level of syntax, we develop a collection of primitives for building lenses for strings. We
deàne coercions that convert between basic lenses and resourceful lenses, reinterpret the familiar regular
operators (union, concatenation, and Kleene star) as resourceful lenses, and show that resourceful
lenses are closed under composition. We also present primitives for specifying, combining, and tuning
alignment functions in terms of “species”, “tags”, “keys”, and “thresholds.”

One of the hallmarks of our design for resourceful lens is its áexibility. In a resourceful lens, the
handling of rigidly ordered and reorderable information are completely decoupled from each other.
This explicit separation of concerns provides a clean interface for supplying a lens with clear direc-
tives about how the source and view should be aligned and yields an extremely áexible framework that
can be instantiated with many different policies for computing alignments. Figure 4.1 depicts several
common strategies we have found useful in examples: (a) positional, (b) minimizing the total edit dis-
tance between matched chunks, (c) minimizing total edit distance but only considering “non-crossing”
alignments (i.e., similar to longest common sequence), and (d) extracting an alignment from the actual
update operation applied to the view. The framework of resourceful lenses accommodates each of these
strategies.

The contributions of this chapter can be summarized as follows:

1. We deàne a reàned semantic space of resourceful lenses that enriches the types of basic lenses with
chunks and adds new behavioral laws ensuring that chunks are handled correctly.

2. We develop syntax for constructing resourceful lenses for strings, showing how to convert be-
tween basic and resourceful lenses, and reinterpreting each of the regular operators as a resource-
ful lens.

3. We describe a number of alignment “species” and show how they can be tuned using notions of
“tags”, “keys”, and “thresholds.”

In outline, the rest of this chapter is organized as follows. Section 4.1 deànes the semantic space of
resourceful lenses and develops some essential properties. Section 4.2 deànes a core language of re-

65

sourceful lens primitives for strings. Section 4.3 presents primitives for describing and tuning alignment
strategies. Section 4.4 describes extensions to the framework. We conclude the chapter in Section 4.5.

4.1 Semantics

Resourceful lenses are organized around a simple two-level architecture in which a top-level lens handles
the alignment of chunks and the processing of information outside of chunks and a lower-level basic
lens handles the processing of information contained in chunks. For now, we will assume that chunks
only appear at the top level and the same basic lens is used to process every chunk. We will see how to
generalize this design to accommodate multiple basic lenses and nested chunks in Sections 4.3 and 4.4.

Notation

Before we can deàne resourceful lenses precisely, we need to àx a few pieces of notation. We assume
that the sets of sources and views come equipped with notions of what constitutes a reorderable chunk
of information. When u is a structure containing chunks we write

• |u| for the number of chunks in u,

• locs(u) for the set of locations of chunks in u, where a location is a natural number and we
number the chunks of u from 1 to |u| in some canonical way,

• u[n] for the chunk located at n in u, where n ∈ locs(u),

• u[n:=v] for the structure obtained from u by setting the chunk at n to v, where n in locs(u) and
v is a structure,

• and skel(u) for the residual structure consisting of the parts of u that are not contained in any
chunk.

We assume that structures are completely characterized by their skeleton and chunks.
To ensure that chunks can be freely reordered, we will require the sets of sources and views be closed

under the operation of replacing chunks by other chunks. Formally, when U is a set of structures with
chunks (e.g., the set of sources or views) and U ′ is a set of ordinary structures, we say that U is chunk
compatible with U ′ if and only if

• the chunks of every structure in U belong to U ′—i.e., for every u ∈ U we have u[n] ∈ U ′,

• and membership in U is preserved when we replace arbitrary chunks with elements of U ′—i.e.,
for every u ∈ U and n ∈ locs(u) and u′ ∈ U ′ we have that u[n:=u′] ∈ U ′.

To represent resources we will use ànite maps from locations to chunks. This representation makes it
easy to apply alignment information to resources—we can match up chunks in the source and view as
speciàed in the alignment by permuting the order of certain chunks and discarding others. When r is a
ànite map we write:

• {||} for the totally undeàned ànite map,

• {|n 7→ c|} for the singleton ànite map that associates the location n to the complement c and is
otherwise undeàned,

• r(n) for the complement that r associates to n,

66

• dom(r) for the domain of r,

• |r| for the largest element of dom(r),

• (r1 ++ r2) for the ànite map that behaves like the ànite map r1 on locations in dom(r1) and like
r2 on other locations,

(r1 ++ r2)(n) ,
{

r1(n) if n ≤ |r1|
r2(n − |r1|) otherwise,

• and {|N 7→ C|} for the set of all ànite maps from locations to complements in a set C.

To illustrate how these ànite maps are used in a resourceful lens, consider a simple abstract example.
Suppose that we start with a source s that the get function maps to a view v and the res function maps
to a rigid complement c and a ànite map r, called a resource (recall that resourceful lenses split the
representation of rigidly ordered and reorderable source information). Also suppose that the chunks
in s, v and r are in exact correspondence—i.e., the lens does not reorder chunks, so for every location
n, the source chunk s[n] at n maps to v[n] in the view and r(n) in the resource. Now suppose that we
change the view to v′ and compute—in some way—a correspondence g between v′ and v, represented
formally as a partial injective function on the locations of chunks in v′. Composing g and r as functions
yields a new resource in which the complement for each chunk in s is lined up with the speciàed chunk
in v′. Thus, to propagate the modiàcation make to the view we simply need to put back v′ with the
rigid complement c and the pre-aligned resource r ◦ g using a lens that accesses source information for
chunks through the resource.

Deànitions

We are now ready to deàne the semantic space of resourceful lenses precisely. To make the deàni-
tion easier to follow, we àrst revise the deànition of basic lenses to make the representation of source
information provided to the put function—the complement—explicit.

4.1.1 Deànition [Basic Lens with Complement]: Let S and V be sets of sources and views and let C be
a set of “complements”. A basic lens l mapping between S and V with complement C comprises four
total functions

l.get ∈ S → V
l.res ∈ S → C
l.put ∈ V → C → S

l.create ∈ V → S

obeying the following “round-tripping” laws for every source s in S, complement c in C, and view v in
V :

l.get (l.put v c) = v (PG)

l.get (l.create v) = v (CG)

l.put (l.get s) (l.res s) = s (GP)

We write S
C⇐⇒V for the set of all basic lenses between S, C, and V .

Now we are ready for the main deànition:

67

4.1.2 Deànition [Resourceful Lens]: Let S and V be sets of structures with chunks, C a set of rigid
complements, and k a basic lens with S chunk compatible with k.S (i.e., the source type of k) and V
chunk compatible with k.V (i.e., the view type of k). A resourceful lens l on S, C, k, and V comprises
four functions

l.get ∈ S → V
l.res ∈ S → C × {|N 7→ k.C|}
l.put ∈ V → C × {|N 7→ k.C|} → S

l.create ∈ V → {|N 7→ k.C|} → S

obeying the following laws for every source s ∈ S, views v ∈ V and v′ ∈ V , rigid complement c ∈ C,
and resource r ∈ {|N 7→ k.C|} (i.e., ànite map from locations to appropriately-typed complements for
k):

l.get (l.put v (c, r)) = v (PG)

l.get (l.create v r) = v (CG)

l.put (l.get s) (l.res s) = s (GP)

locs(s) = locs(l.get s) (GC)

c, r = l.res s

locs(s) = dom(r)
(RC)

n ∈ (locs(v) ∩ dom(r))
(l.put v (c, r))[n] = k.put v[n] (r(n))

(CP)

n ∈ (locs(v) ∩ dom(r))
(l.create v r)[n] = k.put v[n] (r(n))

(CC)

n ∈ (locs(v) − dom(r))
(l.put v (c, r))[n] = k.create v[n]

(NCP)

n ∈ (locs(v) − dom(r))
(l.create v r)[n] = k.create v[n]

(NCC)

skel(v) = skel(v′)
skel(l.put v (c, r)) = skel(l.put v′ (c, r′))

(SP)

skel(v) = skel(v′)
skel(l.create v r) = skel(l.create v′ r′)

(SC)

We write S
C,k⇐⇒ V for the set of all resourceful lenses on S, C, k and V .

Note that we build k, the basic lens that processes chunks, into the semantics of resourceful lenses
because the CP, NCP, CC, and NCC laws all mention it.
For technical reasons, it is important that the same basic lens be used for every chunk. Among other
things, it ensures that a resourceful lens translates reorderings on the view to reorderings on the source.

68

The get function has the same type as in basic lenses. The put function, however, has a different
type: it takes a rigid complement and a resource rather than a complement. The res extracts these
structures from a source. The create function also has a different type—along with the view, it takes a
resource as an argument. This makes it possible for resourceful lenses to restore source information to
chunks that have been newly created. To create a source from a view “from scratch”, we invoke create
with the empty resource.

The PG, CG, and GP laws express the same constraints as the basic lens laws.
The GC and RC law constrain the handling of chunks. They force resourceful

lenses to maintain a one-to-one correspondence between the chunks in the source and view and the
complements in the resource. Speciàcally, the GC law stipulates that each chunk in the source
must be carried through to a chunk in the view. This rules out lenses that advertise the presence of
chunks in the source but not in the view and vice versa. The RC law requires an analogous
property for the resource generated by the res function from the source. Lenses that violate these
laws would cause problems with the protocol for using alignments information with a resourceful lens
described previously—rearranging the resource using an alignment computed for the view would not
make sense if the underlying source had different chunks than the view. We do not state PC
and CC laws because they can be derived from the other laws:

4.1.3 Lemma [PutChunks]: Let l be a resourceful lens in S
C,k⇐⇒ V , let v ∈ V be a view, let c ∈ C be a

rigid complement, and let r ∈ {|N 7→ k.C|} be a resource. Then locs(l.put v (c, r)) = locs(v).

4.1.4 Lemma [CreateChunks]: Let l be a resourceful lens in S
C,k⇐⇒ V , let v ∈ V be a view, and let

r ∈ {|N 7→ k.C|} be a resource. Then locs(l.create v r) = locs(v).

The next four laws are the fundamental resourceful lens laws—they ensure that the put and create
functions use their resource arguments and the basic lens k correctly. The PC law stipulates
that the nth chunk in the source produced by put must be identical to the structure produced by ap-
plying k.put to the nth chunk in the view and the complement associated to n in the resource. The
CC law is similar. The NCP and NCC laws stipulate that the re-
sourceful lens must use k.create to produce the nth source when the resource does not contain an entry
for n.

The last two laws, SP and SC, state that the skeleton of the sources produced by put
and create must not depend on any of the chunks in the view or complements in the resource. This law
is critical for ensuring that resourceful lenses translate reorderings on chunks in the view to reorderings
on source chunks.

Properties

Compared to the basic lens laws, these laws have a low-level and operational feel—they spell out the
precise handling of chunks and resources in detail. However, we can use them to derive higher-level,
more declarative properties. For instance, we can use them to show that the put and create components
of every resourceful lens translate reorderings on the chunks in the view to corresponding reorderings
on the chunks in the source. We write Perms(u) for the set of all permutations of the chunks in u and
(q	 u) for the structure obtained by reordering the chunks of u according to a permutation q. The next
two lemmas follow directly from the resourceful lens laws:

4.1.5 Lemma [ReorderPut]: Let l ∈ S
C,k⇐⇒ V be a resourceful lens, let v ∈ V be a view, let c ∈ C be

a rigid complement, let r ∈ {|N 7→ k.C|} be a resource, and let q ∈ Perms(v) be a permutation on the
chunks of v. Then we have q	 (l.put v (c, r)) = l.put (q	 v) (c, r ◦ q−1).

69

4.1.6 Lemma [ReorderCreate]: Let l ∈ S
C,k⇐⇒ V be a resourceful lens, let v ∈ V be a view, let r ∈

{|N 7→ k.C|} be a resource, and let q ∈ Perms(v) be a permutation on the chunks of v. Then we have
q	 (l.create v r) = l.create (q	 v) (r ◦ q−1).

Another way to understand the semantics of resourceful lenses is by the coercion ⌊·⌋ (pronounced
“lower”), which takes a resourceful lens l in S

C,k⇐⇒ V and packages it up with the interface of a basic
lens in S

S⇐⇒ V . This coercion realizes the procedure for using a resourceful lens described above,
where we compute a correspondence between the chunks in the new and old views and use it to pre-
align the resource before invoking the put function (it computes the alignment using the function align,
which is described below):

.

.

.
l ∈ S

C,k⇐⇒ V

⌊l⌋ ∈ S
S⇐⇒ V

.

get s = l.get s
res s = s
put v s = l.put v (c, r ◦ g)

where (c, r) = l.res s
and g = align(v, l.get s)

create v = l.create v {||}

4.1.7 Lemma: Let l ∈ S
C,k⇐⇒ V be a resourceful lens. Then ⌊l⌋ is a basic lens in S

S⇐⇒ V .

The get function is identical to l.get. The res function simply uses the entire source as the complement.
The put function takes a view v and a complement s as arguments. It àrst uses l.res to calculate a rigid
complement c and resource r from s and then calculates a correspondence g between the locations of
chunks in v and chunks in l.get s using align. For now, we simply assume that align is a àxed function
that takes two views and computes a correspondence between their chunks—formally, a partial injective
function on their locations. We will describe mechanisms for specifying align in Section 4.3. Next, it
composes r and g as functions, which has the effect of pre-aligning the complements in r with the chunks
in v as speciàed by g. To ànish the job, the put function passes v, c and r ◦ g to l.put, which produces
the new source. The basic create function invokes l.create with the view and the empty resource. Note
that ⌊·⌋ does not assume anything about the align function except that it returns the identity alignment
when its arguments are identical views—this property is needed to prove that ⌊l⌋ obeys GP.

4.2 Syntax

Having deàned the semantic space of resourceful lenses and developed some of their main properties,
we now turn our attention to syntax and develop a collection of resourceful string lens combinators.

Notation

First, let us àx some notation for strings with chunks. We will describe the types of our resourceful
lens primitives using regular expressions decorated with annotations indicating the locations of chunks.
Let ‘⟨’ and ‘⟩’ be fresh symbols not occurring in Σ. The set of chunk-annotated regular expressions is
generated by the following grammar

A ::= R | ⟨R⟩ | A |A | A·A | A∗

70

where R ranges over ordinary regular expressions. Observe that every ordinary regular expression is
also a chunk-annotated regular expression and that chunks only appear at the top level. The denotation
[[A]] of a chunk-annotated regular expression A is a language of chunk-annotated strings—i.e., strings
over the extended alphabet (Σ ∪ {‘⟨’, ‘⟩’})∗ where occurrences of ‘⟨’ and ‘⟩’ are balanced and non-
nested. We write ⌊·⌋ for the erasure function that maps chunk-annotated strings to ordinary strings (by
removing ’⟨’ and ’⟩’ characters and mapping every other character to itself) and we lift ⌊·⌋ to regular
expressions and languages in the obvious way.

We will use languages of chunk-annotated strings to “read off” the locations of chunks in ordinary
strings. Given a language of chunk-annotated strings L and an ordinary string u in the erasure of L, we
calculate the number |u| of chunks in u, the chunk u[n] at n in u, and so on, by àrst “parsing” u into a
chunk-annotated string using L, and then using the explicit chunks in the result to give meaning to each
of the concepts involving chunks. For example, ifL is the language of chunk-annotated strings described
by the chunk-annotated regular expression ⟨(‘A’ | . . . | ‘Z’)·(‘1’ | . . . | ‘9’)⟩∗ and u is “A1B2C3”, then u
parses into “⟨A1⟩⟨B1⟩⟨C1⟩”, so the number |u| of chunks in u is 3, the second chunk u[2] in u is “B2”,
and the string u[2:=“Z9”] obtained by setting the second chunk in u to “Z9” is “A1Z9C3”.

Obviously for this way of identifying chunks in ordinary strings to make sense, we need to be sure
that every string has a unique parse into a chunk-annotated string using L. Not every language has
this property—e.g., “ab” has two different parses using the language {“⟨a⟩b”, “a⟨b⟩”}. To rule out
such chunk ambiguous languages, we will be careful to ensure that every language of chunk-annotated
strings under discussion uniquely determines the chunks of strings in its erasure—i.e., whenever we
introduce a chunk-annotated regular language L as the source or view type of a resourceful lens, we
will make sure that ⌊·⌋ is bijective on L. To lighten the notation, we will sometimes conáate L and ⌊L⌋
when it is clear from context—e.g., we will write u ∈ L instead of u ∈ ⌊L⌋.

Primitives

With this notation àxed, we can now deàne some resourceful lens primitives.

Lift The àrst primitive lifts a basic lens to a resourceful lens. This makes it possible to use basic lenses
such as copy and (<->) as resourceful lenses. As basic lenses have sets of ordinary strings in their types,
the lifted lens does not have chunks so it satisàes the new resourceful lens laws vacuously.

.

.

.

k′ ∈ S′ C′
⇐⇒ V ′

k ∈ S
C⇐⇒ V

k̂ ∈ S
C,k′⇐⇒ V

.

get s = k.get s
res s = k.res s, {||}
put v (c, r)= k.put v c
create v r = k.create v

4.2.1 Lemma: Let k ∈ S
C⇐⇒ V and k′ ∈ S′ C′

⇐⇒ V ′ be basic lenses. Then k̂ is a resourceful lens in
S

C,k′⇐⇒ V .

Note that the lens k′ mentioned in the type of k̂ can be an arbitrary basic lens.

Match Another way to convert a basic lens to a resourceful lens is to place it in a chunk.

71

.

.

.
k ∈ S

C⇐⇒ V

⟨k⟩ ∈ ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩

.

get s = k.get s
res s = �, {|1 7→ k.res s|}

put v (�, r)=
{

k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

create v r =
{

k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

4.2.2 Lemma: Let k ∈ S
C⇐⇒ V be a basic lens. Then ⟨k⟩ is a resourceful lens in ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩.

The ⟨k⟩ lens (pronounced “match k”) is the essential resourceful lens. It uses k to process strings in
both directions, treating the whole source or view as a reorderable chunk. The get component of ⟨k⟩
simply passes off control to the basic lens k. The res function takes the source s and yields � as the
rigid complement and {1 7→ k.res s} as the resource. The put and create functions invoke k.put on the
view and r(1) if r is deàned on 1 and k.create otherwise.

Concatenation Next, let us deàne resourceful versions on the regular operators, starting with con-
catenation:

.

.

.

l1 ∈ S1
C1,k⇐⇒ V1 ⌊S1⌋·!⌊S2⌋

l2 ∈ S2
C2,k⇐⇒ V2 ⌊V1⌋·!⌊V2⌋

l1·l2 ∈ (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2)

.

get (s1·s2) = (l1.get s1)·(l2.get s2)
res (s1·s2) = (c1, c2), (r1 ++ r2)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

put (v1·v2) (c, r)= (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))
where c1, c2 = c

and r1, r2 = split(|v1|, r)
create (v1·v2) r =(l1.create v1 r1)·(l2.create v2 r2)

where r1, r2 = split(|v1|, r)

4.2.3 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋·!⌊S2⌋ and

⌊V1⌋·!⌊V2⌋. Then l1·l2 is a resourceful lens in (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2).

The get function splits the source string into two smaller strings s1 and s2, applies the get functions of
l1 and l2 to these strings, and concatenates the resulting strings. The res function also splits the source
into smaller strings s1 and s2 and applies the res functions of l1 and l2 to these strings. This yields rigid
complements c1 and c2 and resources r1 and r2. It merges the complements into a pair (c1, c2) and
combines the resources into a single ànite map (r1 ++ r2). Because the same basic lens k is mentioned
in the types of both l1 and l2, the resources r1, r2, and (r1 ++ r2) are all ànite maps belonging to
{|N 7→ k.C|}. This ensures that we can freely reorder the resource and pass portions of it to l1 and l2.

72

The put function splits each of the view, rigid complement, and resource in two, applies the put
functions of l1 and l2 to the corresponding pieces of each, and concatenates the results. The create
function is similar. Both split the resource r using split(|v1|, r) (where |v1| is the number of chunks of
the àrst substring of the view). This yields two resources: one that behaves like r restricted to locations
less than or equal to |v1| and another resource that behaves like r shifted down by |v1|. Splitting the
resource in this way ensures that every complement that is aligned with a chunk in the view remains
aligned with the same chunk in the corresponding portion of the resource and substring of the view.
Formally, the split operator is deàned as follows:

(π1(split(n, r)))(m) =
{

r(m) if m ≤ n and m ∈ dom(r)
undeàned otherwise

(π2(split(n, r)))(m) =
{

r(m + n) if (m + n) ∈ dom(r)
undeàned otherwise.

Note that split(|r1|, r1 ++ r2) = (r1, r2). This property is essential for ensuring the GP law.
The requirement that l1 and l2 be deàned over the same basic lens ensures that the resource has

a uniform type. We might be tempted to relax the condition and allow l1 and l2 to be deàned over
different basic lenses, as long as those lenses had compatible complement types. However, this would
lead to lenses with weaker properties. Conside (⟨k1⟩·⟨k2⟩) where k1 and k2 are deàned as follows:

k1 , (a ↔ a | b ↔ b) ∈ {a, b} {a,b}⇐==⇒ {a, b}
k2 , (a ↔ b | b ↔ a) ∈ {a, b} {a,b}⇐==⇒ {a, b}

Invoking put on “aa” yields “ab” as a result (as k1 and k2 are “bijective” lenses, only the view affects
the evaluation of put). Now suppose that we swap the chunks of “aa”. By Lemma 4.1.5, the put
function should produce “ba”—i.e., the string obtained by swapping the chunks of “ab”. But this is
not what happens. Swapping the chunks of “aa” is a no-op, so put produces the same result as before.
Thus, although it is tempting to allow resourceful lenses that use different lenses to process chunks, we
don’t do this, because it would require sacriàcing properties such as Lemma 4.1.5.

Kleene Star The Kleene star operator iterates a resourceful lens:

.

.

.

⌊S⌋!∗ ⌊V ⌋!∗

l ∈ S
C,k⇐⇒ V

l∗ ∈ S∗ (C list),k⇐==⇒ V ∗

.

get (s1 · · · sn) = (l.get s1) · · · (l.get sn)

res (s1 · · · sn) = [c1, . . . , cn], (r1 ++ . . . ++ rn)
where ci, ri = l.res si for i ∈ {1, . . . , n}

put (v1 · · · vn) (c, r) = s′1 · · · s′n
where s′i =

{
l.put vi (ci, ri) i ∈ {1, . . . ,min(n,m)}
l.create vi ri i ∈ {m + 1, . . . , n}

and [c1, · · · , cm] = c
and r′0 = r
and ri, r

′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

create (v1 · · · vn) r =(l.create v1 r1) · · · (l.create vn rn)
where r′0 = r

and ri, r
′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

73

4.2.4 Lemma: Let l ∈ S
C,k⇐⇒ V be a resourceful lens such that ⌊S⌋!∗ and ⌊V ⌋!∗. Then l∗ is a resourceful

lens in S∗ K list,R⇐==⇒ V ∗.

The get and res components of the Kleene star lens are straightforward generalizations of the corre-
sponding components of the concatenation lens. The put function, however is different. Because it is
a total function, it needs to handle situations where the number of substrings of the view is different
than the number of rigid complements. When there are more rigid complements than substrings of the
view, the lens simply discards the extra complements. When there are more substrings than rigid com-
plements, it processes the extra substrings using l.create. This is the reason that create takes a resource
as an argument—the resource may contain complements for chunks in the extra substrings of the view.

To illustrate the last few deànitions, let us consider a simple example:

let k : lens = key [A-Z] . del [a-z]
let l : lens = <k> . (copy "," . <k>)*

The lens k copies an upper-case letter from source to view and deletes a lower-case letter while l uses
the match, concatenation, and Kleene-star lenses to iterate k over a non-empty list of comma-separated
chunks (the Boomerang implementation automatically inserts coercions to lift basic lenses to resourceful
lenses using (·̂) and to convert the top-level resourceful lens to a basic lens using ⌊·⌋when we invoke its
get or put component with string arguments). The behavior of l.get is straightforward—e.g., it maps
“Xx,Yy,Zz” to “X,Y,Z”. However, l.put is more sophisticated—it restores the lower-case letters from
source chunks by resourceful up upper-case letters in the old and new views. For instance, if we insert
“W” into the middle of the view, put behaves as follows:

l.put "Z,Y,W,X" into "Xx,Yy,Zz" = "Zz,Yy,Wa,Xx"

Let us trace the evaluation of this example in detail. First, the ⌊l⌋.put lens uses l.res to calculate a rigid
complement c and resource r from the source string:

c = (�, [(“,”, �), (“,”, �)]) r =


∣∣∣∣∣∣

1 7→ “Xx”
2 7→ “Yy”
3 7→ “Zz”

∣∣∣∣∣∣


Next, it calculates a correspondence g between the chunks in the old view and the new view and
composes this correspondence with r to obtain the pre-aligned resource (for the moment we are ignoring
how the lens computes g—see Section 4.3):

g = .
.X
.Y
.Z

.Z

.Y

.W

.X

=


∣∣∣∣∣∣
4 7→ 1
2 7→ 2
1 7→ 3

∣∣∣∣∣∣
 (r ◦ g) =


∣∣∣∣∣∣
4 7→ “Xx”
2 7→ “Yy”
1 7→ “Zz”

∣∣∣∣∣∣


Finally, it invokes l.put on the new view c and pre-aligned resource r ◦ g. The effect is that the lower-
case letters are restored to the chunk containing the corresponding upper-case letter. Note that the third
chunk, W is created fresh because the resource r ◦ g is undeàned on 3.

Union The ànal regular operator forms the union of two resourceful lenses:

74

.

.

.

⌊S1⌋ ∩ ⌊S2⌋ = ∅ ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋
l1 ∈ S1

C1,k⇐⇒ V1

l2 ∈ S2
C2,k⇐⇒ V2

l1 | l2 ∈ (S1 ∪ S2)
(C1+C2),k⇐===⇒ (V1 ∪ V2)

.

get s =
{

l1.get s if s ∈ ⌊S1⌋
l2.get s if s ∈ ⌊S2⌋

res s =
{

Inl(l1.res s) if s ∈ ⌊S1⌋
Inr(l2.res s) if s ∈ ⌊S2⌋

put v (c, r) =


l1.put v (c1, r) if v ∈ ⌊V1⌋ ∧ c = Inl(c1)
l2.put v (c2, r) if v ∈ ⌊V2⌋ ∧ c = Inr(c2)
l1.create v r if v ̸∈ ⌊V2⌋ ∧ c = Inl(c2)
l2.create v r if v ̸∈ ⌊V1⌋ ∧ c = Inr(c1)

create v r =
{

l1.create v r if v ∈ ⌊V1⌋
l2.create v r if v ̸∈ ⌊V1⌋

4.2.5 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋ ∩ ⌊S2⌋ = ∅
and ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋. Then l1 | l2 is a resourceful lens in (S1 ∪ S2)

(C1+C2),k⇐===⇒ (V1 ∪ V2).

The get function selects l1.get or l2.get by testing whether the source string belongs to ⌊S1⌋ or ⌊S2⌋.
Similarly, res selects one of l1.res or l2.res by testing the source string. It places the resulting rigid
complement in a tagged sum, producing Inl(c) if the source belongs to ⌊S1⌋ and Inr(c) if it belongs to
⌊S2⌋. It does not tag the resource—because l1 and l2 are deàned over the same basic lens k for chunks,
we can safely pass a resource computed by l1.res to l2.put and vice versa.

The put function is slightly more complicated, because the typing rule allows the view types to over-
lap. It tries to select one of l1.put or l2.put using the view and uses the rigid complement disambiguate
cases where the view belongs to both ⌊V1⌋ and ⌊V2⌋. The create function is similar. Note that because
put is a total function, it needs to handle cases where the view belongs to (⌊V1⌋ − V2) but the comple-
ment is of the form Inl(c). To satisfy the PG law, it must invoke one of l1’s component functions,
but it cannot invoke l1.put because the rigid complement c does not necessarily belong to C1. It discards
c and uses l1.create instead.

The side condition (⌊V1⌋ ∩ ⌊V2⌋) ⊆ ⌊V1 ∩ V2⌋ in the typing rule for union ensures that (V1 |V2)
is chunk unambiguous—i.e., that strings in the intersection (V1 ∩ V2) have unique parses. It rules out
languages of chunk-annotated strings such as (a·⟨b⟩ | ⟨a⟩·b).

Interestingly, the resourceful version of the union lens can pass source information between branches
in the put direction. This recovers some of the functionality of “àxup functions” described in Chapter 2.
To illustrate, consider the following example:

let k : lens = del [0-9]
let l1 : lens = copy [A-Z] . <k>
let l2 : lens = <k>
let l : lens = (l1 | l2)

The lens l is similar to a basic lens we discussed in Chapter 3, except that the lens k, which deletes
the number, occurs within a chunk. This means that when we put “A” back into “3”, the “3” will be
restored from the source even though the source and view come from different sides of the union:

75

test l.put "A" into "3" = "A3"

Thus, using resources, we can realize some of the beneàts of àxup functions without having to describe
them explicitly.

Composition The composition operator puts two resourceful lenses in sequence:

.

.

.

l1 ∈ S
C1,k1⇐==⇒ U

l2 ∈ U
C2,k2⇐==⇒ V

l1;l2 ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = ⟨c1, c2⟩, zip r1 r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)

put v (⟨c1, c2⟩, r)= l1.put (l2.put v (c2, r2)) (c1, r1)
where r1, r2 = unzip r

create v r = l1.create (l2.create v r2) r1

where r1, r2 = unzip r

4.2.6 Lemma: Let l1 ∈ S
C1,k1⇐==⇒ U and l2 ∈ U

C2,k2⇐==⇒ V be resourceful lenses. Then (l1;l2) is a

resourceful lens in S
(C1⊗C2),(k1;k2)⇐=====⇒ V .

Composition is especially interesting as a resourceful lens because it propagates alignment information
through two phases of computation. The get function applies l1.get and l2.get in sequence. The res
function applies l1.res to the source s, yielding a rigid complement c1 and resource r1, and l2.res to
(l1.get s), yielding c2 and r2. It merges the rigid complements into a pair ⟨c1, c2⟩ and combines the
resources by zipping them together, where the zip function is deàned as follows:1

(zip r1 r2)(m) =
{
⟨r1(m), r2(m)⟩ if m ∈ dom(r1) ∩ dom(r2)
undeàned otherwise

Note that we have the following equalities

dom(r1) = locs(s) by RC for l1
= locs(l.get s) by GC for l1
= dom(r2) by RC for l2

so zip r1 r2 is deàned on the same locations as dom(r1) and dom(r2).
The put function unzips the resource and applies l2.put and l1.put in that order. The unzip function

on ànite maps is deàned as follows

(πi(unzip r))(m) =

{
ci if r(m) = ⟨c1, c2⟩
undeàned otherwise

where i ∈ {1, 2}. Because the zipped resource represents the resources generated by l1 and l2 together,
rearranging the resource has the effect of pre-aligning the resources for both phases of computation.

To illustrate the behavior of the composition lens, consider the following example:
1The angle brackets distinguish these pairs from the pairs generated as rigid complements in the concatenation lens.

76

let k1 : lens = del [0-9] . copy [A-Z] . copy [a-z]
let k2 : lens = del [A-Z] . key (copy [a-z])
let l : lens =

<k1> . (copy "," . <k1>)* ;
<k2> . (copy "," . <k2>)*

The get function takes a non-empty list of comma-separated chunks containing a number, an upper-case
letter, and a lower-case letter, and deletes the number in the àrst phase and the upper-case letter in the
second phase:

l.get "1Aa,2Bb,3Cc" = "a,b,c"

The resource produced by res represents the upper-case letter and number together, so the put function
restores both to the appropriate chunk:

l.put "b,a" into "1Aa,2Bb,3Cc" = "2Bb,1Aa"

The typing rule for the composition lens requires that the view type of l1 be identical to the source
type of l2. In particular, the chunks in these types must be identical. Intuitively, this makes sense—the
only way that the put function can reasonably translate alignments on the view back through both
phases of computation to the source is if the chunks in the types of each lens agree. However, in
some situations, it is useful to compose lenses that have identical erased types but different notions of
chunks—e.g., one lens does not have any chunks, while the other lens does have chunks. To do this
“asymmetric” form of composition, we can convert both lenses to basic lenses using ⌊·⌋, which forgets
the chunks in the source and view, compose them as basic lenses, and then lift the result back to a
resourceful lens.

4.3 Alignments

So far, our discussion has focused exclusively on the mechanisms of resourceful lenses, which extend
basic lenses with a notion of chunks and provide an interface for supplying a lens with explicit directives
about how source chunks should be aligned against the view. But we have not yet said where these
alignments come from!

In this section, we describe the strategies for computing alignments that we have implemented in the
Boomerang language [FP08]. We describe three different alignment “species” and we present mecha-
nisms for tuning alignment strategies using notions of “keys” and “thresholds”. Because alignment is a
fundamentally heuristic operation, the choice of a proper alignment function depends intimately on the
details of the application at hand. One of the main strengths of our framework is that it can be instan-
tiated with arbitrary alignment functions—the well-behavedness of our resourceful lens combinators
does not hinge on any special properties of the alignment function. The only property we require is
that it return the identity alignment when its arguments are identical. Thus, the mechanisms described
in this section should not be taken as exhaustive; it would be easy to extend them with additional
mechanisms if needed.

Species Boomerang currently supports three alignment “species”, depicted in Figure 4.1 (a-c):

• Positional: The alignment matches up chunks by position. If one of the lists has more chunks than
the other, the extra chunks at the end of the longer list do not match any chunk in the shorter list.

• Set-like: The alignment minimizes the sum of the total edit distances between pairs of matched
chunks and the lengths of unmatched chunks.

77

• Diff-like: The alignment minimizes the same function as the set-like strategy, but only considers
alignments without “crossing” edges. This heuristic can be computed efàciently using a variant
of the standard algorithm for computing the longest common subsequence of two lists.

These species are illustrated in the following simple examples:

let l = key [A-Z] . del [0-9]
<pos:l>*.put "BCA" into "A1B2C3" = "B1C2A3"
<set:l>*.put "BCA" into "A1B2C3" = "B2C3A1"
<dif:l>*.put "BCA" into "A1B2C3" = "B2C3A0"

These examples also illustrate how Boomerang programmers indicate a species to use with chunks.
The match combinator implemented in Boomerang actually takes two arguments: an annotation that
speciàes the alignment species and a basic lens for chunks. The shorthand <l> desugars to <set:l>.
When we coerce a resourceful lens to a basic lens using ⌊·⌋, it instantiates the align function using
the species indicated in the annotation (recall that this coercion is automatically implemented by the
Boomerang typechecker when we invoke the get or put component of a resourceful lens). Boomerang’s
typechecker checks that the same annotation is used on every instance of the match combinator—e.g.,
it disallows (<pos:l > . <dif:l>), which speciàes two different species for chunks.

Keys Typically, we do not want to consider the entire contents of chunks when we compute align-
ments. Boomerang includes two primitives, key and nokey, that allow programmers to control the
portions of each chunk that are used to compute alignments. Both of these combinators take a re-
sourceful lens as an argument, but they do not change the get/put behavior of the lens they enclose.
Instead, they add extra annotations to the view type that we use to “read off” a key for each chunks
(just like we use annotations to “read off” the locations of chunks). When the align function computes
an alignment for two lists of chunks, it uses the view type to extract the regions of each chunk that are
marked as keys and ignores the rest of each chunk.

To illustrate the use of keys, consider a simple example:

let k = del [0-9] . copy [A-Z] . copy [a-z]
let l = <set:k> . (copy "," . <set:k>)*
l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" = "1Cc,2Bb,3Aa"

Although this program aligns chunks using the set-like species, it behaves positionally because the
view type does not contain any key annotations—i.e., the key of every chunk is the empty string. The
following revised version of the lens has a key annotation

let k = del [0-9] . key (copy [A-Z]) . copy [a-z]
let l = <k> . (copy "," . <k>)*

so its put function matches up chunks using the upper-case letters in the view:

l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" = "3Cc,2Bb,1Aa"

Note that lower-case letters, which are not marked as a part of the key, do not affect alignment:

l.put "Ca,Bb,Ac" into "1Aa,2Bb,3Cc" = "3Ca,2Bb,1Ac"

The nokey primitive is dual to key—it removes the key annotation on the view type of the lens it
encloses. We can use nokey to write an equivalent version of the previous lens:

78

let k = key (del [0-9] . copy [A-Z] . nokey (copy [a-z]))
let l = <k> . (copy "," . <k>)*

The simple mechanisms for indicating keys provided by the key and nokey primitives sufàce for many
practical examples, but there are many ways that it could be extended. For example, we could provide
programmers with mechanisms for generating unique keys or for building keys structured as tuples or
records (rather than simply áattening the regions of each chunk marked as a key into a string). We plan
to explore these ideas in future work.

Thresholds The set-like and diff-like species compute alignments by minimizing the sum of the total
edit distances between matched chunks and the lengths of unmatched chunks. In some applications, it
is important to notmatch up chunks that are “too different”, even if aligning those chunks would result
in a minimal cost alignment. For instance, in the following program, where keys are three characters
long

let k : lens = key [A-Z]{3} . del [0-9]
let l : lens = (<set:k> . copy ";")*
l.put "DBD;CCC;AAA;" into "AAA1;BBB2;CCC3;" =

"DBD2;CCC3;AAA1;"

we might like the DBD and BBB2 chunks to not be aligned with each other. However, the set-like species
aligns them because the cost of a two-character edit is less than the six-character edit of deleting BBB
from the view and adding DBD. To achieve the behavior we want, we can add a threshold, as shown in
the following example:

let l : lens = (<sim 50:k> . copy ";")*
l.put "DBD;CCC;AAA;" into "AAA1;BBB2;CCC3;" =

"DBD0;CCC3;AAA1;"

The sim species is similar to set, but takes an integer n as an argument. It minimizes the total edit dis-
tances between aligned chunks, like set, but it only aligns chunks whose longest common subsequence
is at least n% of the lengths of their keys. The set species desugars to (sim 0) and “dictionary”
alignment can be simulated using (sim 100) [BFP+08]. The revised version of the l lens does not
align DBD with BBB2 because the longest common subsequence computed from their keys does not meet
the threshold. The diff species also supports thresholds. We often use diff with a threshold to align
chunks containing of unstructured text.

4.4 Extensions

Our design for resourceful lenses is based on three assumptions:

1. the source and view only contain chunks at the top level,

2. the same lens is used to process every chunk, and

3. the lens does not reorder chunks.

However, it is often important to be able to use different lenses to process multiple kinds of chunks,
to nest chunks within other chunks, and to reorder chunks in going from source to view. This section
describes how we can extend the resourceful lens framework to accommodate each of these features.

79

Nested Chunks

Some sources contain reorderable information at several different levels of structure. For example,
suppose that the source is a Wiki with three levels of structure: sections, subsections, and paragraphs,

=Grand Tours=
The grand tours are major cycling races...
==Giro d'Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...
=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
==Paris-Roubaix==
Paris-Roubaix is held in mid-April...

and the view is a simpliàed list of section and subsection headings:

Grand Tours:
Giro d'Italia
Tour de France

Classics:
Milan-San Remo
Paris-Roubaix

If we update the view by reordering the sections and adding some new subsections to each,

Classics:
Milan-San Remo
Ronde van Vlaanderen
Paris-Roubaix

Grand Tours:
Giro d'Italia
Tour de France
Vuelta a Espana

we would the paragraphs to be restored to the appropriate section or subsection:

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
==Ronde van Vlaanderen==
==Paris-Roubaix==
Paris-Roubaix is held in mid-April...
=Grand Tours=
The grand tours are major cycling races...
==Giro d'Italia==
The Giro is usually held in May and June...

80

==Tour de France==
The Tour is usually held in July...
==Vuelta a Espana==

To do this, we need a lens that aligns chunks at several levels of structure, not just at the top-level.
Using the lower combinator we can convert a resourceful lens for the nested chunks to a basic lens and
use it to process the nested chunks as in the following program:

let HEADING : regexp = ([^=\n]* - (" " . [^]*))
let TEXT : regexp = (([^=\n] . [^\n]*)? . "\n")*
let paragraphs : lens = del (TEXT . ("\n" . TEXT)*)
let subsection : lens =

ins " " . del "==" . key HEADING . del "==" .
copy "\n" .
paragraphs

let section : lens =
del "=" . key HEADING . del "=" . ins ":" .
copy "\n" .
paragraphs . lower < set : subsection >*

let wiki : lens =
< set : section >*

The paragraph lens deletes blocks of text separated by double newline characters. The subsection
lens inserts two space characters as indentation, copies the subsection heading, and deletes the para-
graphs that follow. The section lens copies the heading, inserts a colon character, deletes the para-
graphs that follow, and then processes a list of subsections. The top-level wiki lens processes a list of
sections.

The main thing to notice about this program is that we can use lower to build resourceful lenses
that process chunks using other resourceful lenses even though the match combinator takes a basic
lens as an argument. Lenses constructed in this way align chunks in strict nested fashion—e.g., in this
example, the top-level chunks for sections are àrst aligned against other sections and the nested chunks
for subsections within each section are aligned each other.

Tags

In other applications, we need to use several different basic lenses to process chunks. For example, sup-
pose that we wanted to build a version of the wiki lens that aligns subsections and sections separately.
Why would we want this? Observe that the nested alignments computed by the wiki lens just described
never align subsections in different sections. Thus, if we update the view by moving the heading for the
“Paris-Roubaix” subsection from the classics section to the grand tours section

Classics:
Milan-San Remo

Grand Tours:
Paris-Roubaix
Giro d'Italia
Tour de France

the paragraph under the Paris-Roubaix subsection will be lost when we invoke the put function

81

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
=Grand Tours=
The grand tours are major cycling races...
==Paris-Roubaix==
==Giro d'Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...

because the alignment follows the nesting structure of the document.
In this example, it would be better to align section and subsections separately instead of following

the structure of the document. To do this, we need to generalize resourceful lenses to allow multiple
kinds of chunks in the same program. Here is a revised version of the wiki lens written using “tags”
that has the behavior we want:

let section : lens =
del "=" . key HEADING . del "=" . ins ":" .
copy "\n" .
paragraphs

let wiki : lens =
(< tag "section" set : section > .
< tag "subsection" set : subsection >*)*

Rather than having nested chunks, this lens has two differently-tagged top-level chunks—one for sec-
tions and another for subsections. The tag primitive gives distinct names to these chunks and indicates
that the two kinds of chunks should be handled separately by the lens. On the same inputs as above,
the put function produces a new source

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
=Grand Tours=
The grand tours are major cycling races...
==Paris-Roubaix==
Paris-Roubaix is held in mid-April...
==Giro d'Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...

where the paragraph under the Paris-Roubaix subsection is restored from the source. Extending re-
sourceful lenses with tags is simple—we generalize each of our structures with an extra level of indi-
rection for tags. For example, we change the type of resources to ànite maps from tags to locations to
complements and we compute alignments by tag.

82

Swap

All of the resourceful lenses we have seen so far map chunks in the source through to the same chunks
in the view and vice versa, but in some applications we need resourceful lenses that reorder chunks.
The swap operator, written l1 ∼ l2, behaves like the concatenation lens, but swaps the order of strings
in the view. Adding swap as a resourceful lens complicates the story signiàcantly because it makes it
possible to construct lenses that reorder chunks. Lenses that reorder chunks break the protocol for using
resourceful lenses where we pre-align the resource using a correspondence computed for the view. They
also cause problems with the sequential composition operator—in general, the two lenses will reorder
the chunks in different ways, so it will not make sense to simply zip the resources generated by each
lens together and align them against the view.

To recover the behavior we want in the presence of primitives that reorder chunks, we need to keep
track of the permutation on chunks that is computed by the lens. Therefore, we add a new component
to every resourceful lens

l.perm ∈ Π s : ⌊S⌋. Perms(locs(s))

that computes the permutation on chunks realized by the get function.
It is straightforward to add perm to each of the lenses we have seen so far—e.g., the lift primitive

returns the empty permutation, match returns the identity permutation on its only chunk, and the
concatenation operator merges the permutations returned by its sublenses in the obvious way.

We also need to generalize the CP, CC, NCP, and NCC
laws using perm—the old versions do not hold for lenses that permute the order of chunks in going
from source to view:

n ∈ (locs(v) ∩ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.put v[n] (r(n))
(CP)

n ∈ (locs(v) ∩ dom(r))
(l.perm (l.create v r))(m) = n

(l.create v r)[m] = k.put v[n] (r(n))
(CC)

n ∈ (locs(v) − dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.create v[n]
(NCP)

n ∈ (locs(v) − dom(r))
(l.perm (l.create v r))(m) = n

(l.create v r)[m] = k.create v[n]
(NCC)

These laws generalize the laws given in Section 4.1. The CP law stipulates that the mth chunk
in the source produced by put must be identical to the structure produced by applying k.put to the nth
chunk in the view and the element r(n) in the resource, where the permutation computed by the perm
function on the source maps m to n. The other laws are similar generalizations of the previous versions.

Composition Using perm, we can deàne a better version of the composition lens that uses the permu-
tation on chunks computed in each phase:

83

.

.

.

l1 ∈ S
C1,k1⇐==⇒ U

l2 ∈ U
C2,k2⇐==⇒ V

(l1;l2) ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = ⟨c1, c2⟩, zip (r1 ◦ p−1

2) r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)
and p2 = l2.perm (l1.get s)

perm s =(l2.perm (l1.get s)) ◦ (l1.perm s)
put v (⟨c1, c2⟩, r)= l1.put (l2.put v (c2, r2)) (c1, r1 ◦ p−1

2)
where r1, r2 = unzip r

and p2 = l2.perm (l2.put v (c2, r2))
create v r = l1.create (l2.create v r2) (r1 ◦ p−1

2)
where r1, r2 = unzip r

and p2 = l2.perm (l2.create v r2)

The res function applies the inverse of the permutation computed by l2 on the intermediate view to the
resource computed by l1, which puts it into the “view order” of l2. Similarly, the put function puts r1

back into the view order of l1.

Swap The swap lens is deàned as follows:

.

.

.

l1 ∈ S1
C1,k⇐⇒ V1 ⌊S1⌋·!⌊S2⌋

l2 ∈ S2
C2,k⇐⇒ V2 ⌊V2⌋·!⌊V1⌋

l1 ∼ l2 ∈ (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1)

.

get (s1·s2) = (l2.get s2)·(l1.get s1)
res (s1·s2) = (c2, c1), (r2 ++ r1)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

perm (s1·s2) = (l2.perm s2) ∗∗ (l1.perm s1)
put (v2·v1) (c, r)= (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))

where c2, c1 = c
and r2, r1 = split(|v2|, r)

create (v2·v1) r =(l1.create v1 r1)·(l2.create v2 r2)
where r2, r1 = split(|v2|, r)

4.4.1 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋·!⌊S2⌋ and

⌊V1⌋·!⌊V2⌋. Then l1 ∼ l2 is a resourceful lens in (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1).

Like the concatenation lens, the get component of swap splits the source string in two and applies l1.get
and l2.get to the resulting substrings. However, before it concatenates the results, it swaps their order.

84

The res, put, and create functions are similar. The perm component of swap combines permutations
using the (∗∗) operator

(q2 ∗∗ q1)(m) =

{
q1(m) + |q2| if m ≤ |q1|
q2(m − |q1|) otherwise

which is similar to the (++) operator for resources.

4.5 Summary

Resourceful lenses extend the mechanisms of basic lenses with new constructs for handling ordered
data. These features makes it possible to handle situations where the update to the view involves a re-
ordering. Semantically, we revise the architecture of lenses to separate the handling of rigidly ordered
and reorderable data from each other and we add new laws ensuring that the components of lenses
use alignment information correctly. The resulting architecture can be instantiated with arbitrary func-
tions for computing alignments. Syntactically, we add a new combinator for specifying the reorderable
chunks in the source and view, we reinterpret each of our core lens combinators as resourceful lenses.
We also add several new primitives for specifying and tuning alignment strategies.

85

Chapter 5

Secure Lenses

“Whoever wishes to keep a secret must
hide the fact that he possesses one.”

—Johannes Wolfgang von Goethe

In databases, views are often used as a means for controlling access to sensitive information. By forcing
users to access data via a security view that only exposes public information, data administrators ensure
that secrets will not be leaked, even if the users mishandle the data or are malicious. Security views are
robust, making it impossible for users to expose the data hidden by the view,1 and they are áexible:
since they are implemented as arbitrary programs, they can be used to enforce àne-grained access control
policies. However, they are not usually updatable—and for good reason! Propagating updates to views
made by untrusted users can, in general, alter the source, including the parts that are hidden by the
view.

This is a shame, since there are many applications in which having a mechanism for reliably updat-
ing security views would be extremely useful. As an example, consider the Intellipedia system [And04],
a collaborative data sharing system based on a Wiki that is used by members of the United States intel-
ligence community. The data stored in Intellipedia is classiàed at the granularity of whole documents,
but many documents actually contain a mixture of highly classiàed and less-classiàed data. In order to
give users with low clearances access to the portions of documents they have sufàcient clearance to see,
documents often have to be regraded: i.e., the highly classiàed parts need to be erased or redacted, leav-
ing behind a residual document—a security view—that can be reclassiàed at a lower level of clearance.
Of course (since it is a Wiki), users of these security views would to be able to make changes—e.g., to
correct errors or add new information—and have their modiàcations be propagated back to the original
document.

Unfortunately, the lenses we have described so far do not deal adequately with security issues. The
critical issue that they fail to address is that many of the natural ways of propagating view updates back
to sources alter the source data in ways that violate expectations about its integrity. For example, in the
Intellipedia application, the natural way to propagate the deletion of a section of a regraded document
is to delete the corresponding section of the original document. But while doing this faithfully reáects
the edit made to the view—formally, it satisàes the PG law—it is not necessarily what we want:
if the section in the original document contains additional classiàed data in nested subsections, then

1Strictly speaking, the user of the view may still be able to gain some knowledge of the hidden parts of the source using the
view [MS07]—i.e., security views do not provide privacy—but they do prevent users from directly accessing the data hidden
by the view.

87

.

.

Public

Secret

Public

Trusted

Tainted

Trusted

Tainted

Secret

Figure 5.1: Non-interference properties of secure lenses

deleting the section is almost surely unacceptable—users probably should not be able to delete data
they do not even have sufàcient clearance to see!

It is tempting to require that propagating updates to the view must not lose any hidden source
data—i.e., require that every lens used to deàne a security view be very well behaved. But, as discussed
in Chapter 2, forcing every lens to obey PP is a draconian restriction that rules out transformations
such as union and Kleene star that are needed in many applications.

So, because we want to allow untrusted users to modify hidden source data through the view, under
certain circumstances, we need a simple, declarative way to specify which parts of the source can be
affected by view updates and which parts cannot. Developing a framework in which it is possible to
formulate integrity policies like “these sections in the source can be deleted” or “these sections in the
view must not be altered (because doing so would have an unacceptable effect on the source),” and
verify that lenses obey them, is the goal of this chapter.

Our solution is to deàne a new semantic space of secure lenses, in which types not only describe the
sets of structures manipulated by the components of the lens, but also capture the notion that certain
parts of the source and view represent trusted data while other parts may be tainted. Semantically, we
model these types as sets of structures together with equivalence relations identifying structures that
agree on trusted data. Syntactically, we describe them using security-annotated regular types—regular
expressions decorated with annotations drawn from a set of labels representing static levels of integrity.
We formulate a condition ensuring the integrity of source data by stipulating that the put function must
be non-interfering. This ensures that if the update to the view does not change high-integrity data in
the view, then the put function will not modify high-integrity data in the source.

We then develop security-enhanced versions of our string lens combinators. The typing rules for
these combinators use an information-áow analysis to track dependencies between data in the source
and view and ensure the new non-interference properties. There are some interesting details compared
to information-áow type systems for general-purpose languages, because regular languages describe
data schemas at a high level of precision.

Of course, conàdentiality is also interesting in the context of security views. Typically the whole
reason for deàning the view is to hide certain parts of the source. None of the previous work on
security views has provided a way to formally and statically verify that the information hidden by the
view adheres to a declarative conàdentiality policy—the query itself is the policy. But, having developed
the technical machinery for tracking integrity, it is easy to extend it to track conàdentiality as well, and
we do so in our information-áow type system. The type system tracks áows of information in two

88

directions, ensuring conàdentiality in the forward direction and integrity in the reverse direction—see
Figure 5.1.

Tracking information áow using a static type system yields an analysis that is effective but conser-
vative. For example, if the put component of a lens ever produces a tainted result, then the type system
must classify the source as tainted to ensure the secure lens properties. However, very often there are
many inputs that the put function can propagate without tainting the source. In the last part of this
chapter, we extend secure lenses with mechanisms for detecting these situations. These lenses use a
combination of static types and dynamic checks to establish the same essential security properties.

The contributions of this chapter can be summarized as follows:

1. We develop a new semantic space of secure lenses that extends our previous work on lenses with
a type system ensuring the conàdentiality and integrity of data in the source. This provides a
reliable framework for building updatable security views.

2. We design the syntax and semantics of security-annotated regular expressions, which describe sets
of strings as well as equivalence relations that encode conàdentiality and integrity policies.

3. We reinterpret our string lens combinators as secure lenses.

4. We present an extension to secure lenses that ensures the integrity of source data but replaces
some of the static constraints on lens types with dynamic tests.

The rest of this chapter is organized as follows. Section 5.1 introduces an example that illustrates
the main challenges that arise when lenses are used to deàne security views. Section 5.2 deànes the
semantic space of secure lenses. Section 5.3 introduces security-annotated regular expressions. Sec-
tion 5.4 presents syntax for secure lenses, with a type system based on an information-áow analysis
involving security-annotated regular expressions. Section 5.5 describes an extension to this type system
that replaces static checks with dynamic tests. We conclude the chapter in Section 5.6.

5.1 Example

To warm up, let us consider a very small example—simpler than the Intellipedia application discussed
in the introduction, but still rich enough to raise the same essential issues. Suppose that the source is
an electronic calendar in which certain appointments, indicated by “*”, are intended to be private.

*08:30 Coffee with Sara (Beauty Shop Cafe)
10:00 Meeting with Brett (My office)
12:00 PLClub Seminar (Seminar room)
*15:00 Run (Fairmount Park)

Next, suppose that we want to compute a security view where some of the private data is hidden—e.g.,
perhaps we want to redact the descriptions of the private appointments by rewriting them to BUSY and,
at the same time, we also want to erase the location of every appointment.

08:30 BUSY
10:00 Meeting with Brett
12:00 PLClub Seminar
15:00 BUSY

Or, perhaps, we want to go a step further and erase private appointments completely.

89

10:00 Meeting with Brett
12:00 PLClub Seminar

In either case, having computed a security view, we might like to allow colleagues make changes to the
public version of our calendar to correct errors and make amendments. For example, here the user of
the view has corrected a misspelling by replacing “Brett” with “Brent” and added a meeting with
Michael at four o’clock.

08:30 BUSY
10:00 Meeting with ..Brent
12:00 PLClub
15:00 BUSY

..16:00 Meeting with Michael

The put function of the redacting lens combines this new view with the original source and produces
an updated source that reáects both changes:

*08:30 Coffee with Sara (Beauty Shop Cafe)
10:00 Meeting with ..Brent (My office)
12:00 PLClub (Seminar room)
*15:00 Run (Fairmount Park)

.. 16:00 Meeting with Michael

Although this particular update was handled in a reasonable way, in general, propagating view updates
can violate expectations about the handling of hidden data in the source. For example, if the user of
the view deletes some appointments,

08:30 BUSY
10:00 Meeting with Brent

then the source will also be truncated (as it must, to satisfy the PG law):

*08:30 Coffee with Sara (Beauty Shop Cafe)
10:00 Meeting with Brent (My office)

From a certain perspective, this is correct—the updated view was obtained by deleting appointments,
and the new source is obtained by deleting the corresponding appointments. But if the owner of the
source expects the lens to both hide the private data and maintain the integrity of the hidden data,
then it is unacceptable for the user of the view to cause some of the hidden data—the description and
location of the three o’clock appointment and the location of the noon appointment—to be discarded.

A similar problem arises when the user of the view replaces a private entry with a public one.
Consider a private appointment in the source

*15:00 Run (Fairmount Park)

which maps via get to a view:

15:00 BUSY

If user of the view replaces it with a public appointment (here, they have insisted that an important
event has precedence)

15:00 Distinguished Lecture

90

then the description (Run) and location (Fairmount Park) associated with the entry in the original
source are both lost.

15:00 Distinguished Lecture ()

As these examples demonstrate, managing updatable security views reliably requires mechanisms for
tracking the integrity of source data.

Let us consider an attractive—but impossible—collection of guarantees we might like to have. Ide-
ally, the get function of the lens would hide the descriptions of private appointments as well as the
location of every appointment, and the put function would take any updated view and produce an
updated source where all of this hidden data is preserved. Sadly, this is not possible: we either need
to allow the possibility that certain updates will cause hidden data to be lost, or, if we insist that this
cannot happen, then we need to prevent the user of the view from making those updates—e.g., deleting
entries and replacing private entries with public ones—in the àrst place.

Both alternatives can be expressed using the secure lens framework developed in this chapter. To
illustrate these choices precisely, we need a few deànitions. The source and view types of the redacting
and erasing lenses are formed out of regular expressions that describe timestamps, descriptions, and
locations (along with a few predeàned regular expressions, NUMBER, COLON, SPACE, etc.) deàned as
follows:

let TIME : regexp =
NUMBER{2} . COLON . NUMBER{2} . SPACE

let DESC : regexp =
[^\n()]* - (ANY . BUSY . ANY)

let LOCATION : regexp =
(SPACE . LPAREN . [^()]* . RPAREN)?

To specify the policy that prevents the user from applying updates to the view that would cause hidden
data to be lost, we pick a type that marks some of the data as trusted by decorating the bare regular
expressions with annotations. Here is a type in which the private appointments are trusted, as indicated
by annotations of the form (R : Trusted), but the public appointments are tainted, as indicated by
annotations of the form (R :Tainted):

((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):Trusted)∗

.
.⇐⇒ ((TIME·DESC·NEWLINE):Tainted

| (TIME·BUSY·NEWLINE):Trusted)∗

Before the owner of the source data allows the user of the view to propagate their updates back to the
source using the put function, they check that the original and updated views agree on trusted data.
In this case, since the private appointments are trusted, they will refuse to propagate views where the
private appointments have been modiàed. The public appointments, however, may be freely modiàed.

Alternatively, to specify the policy that provides weaker guarantees about the integrity of source
data but allows more updates, we pick a type that labels both public and private appointments as
tainted:

((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):Tainted)∗

.
.⇐⇒ ((TIME·DESC·NEWLINE):Tainted

| (TIME·BUSY·NEWLINE):Tainted)∗

91

The user of the view may update the view however they like—the whole view is tainted—but the lens
does not guarantee the integrity of any appointments in the source. The fact that the entire source may
be tainted is reáected explicitly in its type.

Here is the Boomerang code that implements these lenses.

let public : lens =
del SPACE .
copy (TIME . DESC) .
del LOCATION .
copy NEWLINE

let private : lens =
del ASTERISK .
copy TIME .
((DESC . LOCATION) <-> "BUSY") .
copy NEWLINE

let redact : lens =
public* . (private . public*)*

let erase : lens =
filter (stype public) (stype private);
public*

Note that there are no security annotations in these programs—the current implementation only tracks
basic lens types, leaving security annotations to be checked by hand.2

Here is an example of the sort of property we will be able to show using the secure lens framework
developed in this chapter:

5.1.1 Lemma: The redact lens is a secure lens at the following type:

((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):Trusted)∗

.
.⇐⇒ ((TIME·DESC·NEWLINE):Tainted

| (TIME·BUSY·NEWLINE):Trusted)∗

The proof of this property can be found in the appendix.

5.2 Semantics

The basic lens laws ensure some fundamental sanity conditions on the handling of data in the source
and view, but, as we saw in the preceding section, to uses lenses reliably in security applications we need
additional guarantees. In this section, we describe the reàned semantic space of secure lenses. These
lenses obey new behavioral laws, formulated as non-interference conditions, which stipulate that the
put function must not taint trusted (high integrity) source data and the get function must not leak secret
(high conàdentiality) data—see Figure 5.1.

2Also, the put functions of the lenses we consider here operate positionally—e.g., the put function of l∗ splits the source
and view into substrings and applies l.put to pairs of these in order. We defer an investigation of secure resourceful lenses to
future work.

92

Let P (for “privacy”) and Q (for “quality”) be lattices of security labels representing levels of
conàdentiality and integrity, respectively. To streamline the presentation, we will work with two-point
latticesP = {Public, Secret}with Public ⊑ Secret andQ = {Trusted, Tainted}with Trusted ⊑ Tainted.

. ..P =
.Secret

.Public

..Q =
.Tainted

.Trusted

Our results generalize to arbitrary ànite lattices in a straightforward way. Note that although we
think of trusted data as being “high integrity” informally, it is actually the least element in Q. This is
standard—intuitively, data that is higher in the lattice needs to be handled more carefully while data
that is lower in the lattice can be used more áexibly.

Fix sets S (of sources) and V (of views). To formalize notions like “these two sources contain the
same public information (but possibly differ on their private parts),” we will use equivalence relations
on S and V indexed by both lattices of security labels. Formally, let ∼S

k ⊆ S × S and ∼V
k ⊆ V × V be

families of equivalence relations indexed by security labels inP , and let≈S
k ⊆ S×S and≈V

k ⊆ V ×V be
families of equivalence relations indexed by labels in Q. In what follows, when S and V are clear from
context, we will suppress the superscripts to lighten the notation. Typically, ∼Secret and ≈Tainted will be
equality, while ∼Public and ≈Trusted will be coarser relations that identify sources and views containing
the same public and trusted parts, respectively. These equivalences capture conàdentiality and integrity
policies for the data.

5.2.1 Deànition [Secure Lens]: A secure lens l has the same components as a basic lens

l.get ∈ S → V
l.put ∈ V → S → S

l.create ∈ V → S

obeying the following laws for every s in S, v in V , and k in Q or P as appropriate:

l.get (l.put v s) = v (PG)

l.get (l.create v) = v (CG)

v ≈k l.get s

l.put v s ≈k s
(GP)

s ∼k s′

l.get s ∼k l.get s′
(GNL)

We write S
.

.⇐⇒ V for the set of all secure lenses between S and V .

The PG and CG laws here are identical to the basic lens version that we saw in Chap-
ter 2 and express the same fundamental constraints: the put and create functions must propagate up-
dates to views exactly.

The GP law for secure lenses, however, is different. It uses a non-interference property for
the put function to guarantee the integrity of source data. Formally, it requires that if the original and
updated views are related by ≈k, then the original source and the updated source computed by put
must also be related by≈k. For example, if the original and updated views are related by≈Trusted—i.e.,

93

they agree on the trusted data—then GP guarantees that the new source will also agree with the
original source on trusted data. Note that we recover the basic lens law GP when ≈k is equality,
as it typically is for ≈Tainted.

The GP law suggests a protocol for using secure lenses: before the owner of the source allows
the user of a view to invoke the put function, they check that the original and updated views are related
by ≈k for every k that is lower in Q than the data the user is allowed to edit—e.g., in the two-point
lattice, a user whose edits are considered tainted would have the checks performed using ≈Trusted. The
owner of the source only performs the put if the test succeeds.

Secure lenses obey a variant of the PP law that captures a notion of lenses that are very well
behaved on trusted data:

5.2.2 Lemma: Secure lenses admit the following inference rule:

v′ ≈k l.get s ≈k v

l.put v′ (l.put v s) ≈k l.put v′ s
(PPT)

When ≈k relates strings that only agree on trusted data (as it typically does for ≈Trusted) then P-
PT implies that put must preserve the trusted hidden data in the source. This law allows
operators such as conditional and iteration whose put functions do sometimes discard hidden source
data in the reverse direction, and are therefore not very well behaved lenses in the strict sense, as long
as they indicate that they do so in their type by marking the source data that might be discarded as
potentially tainted.

Our main concern in this chapter is preserving integrity after updates, but it is worth noticing that
we can also tell an improved story about conàdentiality. In previous work on (non-updatable) security
views, the conàdentiality policy enforced by the view is not stated explicitly—the private information
in the source is simply “whatever information is projected away in the view.” Our security lenses, on
the other hand, have an explicit representation of conàdentiality policies, embodied in the choice of
equivalence relations. Thus, we can add the GNL law stipulating that the get function must
not leak conàdential source information source. This law is formulated as a non-interference condition
stating that, if two sources are related by ∼k, then the results computed by get must also be related
by ∼k. For example, when ∼Public relates two sources, GNL ensures that the views computed
from those sources also agree on public data. Thus, secure lenses provide a conàdentiality guarantee
that can be understood without having to look at the lens program.3 In the next section, we present a
declarative language for security annotations that can be used to describe many such equivalences.

5.3 Security-Annotated Regular Expressions

We will describe the types of our secure string lens combinators using regular expressions decorated
with labels drawn from the two lattices of security labels. In this section, we deàne the syntax and
semantics of these security-annotated regular expressions.

Let K = (K,⊑) be a ànite lattice. To streamline the notation, we will describe annotations from
just one lattice of labels. Later, when we use these annotated regular expressions to denote the types
of secure string lenses, we will decorate them with labels from both P and Q. When we calculate the
semantics of a type—in particular, the equivalence relations it denotes—we will consider each lattice
separately, ignoring the labels in the other lattice.

3We treat conàdentiality and integrity as orthogonal—almost, see Section 5.5—so users can also choose ∼S
Public to be

equality and our laws place no constraints on conàdentiality. This yields the same story as in previous systems, where “what
the view hides” is read off from the view deànition.

94

5.3.1 Deànition [Security-Annotated Regular Expression]: The set of security-annotated regular expres-
sions over Σ and K is the smallest set generated by the following grammar

R ::= ∅ | u | R·R | R |R | R∗ | R :k

where u ∈ Σ∗ and k ∈ K.

Every security-annotated expression can be interpreted in two ways:

• As a regular language L(R), deàned in the usual way (after ignoring annotations).

• As a family of equivalence relations ∼k⊆ L(R) × L(R) capturing the intuitive notion that two
strings differing only in high-security regions cannot be distinguished by a low-security observer.

To lighten the notation, when it is clear from context we will often conáate R and L(R)—e.g., we will
write u ∈ R instead of u ∈ L(R).

In many languages with security-annotated types, the type structure of the language is relatively
simple and so the deànition of the “observability relations” is straightforward. However, annotated
regular expressions have features like non-disjoint unions that make the intended semantics less ob-
vious—indeed, there seem to be several reasonable alternatives. We describe here a simple semantics
based on a notion of erasing inaccessible substrings that we ànd natural. We discuss alternatives toward
the end of the section.

Formally, we deàne the equivalence relations using a function that erases substrings that are inacces-
sible to a k-observer, and we take a pair of strings to be equivalent if their erased versions are identical.
For ease of exposition, we will describe the erasing function as the composition of two functions: one
that marks the inaccessible regions of a string and another that erases marked regions. Let # be a
fresh symbol and deàne hash(R) to be the function that transforms strings in L(R) by rewriting every
character to #,

hash(R)(u) , # · · ·#︸ ︷︷ ︸
|u| times

Let mark(R, k) be the relation that marks the regions of strings that are inaccessible to a k-observer by
obscuring them with #:

mark(∅, k) , {}
mark(u, k) , {(u, u)}

mark(R1·R2, k) , mark(R1, k)·mark(R2, k)
mark(R1 |R2, k) , mark(R1, k) & (L(R1) − L(R2))

∪ mark(R2, k) & (L(R2) − L(R1))
∪ mark(R1, k) & mark(R2, k)

mark(R1
∗, k) , mark(R1, k)∗

mark(R1:j, k) ,
{

mark(R1, k) if k ⊒ j

hash(R1) otherwise

The deànition of mark uses the operations of union, concatenation, and iteration, which we lift to
relations in the obvious way. Themost interesting case is for union. In general, the languages denoted by
a pair of annotated regular expressions can overlap, so we need to specify how to mark strings that are
described by both expressions as well as strings that are only described by one of the expressions. There

95

are three cases: To handle the strings described by only one of the expressions, we use an intersection
operator that restricts a marking relation Q to a regular language L:

Q & L , {(u, v) | (u, v) ∈ Q ∧ u ∈ L}

To handle strings described by both expressions, we use an intersection operator that merges markings

Q1 & Q2 , {(u,merge(v1, v2)) | (u, vi) ∈ Qi},

where:
merge(ϵ, ϵ) = ϵ

merge(#·v1, ·v2) = #·merge(v1, v2)
merge(·v1,#·v2) = #·merge(v1, v2)
merge(c·v1, c·v2) = c·merge(v1, v2).

The effect is that characters marked by either relation are marked in the result.
Although mark is a relation in general, we are actually interested in cases where it is a function.

Unfortunately, the operations of concatenation and iteration used in the deànition of mark do not yield
a function in general due to ambiguity. We therefore impose the following condition:

5.3.2 Deànition [Well-Formed Security-Annotated Regular Expression]: R is a well formed expression
if and only if each subexpression of the form R1·R2 is unambiguously concatenable (L(R1)·!L(R2))
and each subexpression of the form R∗ is unambiguously iterable (L(R)!∗).

5.3.3 Proposition: If R is well formed, then mark(R, k) is a function.

In what follows, we will tacitly assume that all annotated expressions under discussion are well formed.
When we deàne typing rules for secure lens primitives, we will be careful to ensure well-formedness.

Let erase be the function on (Σ ∪ {#}) that copies characters in Σ and erases # symbols. Deàne
∼k as the relation induced by marking and then erasing:

hidek(u) , erase(mark(R, k)(u))
∼k , {(u, v) | hidek(u) = hidek(v)}

It is easy to see that ∼k is an equivalence relation.

5.3.4 Lemma: Let R1 and R2 be well-formed annotated regular expressions over a ànite lattice K. It is
decidable whether R1 and R2 are equivalent.

Proof sketch: Deciding equivalence for regular languages is straightforward. Moreover, each relation
∼k is induced by hidek(·), which is deànable as a rational function—a class for which equivalence is
decidable [Ber79]. �

To illustrate the semantics, consider the lattice ({Public, Secret},⊑) with Public ⊑ Secret, and
take R1 to be the annotated expression [a-z] : Secret. Then for every string u in L(R1) we have
mark(R1, Public)(u) = #, and so hidePublic(u) = ϵ, and ∼Public is the total relation. For the annotated
relation R1

∗, the equivalence ∼Public is also total because mark(R1
∗, Public) maps every u in L(R1

∗)
to a sequence of # symbols and so hidePublic(u) = ϵ. More interestingly, for R2 deàned as

([a-z]:Public)·([0-4]:Secret) | ([a-z]:Public)·([5-9]:Secret),

96

and any string c·n in L(R2) we have:

mark(R2, Public)(c·n) = c#
hidePublic(c·n) = c

It follows that (c·n) ∼Public (d·m) if and only if c = d. Finally, for R2
∗ the equivalence∼Public identiàes

(c1·n1 · · · ci·ni) and (d1·m1 · · · dj ·mj) if and only if i = j and ci = di for i from 1 to n.
As we remarked above, there are other reasonable ways to deàne ∼k. For example, instead of

marking and erasing, we could instead compose mark with a function that compresses sequences of #
symbols into a single #. The equivalence induced by this function would allow low-security observers
to determine the presence and location of high-security data, but would obscure its content. We could
even take the equivalence induced by themark function itself! This semantics would reveal the presence,
location, and length of high-security data to low-security observers. There may well be scenarios where
one of these alternative semantics more accurately models the capabilities of low-security observers. For
simplicity, we will use the erasing semantics in this chapter.

5.4 Syntax

Having identiàed the semantic space of secure lenses and deàned security-annotated regular expressions,
we now turn to syntax, developing secure versions of our string lens combinators. The functional
components of these secure lenses are identical to the basic lens versions deàned in Chapter 2 (so we
elide them), but their typing rules are enhanced with an information-áow analysis that guarantees the
secure lens laws.

Copy The simplest lens, copy E, takes a well-formed annotated regular expression as an argument.
It copies strings belonging to E in both directions.

..
E well-formed

copy E ∈ E
.

.⇐⇒ E

5.4.1 Lemma: Let E ∈ R be a well-formed security-annotated regular expression. Then copy E is a
secure lens in E

.
.⇐⇒ E.

The proof that copy E obeys the secure lens laws is straightforward because the equivalence relations
on the source and view are identical.

Constant The const lens takes as arguments two well-formed annotated regular expressions E and F ,
with F a singleton. It maps every source string in E to u, the unique element of F , in the get direction,
and restores the discarded source string in the reverse direction.

..
E, F well-formed F = {u}

const E F ∈ E
.

.⇐⇒ F

5.4.2 Lemma: Let E and F be well-formed security-annotated regular expressions such that F = {u}
for some string u. Then const E F is a secure lens in E

.
.⇐⇒ F .

97

Typically F will just be the bare string u, but occasionally it will be useful to decorate it with integrity
labels (e.g., see the examples involving the union combinator below). The typing rule for const places
no additional labels on the source and view types. This is safe: the get function maps every string in E
to u, so GNL holds trivially. The put restores the source exactly—including any high-integrity
data—so GP also holds trivially.

Union The union combinator uses some new notation, which is explained below.

.

.

S1 ∩ S2 = ∅
l1 ∈ S1

.
.⇐⇒ V1

l2 ∈ S2
.

.⇐⇒ V2

q =
∨
{k | k min obs. V1 ̸= V2 ∧ V1 & V2 agree}
p =

∨
{k | k min obs. S1 ∩ S2 = ∅}

l1 | l2 ∈ (S1 |S2):q
.

.⇐⇒ (V1 |V2):p

5.4.3 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be secure lenses such that S1 ∩ S2 = ∅. Then
l1 | l2 is a secure lens in (S1 |S2):q

.
.⇐⇒ (V1 |V2):p where the label q is

∨
{k | k min obs. V1 ̸= V2∧V1 &

V2 agree} and the label p is
∨
{k | k min obs. S1 ∩ S2 = ∅}.

Like the basic lens version, the union lens uses a membership test on the source string to select a lens in
the get direction. As is usual with conditionals, the typing rule for union needs to be designed carefully
to take implicit áows of conàdential information into account. As an example illustrating why, consider
the union of the following two lenses:

l1 , [0-4]:Secret ↔ A ∈ [0-4]:Secret
.

.⇐⇒ A
l2 , [5-9]:Secret ↔ B ∈ [5-9]:Secret

.
.⇐⇒ B

We might be tempted to assign it the type obtained by taking the unions of the source and view types
of the smaller lenses:

l1 | l2 ∈ ([0-4]:Secret | [5-9]:Secret)
.

.⇐⇒ (A | B)

But this would be wrong: the get function leaks information about which branch was selected, as
demonstrated by the following counterexample to GNL. By the semantics of annotated regular
expressions, we have 0 ∼Public 5, since hidePublic maps both 0 and 5 to the empty string. But:

(l1 | l2).get 0 = A ≁Public B = (l1 | l2).get 5

Most languages with information-áow type systems deal with these implicit áows by raising the security
level of the result. Formally, they escalate the label on the type of the result by joining it with the label of
the data used in the conditional test. Our typing rule for the union lens is based on this idea, although
the computation of the label is somewhat complicated because the conditional test is membership in S1

or S2, so “the label of the data used in the conditional test” is the least label that can distinguish strings
in S1 from those in S2. Returning to our example with (l1 | l2) and the two-point lattice, Secret is the
only such label, so we label the entire view as secret.

For annotated regular expressions, we can decide whether a given label distinguishes strings in S1

from those in S2, and so we can compute the least such label as P is ànite. Let k be a label in P . We
say that k observes S1 ∩ S2 = ∅ if and only if for every string s1 ∈ S1 and s2 ∈ S2 we have s1 ≁k s2.
Note that k observes S1 ∩ S2 = ∅ if and only if the codomains of the rational function hidek(·) for S1

98

and S2 are disjoint. As the codomain of a rational function is computable and a regular language, we
can decide whether k observes the disjointness of S1 and S2. In a general lattice there may be several
labels that observe the disjointness of S1 and S2. The label p we compute for the view type is the join
of the set of minimal labels that observe their disjointness.

In the put direction, the union lens selects a lens using membership tests on the view and the source.
Here we need to consider the integrity of the source data, since modifying the view can result in l2
being used for the put function even though l1’s get function was used to generate the original view, or
vice versa. To safely handle these situations, we need to treat the source string as more tainted. For
example, consider the union of:

l1 , (del [0-4]:Trusted)·(copy [A-Q]:Tainted)
∈ ([0-4]:Trusted·[A-Q]:Tainted)

.
.⇐⇒ ([A-Q]:Tainted)

l2 , (del [5-9]:Trusted)·(copy [F-Z]:Tainted)
∈ ([5-9]:Trusted·[F-Z]:Tainted)

.
.⇐⇒ ([F-Z]:Tainted)

This lens does not have secure lens type obtained by taking the union of the source and view types

([0-4]:Trusted·[A-Q]:Tainted) | ([5-9]:Trusted·[F-Z]:Tainted)
.

.⇐⇒ ([A-Q]:Tainted | [F-Z]:Tainted)

because the put function sometimes fails to maintain the integrity of the number in the source, as
demonstrated by the following counterexample to GP. By the semantics of annotated regular
expressions, we have Z ≈Trusted A, since hideTrusted maps both to the empty string. But

(l1 | l2).put Z 0A = 5Z ≉Trusted 0A

To obtain a sound typing rule for union, we need to raise the integrity label on the source—i.e., consider
the source more tainted. We do this by annotating the source type with the least label q such that we
can transform a string belonging to V1 − V2 to a string belonging to V2 (or vice versa) by modifying
q-tainted data.

Formally, we compute q as the join of the minimal set of labels in Q that observe that V1 and V2

are not identical—e.g., for the lens above, Tainted. To ensure that v ≈(S1 |S2)
k (l1 | l2).get s implies

v ≈S1
k l1.get s for every v in V1 and s in S1, and similarly l2, we also require that q observe that V1

and V2 denote the same equivalence relations on strings in their intersection; we write this condition
as “V1 & V2 agree.” Both of these properties can be decided for annotated regular expressions using
elementary constructions.

An important special case arises when V1 and V2 coincide. Since both lenses are capable of handling
the entire view type in this case, the same lens will always selected for put as was selected for get. For
example, the union of

l1 , (del [0-4]:Trusted)·(copy [A-Z]:Tainted)
∈ ([0-4]:Trusted·[A-Z]:Tainted)

.
.⇐⇒ ([A-Z]:Tainted)

l2 , (del [5-9]:Trusted)·(copy [A-Z]:Tainted)
∈ ([5-9]:Trusted·[A-Z]:Tainted)

.
.⇐⇒ ([A-Z]:Tainted)

does have the type:

([0-4]:Trusted·[A-Z]:Tainted) | ([5-9]:Trusted·[A-Z]:Tainted)
.

.⇐⇒ [A-Z]:Tainted

99

Our typing rule captures this case: if V1 = V2 then q is the join of the empty set, which is the minimal
element Trusted. Annotating with Trusted, the least element in Q, is semantically equivalent to having
no annotation at all.

Concatenation Perhaps surprisingly, the concatenation operator also has an interesting typing rule as
a secure lens.

.

.

l1 ∈ S1
.

.⇐⇒ V1 S1·!S2

l2 ∈ S2
.

.⇐⇒ V2 V1·!V2

q =
∨
{k | k min obs. V1·!V2}

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2):q
.

.⇐⇒ (V1·V2):p

5.4.4 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be secure lenses such that S1·!S2 and V1·!V2.
Then (l1·l2) is a secure lens in (S1·S2): q

.
.⇐⇒ (V1·V2):p where the label q is

∨
{k | k min obs. V1·!V2}

and the label p is
∨
{k | k min obs. S1·!S2}.

As with the union lens, the typing rule for concatenation also needs to be designed carefully to take
implicit áows of information into account. Here the implicit áows stem from the way that the concate-
nation operator splits strings. As an example, consider a lens l1 that maps a0 to A and a1 to a, and a
lens l2 that maps b0 to B and b1 to b, where all of the source data is private except for the 1, which is
public:

l1 , ((a:Secret)·(1:Public) ↔ A) | ((a:Secret)·(0:Secret) ↔ a)
∈ (a:Secret·(0:Secret | 1:Public))

.
.⇐⇒ (A | a)

l2 , ((b:Secret)·(1:Public) ↔ B) | ((b:Secret)·(0:Secret) ↔ b)
∈ (b:Secret·(0:Secret | 1:Public))

.
.⇐⇒ (B | b)

The concatenation of l1 and l2 does not have the type obtained by concatenating their source and view
types,

((a:Secret·(0:Secret | 1:Public))·(b:Secret·(0:Secret | 1:Public)))
.

.⇐⇒ ((A | a)·(B | b))

because get exposes the way that the source string was split. For example, a1b0 ∼Public a0b1 because
hidePublic(a1b0) = 1 = hidePublic(a0b1) but

(l1·l2).get a1b0 = Ab ≁Public aB = (l1·l2).get a0b1.

As with union, we deal with this implicit áow of information by raising the conàdentiality level of
the data in the view, annotating the view type with the least label that observes the unambiguous
concatenability of the source types. Formally, we say k observes S1·!S2 if and only if for every s1·s2 and
s′1·s′2 in S1·S2 with s1·s2 ∼k s′1·s′2 we have s1 ∼k s′1 and s2 ∼k s′2. We can decide whether a given label
observes the unambiguous concatenability of two annotated regular expressions using an elementary
construction.

In the reverse direction, the concatenation lens splits the source and view strings in two, applies
the put components of l1 and l2 to the corresponding pieces of each, and concatenates the results. An
analogous problem now arises with integrity, so we escalate the label on the source type with the least
label that observes the unambiguous concatenability of the view types.

Kleene Star The Kleene star lens is similar to concatenation.

100

.

.

S!∗ V !∗

l ∈ S
.

.⇐⇒ V
q =

∨
{k | k min obs. V !∗}

p =
∨

{k | k min obs. S!∗}

l∗ ∈ (S∗):q
.

.⇐⇒ (V ∗):p

5.4.5 Lemma: Let l ∈ S
.

.⇐⇒ V be a secure lens such that S!∗ and V !∗. Then l∗ is a secure lens in
(S∗):q

.
.⇐⇒ (V ∗):p where q =

∨
{k | k min obs. V !∗} and p =

∨
{k | k min obs. S!∗}.

As with union and concatenation, we need to escalate the conàdentiality label on the view side and the
integrity label on the source side. To see why, consider the following lens:

l , A:Secret ↔ B:Public ∈ A:Secret
.

.⇐⇒ B:Public

It is not the case that
l∗ ∈ (A:Secret)∗

.
.⇐⇒ (B:Public)∗,

because AAA ∼Public AA but

l∗.get AAA = BBB ≁Public BB = l∗.get AA.

The problem is that get leaks the length of the source string, which is secret. Thus, we need to escalate
the conàdentiality label on the view type by the least label observing the unambiguous iterability of the
source type.

Likewise, if we consider integrity, it is not the case that the iteration of

l , [0-9]:Trusted ↔ A:Tainted ∈ [0-9]:Trusted
.

.⇐⇒ A:Tainted

has type
l∗ ∈ ([0-9]:Trusted)∗

.
.⇐⇒ (A:Tainted)∗,

as demonstrated by the following counterexample to GP:

A ≈Trusted AAA = l∗.get 123
but l∗.put A 123 = 1 ≉Trusted 123.

Here the problem is that the update shortens the length of the view, which causes the iteration operator
to discard trusted data in the source. Thus, we need to escalate the integrity label by the join of the
minimal label that observes the unambiguous iterability of the view type.

Sequential Composition The sequential composition lens has a straightforward type.

.
.

l1 ∈ S
.

.⇐⇒ U

l2 ∈ U
.

.⇐⇒ V

l1;l2 ∈ S
.

.⇐⇒ V

5.4.6 Lemma: Let l1 ∈ S
.

.⇐⇒ U and l2 ∈ U
.

.⇐⇒ V be secure lenses. Then l1;l2 is a secure lens in
S

.
.⇐⇒ V .

101

As is usual for composition, the typing rule requires that the view type of the àrst lens and the source
type of the second lens be identical. This is essential for ensuring the secure lens laws.

Filter The secure version of the àlter lens allows us to hide information in a list of source items.

.

.

E, F well-formed E ∩ F = ∅ (E |F)!∗
q =

∨
{k | k min obs. E!∗}

p ⊒
∨
{k | k observes E·!F and F ·!E}

àlter E F ∈ (E:q |F :p)∗
.

.⇐⇒ E∗

5.4.7 Lemma: Let E and F be well-formed security-annotated regular expressions such that E∩F = ∅
and (E |F)!∗. Then for every label p such that p ⊒

∨
{k | k observes E·!F and F ·!E} the secure lens

àlter E F is in (E:q |F :p)∗
.

.⇐⇒ E∗ where q =
∨

{k | k min obs. E!∗}.

The typing rule for àlter captures the fact that none of the F s appear in the view, so the F s in the source
can be assigned any conàdentiality label that observes the unambiguous concatenability of Es and F s.
Since observers with clearance lower than p cannot distinguish sources that differ only in F s, it is simple
to show GNL: if two sources are related by ∼Public then their àlterings are related by ∼Public.
In the backwards direction, we require that the integrity label on the Es be the join of the set of labels
that minimally observe that E is unambiguously iterable.

Subsumption Secure lenses admit a rule of subsumption that allows us to escalate the integrity level
on the source and the conàdentiality level on the view.

.
.

q ∈ Q p ∈ P
l ∈ S

.
.⇐⇒ V

l ∈ S:q
.

.⇐⇒ V :p

5.4.8 Lemma: Let l ∈ S
.

.⇐⇒ V be a secure lens and let q be a label in Q and p a label in P be labels.
Then l is also a secure lens in S:q

.
.⇐⇒ V :p.

It may seem silly to escalate labels arbitrarily, but it is occasionally useful—e.g., to make the types agree
when forming the sequential composition of two lenses.

5.5 Dynamic Secure Lenses

Using a static analysis to track tainted data is effective but conservative—it forces us to label source
data as tainted if the put function ever produces a tainted result, even if there are many inputs for which
it does not. A different idea is to augment lenses with dynamic tests that check if put can preserve the
integrity of the trusted data in the source for a particular view and source. This makes it possible for
lenses to make very àne-grained decisions about which views to accept and which to reject, and lets us
assign relaxed types to many of our primitives while still retaining strong integrity guarantees.

At the same time that we extend lenses with dynamic tests, we also address a subtle interaction
between conàdentiality and integrity that we have ignored thus far in this chapter. In the preceding
sections, we have assumed that the conàdentiality and integrity annotations are completely orthogo-
nal—the semantics of types treats them as independent, and each behavioral law only mentions a single
kind of label. However, the protocol for propagating updates to views, in which the owner of the

102

source data tests whether the original and updated views agree on trusted data, can reveal informa-
tion—possibly conàdential—about the source to the user of the view. In this section, we eliminate the
possibility of such leaks by adding a new behavioral law requiring that testing whether a given view can
be handled (now using arbitrary dynamic tests) must not leak conàdential information. An analogous
àx can be made in the purely static type system described in the preceding section by placing extra
constraints on the equivalence relations denoted by security-annotated expressions.

Formally, we let C ⊆ P × Q be a set of clearances. A user with clearance (j, k) may access data at
conàdentiality level j and modify data tainted at integrity level k. We extend lenses with a new function

l.safe ∈ C → L(V) → L(S) → B

that returns ⊤ if and only if a user with clearance (j, k) can safely put a particular view and source
back together. We replace the hypothesis that v ≈k s in the GP law with safe, requiring, for all
(j, k) ∈ C and s ∈ S and v ∈ V that

l.safe (j, k) v s

l.put v s ≈k s
(GP)

and revise the protocol for propagating updates to the view accordingly: before the user of the view
invokes put, the owner of the source checks that the old and new views are safe for the user’s clearance.

The safe function, which is an arbitrary function, can reveal information about the source. We
therefore add a new law stipulating it must not reveal conàdential information, formulated as a non-
interference property for every (j, k) ∈ C, every s and s′ in S, and every v and v′ in V :

v ∼j v′ s ∼j s′

l.safe (j, k) v s = l.safe (j, k) v′ s′
(SNL)

For technical reasons4 we also need a law stipulating that put must be non-interfering:

l.safe (j, k) v s s ∼j s′

l.safe (j, k) v s′ v ∼j v′

l.put v s ∼j l.put v′ s′
(PNL)

With these reànements, we now present dynamic versions of our secure string lens combinators.

Copy For copy the safe function checks that the new view and original source agree on k-trusted data.

.
.
.
E well-formed ∀ (j, k) ∈ C. ∼j ⊆ ≈k

copy E ∈ E
.

.⇐⇒ E

.safe (j, k) v s = v ≈k s

5.5.1 Lemma: Let E be a well-formed security-annotated regular expression such that for every clear-
ance (j, k) in C we have ∼j ⊆ ≈k. Then copy E is a dynamic secure lens in E

.
.⇐⇒ E.

4The safe component of the composition operator is deàned in terms of the put function of one of its sublenses, so we
need to know that the put function doesn’t leak information to prove SNL.

103

To ensure that safe does not leak information, we require that ∼j must reàne ≈k for every (j, k) ∈ C.
This condition captures the interaction between the conàdentiality and integrity lattices.

Constant For const, the view type is a singleton, so we choose a safe function that is always true.

.
.
.
E, F well-formed F = {u}

const E F d ∈ E
.

.⇐⇒ F

.safe (j, k) v s = ⊤

5.5.2 Lemma: Let E and F be well-formed security-annotated regular expressions such that F = {u}
for some string u. Then const E F is a dynamic secure lens in E

.
.⇐⇒ F .

Concatenation For the concatenation lens, we choose a safe function that tests if the unique substrings
of the source and view are safe for l1 and l2. It also checks whether j observes the unambiguous
concatenability of the source and view types—this is needed to prove PNL and SNL.

.

.
.

l1 ∈ S1
.

.⇐⇒ V1 S1·!S2

l2 ∈ S2
.

.⇐⇒ V2 V1·!S2

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2)
.

.⇐⇒ (V1·V2):p

.
safe (j, k) (v1·v2) (s1·s2) =

j observes S1·!S2 and V1·!V2

∧ l1.safe (j, k) v1 s1 ∧ l2.safe (j, k) v2 s2

5.5.3 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be dynamic secure lenses such that S1·!S2

and V1·!V2. Then l1·l2 is a dynamic secure lens in (S1·S2)
.

.⇐⇒ (V1·V2) : p where the label p is∨
{k | k min obs. S1·!S2}.

Union For the union lens, the safe function tests whether the source and view can be processed by
the same sublens. Additionally, because safe can be used to determine whether the source came from
S1 or S2, it only returns true if j observes their disjointness and if V1 and V2 agree in their intersection.

104

.

.

.

S1 ∩ S2 = ∅
l1 ∈ S1

.
.⇐⇒ V1

l2 ∈ S2
.

.⇐⇒ V2

p =
∨
{k | k min obs. S1 ∩ S2 = ∅}

l1 | l2 ∈ (S1 |S2)
.

.⇐⇒ (V1 |V2):p

.

safe (j, k) v s=
j observes S1 ∩ S2 = ∅ and V1 & V2 agree

∧ 
l1.safe (j, k) v s if v ∈ V1 ∧ s ∈ S1

l2.safe (j, k) v s if v ∈ V2 ∧ s ∈ S2

⊥ otherwise

5.5.4 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be dynamic secure lenses such that (L(S1) ∩
L(S2)) = ∅. Then l1 | l2 is a dynamic secure lens in (S1 |S2)

.
.⇐⇒ (V1 |V2) : p where the label p is∨

{k | k min obs. (S1 ∩ S2) = ∅}.

Kleene Star For the Kleene star lens, safe checks that the view is the same length as the one generated
from the source. Because safe can be used to determine the length of the source, we require that j
observe the unambiguous concatenability of S and V (which implies that j can distinguish strings of
different lengths).

.

.

.

l ∈ S
.

.⇐⇒ V
p =

∨
{k | k min obs. S!∗}

l∗ ∈ S∗
.

.⇐⇒ (V ∗):p

.
safe (j, k) (v1 · · · vn) (s1 · · · sm) =

j observes S!∗ and V !∗
∧n = m ∧ l.safe (j, k) vi si for i ∈ {1, . . . , n}

5.5.5 Lemma: Let l ∈ S
.

.⇐⇒ V be a dynamic secure lens such that S!∗ and V !∗. Then l∗ is a dynamic
secure lens in (S∗)

.
.⇐⇒ (V ∗):p where p =

∨
{k | k min obs. S!∗}.

Sequential Composition For sequential composition, the safe function requires the conditions implied
by l1’s safe function on the intermediate view computed by l2’s put on the view and the original source.

.
. .

l1 ∈ S
.

.⇐⇒ U

l2 ∈ U
.

.⇐⇒ V

l1; l2 ∈ S
.

.⇐⇒ V

.safe (j, k) s v = l1.safe (j, k) (l2.put v (l1.get s)) s

105

5.5.6 Lemma: Let l1 ∈ S
.

.⇐⇒ U and l2 ∈ U
.

.⇐⇒ V be dynamic secure lenses. Then (l1;l2) is a dynamic

secure lens in S
.

.⇐⇒ V .

The composition operator is the reason for PNL as well as the condition in SNL
which stipulates that safe must be non-interfering in its source and view arguments (rather than just
its source argument). We could relax these conditions by only requiring PNL for lenses used
as the second argument to a composition operator and the full version of SNL for lenses used
as the àrst argument. This would give us yet more áexibility in designing safe functions (at the cost of
complicating the type system since we would need to track several different kinds of lens types). We
defer this extension to future work.

Filter Finally, the safe function for the àlter lens checks that the new view and àltered source agree
on k-trusted data. Additionally, to ensure that safe does not leak information about the source, safe
also checks that j observes the way the way that Es and F s are split in the source, as well as the
unambiguous iterability of E.

.

.

.

E, F well-formed E ∩ F = ∅ (E |F)!∗
p ⊒

∨
{k | k observes E·!F and F ·!E}
∀ (j, k) ∈ C. ∼E

j ⊆ ≈E
k

àlter E F ∈ (E |F :p)∗
.

.⇐⇒ E∗

.

safe (j, k) (v1 · · · vn) (s1 · · · sm) =
j observes E·!F and F ·!E
∧ j and k observe E!∗
∧ (v1 · · · vn) ≈k (str filter E (s1 · · · sm))

5.5.7 Lemma: Let E and F be well-formed security-annotated regular expressions such that E∩F = ∅
and (E |F)!∗ and for every clearance (j, k) in C we have ∼E

j ⊆ ≈E
k . Then for every conàdentiality

label p such that p ⊒
∨
{k | k observes E·!F and F ·!E}, the dynamic secure lens àlter E F is in

(E |F :p)∗
.

.⇐⇒ E∗.

The revised lens deànitions in this section illustrate how dynamic tests can be incorporated into
the secure lens framework, providing àne-grained mechanisms for updating security views and relaxed
types for many of our secure string lens combinators. However, they represent just one point in a large
design space. We can imagine wanting to equip lenses with several different safe functions—e.g., some
accepting more views but offering weaker guarantees about the integrity of source data, and others that
accept fewer views but offer correspondingly stronger guarantees. We plan to investigate the tradeoffs
along these axes in future work.

5.6 Summary

Secure lenses provide a powerful mechanism for doing àne-grained data sharing across trust bound-
aries. The views built using secure lenses are robust, since they make it impossible to disclose source
information hidden by the view, and reliable since they come equipped with strong guarantees about
integrity.

106

Chapter 6

Boomerang

“Purely applicative languages are poorly applicable.”

—Alan J. Perlis

Our technical development in the preceding chapters has focused exclusively on the syntax and seman-
tics of core set of string lens combinators. These combinators are powerful enough to express a large
class of useful transformations but they are not very good tools for programming in the large—writing
substantial lens programs only using these low-level operators would be extremely tedious. We don’t
do this. Instead, we have built a full-blown programming language around our combinators called
Boomerang. This chapter highlights some of Boomerang’s main features, focusing on high-level syn-
tax, typechecking, and engineering issues.

6.1 Syntax

The most critical needs in a language for writing large lens programs are abstraction facilities—i.e.,
mechanisms for factoring out common patterns into generic deànitions, assigning intuitive names to
the various pieces of a large program, and so on. Boomerang is organized as a functional language, so
it comes equipped with a rich suite of abstraction mechanisms that make it easy to develop large lens
programs.

Boomerang is based on the polymorphic λ-calculus [Gir72, Rey74], extended with subtyping, de-
pendent types, and reànement types. Figure 6.1 presents the core syntax of the language. Since the
language is based on a standard formalism, we highlight its main features by example rather than
giving a complete description. See [Pie02, Chapter 23] for a textbook description.

A Boomerang program is a functional program over base types string, regexp, canonizer, lens,
etc. The standard library includes each of our string lens combinators as primitives. To use a lens deàned
in a Boomerang program tomanipulate a string—e.g., to use its get function to compute a view—we àrst
evaluate the functional program to obtain a value of type lens and then use the appropriate function
to transform the string. For example, recall the xml_elt helper function, which we used to deàne the
composer lens. It takes a string t and a lens l as arguments and builds a lens that transforms XML
elements named t using l to process the children of the element:

let xml_elt (t:string) (l:lens) : lens =
del WHITESPACE*

. del ("<" . t . ">")

. l

107

..

m ::= module x = d∗ Modules

d ::= Declarations
type ′a∗ x = (| x of t)+ type

| let p : t = e let
| test e = e unit test
| test e : t type test

t ::= Types
forall ′a => t universal

| ′a variable
| x:t -> t dependent function
| (x:t where t) reànement
| t * t product
| t∗ X data
| unit | int | bool | char | string | regexp base
| canonizer | lens

e ::= Expressions
x variable

| k constant
| fun (x:t) : t -> e function
| e e application
| fun ′a -> e type function
| e{e} type application
| let p : t = e in e let
| match e with (| p -> e) + : t case
| e,e pair
| < (e:)? e > match
| e o e? operator

p ::= _ | x | k | p,p | X p Patterns

k ::= 'c' | "s" | n | b | () | [^?c-c] Constants

o ::= <-> | | | . | ~ | * | + | ? | {n,n?} | ; | & | - Operators
| && | || | < | > | <= | >=

Figure 6.1: Core Boomerang Syntax

108

. del WHITESPACE*

. del ("</" . t . ">")

Having deàned xml_elt, we can instantiate it to obtain lenses for processing speciàc XML elements.
For example, the name and dates lenses, deàned by

let name : lens = xml_elt "name" (copy (ALPHA . " " . ALPHA))
let dates : lens = xml_elt "dates" (copy (YEAR . "-" . YEAR))

process strings of the form

<name>Jean Sibelius</name>

and

<dates>1865-1957</dates>

respectively. Compare this program written using xml_elt to one written only using low-level combi-
nators:

let name : lens =
del WHITESPACE*

. del "<name>"

. copy (ALPHA . " " . ALPHA)

. del WHITESPACE*

. del "</name>"

let dates : lens =
del WHITESPACE*

. del "<dates>"

. copy (YEAR . "-" . YEAR)

. del WHITESPACE*

. del "</dates>"

It should be clear that the àrst program, written using the helper function, is simpler to write, reason
about, and maintain. Moreover, we can assign the helper function an intuitive name, which allows the
programmer to work at an appropriate level of abstraction—here, in terms of XML elements. To build
a lens that handles the name and dates for a composer, the programmer simply writes

name . ins ", " . dates

which reáects the essential nature of the transformation, rather than

del WHITESPACE*
. del "<name>"
. copy (ALPHA . " " . ALPHA)
. del WHITESPACE*
. del "</name>"
. ins ", "
. del WHITESPACE*
. del "<dates>"
. copy (YEAR . "-" . YEAR)

109

. del WHITESPACE*

. del "</dates>"

which exposes all of the low-level details of the lens and obscures the actual transformation being done
to the source.

Boomerang has a number of other features designed to simplify lens development. A simple module
system provides a way to separate deànitions into distinct namespaces:

module M =
let l : lens = copy [A-Z] . del [0-9]
let x : string = "A"
let y : string = "1"

end

Built-in unit tests gives programmers an easy way to check the behavior of their program during devel-
opment. Unit tests also provide useful documentation:

test (M.l).get (M.x . M.y) = "A"

Unit tests can also be used to check errors:

test (M.l).get M.x = error
(* type error: M.x not in (stype M.l) *)

The language includes user-deàned data types, polymorphism, and pattern matching, which make it
possible to write lenses parameterized on data structures such as lists. As an example, let us build a
generic lens for escaping special characters in strings. To represent the escape codes for a particular
format, we will use a list of pairs of characters and strings. The characters represents symbols that need
to be escaped and the strings represent the escaped versions. Here is the usual deànition of polymorphic
lists from the List module:

type 'a t = Nil | Cons of 'a * 'a t

The escape codes for XML PCDATA are represented by the following structure:

let xml_escs : (char * string) List.t =
#{char * string}[('>',">"); ('<',"&l;"); ('&',"&")]

Note that Boomerang requires that programmers instantiate polymorphic deànitions explicitly—the
language does not (yet) support type inference (we plan to extend the language with inference in the
future, after we better understand some of the other features of the language—see the discussion of
dependent and reànement types in the next section). The unescaped function takes a list of escape
codes and builds a regular expressions that describes the set of unescaped characters by folding down
the list:

let unescaped (escs : (char * string) List.t) : regexp =
List.fold_left{char * string}{regexp}
(fun (r:regexp) (p:char * string) ->

r | fst{char}{string} p)
EMPTY
escs

110

The lens for escaping a single character is deàned by folding down the list of escape codes and, at
each step, taking the union of the accumulated lens and the lens that rewrites between the unescaped
character and the escaped string:

let escape_char (escs : (char * string) List.t) : lens =
List.fold_left{char * string}{lens}
(fun (l:lens) (p : char * string) ->

let from,to : char * string = p in
from <-> to | l)

(copy (ANYCHAR - (unescaped escs)))
escs

The initial lens supplied to the fold copies every character that does not need to be escaped. The lens that
handles escaping for whole strings rather than single characters, is obtained by iterating escape_char
using Kleene star:

let escape (escs : (char * string) List.t) : lens =
(escape_char escs)*

The xml_esc lens is a straightforward instantiation of escape with the list of escape codes xml_esc:

let xml_esc : lens =
escape xml_escs

We can verify that it behaves as expected using a unit test:

test xml_esc.get
"Duke Ellington & His Orchestra" =
"Duke Ellington & His Orchestra"

For comparison, here is how we would have to write the same lens only using string lens combinators:

let xml_esc : lens =
('>' <-> ">"
'<' <-> "<"
'&' <-> "&"
copy [^<>&])*

In this case, using the combinators is not too painful. However, the lens only handles escaping for XML
PCDATA. If we needed to deàne a lens for escaping CSV, we would need to write another lens with the
same essential structure from scratch

let csv_esc : lens =
(',' <-> "\\,"
'\n' <-> "\\n"
'\\' <-> "\\\\"
copy [^,\n\\])*

By parameterizing escape on the list of escape codes, we avoid having to repeat the common parts of
these deànitions.

Most languages describe general-purpose computations. Boomerang is a language speciàcally de-
signed for manipulating strings. As such, we have equipped it with a number of features aimed at

111

making it easier to describe strings, regular expressions, and operations on strings. For example, rather
than handling regular expressions using an external library, as in most general-purpose languages,
Boomerang has special syntax for deàning regular expressions directly in the language. This lets pro-
grammers manipulate regular expressions directly, rather than having to wrap them up as string literals
and pass them off to a function from a library. The following unit tests illustrates the syntax for regular
expressions in Boomerang:

test matches [a-z]* "abc" = true
test matches [^a-z]* "abc" = false
test matches ([^a-z]* | [a-z]{3}) "abc" = true

The function matches checks if the set of strings denoted by its regular expression argument includes
its string argument.

Another important language feature is overloading: we use the same symbols to denote operations
such as concatenation, union, Kleene star, difference, etc. on characters, strings, regular expressions,
lenses, and so on. The Boomerang typechecker automatically resolves overloaded symbols and selects
the appropriate operator. The following unit tests demonstrate several uses of overloading involving
the concatenation operator:

test 'a' . 'b' : string
test "a" . "b" : string
test [a] . [b] : regexp
test (copy "a" . copy "b") : lens

They also illustrate Boomerang’s unit tests can be used to check types.
Boomerang recognizes the following subtyping relationships between base types:

char <: string <: regexp <: lens

Subtyping simpliàes many programs—e.g., a character can be used in a context expecting a string, a
regular expression, or even as a lens. When the subsumption rule is used during typechecking, the
system inserts a run-time coercion to convert the value from one run-time type to the other [BCGS91].
For example, if we concatenate a character with a string,

test 'a' . "b" = "ab"

the typechecker àrst inserts a coercion that converts the character to a string, and then performs the
actual concatenation operation on strings. That is, Boomerang expands the above code to the following
more explicit version:

test string_concat (string_of_char 'a') "b" = "ab"

More interesting—and more useful—is the coercion from regular expressions to lenses. It uses the
copy primitive to construct a lens that copies strings belonging to the regular expression in both direc-
tion. This turns out to be quite convenient because omitting copy simpliàes many lens programs. The
following Boomerang declarations illustrate all of these coercions:

test 'a'.get 'a' = "a"
test [^a].get "b" = "b"
test "a"*.get "aaa" = "aaa"

We do not treat lens as a subtype of canonizer even though every lens can be used as a canonizer.
This is necessary to ensure that the treatment of subtyping is coherent [BCGS91].

112

6.2 Typechecking

Boomerang comes equipped with a very expressive type system: in addition to the standard types found
in the polymorphic λ-calculus—sums, products, functions, and polymorphism—it includes dependent
function types and reànement types. A dependent function type “x:t1 -> t2” generalizes the ordinary
function type “t1 -> t2” by allowing t2 to depend on the value of the argument supplied for x.
This feature most useful in combination with reànement types. A reànement type “(x:t where p)”
constrains values of type t by requiring that they satisfy the predicate p.

Together, these precise types can be used to express extremely detailed properties of programs. In
Boomerang, we use them to encode the typing rules for our lens combinators. For example, here is the
type of the concatenation lens as declared in the Boomerang standard library:

test lens_concat :
(l1:lens ->
(l2:lens where splittable l1.stype l2.stype

&& splittable l1.vtype l2.vtype) ->
(lens in (l1.stype . l2.stype) <-> (l1.vtype . l2.vtype)))

The splittable function used in the reànement on l2 is a binary predicate that tests if two regular
expressions are unambiguously concatenable. It states that the source and view types must each be
unambiguously concatenable and it guarantees that the source and view types of the lens it constructs
are the concatenations of the corresponding types from l1 and l2. Reànement types make it possible
to express the requirements on the types of the lenses while dependent function types make it possible
for the reànement on l2 to refer to l1. The notation used in the return type, “lens in S <-> V”,
desugars to an ordinary reànement type

(l:lens where l.stype = S && l.vtype = V)

where l is fresh. Another example is the union lens:

test lens_union :
(l1:lens ->
(l2:lens where disjoint l1.stype l2.stype) ->
(lens in (l1.stype | l2.stype) <-> (l1.vtype | l2.vtype)))

As with the concatenation lens, it uses a reànement type to express a constraint on its arguments—here,
that the source types are disjoint. The default lens has the following type:

test default :
(l:lens ->
((string in l.vtype) -> (string in l.stype)) ->
(lens in l.stype <-> l.vtype))

This type requires that the function map strings belonging to the view type of l to strings belonging to
the source type of l. The notation “string in R” desugars to “(u:string where matches R u)”
where u is a fresh variable. The get, put and create functions, which extract the component functions
of a lens have the following types:

test get :
(l:lens ->
(string in l.stype) ->

113

(string in l.vtype))
test put :
(l:lens ->
(string in l.vtype) ->
(string in l.vtype) ->
(string in l.stype))

test create :
(l:lens ->
(string in l.vtype) ->
(string in l.stype))

These declarations ensure that the strings supplied as sources and views have the correct type.
An earlier version of Boomerang did not support dependent and reànement types. Instead, the

conditions speciàed in the typing rule for each primitive lens were checked in the native code imple-
menting the primitive. This approach was safe—because we evaluate the functional program before
we use the lens, any conditions mentioned in its typing rules were checked before we used the lens.
However, as we began to develop larger libraries of lens code, we discovered a problem—checking the
conditions in the primitives means that errors are reported late and so programmers have to trace back
through the evaluation of the functional program to ànd the source of the errors. For example, recall
the escape_char function deàned previously:

let escape_char (escs : (char * string) List.t) : lens =
List.fold_left{char * string}{lens}
(fun (l:lens) (p : char * string) ->

let from,to : char * string = p in
from <-> to | l)

(copy (ANYCHAR - (unescaped escs)))
escs

It takes an escape character and a list of escape codes and constructs a lens—the union of all of the
lenses that handle individual characters—that escapes a single character. Because it is deàned using
union, there is actually a subtle constraint on the type of escs—the list must not contain repeated
characters. If we apply escape_char to a list where a character appears twice

test escape_char
#{char * string}[('<',"<"); ('<',"<")] =
error

the union lens will trigger an error because the source types of the two lenses combined in the last
iteration of the fold,

'<' <-> "<"

and

('<' <-> "<" | copy (ANYCHAR - [^<]))

are not disjoint. But the union lens is not a good place to report this error—it requires the programmer
to trace through the evaluation of the function to determine the cause of the error. This only becomes
worse as programs grow in size. It also breaks modularity—the programmer may need to examine code
from other modules to ànd the cause of a type error.

114

Dependent and reànement types provide a way for Boomerang programmers to express the precise
constraints on programs. Thus, when errors do occur, they can be detected early and blame can be as-
signed to correct location in the program [FF02]. For example, here is another version of escape_char
that uses precise types to express the conditions on its argument:

let escape_char
(escs : (char * string) List.t where
disjoint_chars

(List.map{char * string}{char} fst{char}{string} escs))
: lens =
List.fold_left{char * string}{lens}

(fun (l:lens) (p : char * string) ->
let from,to : char * string = p in
from <-> to | l)

(copy (ANYCHAR - (unescaped escs))) escs

The predicate disjoint_chars checks if a list of characters is disjoint:

let disjoint_chars (cs : char List.t) : bool =
let _,res : regexp * bool =
List.fold_left{char}{regexp * bool}

(fun (p:regexp * bool) (c:char) ->
let r,b : regexp * bool = p in
(r|c, b && not (matches r c)))

(EMPTY,true)
cs in

res

If we apply this version of escape_char to a list with non-disjoint characters, the error will be detected
as soon as we evaluate the application and not when we evaluate the union combinator.

Boomerang’s typechecker is implemented in the hybrid style, using contracts [Fla06, WF07, FF02].
A static typechecker uses a coarse analysis to rule out obviously ill-formed programs and inserts dynamic
checks to verify detailed constraints expressed by dependent and reànement types. Greenberg, Pierce,
and Weirich are currently investigating the foundations of this approach [GPW10].

6.3 Implementation

We have built a full prototype implementation of the Boomerang system. This system includes an
interpreter for the surface language, native implementations of the core basic, resourceful, and quotient
lens combinators, and generic lens libraries for handling escaping, lists, sorting, and XML. Only the
type system for secure lenses is not yet implemented.

The core combinators in Boomerang rely on functions drawn from a regular expression library.
These combinators make heavy use of several slightly non-standard operations including operations to
decide whether the concatenation of two languages and the iteration of a single language are unam-
biguous. We have implemented an efàcient regular expression library in OCaml based on Brzozowski
derivatives [Brz64, ORT09]. The library makes heavy use of hash consing and memoization to avoid
recomputing results and a clever algorithm for deciding ambiguity due to Møller [Mø01].

Almost all of the examples typeset in a typewriter font in this dissertation have been generated from
a literate source àle and checked against our implementation.

115

6.4 Augeas

Lenses have recently been adopted in industry. Red Hat Linux, Inc., has developed a tool for managing
operating system conàguration àles called Augeas that is directly based on Boomerang [Lut08]. Lenses
are used in Augeas is to map áat conàguration àles of the kind typically found under the /etc directory
in Unix systems to simpliàed tree structures that are easy to manipulate using scripts. The language
that Augeas programmers use to write lenses is based on an early version of Boomerang—it uses the
same set of string lens combinators, the same surface syntax, and (an early version of) our design for
resourceful lenses. It also extends the language with some new combinators for indicating tree structure
in the view.

Here is a lens developed by Pinson [Pin08] that build a view over the preference àles generated by
the APT package management tool. The source àles for this lens are blocks of text separated by blank
lines where each block is a list of key-value pairs:

Explanation: Backport packages have lowest priority
Package: *
Pin: release a=backports
Pin-Priority: 100

Explanation: My packages have highest priority
Package: *
Pin: release l=Raphink, v=3.0
Pin-Priority: 700

The view are tree structures (or in this case, sequences of trees) representing the same essential infor-
mation:

{ "1"
{ "Explanation" = "Backport packages have lowest priority" }
{ "Package" = "*" }
{ "Pin" = "release"
{ "a" = "backports" } }

{ "Pin-Priority" = "100" } }
{}
{ "2"
{ "Explanation" = "My packages have highest priority" }
{ "Package" = "*" }
{ "Pin" = "release"

{ "l" = "Raphink" }
{ "v" = "3.0" } }

{ "Pin-Priority" = "700" } }

In this notation, tree nodes are indicated using curly braces and each node has a label, an optional
value, and a sequence of children. For example, the subtree

{ "Pin" = "release"
{ "a" = "backports" } }

has the label “Pin”, value “release”, and one child.
Here is the deànition of the lens that computes this view in Augeas:

116

module AptPreferences =
autoload xfm
(* helpers *)
let colon = del /:[\t]*/ ": "
let eol = del /[\t]*\n/ "\n"
let value_to_eol = store /([^ \t\n].*[^ \t\n]|[^ \t\n])/
let value_to_spc = store /[^, \t\n]+/
let comma = del /,[\t]*/ ", "
let equal = Util.del_str "="
let spc = Util.del_ws_spc
let empty = [del /[\t]*\n/ ""]
let simple_entry (kw:string) =
[key kw . colon . value_to_eol . eol]

let key_value (kw:string) =
[key kw . equal . value_to_spc]

let pin_keys = key_value "a"
key_value "c"
key_value "l"
key_value "o"
key_value "v"

let pin = [key "Pin" . colon
. value_to_spc . spc
. pin_keys
. (comma . pin_keys)*
. eol]

let entries = simple_entry "Explanation"
simple_entry "Package"
simple_entry "Pin-Priority"
pin

let record = [seq "record" . entries+]
let lns = empty* . (record . empty)* . record?
let filter = incl "/etc/apt/preferences"

. Util.stdexcl
let xfm = transform lns filter

This program uses many of the same primitives as Boomerang—e.g., the del, (.), (|), and (*) lenses—as
well as some new primitives for building trees in the view. The store E primitive matches a string
described by E and stores it as the value of the enclosing subtree. The key E primitive matches a string
described by E and stores it as the label of the enclosing subtree. The seq x labels the enclosing subtree
with the next value from a counter identiàed by x. The [l] primitive builds a tree node. It uses the
key or seq primitive in l (which must be unique) to generate the label, the store primitive (which also
must be unique) to generate the value, and l to generate the children. For example, the record lens,
declared above as

let record = [seq "record" . entries+]

generates a single tree labeled by the current value of the record counter and containing a non-empty
list of children, each generated by entries.

117

Augeas contributors have developed lenses for a large number of formats including each of the fol-
lowing conàguration àle formats:

aliases.aug logrotate.aug pam.aug soma.aug
aptprefs.aug monit.aug passwd.aug spacevars.aug
aptsources.aug gdm.aug php.aug squid.aug
bbhosts.aug group.aug phpvars.aug sshd.aug
crontab.aug grub.aug postfix main.aug sudoers.aug
darkice.aug hosts.aug postfix master.aug sysctl.aug
dhclient.aug inifile.aug puppet.aug util.aug
dnsmasq.aug inittab.aug rsyncd.aug vsftpd.aug
dpkg.aug interfaces.aug samba.aug webmin.aug
dput.aug limits.aug services.aug xinetd.aug
exports.aug ntp.aug shellvars.aug xorg.aug
fstab.aug openvpn.aug slapd.aug yum.aug

Augeas is also beginning to be used in other projects including the Puppet conàguration management
tool [Lab09], the Netcf network interface conàguration tool [Lut09], and the Squeal tool, which allows
users to issue SQL-like queries on the àle system [Mal09].

6.5 Grammars

This ànal section describes an extension to Boomerang for deàning lenses using grammars. Boomerang’s
functional infrastructure and precise type system go a long way toward making high-level lens program-
ming convenient. But ultimately, it still requires that programmers write programs in terms of low-level
combinators. For lenses that rearrange the source data in complicated ways, using combinators can
be quite tedious—the programmer has to massage the source data into the correct position in the view
using operators like permute. This section describes a different approach using syntax based on gram-
mars. Our design is inspired by XSugar [BMS08]. Programs are expressed as a pair of intertwined
grammars. The system uses the àrst grammar to parse the source, binding pieces of it to variables, and
it uses the second grammar as a template for producing the view.

To illustrate how grammars work, consider the composer lens again. Here it is written as a grammar:

let WS : regexp = WHITESPACE*
let composer : lens =
grammar composer ::=

WS
"<composer>" WS
"<name>" n:(key (ALPHA . " " . ALPHA)) "</name>" WS
"<dates>" d:(YEAR . "-" . YEAR) "</dates>" WS
"<nationality>" ALPHA "</nationality>" WS

"</composer>"
<->

n ", " d
end

The grammar contains a single production named composer that has one rule. It transforms strings by
parsing them according to the pattern on one side of the <-> symbol and pretty printing the resulting

118

parse tree—i.e., the bindings of variables to strings—using the pattern on the other side as a template.
For example, in the get direction, the left-hand side of composers parses the XML source, binding the
name of the composer to n and the dates to d, and builds the view by concatenating n and d with a
comma and space between them. The XML formatting and nationality are discarded as they are not
bound to any variables. In the put direction, it parses the view using the right-hand side of the grammar
and produces the new source by pretty printing the bindings for n and d using the left-hand side as a
template.

We can deàne a grammar that handles a non-empty list of composers using a recursive production:

let composer_list : lens =
grammar composer_list :: =

c:< composer > <-> c
| c:< composer > cs:composer_list <-> c "\n" cs

end

The production has two rules: the àrst handles lists with a single composer while the second handles
lists with more than one composer. Note that the mechanisms of resourceful lenses can be used with
grammars—both rules treat each composer as a reorderable chunk. This allows the grammar version
of the lens to handle updates to views that involve reorderings, just like the combinator version.

The ànal grammar describes the composers lens:

let composers : lens =
grammar composers ::=

"<composers>" WS "</composers>" <-> ""
| "<composers>" cs:composer_list WS "</composers>" <-> cs

end

It has two rules: one for the empty case and another for the non-empty case.
This lens behaves the same as the version described using combinators. For example, when we

apply the get function to the original XML source, we get it produces the view

Jean Sibelius, 1865-1956
Aaron Copland, 1910-1990
Benjamin Briten, 1913-1976

as expected.
To some extent, the choice of whether to program the lens using combinators or grammars is a

matter of taste. However, the grammar approach is often simpler when we need to reorder data in
going from source to view. For example, suppose that we wanted to swap the order of the name and
dates for each composer in the view. As described in Chapter 2, we can do this using the swap lens,
but the combinator program becomes much more complicated—we need to place the swap operator
carefully in our program to lift the dates over the names:

let composer : lens =
xml_elt "composer"
((xml_elt "name" (copy (ALPHA . " " . ALPHA))

~ (xml_elt "dates" (copy (YEAR . "-" . YEAR))
. ins ", "))

. xml_elt "nationality" (del_default ALPHA "Unknown"))

119

This approach becomes complicated as soon as the transformation reorders multiple pieces of informa-
tion in the source (even if we use the n-ary generalization of swap, permute, described in Chapter 2). By
contrast, the grammar version of the lens can be easily modiàed to obtain the behavior we want—we
just invert the order of the variables n and d on the right-hand side of the rule, replacing “n ", " D”
with “d ", " n”. Thus, grammars and variables provide a natural way to describe many transforma-
tions on strings that reorder information in going from source to view.

Grammar are fully-integrated into the Boomerang system, and can be freely combined with all
of the language’s other features. They are implemented by a source-to-source translator that maps
productions to combinator expressions. Formally, their syntax is given the following extension to the
grammar for Boomerang deàned at the beginning of this chapter:

..

e ::= ... | grammar p (and p)∗ end
p ::= x ::=r\ (| r)∗
r ::= aL

∗ <-> aR
∗

aL ::= x : e | e
aR ::= x | e

A grammar is a list of productions; a production p consists of a name x and a set of rules (separated
by |); a rule r consists of two lists of atoms, one on the left-hand side and another on the right-hand
side; an atom aL on the left is either a bare expression or an expression labeled with a variables; and
an atom on the right is either a bare expression or a variable (we do not need to bind variables to
expressions on the right because each variable will have a binding on the left). We impose several
well-formedness conditions on grammars: First, we require that variables be used linearly—i.e., every
variable occurring in a rule must be used exactly once on each side of the rule. Second, we require
that grammars be right-recursive. This condition is essential—without it, grammars could be used to
describe context-free languages and Boomerang’s type system is based on regular languages. It turns
out that imposing linearity on variables and right-linearity separately on the left and right-hand sides
of rules ensures a kind of joint right-linearity: every well-formed rule has one of two forms

a1 . . . ak <-> b1 . . . bl or
a1 . . . ak x:ek+1 <-> b1 . . . bl x

where each of the ai and bj atoms are not recursive.
The àrst step in the compilation is transforming individual rules to lenses. There are two cases. For

non-recursive rules, we construct a lens that maps between the left and right-hand sides directly. For
example, the rule in the composer production compiles to the following lens:

permute
#{int}[1;2;3;4;5]
#{lens}[del (WS . "<composer>" . WS . "<name>")

; key (ALPHA . " " . ALPHA)
; "</name>" . WS . "<dates>" <-> COMMA . SPACE
; copy (YEAR . "-" . YEAR)
; del ("</dates>" . WS . "<nationality>" . ALPHA .

"</nationality>" . WS . "</composer>")]

The list of integers represents a permutation. In this case, it is just the identity permutation—the vari-
ables n and d appear in the same order on the left and right-hand sides of the rule. However, more

120

generally, we need to permute the views produced by each lens. We calculate the appropriate permu-
tation by comparing the list of variables mentioned in each rule. In the same way, we compile the
non-recursive preàxes of recursive rules—i.e., all but the ànal atom—and associate the resulting lens
with the variable named in the right-most position. The result after compiling each rule, is a right-linear
grammar with lenses as non-terminals. For example compiling the composer_list production yields
the following:

composer list
::= (permute #{int}[1] #{lens}[< composer >])

| (permute #{int}[1] #{lens}[< composer >]) composer list

To complete the compilation, we eliminate recursion by transforming it into iteration, using a gener-
alization of the standard construction on ordinary grammars. There are again two cases. If xi ::=
p1 . . . pk is the only production, then we partition its rules into two sets: recursive rules go into S1, and
non-recursive rules into S2. We then construct the following lens for xi:

xi =
(
|(k xi)∈S1

k
) ∗· (|l∈S2 l)

It is straightforward to verify that this lens describes the same transformation as ri. If there are multiple
productions, we eliminate one by replacing references to it with a similarly constructed lens, and repeat
the compilation.

There is one restriction of the compilation that bears mentioning. The typing rules for our lens
combinators check unambiguity locally—i.e., for every concatenation and iteration. Our compilation
only produces a well-typed lens if the grammar is “locally unambiguous” in this sense.

6.6 Summary

The Boomerang language provides convenient high-level notation for programming with lenses and an
expressive type system for establishing correctness. It also includes an extension for describing lenses
using grammars instead of combinators. In our experience, these features are critical for developing
lens programs of substantial size. We have used them to develop a number of lenses for real-world data
formats including electronic address books, calendars, bibliographies, and scientiàc data. Our design
has also been used in industry: the Augeas tool uses a language based directly on Boomerang.

121

Chapter 7

Related Work

The structures investigated in this dissertation—lenses and their associated behavioral laws—are not
completely new. Similar structures have been studied for decades in the database community. Also,
programming languages that—in some way—can be run both forwards and backwards have been stud-
ied previously. This chapter summarizes previous work on these topics, highlighting the key differences
to our work.

Broadly speaking, lenses have several features that distinguish them from previous work on view
update translators in databases. One is that lenses transform whole states rather than “update opera-
tions”. Another is that they treat well-behavedness as a form of type assertion. Lenses are also novel in
their treatment of totality—i.e., they guarantee that propagating the update to the view will not fail at
run time. On the programming language side, much of the previous related work focuses on reversible
languages—i.e., languages where the source and view are isomorphic. The languages we have devel-
oped appear to be the àrst that are based on a formal semantic foundation in which information can
be discarded in the forward direction. Lenses are also unique in identifying totality as a primary goal
and in emphasizing types—i.e., compositional reasoning about well-behavedness—as an organizing de-
sign principle. Lastly, to the best of our knowledge, other work has not tackled the issues related to
ignorable, ordered, and conàdential data addressed in this dissertation.

7.1 Foundations

The foundations of correct view update were studied extensively by database researchers in the late
1970s and 1980s. This thread of work is closely related to the semantics of lenses. We discuss here
the main similarities and differences between our work and these classical approaches to view up-
date—in particular Dayal and Bernstein’s notion [DB82] of “correct update translation,” Bancilhon
and Spyratos’s [BS81] notion of “update translation under a constant complement,” Gottlob, Paolini,
and Zicari’s “dynamic views” [GPZ88], and the “triggers” offered by commercial database systems.

The view update problem concerns translating updates on a view into “reasonable” updates on the
underlying database. We can break this broad problem statement into several speciàc questions: First,
what is a “reasonable” translation of an update? Second, how should we handle updates for which
there is no reasonable way of translating its effect to the underlying source? And third, how should
we deal updates for which there are many reasonable translations to choose from? We consider these
questions in order.

One can imagine many possible ways of assigning a precise meaning to “reasonable update transla-
tion,” but there turns out to be widespread agreement in the literature with most frameworks adopting
one of two basic positions. The stricter position is captured in Bancilhon and Spyratos’s [BS81] notion

123

of the complement of a view, which must include at least the information missing from the view. When
the complement is àxed there exists at most one update of the database that reáects a given update
on the view while leaving the complement unchanged—i.e., that “translates updates under a constant
complement.” This approach has ináuenced numerous later works in the area, including recent papers
by Lechtenbörger [Lec03] and Hegner [Heg04].

The other, more permissive, deànition of “reasonable” is captured in Gottlob, Paolini, and Zicari’s
“dynamic views” [GPZ88]. They present a general framework and identify two special cases, one
equivalent to Bancilhon and Spyratos’s constant complement translators and the other—which they
advocate on pragmatic grounds—their own dynamic views. Our notion of lenses adopts the same,
more permissive, attitude towards reasonable behavior of update translation. Indeed, modulo some
technicalities, the set of well-behaved lenses is isomorphic to the set of dynamic views in the sense
of Gottlob, Paolini, and Zicari and the set of very well-behaved lenses is isomorphic to the set of
translators under constant complement in the sense of Bancilhon and Spyratos. Dayal and Bernstein’s
[DB82] seminal paper on “correct update translation” also adopts the more permissive position. Their
notion of “exactly performing an update” corresponds to the PG law.

The tradeoffs between these two perspectives on reasonable update translations have been further
reàned by Hegner [Heg90, Heg04], who introduces the term closed view for views that can be updated
independently, without having to consider the effect on the underlying source, and open view for views
where the user is explicitly aware that they are updating some data derived from the source. Hegner
advocates the closed-world approach, but notes that both choices have advantages in different con-
texts—e.g., the open-view approach is more permissive, allowing more updates in general, while the
closed-world approach provides users with a robust abstraction of the source.

Hegner [Heg04] also formalizes an additional condition (which has also been noted by others—e.g.,
by [DB82]) called monotonicity of update translations. It states that an update that only adds records
to the view should be translated just into additions to the database, and that an update that adds more
records to the view should be translated to a larger update to the database and similarly for deletions.

The treatment of updatable views in commercial database systems has evolved over time. The
SQL-92 standard states that views deàned using simple operators over a single base relation are up-
datable [IA92]. The later SQL:2008 standard gives a more complicated collection of conditions that
treats many more views as updatable [IA08]. Systems such as Oracle [FL05, Lor05], Microsoft’s SQL
Server [Mic05], and IBM’s DB2 system [IBM04] typically provide two quite different mechanisms for
constructing updatable views. Simple views deàned using select, project, and a very restricted form of
join (i.e., where the keys of one relation are a subset of those in the other) are considered inherently
updatable. For these, the notion of reasonableness is essentially the constant complement position. Al-
ternatively, programmers can make an arbitrary view updatable by adding a relational trigger that is
invoked whenever an update is attempted on the view. These triggers can execute arbitrary code to
update the underlying database and the notion of reasonableness is left entirely to the programmer.

The second question posed at the beginning of this section was how to deal with the possibility that
some updates cannot be translated back to the source in a reasonable way. The simplest response is
to simply let the translation fail in situations where the effect on the source would be unreasonable.
The advantage of this approach is that the system can determine reasonableness on a case-by-case
basis, allowing translations that usually give reasonable results but that fail under rare conditions. The
disadvantage is that it loses the ability to perform ofáine updates to the view—to test if a given update
can be translated, we need the underlying database. Another possible approach is to restrict the set of
operations on the view to ones that can always be translated. A third approach—the one adopted in
our work—is to restrict the type of the view so that arbitrary type-respecting updates are guaranteed to
succeed.

The third question posed above was how to deal with the possibility that there may be multiple

124

reasonable translations for a given update. One attractive idea is to somehow restrict the set of rea-
sonable translations so that this possibility does not arise—i.e., so that every translatable update has a
unique translation. For example, under the constant complement approach, after àxing the choice of
a complement, every update has a unique translation. Hegner’s additional condition of monotonicity
[Heg04] ensures that (at least for updates consisting of only inserts or only deletes), the translation of
an update is unique, independent of the choice of complement. Another possibility is to place an or-
dering on possible translations of a given update and choose one that is minimal in this ordering. This
idea plays a central role, for example, in Johnson, Rosebrugh, and Dampney’s account of view update
in the Sketch Data Model [JRD01]. However, Buneman, Khanna, and Tan [BKT02] have established
a variety of intractability results for the problem of inferring minimal view updates in the relational
setting for query languages that include both join and either project or union. This dissertation pursues
an entirely different approach: rather than trying to constrain the framework so that updates are de-
termined, we provide programmers with tools for describing the view and the intended update policy
together. That is, we design primitives that allow programmers to pick a policy for translating updates.

7.2 Programming Languages

At the level of syntax, many different kinds of bidirectional programming have been explored across
a surprisingly diverse range of communities, including programming languages, databases, program
transformation, constraint-based user interfaces, software engineering, and quantum computing. One
useful way of classifying these languages is by the “shape” of the semantic space in which their trans-
formations live. We identify three major classes:

Bidirectional languages pair a get function of type S → V with a put function of type V →
S → S. The get function may project away source information; the put function
restores it.

Bijective languages have put functions with the type V → S—i.e., there is no source argu-
ment to refer to. To avoid loss of information, the get and put functions must form a
(perhaps partial) bijection between S and V .

Reversible languages go a step further, demanding that it be possible to undo the work per-
formed by any function by applying the function “in reverse”.

In the àrst class of languages, the work that is fundamentally the most similar to ours is Meertens’s
treatment of constraint maintainers for constraint-based user interfaces [Mee98]. Meertens’s semantic
setting is actually even more general: the get and put functions are relations, not just functions, and also
symmetric: get relates pairs from S × V to elements of V and put relates pairs in V × S to elements
of S. The idea is that a constraint maintainer forms a connection between two graphical objects on
the screen so that, whenever one of the objects is changed by the user, the change can be propagated
by the maintainer to the other object such that some desired relationship between the objects is always
maintained. Taking the special case where the get relation is actually a function (which is important
for Meertens because this is the case where composition [in the sense of our “;” combinator] preserves
well behavedness), yields essentially our well behaved lenses.

Meertens proposes a variety of combinators for building constraint maintainers, most of which
have analogs among our lenses, but some of his combinators do not support compositional reasoning
about well-behavedness. For example, when he considers constraint maintainers for lists, he adopts
an operation-based approach, focusing on constraint maintainers that work with structures in terms of
the “edit scripts” that might have produced them.

125

Bidirectional languages capable of duplicating data in the get direction have been the focus of recent
work by the Programmable Structured Documents group at the University of Tokyo.

Early work by Mu, Hu, and Takeichi on “injective languages” for view-update-based structure
editors [MHT04a] adopted a semantic framework similar to lenses. Although their transformations
obey our GP law, their notion of well-behaved transformations is informed by different goals
than ours, leading to a weaker form of the PG law. They are concerned with using view-to-view
transformations to simultaneously restore invariantswithin the view as well as updating the source. For
example, a view may maintain two lists where the name àeld of each element in one list must match the
name àeld in the corresponding element in the other list. If an element is added to the àrst list, then the
change must not only be propagated to the source, it must also be added to the second list in the view.
It is easy to see that PG cannot hold in these situations. Like Meertens, they assume that the view
is modiàed by inserting editing tags that mark modiàed àelds as “updated.” These marks are used by
the put function and then discarded—another change to the view that violates PG. Consequently,
to support invariant preservation within the view, and to support edit tags, their transformations only
obey a much weaker variant of PG called PGP.

Another paper by Hu, Mu, and Takeichi [HMT08, MHT06] applies a bidirectional programming
language quite closely related to ours to the design of “programmable editors” for structured docu-
ments. As in their earlier work [MHT04a], they support preservation of local invariants in the put
direction. Instead of annotating the view with modiàcation marks, they assume that a put or a get
occurs after every modiàcation to either view. They use this “only one update” assumption to choose
the correct inverse for the lens that copied data in the get direction—because only one branch could
have been modiàed. Consequently, they can put the data from the modiàed branch and overwrite
the unmodiàed branch. Here, as in their earlier work, the notion of well behavedness is weakened to
PGP.

Yet another line of work by the same group investigated bidirectional languages with variable bind-
ing. Languages that allow unrestricted occurrences of variables implicitly support duplication, since
data can be copied by programs that use a variable several times. The goal of this work is to develop a
bidirectional semantics for XQuery [LHT07]. As in the earlier work, they propose relaxed variants of
the lens laws and develop a semantics based on sophisticated propagation of annotated values.

One possible connection between their work and our quotient lenses is an condition proposed in
article by Hu, Mu, and Takeichi [HMT08]. This is formulated in terms of an ordering on edited values
that captures when one value is “more edited” than another. They propose strengthening the laws to
require that composing put and get produce an abstract structure that is more edited in this sense, calling
this property update preservation. We hope to investigate the relationship between our quotient-lens
PG law and their PGP plus update preservation. However, we suspect that the comparison
may prove difàcult to make, however, because our framework is “state based”—the put function only
sees the state of the data structure resulting from some set of edits, not the edits themselves—while
theirs assumes an “operation-based” world in which the locations and effects of edit operations are
explicitly indicated in the data.

Another paper by Matsuda, Hu, Nakano, Hamana, and Takeichi proposes a mechanism for de-
scribing lenses using ordinary, unidirectional programs [MHN+07]. It deànes a “bidirectionalization”
transformation that takes programs written in a restricted λ-calculus and calculates an explicit com-
plement, in the sense of Bancilhon and Spyratos. This provides a way to construct a lenses from a
description of its get function. There are two key difference between their work and ours. First, al-
though there are many well-behaved lenses with a given get function, their construction picks just one
lens. Second, their lenses are not total—their put function may fail if the user makes a signiàcant change
to the view.

126

Languages for Bijective Transformations

There is an active community of program transformation researchers working on program inversion
and inverse computation—see, for example, Abramov and Glück [AG00, AG02] and the many papers
cited there. Program inversion [Dij79] derives an inverse program from a standard program. Inverse
computation [McC56] computes a possible input of a program from a particular output. One approach
to inverse computation is to design languages that produce easily invertible expressions—for example,
languages that can only express injective functions, where every program is trivially invertible. These
languages bear some intriguing similarities to ours, but differ in a number of ways, primarily in their
focus on the bijective case.

In the database community, Abiteboul, Cluet, and Milo [ACM97] deàned a declarative language
of correspondences between parts of trees in a data forest. In turn, these correspondence rules can
be used to translate one tree format into another through non-deterministic Prolog-like computation.
This process assumes an isomorphism between the two data formats. The same authors later deàned a
system for bidirectional transformations based around the concept of structuring schemas—i.e., parse
grammars annotated with semantic information [ACM98]. Their get functions involve parsing, while
put functions involve unparsing. Again, to avoid ambiguous abstract updates, they restricted themselves
to lossless grammars that deàne an isomorphism between concrete and abstract views.

A number of other systems provide some linguistic mechanisms for describing essentially bijective
transformations. XSugar [BMS08] is a bidirectional language that targets the case where one structure
is represented in XML and the other structure is a string. Transformations in XSugar are speciàed using
pairs of intertwined grammars. Our design for grammars in Boomerang discussed in Chapter 6 was
inspired by XSugar. A similar language biXid [KH06] also speciàes bidirectional conversions between
pairs of XML documents. However, unlike XSugar, biXid allows ambiguous productions and rules
that are non-linear in their use of variables.

The PADS system [FG05] generates a data type, parser, and pretty printer for ad hoc data from a
declarative description of the format. PADS comes with a rich collection of primitives for handling a
wide variety of data including characters, strings, àxed-with integers, áoating point values, lists, etc.
Recent work on PADS has focused on developing mechanisms for learning data descriptions auto-
matically [FWZW08]. Kennedy’s pickling combinators [Ken04] describe serializers and deserializers.
Benton [Ben05] and Ramsey [Ram03] each proposed systems for mapping between the values in a host
language and the run-time values manipulated by an embedded interpreter.

JT [EG07] synchronizes programs written in different high level languages, such as C and Jekyll,
an extension of C with features from ML. JT uses a notion of distance to decide how to propagate
changes, allowing the detection of non local edits. The synchronization seems to work well in many
cases but there is no claim that the semantics of the synchronized programs are the same.

Wadler’s views [Wad87], extend algebraic pattern matching to abstract data types. Programmers
supply in and out functions tomap between views and the underlying structures they are generated from.
In certain simple situations, Wadler observes that the in and out functions can be deàned together.

Languages for Reversible Transformations

Lenses are the àrst work we are aware of in which totality and compositional reasoning about totality
are taken as primary design goals. Nevertheless, in all of the languages discussed above there is an
expectation that programmers will want their transformations to be “total enough”—i.e., that the sets
of inputs for which the get and put functions are deàned should be large enough for some given purpose.
In particular, we expect that put functions should accept a suitably large set of views for each source,
since the whole point of these languages is to allow editing through a view. A quite different class of

127

languages have been designed to support reversible computation, in which the put functions are only
ever applied to a result of the corresponding get functions. While the goals of these languages are quite
different from ours—they have nothing to do with view update—there are intriguing similarities in the
basic approach.

Landauer [Lan61] observed that non-injective functions are logically irreversible, and that irre-
versibility requires generating and dissipating some heat per machine cycle. Bennett [Ben73] demon-
strated that this irreversibility was actually not inevitable by constructing a reversible Turing machine,
showing that thermodynamically reversible computers were plausible. Baker [Bak92] argued that ir-
reversible primitives were only part of the problem; irreversibility at the “highest levels” of computer
usage cause the most difàculty due to information loss. Consequently, he advocated the design of pro-
grams that “conserve information.” Because deciding reversibility of large programs is unsolvable, he
proposed designing languages that guaranteed that all well-formed programs are reversible, i.e., de-
signing languages whose primitives were reversible and whose combinators preserved reversibility. A
considerable body of work has developed around these ideas [MHT04b]. Abramsky recently developed
a compositional translation from λ-calculus to a reversible abstract machine model [Abr05].

7.3 Databases

Research on view update translation in the context of databases has tended to focus on taking an
existing language for deàning get functions (e.g., relational algebra) and then considering how to infer
corresponding put functions—either automatically or with some user assistance. Our approach is to
design languages in which the deànitions of get and put go hand-in-hand. We also go beyond classical
work in the relational setting by directly transforming and updating arbitrary data structures rather
than just relations.

Work by Bohannon, Pierce, and Vaughan [BVP06] extends the lens framework described here to
the relational model. Their lenses are based on the primitives of classical relational algebra, with ad-
ditional annotations that specify the desired “update policy” in the put direction. They develop a type
system, using record predicates and functional dependencies, to aid compositional reasoning about well-
behavedness. The chapter on view update in Date’s textbook [Dat03] articulates a similar perspective
on translating relational updates.

Masunaga [Mas84] described an automated algorithm for translating updates on views deàned by
relational algebra. The core idea was to annotate where the “semantic ambiguities” arise, indicating
they must be resolved either with knowledge of underlying database semantic constraints or by inter-
actions with the user.

Keller [Kel85] catalogued all possible strategies for handling updates to a select-project-join view
and showed in his thesis that these are exactly the set of translations that satisfy a small set of intuitive
criteria: no side effects, one-step changes, no unnecessary changes, simplest replacements, and no delete-
insert pairs. Keller later proposed allowing users to choose an update translator at view deànition time
by engaging in an interactive dialog with the system and answering questions about potential sources
of ambiguity in update translation [Kel86]. Building on this foundation, Barsalou, Siambela, Keller,
and Wiederhold [BSKW91] described a scheme for interactively constructing update translators for
object-based views of relational databases.

Medeiros and Tompa [MT85] presented a tool for exploring the effects of choosing a view update
policy. Their tool shows the update translation for update requests supplied by the user; by considering
all possible valid sources, it predicts whether the desired update would in fact be reáected back into the
view after applying the translated update to the concrete database.

The Clio tool, developed by a team of researchers including Miller, Hernandez, Haas, Yan, Ho,

128

Fagin, and Popa [MHH+01], manages heterogeneous data transformation and integration. Clio pro-
vides a graphical interface for visualizing two schemas and for specifying correspondences between their
àelds—a schema mapping. Although they focus on get functions, if bidirectional mappings are needed,
they can be constructed. Recent work by Karvounarakis and Ives proposes bidirectional schema map-
pings for doing data integration of heterogeneous sources [KI08].

Atzeni and Torlone [AT97, AT96] described a tool for translating views and observed that if it is
possible to translate any source view to and from a shared view, then there is a bidirectional transfor-
mation between any pair of sources. They only consider mappings where the structures are isomorphic.

Complexity bounds have also been studied for various versions of the view update inference prob-
lem. Cosmadakis and Papadimitriou [CP84] considered the view update problem for a single relation,
where the view is a projection of the underlying relation, and showed that there are polynomial time
algorithms for determining whether insertions, deletions, and tuple replacements to a projection view
are translatable into concrete updates. As mentioned above, Buneman, Khanna, and Tan [BKT02] es-
tablished a variety of intractability results for the problem of inferring “minimal” view updates in the
relational setting for query languages that include both join and either project or union.

In the context of XML data, Braganholo, Heuser, and Vittori [dPBHV01], and Braganholo, David-
son, and Heuser [BDH03] and others studied the problem of updating relational databases “presented
as XML.” Their solution requires a one-to-one mapping between XML view elements and objects in
the database to ensure that updates are unambiguous.

Tatarinov, Ives, Halevy, and Weld [TIHW01] described a mechanism for translating updates on
XML structures that are stored in an underlying relational database. In this setting there is again an
isomorphism between the relational source and the XML view, so updates are unambiguous—rather,
the problem is choosing the most efàcient way of translating a given XML update into a sequence of
relational operations.

The view update problem has also been studied in the context of object-oriented databases. Scholl,
Laasch, and Tresch [SLT91] restrict the notion of views to queries that preserve object identity. The
view update problem is greatly simpliàed in this setting, as the objects contained in the view are the
objects of the database, and an update on the view is directly an update on objects of the database.

Another problem that is sometimes mentioned in connection with view update translation is that of
incremental view maintenance [GMS93]—efàciently recalculating an abstract view after a small update
to the underlying concrete view. Although the phrase “view update problem” is sometimes, confusingly,
used for work in this domain, these problems are fundamentally different.

7.4 Model Transformations

In the software engineering community, there has been interest in using lenses for model-driven software
development. The model-driven approach allows programmers to derive implementations (e.g., Java
classes) from formal speciàcations (e.g., UML diagrams). In systems based on model transformations,
developers often need to maintain complex relationships between the model and the code—e.g., reàning
models to code and checking conformance of models to respective metamodels. Model transformations
are mechanisms for establishing—and re-establishing, in the presence of change—relationships among
models and between models and code [CH06]. Bidirectional model transformations are of particular
interest if the related artifacts can be edited independently [AC08]. Formalisms such as triple graph
grammars can be used to describe bidirectional transformations between models [Sch95]. Recently,
Stevens [Ste08a, Ste08b, Ste07] has applied lenses to model transformations. Similar ideas have also
been pursued by [XLH+07] and [HHKN09]. The survey paper by Czarnecki, Foster, Hu, Lämmel,
Schürr, Terwilliger describes the connections between bidirectional languages, view update, and model

129

transformations [CFH+09].

7.5 Security

The use of views as a mechanism for controlling access to conàdential data has a long history in
relational systems. Denning, Akl, Heckman, Lunt, Morgenstern, Neumann, and Schell proposed
a framework that uses views to enforce access control policies with multiple conàdentiality levels
[DAH+87]. Security views were àrst proposed as a security mechanism for XML data by Stoica
and Farkas [SF02] and were later studied extensively by Fan and his colleagues in a series of pa-
pers [FCG04, FGJK06, FGJK07]. The key difference between previous work on security views and
the framework proposed in Chapter 5, of course, is support for updates. Additionally, most previ-
ous systems do not provide a way to formally characterize the data kept conàdential by the view—the
query that deànes the view essentially is the privacy policy. Lastly, views in previous systems have
typically been virtual, while the views constructed using lenses are materialized. Fan [FCG04] has ar-
gued that materializing views is not practical, because many different security views are often needed
when policies are complex. We ànd this argument compelling in the traditional database setting, where
data sources are typically very large, but believe that there are also many applications where building
materialized security views will be practical. Moreover, in at least some applications, views must be
materialized—e.g., if the regraded view is intended to be sent over the network and displayed in a web
browser.

The idea of using static analyses to track áows of information in programs was originally proposed
by Denning and Denning [DD77] and has since been applied in a variety of languages, including Jif
[Mye99], a secure variant of Java, and FlowCaml [PS03], a secure variant of OCaml. The excellent
survey article by Sabelfeld and Myers [SM03] gives a general overview of the entire area and numerous
citations.

Rather less work has focused on applying information-áow analyses to data processing languages.
The developers of CDuce, a functional language for processing XML data, studied an extension of the
language where labels corresponding to security levels are propagated dynamically [BBC03]. Foster,
Green, and Tannen proposed a mechanism for ensuring non-interference properties of tree transforma-
tions using a semantics that propagates dynamic provenance annotations [FGT08]. The Fable language
also propagates security labels dynamically [SCH08, CSH07]. Fable does not àx a particular semantics
for label propagation, but instead provides a general framework that enforces a strict boundary between
ordinary program code, which must treat labels opaquely, and security code, which may manipulate
labels freely. Thus, it can be used to implement a variety of static and dynamic techniques for tracking
information áows in programs. Cheney, Ahmed, and Ucar have introduced a general framework for
comparing static and dynamic approaches to many dependency analyses including information áow
[CAA07].

Integrity can be treated as a formal dual to conàdentiality, as was àrst noted by Biba [Bib77]. Thus,
most of the languages discussed above can also be used to track integrity properties of data. However,
as noted by Li, Mao, and Zdancewic [LMZ03], information-áow analyses provide weaker guarantees
for integrity compared to conàdentiality when code is untrusted. Speciàc mechanisms for tracking
integrity have also been included in a variety of languages: Perl has a simple taint tracking mechanism
for data values [WCO00]. Wassermann and Su proposed amore powerful approach based on a dynamic
analysis of generated strings that tracks tainted data in PHP scripts [WS07]. [STFW01] developed a
taint analysis for C code using the cqual system. Finally, researchers at IBM have recently implemented
a taint analysis tool for Java designed to scale to industrial-size web applications [TPF+09].

130

Chapter 8

Summary and Future Work

This dissertation demonstrates that bidirectional programming languages are an effective means of
deàning updatable views. Starting from the foundations, we developed the framework of basic lenses,
which are bidirectional transformations characterized by intuitive semantic laws. Then, building on this
foundation, we designed a language for describing lenses on strings, with natural syntax based on the
regular operators and a type system that guarantees well behavedness. We also studied the complica-
tions that arise when lenses are used to manipulate data containing unimportant details, ordered data,
and conàdential data. Finally, we described the implementation of all these ideas in the Boomerang
language.

These results do not, however, close the book on bidirectional programming languages. On the
contrary, our work can be extended in many directions. This ànal chapter identiàes some speciàc
avenues for future research.

8.1 Data Model

In this dissertation, we have primarily focused on lenses for strings. We did this as a matter of research
strategy—to keep our focus on issues related to bidirectional languages and avoid getting distracted by
technicalities related to the data model. However, the semantic space of lenses is completely generic so
we can also instantiate it with other structures. We plan to investigate lenses for richer structures—e.g.,
objects, graphs, complex values, etc.—in future work. One motivation is that richer data models are
simply a better àt for many applications. Another is that working with a richer data model should lead
naturally to new and interesting lens primitives. It will also force us to extend concepts such as chunks,
which are central to the semantics of resourceful lenses presented in Chapter 4, to richer settings. The
main challenge will be developing type systems that are powerful enough to express the constraints
needed to ensure well behavedness.

We, and others, have already made some progress in this area. In previous work we developed lenses
for trees [FGM+07], and Bohannon, Pierce, and Vaughan investigated lenses for relations [BVP06].
Recently, Hidaka, Hu, Kato, and Nakano proposed a bidirectional language based on the graph query
language UnQL [HHKN09]. Graphs are of particular interest because they are often used to represent
software at various levels of abstraction in model-driven development.

8.2 Syntax

At the level of syntax, our investigation has focused almost exclusively on combinators (with one excep-
tion—the grammars described in Chapter 6). This low-level approach to language design has proven

131

to be an effective strategy for making progress on fundamental issues—e.g., how standard constructs
such as conditionals, products, iteration operators, etc. should behave as lenses—but most program-
mers ànd the “point-free” style of programming unintuitive. We are interested in developing new lens
languages based on more familiar syntactic constructs. One promising idea is to start from the nested
relational calculus (NRC) [BNTW95]. NRC has a rich data model that can represent a wide variety of
structures but a simple programming model based on structural recursion. A key technical challenge
will be developing the machinery for interpreting NRC bidirectionally including dealing with variables.
Another challenge in supporting richer syntax will be ànding elegant ways to deal with lenses deàned
by recursion. Semantically, recursive lens deànitions do not raise any deep issues—see [FGM+07,
Section 3]—but modifying the framework to support general recursive deànitions requires changing
the deànition of lenses so that the component functions are partial. This means that reasoning about
totality needs to be done separately.

8.3 Audit

One of the main unresolved tensions in the design of lenses involves the interplay between totality and
very well behavedness. We want lenses to be total, but we also want them to preserve the underlying
source data to the extent possible. Unfortunately, for certain transformations, we simply cannot have
both of these—we either need to reject certain updates, or we need to allow the put function to make
heavy changes to the source. In this dissertation, we have resolved this tension by simply taking totality
to be the primary consideration and allowing lenses that are only well behaved. This seems to be a
reasonable choice, but it means that a lens can sometimes have an unintended effect on the underlying
source.

One idea for improving the usability of lenses that are only well behaved is to have them generate
logs of their behavior. The idea is that instead of simply returning the updated source, the put function
would generate a log of update operations to be performed on the source. These logs would provide
more reàned information about the nature of the update produced by the lens and would provide a
concrete artifact that the owner of the source could use to return the system to a good state if they
decide that the update is unacceptable. The main challenges will be designing elegant representations
for logs and a theory of correct audit that makes it possible to compare and evaluate different auditing
strategies. This work will also connect the operation-based approach to view update, which is often
used in databases, with the state-based approach.

A related topic is exploring the relationship between view update and view maintenance. The goal
of view maintenance systems is to propagate source updates to the view in an efàcient manner. Intu-
itively, because many updates only affect a small portion of the view, it should be possible to translate
them to small incremental updates. The complements used in bidirectional languages closely resemble
the “trace” artifacts that have been proposed in the context of self-adjusting computation [ABH06]—a
general technique for implementing incremental maintenance. We are interested in making the connec-
tion between bidirectional and self-adjusting computation explicit. This will be interesting in its own
right, and will also have a signiàcant practical beneàt, leading to efàcient mechanisms for maintaining
the views deàned by lenses.

8.4 Optimization

Another area for further work is optimization. Currently, the Boomerang interpreter implements the
lens primitives directly. However, it should be possible to optimize the performance of many lens
programs using algebraic rewritings. For example, the lens (l1∗; l2∗) behaves the same as (l1; l2)∗

132

(when both are well typed), but the second lens should run substantially faster since it only has to
iterate over the source once. We are interested in developing an algebraic theory of lenses that could
serve as the basis for an optimizing compiler. We would also like to explore lenses that process the
source in streaming fashion. This idea is motivated by examples such the UniProt database, where
the sources can be several gigabytes in size! The idea in these streaming lenses would be to develop
operators such as an iteration combinator whose get function produces the view one elements one at a
time, rather than operating on the whole sequence. Similarly, we would need to retool put function to
operate on elements of the view one piece at a time. To optimize the memory requirements of streaming
lenses, we also plan to investigate lenses that use minimal complements.

8.5 Security

The secure lenses described in Chapter 5 use both static and dynamic mechanisms to verify security
properties of lens programs. Unlike the rest of the work described in this dissertation, however, these
analyses have not yet implemented. We hope to pursue this line of work in the future, implement-
ing the secure lens type system and exploring connections to mechanisms that have been proposed
in other settings—e.g., dynamic label propagation [ZM07, SST07] and provenance [BKT01, FGT08].
We would also like to explore declassiàcation operators [ML97], quantitative measures of information
áow [ME08], and formal notions of privacy [MS07] in the context of secure lenses. We believe that
the time is especially ripe for languages designed with security in mind because although many systems
manipulate sensitive data, few languages provide any tools for establishing that they do so correctly.
As a result, relatively minor programming bugs often lead to massive security breaches. Secure lenses
address a simple instance of this problem—providing a way to share data securely at àne levels of
granularity—but much work remains.

133

Bibliography

[ABH06] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.
ACM Transactions on Programming Languages and Systems (TOPLAS), 28(6):990–1034,
2006.

[Abr05] Sampson Abramsky. A structural approach to reversible computation. Theoretical Com-
puter Science, 347(3):441–464, 2005.

[AC08] Michal Antkiewicz and Krzysztof Czarnecki. Design Space of Heterogeneous Synchro-
nization. In Generative and Transformational Techniques in Software Engineering II, Inter-
national Summer School, GTTSE 2007, Revised Papers, volume 5235 of LNCS, pages 3–46.
Springer, 2008.

[ACM97] Serge Abiteboul, Sophie Cluet, and Tova Milo. Correspondence and translation for het-
erogeneous data. In International Conference on Database Theory (ICDT), Delphi, Greece,
1997.

[ACM98] Serge Abiteboul, Sophie Cluet, and Tova Milo. A logical view of structure àles. VLDB
Journal, 7(2):96–114, 1998.

[AG00] Sergei M. Abramov and Robert Glück. The universal resolving algorithm: Inverse compu-
tation in a functional language. In R. Backhouse and J. N. Oliveira, editors, Mathematics
of Program Construction, volume 1837, pages 187–212. Springer-Verlag, 2000.

[AG02] Sergei M. Abramov and Robert Glück. Principles of inverse computation and the univer-
sal resolving algorithm. In Torben Mogensen, David Schmidt, and I. Hal Sudborough,
editors, The Essence of Computation: Complexity, Analysis, Transformation, volume 2566
of Lecture Notes in Computer Science, pages 269–295. Springer-Verlag, 2002.

[And04] D. Calvin Andrus. Toward a complex adaptive intelligence community: The wiki and the
blog. Studies in Intelligence, 49, September 2004.

[AT96] Paolo Atzeni and Riccardo Torlone. Management of multiple models in an extensible
database design tool. In Proceedings of EDBT’96, LNCS 1057, 1996.

[AT97] Paolo Atzeni and Riccardo Torlone. MDM: a multiple-data model tool for the manage-
ment of heterogeneous database schemes. In Proceedings of ACM SIGMOD, Exhibition
Section, pages 528–531, 1997.

[Bak92] Henry G. Baker. Nreversal of fortune—the thermodynamics of garbage collection. In
International Workshop on Memory Managment (IWMM), St. Malo, France, number 637
in Lecture Notes in Computer Science, pages 507–524. Springer-Verlag, September 1992.

135

[BBC03] Véronique Benzaken, Marwan Burelle, and Giuseppe Castagna. Information áow security
for XML transformations. In Advances in Computing Science: Programming Languages
and Distributed Computation (ASIAN), Mumbai, India, volume 2896 of Lecture Notes in
Computer Science, pages 33–53, 2003.

[BCF+10] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and Benjamin C.
Pierce. Matching lenses: Alignment and view update. Technical Report MS-CIS-10-01,
University of Pennsylvania, Department of Computer and Information Science, January
2010.

[BCGS91] Val Breazu-Tannen, Thierry Coquand, Carl Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93(1):172–221, July 1991.

[BCPV07] Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled schema trans-
formation and data conversion for XML and SQL. In International Symposium on Practical
Aspects of Declarative Languages (PADL), Nice France, volume 4354 of Lecture Notes in
Computer Science, pages 290–304. Springer-Verlag, 2007.

[BDH03] Vanessa Braganholo, Susan Davidson, and Carlos Heuser. On the updatability of XML
views over relational databases. In WebDB 2003, 2003.

[Ben73] Charles H. Bennet. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525–532, 1973.

[Ben05] Nick Benton. Embedded interpreters. Journal of Functional Programming, 15(4):503–542,
2005.

[Ber79] Jean Berstel. Transductions and Context-Free Languages. Teubner Verlag, 1979.

[BFP+08] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan
Schmitt. Boomerang: Resourceful lenses for string data. In ACM SIGPLAN–SIGACT
Symposium on Principles of Programming Languages (POPL), San Francisco, CA, pages
407–419, January 2008.

[Bib77] Kenneth J. Biba. Integrity considerations for secure computer systems. Technical Report
ESD-TR 76-372, The MITRE Corporation, 1977.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characteri-
zation of data provenance. In ICDT, number 1973 in LNCS, pages 316–330. Springer,
2001.

[BKT02] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. On propagation of deletions and
annotations through views. In ACM SIGACT–SIGMOD–SIGART Symposium on Princi-
ples of Database Systems (PODS), Madison, WI, pages 150–158, 2002.

[Bla77] Meera Blattner. Single-valued a-transducers. Journal of Computer and System Sciences,
15(3):310–327, 1977.

[BMS08] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for XML
languages. Information Systems, 33(4–5):385–406, 2008. Short version in DBPL ’05.

[BNTW95] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles of pro-
gramming with complex objects and collection types. TCS, 149(1):3–48, 1995.

136

[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM,
11(4):481–494, 1964.

[BS81] François Bancilhon and Nicolas Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems, 6(4):557–575, December 1981.

[BSKW91] Thierry Barsalou, Niki Siambela, Arthur M. Keller, and Gio Wiederhold. Updating rela-
tional databases through object-based views. In ACM SIGACT–SIGMOD–SIGART Sym-
posium on Principles of Database Systems (PODS), Denver, CO, pages 248–257, 1991.

[BVP06] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational lenses: A lan-
guage for updateable views. In ACM SIGACT–SIGMOD–SIGART Symposium on Prin-
ciples of Database Systems (PODS), Chicago, TL, 2006. Extended version available as
University of Pennsylvania technical report MS-CIS-05-27.

[CAA07] James Cheney, Amal Ahmed, and Umut A. Acar. Provenance as dependency analysis. In
Symposium onDatabase Programming Languages (DBPL), Vienna, Austria, pages 138–152,
2007.

[CFH+09] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. Bidirectional transformations: A cross-discipline perspective.
GRACE meeting notes, state of the art, and outlook. In International Conference on Model
Transformations (ICMT), Zurich, Switzerland, pages 260–283, June 2009. Invited paper.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3):621–646, 2006.

[CP84] S. S. Cosmadakis and Christos H. Papadimitriou. Updates of relational views. Journal of
the ACM, 31(4):742–760, 1984.

[CSH07] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Combining provenance and se-
curity policies in a web-based document management system. In On-line Proceedings of
the Workshop on Principles of Provenance (PrOPr), Edinburgh, Scotland, November 2007.
http://homepages.inf.ed.ac.uk/jcheney/propr/.

[DAH+87] D.E. Denning, S.G. Akl, M. Heckman, T.F. Lunt, M. Morgenstern, P.G. Neumann, and
R.R. Schell. Views for multilevel database security. IEEE Transactions on Software Engi-
neering, 13(2):129–140, 1987.

[Dat03] C. J. Date. An Introduction to Database Systems (Eighth Edition). Addison Wesley, 2003.

[DB82] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems, 7(3):381–416, September
1982.

[DD77] Dorothy E. Denning and Peter J Denning. Certiàcation of programs for secure information
áow. Communications of the ACM, 20(7):504–513, 1977.

[Dij79] Edsger W. Dijkstra. Program inversion. In Friedrich L. Bauer and Manfred Broy, editors,
Program Construction, International Summer School, July 26 - August 6, 1978, Marktober-
dorf, germany, volume 69 of Lecture Notes in Computer Science. Springer, 1979.

137

http://homepages.inf.ed.ac.uk/jcheney/propr/

[dPBHV01] Vanessa de Paula Braganholo, Carlos A. Heuser, and Cesar Roberto Mariano Vittori. Up-
dating relational databases through XML views. In Proc. 3rd Int. Conf. on Information
Integration and Web-based Applications and Services (IIWAS), 2001.

[EG07] Robert Ennals and David Gay. Multi-language synchronization. In European Symposium
on Programming (ESOP), Braga, Portugal, volume 4421 of Lecture Notes in Computer Sci-
ence, pages 475–489. Springer-Verlag, 2007.

[Ege05] David T. Eger. Bit level types, 2005. Unpublished manuscript. Available from http:
//www.yak.net/random/blt/blt-drafts/03/blt.pdf.

[FCG04] Wenfei Fan, Chee Yong Chan, and Minos N. Garofalakis. Secure XML querying with
security views. In ACM SIGMOD International Conference on Management of Data (SIG-
MOD), Paris, France, pages 587–598, 2004.

[FF02] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
ACM SIGPLAN International Conference on Functional Programming (ICFP), Pittsburgh,
PA, pages 48–59, October 2002.

[FG05] Kathleen Fisher and Robert Gruber. PADS: a domain-speciàc language for processing ad
hoc data. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Chicago, IL, pages 295–304, 2005.

[FGJK06] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. SMOQE: A system
for providing secure access to XML. In International Conference on Very Large Data Bases
(VLDB), Seoul, Korea, pages 1227–1230, September 2006.

[FGJK07] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Rewriting regular
XPath queries on XML views. In International Conference on Data Engineering (ICDE),
Istanbul, Turkey, pages 666–675, April 2007.

[FGK+07] J. Nathan Foster, Michael B. Greenwald, Christian Kirkegaard, Benjamin C. Pierce, and
Alan Schmitt. Exploiting schemas in data synchronization. Journal of Computer and System
Sciences, 73(4), June 2007. Short version in DBPL ’05.

[FGM+07] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and
Alan Schmitt. Combinators for bidirectional tree transformations: A linguistic approach
to the view update problem. ACM Transactions on Programming Languages and Systems,
29(3), May 2007. Short version in POPL ’05.

[FGT08] J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated XML: Queries and prove-
nance. InACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems
(PODS), Vancouver, BC, pages 271–280, June 2008.

[FL05] Steve Fogel and Paul Lane. Oracle Database Administrator’s Guide. Oracle, June 2005.

[Fla06] Cormac Flanagan. Hybrid type checking. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), Charleston, SC, pages 245–256, 2006.

[FP08] J. Nathan Foster and Benjamin C. Pierce. Boomerang Programmer’s Manual, 2008. Avail-
able from http://www.seas.upenn.edu/~harmony/.

138

http://www.yak.net/random/blt/blt-drafts/03/blt.pdf
http://www.yak.net/random/blt/blt-drafts/03/blt.pdf
http://www.seas.upenn.edu/~harmony/

[FPP08] J. Nathan Foster, Alexandre Pilkiewcz, and Benjamin C. Pierce. Quotient lenses. In ACM
SIGPLAN International Conference on Functional Programming (ICFP), Victoria, BC, pages
383–395, September 2008.

[FPZ09] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable security views. In
IEEE Computer Security Foundations Symposium (CSF), Port Jefferson, NY, July 2009.

[FWZW08] Kathleen Fisher, DavidWalker, Kenny Q. Zhu, and PeterWhite. From dirt to shovels: fully
automatic tool generation from ad hoc data. In ACM SIGPLAN–SIGACT Symposium on
Principles of Programming Languages (POPL), San Francisco, CA, pages 421–434, 2008.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arith­mé­tique d’ordre supérieur. Thèse d’état, University of Paris VII, 1972. Summary in
J. E. Fenstad, editor, Scandinavian Logic Symposium, pp. 63–92, North-Holland, 1971.

[GK07] Michael Greenberg and Shriram Krishnamurthi. Declarative Composable Views, May
2007. Undergraduate Honors Thesis, Brown University.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views in-
crementally. In SIGMOD Conference, pages 157–166, 1993.

[GPW10] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest.
In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),
Madrid, Spain, pages 353–364, January 2010.

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views.
ACM Transactions on Database Systems (TODS), 13(4):486–524, 1988.

[Heg90] Stephen J. Hegner. Foundations of canonical update support for closed database views. In
International Conference on Database Theory (ICDT), Paris, France, pages 422–436, New
York, NY, USA, 1990. Springer-Verlag.

[Heg04] Stephane J. Hegner. An order-based theory of updates for closed database views. Annals
of Mathematics and Artiàcial Intelligence, 40:63–125, 2004. Summary in Foundations of
Information and Knowledge Systems, 2002, pp. 230–249.

[HHKN09] Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and Keisuke Nakano. A compositional
approach to bidirectional model transformation. Technical report, May 2009. New Ideas
and Emerging Results Track.

[HMT08] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for de-
veloping structured documents based on bidirectional transformations. Higher-Order and
Symbolic Computation, 21(1–2), June 2008. Short version in PEPM ’04.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation (3rd Edition). Addison-Wesley, Boston, MA, USA, 1979.

[IA92] ISO-ANSI. Database language SQL2 standard, 1992. X3H2-92-154.

[IA08] ISO-ANSI. Database language SQL standard, 2008. IEC 9075(1-4,9-11,13,14):2008.

[IBM04] IBM. IBM DB2 Universal Database Administration Guide: Implementation, 2004.

139

[JRD01] Michael Johnson, Robert Rosebrugh, and C. N. G. Dampney. View updates in a semantic
data modelling paradigm. In ADC ’01: Proceedings of the 12th Australasian conference
on Database technologies, pages 29–36, Washington, DC, USA, 2001. IEEE Computer
Society.

[Kel85] Arthur M. Keller. Algorithms for translating view updates to database updates for views
involving selections, projections, and joins. In ACM SIGACT–SIGMOD–SIGART Sympo-
sium on Principles of Database Systems (PODS), Portland, OR, 1985.

[Kel86] A. M. Keller. Choosing a view update translator by dialog at view deànition time. In
VLDB’86, 1986.

[Ken04] Andrew J. Kennedy. Functional pearl: Pickler combinators. Journal of Functional Pro-
gramming, 14(6):727–739, 2004.

[KH06] Shinya Kawanaka and Haruo Hosoya. bixid: a bidirectional transformation language for
XML. In ACM SIGPLAN International Conference on Functional Programming (ICFP),
Portland, OR, pages 201–214, 2006.

[KI08] G. Karvounarakis and Z.G. Ives. Bidirectional mappings for data and update exchange.
In 11th International Workshop on the Web and Databases, WebDB, 2008.

[Lab09] Reductive Labs. Using Puppet with Augeas, January 2009. Available from http:
//reductivelabs.com/trac/puppet/wiki/PuppetAugeas.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5(3):183–191, 1961. (Republished in IBM Jour. of Res. and
Devel., 44(1/2):261-269, Jan/Mar. 2000).

[Lec03] Jens Lechtenbörger. The impact of the constant complement approach towards view up-
dating. In ACM SIGACT–SIGMOD–SIGART Symposium on Principles of Database Sys-
tems (PODS), San Diego, CA, pages 49–55. ACM, June 9–12 2003.

[LHT07] Dongxi Liu, Zhenjiang Hu, and Masato Takeichi. Bidirectional interpretation of XQuery.
In ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manip-
ulation (PEPM), Nice, France, pages 21–30, 2007.

[LMZ03] Peng Li, Yun Mao, and Steve Zdancewic. Information Integrity Policies. In Proceedings of
the First Workshop on Formal Aspects in Security and Trust (FAST), Pisa, Italy, September
2003.

[Lor05] Diana Lorentz. Oracle Database SQL Reference. Oracle, December 2005.

[Lut08] David Lutterkort. Augeas–A conàguration API. In Linux Symposium, Ottawa, ON, pages
47–56, 2008.

[Lut09] David Lutterkort. Netcf: A library for conàguring network interfaces, March 2009. Avail-
able from https://fedorahosted.org/netcf.

[Mal09] DaveMalcolm. Squeal: An SQL-like interface for the command line, June 2009. Available
from https://fedorahosted.org/squeal.

140

http://reductivelabs.com/trac/puppet/wiki/PuppetAugeas
http://reductivelabs.com/trac/puppet/wiki/PuppetAugeas
https://fedorahosted.org/netcf
https://fedorahosted.org/squeal

[Mas84] Y. Masunaga. A relational database view update translation mechanism. In VLDB’84,
1984.

[McC56] John McCarthy. The inversion of functions deàned by turing machines. In Claude E.
Shannon and J. McCarthy, editors, Automata Studies, Annals of Mathematical Studies,
volume 34, pages 177–181. Princeton University Press, 1956.

[ME08] Stephen McCamant and Michael D. Ernst. Quantitative information áow as network áow
capacity. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), Tuscon, AZ, pages 193–205, 2008.

[Mee98] Lambert Meertens. Designing constraint maintainers for user interaction, 1998.
Manuscript, available from ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps.

[MHH+01] Renée J. Miller, Mauricio A. Hernandez, Laura M. Haas, Lingling Yan, C. T. Howard
Ho, Ronald Fagin, and Lucian Popa. The clio project: Managing heterogeneity. ACM
SIGMOD Record, 30(1):78–83, March 2001.

[MHN+07] KazutakaMatsuda, ZhenjiangHu, Keisuke Nakano, MakotoHamana, andMasato Take-
ichi. Bidirectionalization transformation based on automatic derivation of view comple-
ment functions. In ACM SIGPLAN International Conference on Functional Programming
(ICFP), Freiburg, Germany, pages 47–58, 2007.

[MHT04a] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-
directional updating. In ASIAN Symposium on Programming Languages and Systems
(APLAS), pages 2–20, November 2004.

[MHT04b] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language for reversible
computation. In Seventh International Conference onMathematics of ProgramConstruction
(MPC), 2004.

[MHT06] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. Bidirectionalizing tree transforma-
tion languages: A case study. JSSST Computer Software, 23(2):129–141, 2006.

[Mic05] Microsoft. Creating and Maintaining Databases, 2005.

[ML97] Andrew Myers and Barbara Liskov. A decentralized model for information áow control.
In ACM Symposium on Operating Systems Principles (SOSP), Saint Malo, France, pages
129–142, 1997.

[Mø01] Anders Møller. The brics automaton package, 2001.

[MS07] Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data ex-
change. Journal of Computer and Systems Sciences, 73(3):507–534, 2007.

[MT85] C. M. B. Medeiros and F. W. Tompa. Understanding the implications of view update
policies. In VLDB’85, 1985.

[Mye99] Andrew C. Myers. Jáow: Practical mostly-static information áow control. In ACM SIG-
PLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San Antonio,
TX, pages 228–241, 1999.

141

ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps

[ORT09] Scott Owens, John Reppy, and Aaron Turon. Regular expression derivatives reexamined.
Journal of Functional Programming, 19:173–190, March 2009.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[Pin08] Raphael Pinson. Creating a lens step-by-step, July 2008. Available from http://augeas.
net/page/Creating_a_lens_step_by_step.

[PS03] François Pottier and Vincent Simonet. Information áow inference for ML. ACM Transac-
tions on Programming Languages and Systems, 25(1):117–158, January 2003.

[Ram03] Norman Ramsey. Embedding an interpreted language using higher-order functions and
types. In ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Emulators
(IVME), San Diego, CA, pages 6–14, 2003.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation,
Paris, France, volume 19 of Lecture Notes in Computer Science, pages 408–425. Springer-
Verlag, 1974.

[Sch95] Andy Schürr. Speciàcation of Graph Translators with Triple Graph Grammars. In Inter-
national Workshop Graph-Theoretic Concepts in Computer Science, Herrsching, Germany,
volume 903 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[SCH08] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for enforc-
ing user-deàned security policies. In Proceedings of the IEEE Symposium on Security and
Privacy (Oakland), pages 369–383, May 2008.

[SF02] Andrei Stoica and Csilla Farkas. Secure XML views. In IFIP WG 11.3 International
Conference on Data and Applications Security (DBSEC), Cambridge, UK, pages 133–146,
2002.

[SLT91] Marc H. Scholl, Christian Laasch, and Markus Tresch. Updatable Views in Object-
Oriented Databases. In Proc. 2nd Intl. Conf. on Deductive and Object-Oriented Databases
(DOOD), volume 566 of Lecture Notes in Computer Science. Springer, 1991.

[SM03] Andrei Sabelfeld and AndrewC.Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[SST07] Paritosh Shroff, Scott F. Smith, and Mark Thober. Dynamic dependency monitoring to
secure information áow. In 20th IEEE Computer Security Foundations Symposium (CSF),
pages 203–217, July 2007.

[Ste07] Perdita Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and Open
Questions. In International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS 2007), Proceedings, volume 4735 of LNCS, pages 1–15. Springer, 2007.

[Ste08a] Perdita Stevens. A Landscape of Bidirectional Model Transformations. In Generative
and Transformational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, Revised Papers, volume 5235 of LNCS, pages 408–424. Springer, 2008.

[Ste08b] Perdita Stevens. Towards an Algebraic Theory of Bidirectional Transformations. InGraph
Transformations, 4th International Conference, ICGT 2008, Proceedings, volume 5214 of
LNCS, pages 1–17. Springer, 2008.

142

http://augeas.net/page/Creating_a_lens_step_by_step
http://augeas.net/page/Creating_a_lens_step_by_step

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format
string vulnerabilities with type qualiàers. In Conference on USENIX Security Symposium
(SSYM), Washington DC, pages 16–16, 2001.

[TIHW01] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating XML.
In ACM SIGMOD International Conference on Management of Data (SIGMOD), Santa
Barbara, CA, 2001.

[TPF+09] Omer Tripp, Marco Pistoia, Stephen Fink, Manu Sridharan, and Omri Weisman. TAJ: Ef-
fective taint analysis of web applications. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Dublin, Ireland, 2009. To appear.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In ACM Symposium on Principles of Programming Languages (POPL), Munich, Germany,
1987.

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl (3rd Edition). O’Reilly,
July 2000.

[WF07] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Work-
shop on Scheme and Functional Programming, Freiburg, Germany, pages 15–26, 2007.

[WS07] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for
injection vulnerabilities. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, pages 32–41, 2007.

[XLH+07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong
Mei. Towards automatic model synchronization from model transformations. In
IEEE/ACM International Conference on Automated Software Engineering (ASE), Atlanta,
GA, pages 164–173, 2007.

[ZM07] Lantian Zheng and Andrew C. Myers. Dynamic security labels and static information
áow control. International Journal of Information Security, 6(2–3):67–84, March 2007.

143

Proofs

This appendix contains the proofs for each of the results in our technical development, including well-
behavedness proofs for each of our primitives.

Basic Lens Proofs

..
E ∈ R

copy E ∈ [[E]] ⇐⇒ [[E]]

2.3.20 Lemma: Let E be a regular expression. Then copy E is a basic lens in [[E]] ⇐⇒ [[E]].

Proof: We prove each basic lens law separately.

I GetPut: Let e be a string in [[E]]. We calculate as follows

(copy E).put ((copy E).get e) e
= (copy E).put e e by deànition (copy E).get
= e by deànition (copy E).put

and obtain the required result.

I PutGet: Let e and e′ be strings in [[E]]. We calculate as follows

(copy E).get ((copy E).put e′ e)
= (copy E).get e′ by deànition (copy E).put
= e′ by deànition (copy E).get

and obtain the required result.

I CreateGet: Let e be a string in [[E]]. We calculate as follows

(copy E).get ((copy E).create e)
= (copy E).get e by deànition (copy E).create
= e by deànition (copy E).get

and obtain the required result. �

..
E ∈ R [[E]] ̸= ∅ u ∈ Σ∗

const E u ∈ [[E]] ⇐⇒ {u}

2.3.21 Lemma: Let E be a regular expression and u a string such that [[E]] ̸= ∅. Then const E u is a
basic lens in [[E]] ⇐⇒ {u}.

145

Proof: We prove each basic lens law separately.

I GetPut: Let e ∈ [[E]]. We calculate as follows

(const E u).put ((const E u).get e) e
= (const E u).put u e by deànition (const E u).get
= e by deànition (const E u).put

and obtain the required result.

I PutGet: Let u ∈ {u} and e ∈ [[E]]. We calculate as follows

(const E u).get ((const E u).put u e)
= (const E u).get e by deànition (const E u).put
= u by deànition (const E u).get

and obtain the required result.

I CreateGet: Let u ∈ {u}. We calculate as follows

(const E u).get ((const E u).create u)
= (const E u).get (representative(E)) by deànition (const E u).create
= u by deànition (const E u).get

and obtain the required result. �

.
.

l ∈ S ⇐⇒ V
f ∈ V → S

default l f ∈ S ⇐⇒ V

2.3.22 Lemma: Let l ∈ S ⇐⇒ V be a basic lens and f ∈ V → S a total function. Then default l f is a
basic lens in S ⇐⇒ V .

Proof: We prove each basic lens law separately.

I GetPut: Immediate by GP for l.

I PutGet: Immediate by PG for l.

I CreateGet: Immediate by PG for l. �

.
.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V1·!V2

l1·l2 ∈ (S1·S2) ⇐⇒ (V1·V2)

2.3.23 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that S1·!S2 and V1·!V2.
Then l1·l2 is a basic lens in (S1·S2) ⇐⇒ (V1·V2).

Proof: We prove each basic lens law separately.

146

I GetPut: Let s ∈ (S1·S2). As S1·!S2 there exist unique strings s1 ∈ S1 and s2 ∈ S2 such that s = s1·s2.
Using these facts, we calculate as follows

(l1·l2).put ((l1·l2).get s) s
= (l1·l2).put ((l1·l2).get (s1·s2)) (s1·s2) by deànition s1 and s2

= (l1·l2).put ((l1.get s1)·(l2.get s2)) (s1·s2) by deànition (l1·l2).get
= (l1.put (l1.get s1) s1)·(l2.put (l2.get s2) s2) by deànition (l1·l2).put

with V1·!V2 and cod(l1.get) = V1 and cod(l2.get) = V2

= s1·s2 by GP for l1 and l2
= s by deànition s1 and s2

and obtain the required equality.

I PutGet: Let v ∈ (V1·V2) and s ∈ (S1·S2). As V1·!V2 there exist unique strings v1 ∈ V1 and v2 ∈ V2

such that v = v1·v2. Similarly, as S1·!S2 there exist unique strings s1 ∈ S1 and s2 ∈ S2 such that
s = s1·s2. Using these facts, we calculate as follows

(l1·l2).get ((l1·l2).put v s)
= (l1·l2).get ((l1·l2).put (v1·v2) s by deànition v1 and v2

= (l1·l2).get ((l1·l2).put (v1·v2) (s1·s2) by deànition s1 and s2

= (l1·l2).get ((l1.put v1 s1)·(l2.put v2 s2)) by deànition (l1·l2).put
= (l1.get (l1.put v1 s1))·(l2.get (l2.put v2 s2)) by deànition (l1·l2).get

with cod(l1.put) = S1 and cod(l2.put) = S2 and S1·!S2

= v1·v2 by PG for l1 and l2
= v by deànition v1 and v2

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

.

.

S1 ∩ S2 = ∅
l1 ∈ S1 ⇐⇒ V1

l2 ∈ S2 ⇐⇒ V2

l1 | l2 ∈ (S1 ∪ S2) ⇐⇒ (V1 ∪ V2)

2.3.24 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that the intersection
S1 ∩ S2 of the source types is empty. Then l1 | l2 is a basic lens in (S1 ∪ S2) ⇐⇒ (V1 ∪ V2).

Proof: We prove each basic lens law separately.

I GetPut: Let s ∈ (S1 ∪ S2). We analyze two cases.

Case s ∈ S1: We calculate as follows

(l1 | l2).put ((l1 | l2).get s) s
= (l1 | l2).put (l1.get s) s by the deànition of (l1 | l2).get

with s ∈ S1

= l1.put (l1.get s) s by the deànition of (l1 | l2).put
with cod(l.get) = V1 and s ∈ S1

= s by PG for l1

and obtain the required equality.

147

Case s ∈ S2: Symmetric to the previous case.

I PutGet: Let v ∈ V1 ∪ V2 and s ∈ S1 ∪ S2. We analyze several cases.

Case v ∈ V1 and s ∈ S1: We calculate as follows

(l1 | l2).get ((l1 | l2).put v s)
= (l1 | l2).get (l1.put v s) by deànition (l1 | l2).put

with v ∈ V1 and s ∈ S1

= l1.get (l1.put v s) by deànition (l1 | l2).get
with cod(l1.put) = S1

= v by PG for l

and obtain the required equality.

Case v ∈ V2 and s ∈ S2: Symmetric to the previous case.

Case v ∈ V1 − V2 and s ∈ S2: We calculate as follows

(l1 | l2).get ((l1 | l2).put v s)
= (l1 | l2).get (l1.create v) by deànition (l1 | l2).put

with v ∈ V1 − V2 and s ∈ S2

= l1.get (l1.create v) by deànition (l1 | l2).get
with cod(l1.create) = S1

= v by CG for l

and obtain the required equality.

Case v ∈ V2 − V1 and s ∈ S1: Symmetric to the previous case.

I CreateGet: Let v ∈ V1 ∪ V2. We analyze two cases.

Case v ∈ V1: We calculate as follows

(l1 | l2).get ((l1 | l2).create v)
= (l1 | l2).get (l1.create v) by deànition (l1 | l2).create

with v ∈ V1

= l1.get (l1.create v) by deànition (l1 | l2).get
with cod(l1.create) = S1

= v by CG for l

and obtain the required equality.

Case v ∈ V2 − V1: Symmetric to the previous case. �

.
.

S!∗ V !∗
l ∈ S ⇐⇒ V

l∗ ∈ S∗ ⇐⇒ V ∗

2.3.25 Lemma: Let l ∈ S ⇐⇒ V be a basic lens such that S!∗ and V !∗. Then l∗ is a basic lens in
S∗ ⇐⇒ V ∗.

148

Proof: We prove each basic lens law separately.

I GetPut: Let s ∈ S∗. As S!∗ there exist unique strings s1 to sn in S such that s = (s1 · · · sn). Using
these facts, we calculate as follows

l∗.put (l∗.get s) s
= l∗.put (l∗.get (s1 · · · sn)) (s1 · · · sn) by deànition s1 to sn

= l∗.put ((l.get s1) · · · (l.get sn)) (s1 · · · sn) by deànition l∗.get
= l.put (l.get s1) s1 · · · l.put (l.get sn) sn by deànition l∗.put

with V !∗ and cod(l.get) = V

= s1 · · · sn by GP for l
= s by deànition s1 to sn

and obtain the required equality.

I PutGet: Let v ∈ V ∗ and s ∈ S∗. As V !∗ there exist unique strings v1 to vn in V such that v =
(v1 · · · vn). Similarly, as S!∗ there exist unique strings s1 to sm in S such that s = (s1 · · · sm). Using
these facts, we calculate as follows

l∗.get (l∗.put v s)
= l∗.get (l∗.put (v1 · · · vn) s by deànition v1 to vn

= l∗.get (l∗.put (v1 · · · vn) (s1 · · · sm)) by deànition s1 to sm

= l∗.get (s′1 · · · s′n) by the deànition of l∗.put

where s′i =
{

l.put vi si i ∈ {1, . . . ,min(n,m)}
l.create vi i ∈ {m + 1, . . . , n}

= (l.get s′1) · · · (l.get s′n) by the deànition of l∗.get
with V !∗ and cod(l.put) = cod(l.create) = V

= v1 · · · vn by PG and CG for l
= v by deànition v1 to vn

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

.
.

l1 ∈ S ⇐⇒ U
l2 ∈ U ⇐⇒ V

l1;l2 ∈ S ⇐⇒ V

2.3.26 Lemma: Let l1 ∈ S ⇐⇒ U and l2 ∈ U ⇐⇒ V be basic lenses. Then l1;l2 is a basic lens in
S ⇐⇒ V .

Proof: We prove each basic lens law separately.

I GetPut: Let s ∈ S. We calculate as follows

(l1;l2).put ((l1;l2).get s) s
= (l1;l2).put (l2.get (l1.get s)) s by deànition (l1;l2).get
= l1.put (l2.put (l2.get (l1.get s)) (l1.get s)) s by deànition (l1;l2).put
= l1.put (l1.get s) s by GP for l2
= s by GP for l1

and obtain the required equality.

149

I PutGet: Let v ∈ V and s ∈ S. We calculate as follows

(l1;l2).get ((l1;l2).put v s)
= (l1;l2).get (l1.put (l2.put v (l1.get s)) s) by deànition (l1;l2).put
= l2.get (l1.get (l1.put (l2.put v (l1.get s)) s)) by deànition (l1;l2).get
= l2.get (l2.put v (l1.get s)) by PG for l1
= v by PG for l2

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

..
[[E]] ∩ [[F]] = ∅ ([[E]] ∪ [[F]])!∗

àlter E F ∈ ([[E]] ∪ [[F]])∗ ⇐⇒ [[E]]∗

2.3.27 Lemma: Let E and F be regular expressions such that the intersection [[E]] ∩ [[F]] of [[E]] and
[[F]] is empty and ([[E]] ∪ [[F]])!∗. Then àlter E F is a basic lens in ([[E]] ∪ [[F]])∗ ⇐⇒ [[E]]∗.

Proof: We prove each basic lens law separately. To shorten the proof, we will abbreviate (àlter E F)
as l.
I GetPut: Let s ∈ ([[E]] ∪ [[F]])∗ be a string. As ([[E]] ∪ [[F]])!∗, there exist unique strings s1 to sn such
that s = (s1 · · · sn). The proof is by induction on n.

Case n = 0: By the assumption of the case we have s = ϵ. The equality

l.put (l.get ϵ) ϵ = ϵ

follows immediately from the deànitions of l.get and l.put, str filter, and str unfilter.

Case n > 0 and s1 ∈ F : By the assumptions of the case we have s = s1 · (s2 · · · sn). To lighten the
notation, let s′ = (s2 · · · sn). We calculate as follows

l.put (l.get s) s
= l.put (l.get (s1·s′)) (s1·s′) by deànition s1 and s′

= l.put (str filter E (s1·s′)) (s1·s′) by deànition l.get
= l.put (str filter E s′) (s1·s′) by deànition str filter

with s1 ∈ F

= str unfilter F (str filter E s′) (s1·s′) by deànition l.put
= s1·(str unfilter F (str filter E s′) s′) by deànition str unfilter

with s1 ∈ F

= s1·(str unfilter F (l.get s′) s′) by deànition l.get
= s1·(l.put (l.get s′) s′) by deànition l.put
= s1·s′ by induction hypothesis
= s by deànition s1 and s′

and obtain the required equality.

Case n > 0 and s1 ∈ E: Similar to the previous case.

I PutGet: Let s ∈ ([[E]] ∪ [[F]])∗ and v ∈ [[E]]∗ be strings. As ([[E]] ∪ [[F]])!∗, there exist unique strings
s1 to sn such that s = (s1 · · · sn) and v1 to vk such that v = (v1 · · · vk). The proof is by induction on n
with an inner induction on k in the case where n = 0.

150

Case n = 0 and k = 0: By the assumption of the case we have s = v = ϵ. The equality

l.get (l.put ϵ ϵ) = ϵ

follows immediately from the deànitions of l.get and l.put, str filter, and str unfilter.

Case n = 0 and k > 0: By the assumption of the case we have s = ϵ. To lighten the notation, let
v′ = (v2 · · · vk). We calculate as follows

l.get (l.put v s)
= l.get (l.put v ϵ) by deànition s
= l.get (l.put (v1·v′) ϵ) by deànition v1 and v′

= l.get (str unfilter F (v1·v′) ϵ) by deànition l.put
= l.get (v1·(str unfilter F v′ ϵ)) by deànition str unfilter

with v1 ∈ F

= str filter E (v1·(str unfilter F v′ ϵ)) by deànition l.get
= v1·(str filter E (str unfilter F v′ ϵ)) by deànition str filter

with v1 ∈ F

= v1·(l.get (l.put v′ ϵ)) by deànition l.put
= v1·v′ by induction hypothesis
= v by deànition v1 and v′

and obtain the required equality.

Case n > 0 and s1 ∈ F : To lighten the notation, let s′ = (s2 · · · sn). We calculate as follows

l.get (l.put v s)
= l.get (l.put v (s1·s′)) by deànition s1 and s′

= l.get (str unfilter F v (s1·s′)) by deànition l.put
= l.get (s1·(str unfilter F v s′)) by deànition str unfilter
= str filter E (s1·(str unfilter F v s′)) by deànition l.get
= str filter E (str unfilter F v s′) by deànition str filter
= l.get (l.put v s′) by deànition l.put
= v by induction hypothesis

and obtain the required equality.

Case n > 0 and s1 ∈ E: Similar to the previous case.

I CreateGet: Similar to the proof of PG. �

.
.

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V2·!V1

l1 ∼ l2 ∈ (S1·S2) ⇐⇒ (V1·V2)

2.3.28 Lemma: Let l1 ∈ S1 ⇐⇒ V1 and l2 ∈ S2 ⇐⇒ V2 be basic lenses such that (S1·!S2) and (V2·!V1).
Then (l1 ∼ l2) is a basic lens in (S1·S2) ⇐⇒ (V2·V1).

151

Proof: We prove each basic lens law separately.

I GetPut: Let s ∈ S1·S2. As S1·!S2 there exist unique strings s1 ∈ S1 and s2 ∈ S2 such that s = s1·s2.
Using these facts, we calculate as follows

(l1 ∼ l2).put ((l1 ∼ l2).get s) s
= (l1 ∼ l2).put ((l1 ∼ l2).get (s1·s2)) (s1·s2) by deànition s1 and s2

= (l1 ∼ l2).put ((l2.get s2)·(l1.get s1)) (s1·s2) by deànition (l1 ∼ l2).get
= (l1.put (l1.get s1) s1)·(l2.put (l2.get s2) s2) by deànition (l1 ∼ l2).put

with V2·!V1 and cod(l1.get) = V1 and cod(l2.get) = V2

= s1·s2 by GP for l1 and l2
= s by deànition s1 and s2

and obtain the required equality.

I PutGet: Let v ∈ V2·V1 and s ∈ S1·S2. As V2·!V1 there exist unique strings v2 ∈ V2 and v1 ∈ V1 such
that v = (v2·v1). Similarly, as S1·!S2 there exist unique strings s1 ∈ S1 and s2 ∈ S2 such that s = s1·s2.
Using these facts, we calculate as follows

(l1 ∼ l2).get ((l1 ∼ l2).put v s)
= (l1 ∼ l2).get ((l1 ∼ l2).put (v2·v1) s) by deànition v2 and v1

= (l1 ∼ l2).get ((l1 ∼ l2).put (v2·v1) (s1·s2)) by deànition s1 and s2

= (l1 ∼ l2).get ((l1.put v1 s1)·(l2.put v2 s2)) by deànition (l1 ∼ l2).put
= (l2.get (l2.put v2 s2))·(l1.get (l1.put v1 s2)) by deànition (l1 ∼ l2).get

with S1·!S2 and cod(l1.put) = S1 and cod(l2.put) = S2

= v2·v1 by PG for l2 and l1
= v by deànition v2 and v1

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

..
[[E]]·![[E]]

merge E ∈ ([[E]]·[[E]]) ⇐⇒ [[E]]

2.3.29 Lemma: Let E be a regular expression such that ([[E]]·![[E]]). Then merge E is a basic lens in
([[E]]·[[E]]) ⇐⇒ [[E]].

Proof: We prove each basic lens law separately.

I GetPut: Let s ∈ ([[E]]·[[E]]). As S1·!S2 there exist unique strings e1 and e2 belonging to [[E]] such that
s = e1·e2. We calculate as follows

(merge E).put ((merge E).get s) s
= (merge E).put ((merge E).get (e1·e2)) (e1·e2) by deànition e1 and e2

= (merge E).put e1 (e1·e2) by deànition (merge E).get

=
{

e1·e1 if e1 = e2

e1·e2 otherwise
by deànition (merge E).put

= e1·e2 using the given equalities
= s by deànition e1 and e2

and obtain the required equality.

152

I PutGet: Let v ∈ [[E]] and s ∈ ([[E]]·[[E]]). As [[E]]·![[E]] there exist unique strings e1 and e2 belonging
to [[E]] such that s = e1·e2. Using these facts, we calculate as follows

(merge E).get ((merge E).put v s)
= (merge E).get ((merge E).put v (e1·e2)) by deànition e1 and e2

=
{

(merge E).get (v·v) if e1 = e2

(merge E).get (v·e2) otherwise
by deànition (merge E).put

= v by deànition (merge E).get

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

..
[[E]]·![[E]]

dup E ∈ [[E]] ⇐⇒ {e1·e2 ∈ ([[E]]·[[E]]) | e1 = e2}

2.3.30 Lemma: Let E be a regular expression such that [[E]]·![[E]]. Then dupE is a basic lens in [[E]] ⇐⇒
{e1·e2 ∈ ([[E]]·[[E]]) | e1 = e2}.

Proof: We prove each basic lens law separately.

I GetPut: Let e ∈ [[E]]. We calculate as follows

(dup E).put ((dup E).get e) e
= (dup E).put (e·e) e by deànition (dup E).get
= e by deànition (dup E).put

and obtain the required equality.

I PutGet: Let v ∈ {e1·e2 ∈ [[E]]·[[E]] | e1 = e2} and e ∈ [[E]] be strings. As [[E]]·![[E]] there exist unique
strings e1 and e2 such that v = e1·e2. Also, by the type of v we have that e1 = e2. Using these facts,
we calculate as follows

(dup E).get ((dup E).put v s)
= (dup E).get ((dup E).put (e1·e2) e)

by deànition e1 and e2

= (dup E).get e1 by deànition (dup E).put
= e1·e1 by deànition (dup E).get
= e1·e2 by e1 = e2

= v by deànition e1 and e2

and obtain the required equality.

I CreateGet: Similar to the proof of PG. �

Quotient Lens Proofs

..
l ∈ S ⇐⇒ V

lift l ∈ S/= ⇐⇒ V/=

3.2.1 Lemma: Let l ∈ S ⇐⇒ V be a basic lens. Then lift l is a quotient lens in S/= ⇐⇒ V/=.

153

Proof: We prove each quotient lens law separately.

I GetEquiv: Let s and s′ be strings in S such that s = s′. We immediately have (lift l).get s =
(lift l).get s′.

I PutEquiv: Let v and v′ be strings in V such that v = v′ and, likewise, let s and s′ be strings in S such
that s = s′. We immediately have (lift l).put v s = (lift l).get v′ s′.

I CreateEquiv: Let v and v′ be strings in V such that v = v′. We immediately have (lift l).create v =
(lift l).create v′.

I GetPut: Immediate by the basic lens version of GP for l.

I PutGet: Immediate by the basic lens version of PG for l.

I CreateGet: Immediate by the basic lens version of CG for l. �

.

.

q ∈ S .
. U/∼U

l ∈ U/∼U ⇐⇒ V/∼V

∼S , {(s, s′) ∈ S × S | q.canonize s ∼U q.canonize s′}
lquot q l ∈ S/∼S ⇐⇒ V/∼V

3.2.3 Lemma: Let q be a canonizer S .
. U/∼U and let l be a quotient lens in U/∼U ⇐⇒ V/∼V . Then

lquot q l is a quotient lens in S/∼S ⇐⇒ V/∼V where s∼S s′ if and only if q.canonize s∼U q.canonize s′.

Proof: We prove each quotient lens law separately. To shorten the proof, abbreviate lquot q l as k.

I GetEquiv: Let s and s′ be strings in S such that s ∼S s′. By the deànition of ∼S we have:

q.canonize s ∼U q.canonize s′

Using this equivalence, we calculate as follows

k.get s
= l.get (q.canonize s) by deànition k.get

∼V l.get (q.canonize s′) by GE for l
= k.get s′ by deànition k.get

and obtain the required equivalence.

I PutEquiv: Let v and v′ be strings in V such that v ∼V v′. Likewise, let s and s′ be strings in S such
that s ∼S s′. We will prove that

k.put v s ∼S k.put v′ s′

by showing that:
q.canonize (k.put v s) ∼U q.canonize (k.put v′ s′)

By the deànition of ∼S we have:

q.canonize s ∼U q.canonize s′

Using this equivalence, we calculate as follows:

q.canonize (k.put v s)
= q.canonize (q.choose (l.put v (q.canonize s))) by deànition k.put

∼U l.put v (q.canonize s) by RC for q
∼U l.put v′ (q.canonize s′) by PE for l
∼U q.canonize (q.choose (l.put v′ (q.canonize s′))) by RC for q
= q.canonize (k.put v′ s′) by deànition k.put

154

The required equivalence follows by transitivity. We will silently use elementary facts about equivalence
relations such as the transitivity of ∼U throughout this dissertation.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s ∈ S be a string. We will prove that

k.put (k.get s) s ∼S s

by showing that:
q.canonize (k.put (k.get s) s) ∼U q.canonize s

To shorten the proof, abbreviate q.canonize s as u. We calculate as follows

q.canonize (k.put (k.get s) s)
= q.canonize (q.choose (l.put (k.get s) u)) by deànition k.put and u

∼U l.put (k.get s) u by RC for q
= l.put (l.get u) u by deànition k.get and u

∼U u by GP for l
= q.canonize s by deànition u

and obtain the required equivalence.

I PutGet: Let v ∈ V and s ∈ S be strings. To shorten the proof, abbreviate q.canonize s as u. By
RC for q we have:

q.canonize (q.choose (l.put v u)) ∼U l.put v u

Using this fact, we calculate as follows

k.get (k.put v s)
= k.get (q.choose (l.put v u)) by deànition k.put and u
= l.get (q.canonize (q.choose (l.put v u))) by deànition k.get

∼V l.get (l.put v u) by RC for q
and GE for l

∼V v by PG for l

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

.

.

l ∈ S/∼S ⇐⇒ U/∼U

q ∈ V .
. U/∼U

∼V , {(v, v′) ∈ V × V | q.canonize v ∼U q.canonize v′}
rquot l q ∈ S/∼S ⇐⇒ V/∼V

3.2.4 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ U/∼U and q a canonizer in V .
. U/∼U . Then

rquot l q is a quotient lens in S/∼S ⇐⇒ V/∼V where v∼V v′ if and only if q.canonize v∼U q.canonize v′.

Proof: We prove each quotient lens law separately. To lighten the notation, we will abbreviate rquot l q
as k.

I GetEquiv: Let s ∈ S and s′ ∈ S be strings such that s ∼S s′. We will prove that

k.get s ∼V k.get s′

155

by showing that:
q.canonize (k.get s) ∼U q.canonize (k.get s′)

We calculate as follows

q.canonize (k.get s)
= q.canonize (q.choose (l.get s)) by deànition k.get

∼U l.get s by RC for q
∼U l.get s′ by GE for l
∼U q.canonize (q.choose (l.get s′)) by RC for q
= q.canonize (k.get s′) by deànition k.get

and obtain the required equivalence.

I PutEquiv: Let v ∈ V and v′ ∈ V be strings such that v ∼V v′ and similarly, let s ∈ S and s′ ∈ S be
strings such that s ∼S s′. By the deànition of ∼V , we have that:

q.canonize v ∼U q.canonize v′

Using this equivalence, we calculate as follows

k.put v s
= l.put (q.canonize v) s by deànition k.put

∼S l.put (q.canonize v′) s′ by PE for l
= k.put v′ s′ by deànition k.put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PG.

I GetPut: Let s ∈ S. We calculate as follows

k.put (k.get s) s
= l.put (q.canonize (q.choose (l.get s))) s by deànition k.get and k.put

∼S l.put (l.get s) s by RC for q
and PE for l

∼S s by GP for l

and obtain the required equivalence.

I PutGet: Let v ∈ V and s ∈ S. We will show that

k.get (k.put v s) ∼V v

by showing that:
q.canonize (k.get (k.put v s)) ∼U q.canonize v

We calculate as follows

q.canonize (k.get (k.put v s))
= q.canonize (q.choose (l.get (k.put v s))) by deànition k.get

∼U l.get (k.put v s) by RC for q
= l.get (l.put (q.canonize v) s) by deànition k.put

∼U (q.canonize v) By PG for l

and obtain the desired equivalence.

I CreateGet: Similar to the proof of PG. �

156

.
.

∼U is a reànement of ∼U ′

q ∈ V .
. U/∼U

q ∈ V .
. U/∼U ′

3.2.5 Lemma: Let q ∈ V .
. U/∼U be a canonizer and let ∼U ′ be an equivalence relation on U such

that ∼U ′ is a reànement of ∼U . Then q is also a canonizer in V .
. U/∼U ′ .

Proof: We prove the canonizer law directly.

I ReCanonize: Let u ∈ U be a string. As q ∈ V .
. U/∼U we have q.canonize (q.choose u) ∼U u.

Since ∼U reànes ∼U ′ we immediately have that q.canonize (q.choose u) ∼U ′ u, as required. �

.
.

l1 ∈ S/∼S ⇐⇒ U/∼U

l2 ∈ U/∼U ⇐⇒ V/∼V

l1;l2 ∈ S/∼S ⇐⇒ V/∼V

3.2.6 Lemma: Let l1 ∈ S/∼S ⇐⇒ U/∼U and l2 ∈ U/∼U ⇐⇒ V/∼V be quotient lenses. Then l1;l2 is
a quotient lens in S/∼S ⇐⇒ V/∼V .

Proof: We prove each quotient lens law separately.

I GetEquiv: Let s and s′ be strings in S such that s ∼S s′. We calculate as follows

(l1;l2).get s
= l2.get (l1.get s) by deànition (l1;l2).get

∼V l2.get (l1.get s′) by GE for l1 and l2
= (l1;l2).get s′ by deànition (l1;l2).get

and obtain the required equivalence.

I PutEquiv: Let v and v′ be strings in V such that v ∼V v′ and likewise let s and s′ be strings in S such
that s ∼S s′. We calculate as follows

(l1;l2).put v s
= l1.put (l2.put s (l1.get s)) s by deànition (l1;l2).put

∼S l1.put (l2.put v′ (l1.get s′)) s′ by GE for l1
and PE for l1 and l2

= (l1;l2).put v′ s′ by deànition (l1;l2).put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PG.

I GetPut: Let S be a string in S. We calculate as follows

(l1;l2).put ((l1;l2).get s) s
= l1.put (l2.put (l2.get (l1.get s)) (l1.get s)) s by deànition (l1;l2).get

and (l1;l2).put
∼S l1.put (l1.get s) s by GP for l2

and PE for l1
∼S s by GP for l

157

and obtain the required equivalence.

I PutGet: Let v be a string in V and let s be a string in S. We calculate as follows

(l1;l2).get ((l1;l2).put v s)
= l2.get (l1.get (l1.put (l2.put v (l1.get s)) s)) by deànition (l1;l2).get

and (l1;l2).put
∼V l2.get (l2.put v (l1.get s)) by PG for l1

and GE for l2
∼V v by PG for l2

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

..
l ∈ S/∼S ⇐⇒ U/∼U

canonizer of lens l ∈ S .
. U/∼U

3.2.7 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ U/∼U . Then the canonizer canonizer of lens l is
in S .

. U/∼U .

Proof: We prove the canonizer law directly. To shorten the proof, we will abbreviate the canonizer
canonizer of lens l as q.

I ReCanonize:
Let u ∈ U be a string. We calculate as follows

q.canonize (q.choose u)
= l.get (l.create u) by deànition q.canonize and q.choose

∼U u by CG for l

and obtain the required equivalence. �

.
.

l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 S1·!S2

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 V1·!V2

l1·l2 ∈ (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V1·V2)/(∼V1 ·∼V2)

3.2.9 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1·!S2 and V1·!V2. Then l1·l2 is a quotient lens in (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V1·V2)/(∼V1 ·∼V2).

Proof: We prove each quotient lens law separately. To shorten the proof, abbreviate ∼S1 ·∼S2 as ∼S

and ∼V1 ·∼V2 as ∼V .

I GetEquiv: Let s = s1·s2 and s′ = s′1·s′2 be strings in S1·S2. By the deànition of ∼S we have that
s1 ∼S1 s′1 and s2 ∼S2 s′2. Using these facts, we calculate as follows

(l1·l2).get (s1·s2)
= (l1.get s1) · (l2.get s2) by deànition (l1·l2).get

∼V (l1.get s′1) · (l2.get s′2) by GE for l1 and l2
and deànition ∼V

= (l1·l2).get (s′1·s′2) by deànition (l1·l2).get

158

and obtain the required equivalence.

I PutEquiv: Let v = v1·v2 and v′ = v′1·v′2 be strings in V1·V2 and let s = s1·s2 and s′ = s′1·s′2 be
strings in S1·S2. By the deànitions of ∼V and ∼S we have v1 ∼V1 v′1 and v2 ∼V2 v′2 and s1 ∼S1 s′1 and
s2 ∼S2 s′2. Using these facts, we calculate as follows

(l1·l2).put (v1·v2) (s1·s2)
= (l1.put v1 s1) · (l2.put v2 s2) by deànition (l1·l2).put

∼S (l1.put v′1 s′1) · (l2.put v′2 s′2) by PE for l1 and l2
and deànition ∼S

= (l1·l2).put (v′1·v′2) (s′1·s′2) by deànition (l1·l2).put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s = s1·s2 be a string in S1·S2. We calculate as follows

(l1·l2).put ((l1·l2).get (s1·s2)) (s1·s2)
= (l1·l2).put ((l1.get s1)·(l2.get s2)) (s1·s2) by deànition (l1·l2).get
= (l1.put (l1.get s1) s1)·(l2.put (l2.get s2) s2) by deànition (l1·l2).put

with V1·!V2 and cod(l1.get) = V1 and cod(l2.get) = V2

∼S s1 · s2 By GP for l1 and l2
and deànition ∼S

and obtain the required equivalence.

I PutGet: Let v = v1·v2 be a string in V1·V2 and let s = s1·s2 be a string in S1·S2. We calculate as
follows

(l1·l2).get ((l1·l2).put (v1·v2) (s1·s2))
= (l1·l2).get ((l1.put v1 s1) · (l2.put v2 s2)) by deànition (l1·l2).put
= (l1.get (l1.put v1 s1)) · (l2.get (l2.put v2 s2)) by deànition (l1·l2).get

with S1·!S2 and cod(l1.put) = S1 and cod(l2.put) = S2

∼V v1 · v2 By PG for l1 and l2
and deànition ∼V

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

.
.

S!∗ V !∗
l ∈ S/∼S ⇐⇒ V/∼V

l∗ ∈ S∗/∼S
∗ ⇐⇒ V ∗/∼V

∗

3.2.11 Lemma: Let l ∈ S/∼S ⇐⇒ V/∼V be a quotient lens such that S!∗ and V !∗. Then l∗ is a
quotient lens in S∗/∼S

∗ ⇐⇒ V ∗/∼V
∗.

Proof: We prove each quotient lens law separately.

I GetEquiv: Let s = s1 · · · sn and s′ = s′1 · · · s′m be strings in S∗ such that s ∼S
∗ s′. By the deànition

of ∼S
∗ we have n = m and si ∼S s′i for i from 1 to n. Using these facts, we calculate as follows

l∗.get (s1 · · · sn)
= (l.get s1) · · · (l.get sn) by deànition l∗.get

∼V
∗ (l.get s′1) · · · (l.get s′n) by GE for l
= l∗.get (s′1 · · · s′n) by deànition l∗.get

159

and obtain the required equivalence.

I PutEquiv: Let v = v1 · · · vn and v′ = v′1 · · · v′m be strings in V ∗ such that v ∼V
∗ v′ and let s = s1 · · · so

and s′ = s′1 · · · sp be strings in S∗ such that s ∼S
∗ s′. By the deànition of ∼V

∗ we have m = n and
vi ∼V v′i for i from 1 to n and also o = p and sj ∼S s′j for j from 1 to o. Using these facts, we calculate
as follows

= l∗.put (v1 · · · vn) (s1 · · · so)
= s′′1 · · · s′′n by deànition l∗.put

where s′′i =
{

l.put vi si for i ∈ {1, . . . ,max(n, o)}
l.create vi for i ∈ {o + 1, . . . , n}

∼S
∗ s′′′1 · · · s′′′n by PE for l (n times)

where s′′′i =
{

l.put v′i s′i for i ∈ {1, . . . , max(n, o)}
l.create v′i for i ∈ {o + 1, . . . , n}

= l∗.put (v′1 · · · v′n) (s′1 · · · s′o) by deànition l∗.put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s = s1 · · · sn be a string in ∈ S∗. We calculate as follows

l∗.put (l∗.get (s1 · · · sn)) (s1 · · · sn)
= l∗.put ((l.get s1) · · · (l.get sn)) (s1 · · · sn) by deànition l∗.get
= (l.put (l.get s1) s1) · · · (l.put (l.get sn) sn) by deànition l∗.put

with V !∗ and cod(l.get) = V

∼S
∗ s1 · · · sn by GP for l

and obtain the required equivalence.

I PutGet: Let v = v1 · · · vn be a string in V ∗ and let s = s1 · · · sm be a string in S∗. We calculate as
follows

l∗.get (l∗.put (v1 · · · vn) (s1 · · · sm)
= l∗.get (s′1 · · · s′n) by deànition l∗.put

where s′i =
{

l.put vi si for i ∈ {1, . . . ,max(m,n)}
l.create vi for i ∈ {m + 1, . . . , n}

= (l.get s′1) · · · (l.get s′n) by deànition l∗.get
with S!∗ and cod(l.put) = S

∼V
∗ v1 · · · vn by PG and CG for l

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

.

.

S1 ∩ S2 = ∅
l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2

∀v, v′ ∈ V1 ∩ V2. v ∼V1 v′ if and only if v ∼V2 v′

l1 | l2 ∈ (S1 ∪ S2)/(∼S1 ∪ ∼S2) ⇐⇒ (V1 ∪ V2)/(∼V1 ∪ ∼V2)

3.2.12 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1 ∩ S2 = ∅ and for every v and v′ in V1 ∩ V2 we have v ∼V1 v′ if and only if v ∼V2 v′. Then the
quotient lens l1 | l2 is in (S1 ∪ S2)/(∼S1 ∪ ∼S2) ⇐⇒ (V1 ∪ V2)/(∼V1 ∪ ∼V2).

160

Proof: We prove each quotient lens law separately. To shorten the proof abbreviate ∼S1 ∪∼S2 as ∼S

and ∼V1 ∪ ∼V2 as ∼V .

I GetEquiv: Let s and s′ be strings in S1 ∪S2 such that s ∼S s′. As S1 ∩S2 = ∅, we either have s ∈ S1

and s′ ∈ S1 and s ∼S1 s′ or s ∈ S2 and s′ ∈ S2 and s ∼S2 s′. We analyze each case separately.

Case s and s′ in S1: We calculate as follows

(l1 | l2).get s
= l1.get s by deànition (l1 | l2).get

∼V l1.get s′ by GE for l1
and deànition ∼V

= (l1 | l2).get s′ by deànition (l1 | l2).get

and obtain the required equivalence.

Case s and s′ in S2: Symmetric to the previous case.

I PutEquiv: Let v and v′ be strings in V1 ∪ V2 such that v ∼V v′ and let s and s′ be strings in S1 ∪ S2

such that s ∼V s′. By the conditions on ∼V1 and ∼V2 we either have

• v and v′ in V1 ∩ V2 with v ∼V1 v′ and v ∼V2 v′ or

• v and v′ in V1 − V2 with v ∼V1 v′ or

• v and v′ in V2 − V1 with v ∼V2 v′.

Similarly, as (S1 ∩ S2) = ∅, we either have

• s and s′ in S1 with s ∼S1 s′ or

• s and s′ in S2 with s ∼S2 s′.

We analyze several cases.

Case v and v′ in V1 and s and s′ in S1: We calculate as follows

(l1 | l2).put v s
= l1.put v s by deànition (l1 | l2).put

∼S l1.put v′ s′ by PE for l1
and deànition ∼S

= (l1 | l2).put v′ s′ by deànition (l1 | l2).put

and obtain the required equivalence.

Case v and v′ in V2 and s and s′ in S2: Symmetric to the previous case.

Case v and v′ in V1 − V2 and s and s′ in S2: We calculate as follows

(l1 | l2).put v s
= l1.create v s by deànition (l1 | l2).put

∼S l1.create v′ s′ by CE for l1
and deànition ∼S

= (l1 | l2).put v′ s′ by deànition (l1 | l2).put

and obtain the required equivalence.

161

Case v and v′ in V2 − V1 and s and s′ in S1: Symmetric to the previous case.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s be a string in S1 ∪ S2. We analyze several cases.

Case s ∈ S1: We calculate as follows

(l1 | l2).put ((l1 | l2).get s) s
= (l1 | l2).put (l1.get s) s by deànition (l1 | l2).get
= l1.put (l1.get s) s by deànition (l1 | l2).put

with cod(l1.get) = V1

∼S s by GP for l1
and deànition ∼S

and obtain the required equivalence.

Case s ∈ S2: Symmetric to the previous case.

I PutGet: Let v be a string in V1 ∪ V2 and let s be a string in S1 ∪ S2. We analyze several cases.

Case v ∈ V1 and s ∈ S1: We calculate as follows

(l1 | l2).get ((l1 | l2).put v s)
= (l1 | l2).get (l1.put v s) by deànition (l1 | l2).put
= l1.get (l1.put v s) by deànition (l1 | l2).get

with cod(l1.put) = S1

∼V v by PG for l1
and deànition ∼V

and obtain the required equivalence.

Case v ∈ V2 and s ∈ S2: Symmetric to the previous case.

Case v ∈ V1 − V2 and s ∈ S2: We calculate as follows

(l1 | l2).get ((l1 | l2).put v s)
= (l1 | l2).get (l1.create v) by deànition (l1 | l2).put
= l1.get (l1.create v) by deànition (l1 | l2).get

with cod(l1.create) = S1

∼V v by CG for l1
and deànition ∼V

and obtain the required equivalence.

Case V ∈ V2 − V1 and s ∈ S1 : Symmetric to the previous case.

I CreateGet: Similar to the proof of PG. �

.
.

l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 S1·!S2

l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 V2·!V1

l1 ∼ l2 ∈ (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V2·V1)/(∼V2 ·∼V1)

162

3.2.13 Lemma: Let l1 ∈ S1/∼S1 ⇐⇒ V1/∼V1 and l2 ∈ S2/∼S2 ⇐⇒ V2/∼V2 be quotient lenses such
that S1·!S2 and V2·!V1. Then l1 ∼ l2 is a quotient lens in (S1·S2)/(∼S1 ·∼S2) ⇐⇒ (V2·V1)/(∼V2 ·∼V1).

Proof: We prove each quotient lens law separately. To shorten the proof, abbreviate ∼S1 ·∼S2 as ∼S

and ∼V2 ·∼V1 as ∼V .

I GetEquiv: Let s = s1·s2 and s′ = s′1·s′2 be strings in S1·S2. By the deànition of ∼S we have that
s1 ∼S1 s′1 and s2 ∼S2 s′2. Using these facts, we calculate as follows

(l1 ∼ l2).get (s1·s2)
= (l2.get s2) · (l1.get s1) by deànition (l1 ∼ l2).get

∼V (l2.get s′2) · (l2.get s′1) by GE for l2 and l1
and deànition ∼V

= (l1 ∼ l2).get (s′1·s′2) by deànition (l1 ∼ l2).get

and obtain the required equivalence.

I PutEquiv: Let v = v2·v1 and v′ = v′2·v′1 be strings in V2·V1 and let s = s1·s2 and s′ = s′1·s′2 be
strings in S1·S2. By the deànitions of ∼V and ∼S we have v2 ∼V2 v′2 and v1 ∼V1 v′1 and s1 ∼S1 s′1 and
s2 ∼S2 s′2. Using these facts, we calculate as follows

(l1 ∼ l2).put (v2·v1) (s1·s2)
= (l1.put v1 s1) · (l2.put v2 s2) by deànition (l1 ∼ l2).put

∼S (l1.put v′1 s′1) · (l2.put v′2 s′2) by PE for l1 and l2
and deànition ∼S

= (l1 ∼ l2).put (v′2·v′1) (s′1·s′2) by deànition (l1 ∼ l2).put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s = s1·s2 be a string in S1·S2. We calculate as follows

(l1 ∼ l2).put ((l1 ∼ l2).get (s1·s2)) (s1·s2)
= (l1 ∼ l2).put ((l2.get s2)·(l1.get s1)) (s1·s2) by deànition (l1 ∼ l2).get
= (l1.put (l1.get s1) s1)·(l2.put (l2.get s2) s2) by deànition (l1 ∼ l2).put

with V2·!V1 and cod(l2.get) = V2 and cod(l1.get) = V1

∼S s1 · s2 By GP for l1 and l2
and deànition of ∼S

and obtain the required equivalence.

I PutGet: Let v = v2·v1 be a string in V2·V1 and let s = s1·s2 be a string in S1·S2. We calculate as
follows

(l1 ∼ l2).get ((l1 ∼ l2).put (v2·v1) (s1·s2))
= (l1 ∼ l2).get ((l1.put v1 s1) · (l2.put v2 s2)) by deànition (l1 ∼ l2).put
= (l2.get (l2.put v2 s2)) · (l1.get (l1.put v1 s1)) by deànition (l1 ∼ l2).get

with S1·!S2 and cod(l1.put) = S1 and cod(l2.put) = S2

∼V v2 · v1 By PG for l1 and l2
and deànition ∼V

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

163

.

.

S1·!S2 p ∈ Πu : (U1·U2). {(u1, u2) ∈ U1 × U2 | u1·u2 = u}
q1 ∈ S1

.
. U1/∼U1

q2 ∈ S2
.

. U2/∼U2

q1·p q2 ∈ (S1·S2) .
. (U1·U2)/TrClose(∼U1 ·∼U2)

3.2.14 Lemma: Let q1 ∈ S1
.

. U1/∼U1 and q2 ∈ S2
.

. U2/∼U2 be canonizers such that S1·!S2 and
let p be a function in:

Πu : (U1·U2). {(u1, u2) ∈ U1 × U2 | u1·u2 = u}
Then q1·p q2 is a canonizer in (S1·S2) .

. (U1·U2)/TrClose(∼U1 ·∼U2).

Proof: We prove the canonizer law directly. To shorten the proof, we will abbreviate ∼U1 ·∼U2 as ∼U .

I ReCanonize: Let u be a string in U1·U2 and let u1 be a string in U1 and u2 a string in U2 with
p u = (u1, u2). We calculate as follows

(q1·p q2).canonize ((q1·p q2).choose u)
= (q1·p q2).canonize

((q1.choose u1)·(q2.choose u2)) by deànition (q1·p q2).choose
= (q1.canonize (q1.choose u1))· by deànition (q1·p q2).canonize

(q2.canonize (q2.choose u2))
with S1·!S2 and cod(q1.choose) = S1 and cod(q2.choose) = S2

∼U u1·u2 by RC for q1 and q2

= u by type of p

and obtain the required equivalence. �

.
.

S!∗ p ∈ Πu : U∗. {[u1, . . . , un] ∈ U list | u1 · · ·un = u}
q ∈ S .

. U/∼U

q∗p ∈ S∗ .
. U∗/TrClose(∼U

∗)

3.2.16 Lemma: Let q ∈ S .
. U/∼U be a canonizer such that S!∗. Also let p be a function in:

Πu : U∗. {[u1, . . . , un] ∈ U list | u1 · · ·un = u}

Then q∗p is a canonizer in S∗ .
. U∗/TrClose(∼U

∗).

Proof: We prove the canonizer law directly.

I ReCanonize: Let u be a string in U∗ and let u1 to un be strings in U with p u = [u1, . . . , un]. We
calculate as follows

q∗p.canonize (q∗p.choose u)
= q∗p.canonize

((q.choose u1) · · · (q.choose un)) by deànition q∗p.choose
= (q.canonize (q.choose u1)) · · · by deànition q∗p.canonize

(q.canonize (q.choose un))
with S!∗ and cod(q.choose) = S

∼U
∗ u1 · · ·un by RC for q
= u by type of p

and obtain the required equivalence. �

164

.

.

S1 ∩ S2 = ∅
q1 ∈ S1

.
. U1/∼U1

q2 ∈ S2
.

. U2/∼U2

q1 | q2 ∈ (S1 ∪ S2) .
. (U1 ∪ U2)/TrClose(∼U1 ∪ ∼U2)

3.2.17 Lemma: Let q1 ∈ S1
.

. U1/∼U1 and q2 ∈ S2
.

. U2/∼U2 be canonizers such that the inter-
section S1 ∩ S2 of the source types is empty. Then q1 | q2 is a canonizer in S1 ∪ S2

.
. (U1 ∪ U2)/

TrClose(∼U1 ∪ ∼U2).

Proof: We prove the canonizer law directly.

I ReCanonize: Let u ∈ U1 ∪ U2. We analyze two cases.

Case u ∈ U1: We calculate as follows

(q1 | q2).canonize
((q1 | q2).choose u)

= (q1 | q2).canonize (q1.choose u) by deànition (q1 | q2).choose
= q1.canonize (q1.choose u) by deànition (q1 | q2).canonize

with cod(q1.choose) = S1

∼U u by RC for q1

and obtain the required equivalence.

Case u ∈ U1: Symmetric to the previous case. �

.

.

V1·!V2

l ∈ S/∼S ⇐⇒ V1/∼V1

f ∈ S → V2

dup1 l f ∈ S/∼S ⇐⇒ (V1·V2)/(∼V1 ·Tot(V2))

3.2.18 Lemma: Let l be a quotient lens in S/∼S ⇐⇒ V1/∼V1 and let f be a function from S to V2 such
that V1·!V2. Then dup1 l f is a quotient lens in S/∼S ⇐⇒ (V1·V2)/(∼V1 ·Tot(V2)).

Proof: We prove each quotient lens law separately. To shorten the proof, abbreviate ∼V1 ·Tot(V2) as
∼V .

I GetEquiv: Let s ∈ S and s′ ∈ S be strings such that s ∼S s′. We calculate as follows

(dup1 l f).get s
= (l.get s)·(f s) by deànition (dup1 l f).get

∼V (l.get s′)·(f s′) by GE for l and deànition of ∼V

= (dup1 l f).get s′

and obtain the required equivalence.

I PutEquiv: Let v = v1·v2 and v′ = v′1·v′2 be strings in V1·V2 such that v ∼V v′ and let s and s′ be strings
in S such that s ∼S s′. By the deànition of ∼V we have v1 ∼V1 v′1. Using these facts and deànitions,

165

we calculate as follows

(dup1 l f).put (v1·v2) s
= l.put v1 s by deànition (dup1 l f).put

∼S l.put v′1 s′ by PE for l
= (dup1 l f).put (v′1·v′2) s′ by deànition (dup1 l f).put

and obtain the required equivalence.

I CreateEquiv: Similar to the proof of PE.

I GetPut: Let s ∈ S be a string. We calculate as follows

(dup1 l f).put ((dup1 l f).get s) s
= (dup1 l f).put ((l.get s)·(f s)) s by deànition (dup1 l f).get
= l.put (l.get s) by deànition (dup1 l f).put

with V1·!V2 and cod(l.get) = V1 and cod(f) = V2

∼S s by GP for l

and obtain the required equivalence.

I PutGet: Let v = v1·v2 be a string in V and let s be a string in S. We calculate as follows

(dup1 l f).get ((dup1 l f).put (v1·v2) s)
= (dup1 l f).get (l.put v1 s) by deànition (dup1 l f).put
= (l.get (l.put v1 s))·(f (l.put v1 s)) by deànition (dup1 l f).get

∼V v1·v2 by PG for l
and deànition of ∼V

and obtain the required equivalence.

I CreateGet: Similar to the proof of PG. �

.
.

S0 ⊆ S ∀s ∈ S0. f s = s
f ∈ S → S0

normalize f ∈ S .
. S0/=

3.2.19 Lemma: Let S and S0 be sets such that S0 ⊆ S. Also let f ∈ S → S0 be a function from S to
S0 such that f s = s for every s in S0. Then normalize f is a canonizer in S .

. S0/=.

Proof: We prove the canonizer law directly.

I ReCanonize: Let s ∈ S0. We calculate as follows

(normalize f).canonize
((normalize f).choose s)

= (normalize f).canonize s by deànition (normalize f).choose
= f s by deànition (normalize f).canonize
= s as s ∈ S0

and obtain the required equality. �

166

.
.

n ∈ N sp ∈ Σ∗ nl ∈ Σ∗
(Σ∗·nl·Σ∗) ∩ S0 = ∅

unwrap n S0 sp nl ∈ ([(sp ∪ nl)/sp]S0) .
. S0/=

3.2.20 Lemma: Let n be a natural number, S0 a language, and sp and nl strings such that for every
string u in S0 the string nl does not occur in u. Then unwrap n S0 sp nl is a canonizer in ([(sp ∪
nl)/sp]S0) .

. S0/=.

Proof: We prove the canonizer law directly.

I ReCanonize: Let s be a string in S0. The required equality,

(unwrap n S0 sp nl).canonize (unwrap n S0 sp nl).choose s = s

is immediate as nl does not occur in s, (unwrap n S0 sp nl).choose replaces some occurrences of s with
nl, and (unwrap n S0 sp nl).canonize replaces every occurrence of nl with s. �

Resourceful Lens Proofs

4.1.3 Lemma [PutChunks]: Let l be a resourceful lens in S
C,k⇐⇒ V , let v ∈ V be a view, let c ∈ C be a

rigid complement, and let r ∈ {|N 7→ k.C|} be a resource. Then locs(l.put v (c, r)) = locs(v).

Proof: We calculate as follows

locs(l.put v (c, r))
= locs(l.get (l.put v (c, r))) by GC for l
= locs(v) by PG for l

and obtain the required equality. �

4.1.4 Lemma [CreateChunks]: Let l be a resourceful lens in S
C,k⇐⇒ V , let v ∈ V be a view, and let

r ∈ {|N 7→ k.C|} be a resource. Then locs(l.create v r) = locs(v).

Proof: Similar to the proof of Lemma 4.1.3. �

4.1.5 Lemma [ReorderPut]: Let l ∈ S
C,k⇐⇒ V be a resourceful lens, let v ∈ V be a view, let c ∈ C be

a rigid complement, let r ∈ {|N 7→ k.C|} be a resource, and let q ∈ Perms(v) be a permutation on the
chunks of v. Then we have q	 (l.put v (c, r)) = l.put (q	 v) (c, r ◦ q−1).

Proof: Let l ∈ S
C,k⇐⇒ V be a resourceful lens, let v ∈ V be a view, let c ∈ C be a rigid complement,

let r ∈ {|N 7→ k.C|} be a resource, and let q ∈ Perms(v) be a permutation on the chunks in v such that
dom(r) = (locs(v)). To shorten the proof, deàne structures s1 and s2 as follows:

s1 , q	 (l.put v (c, r)) s2 , l.put (q	 v) (c, r ◦ q−1)

First, we demonstrate that the sets of locations in s1 and s2 are identical, by calculating as follows:

locs(s1)
= locs(q	 (l.put v (c, r))) by deànition s1

= locs(l.put v (c, r)) by deànition locs and 	
= locs(v) by Lemma 4.1.3 for l
= locs(q	 v) by deànition locs and 	
= locs(l.put (q	 v) (c, r ◦ q−1)) by Lemma 4.1.3 for l
= locs(s2) by deànition of s2

167

Next, we show that for every location x ∈ locs(s1) the chunk at x in s1 is identical to the chunk at x
in s2. Let x ∈ locs(s1) be a location. We analyze two cases.

Case q−1(x) ∈ dom(r): We calculate as follows

s1[x]
= (q	 (l.put v (c, r)))[x] by deànition s1

= (l.put v (c, r))[q−1(x)] by deànition 	 and [·]
= k.put (v[q−1(x)]) (r(q−1(x))) by CP for l
= k.put ((q	 v)[x]) ((r ◦ q−1)(x)) by deànition 	 and [·]
= l.put (q	 v) (c, r ◦ q−1)[x] by CP for l
= s2[x] by deànition s2

and obtain the required equality.

Case q−1(x) ̸∈ dom(r): Similar to the previous case, using NCP instead of CP.

Finally, we prove that skel(s1) = skel(s2). Observe that skel(v) = skel(q	 v). Using this fact, we
calculate as follows:

skel(s1)
= skel(q	 (l.put v (c, r))) by deànition s1

= skel(l.put v (c, r)) by deànition skel and 	
= skel(l.put (q	 v) (c, r ◦ q−1)) by SP for l
= skel(s2) by deànition s2

Putting all these facts together we have s1 = s2, which completes the proof. �

4.1.6 Lemma [ReorderCreate]: Let l ∈ S
C,k⇐⇒ V be a resourceful lens, let v ∈ V be a view, let r ∈

{|N 7→ k.C|} be a resource, and let q ∈ Perms(v) be a permutation on the chunks of v. Then we have
q	 (l.create v r) = l.create (q	 v) (r ◦ q−1).

Proof: Similar to the proof of Lemma 4.1.5. �

..
l ∈ S

C,k⇐⇒ V

⌊l⌋ ∈ S
S⇐⇒ V

4.1.7 Lemma: Let l ∈ S
C,k⇐⇒ V be a resourceful lens. Then ⌊l⌋ is a basic lens in S

S⇐⇒ V .

Proof: We prove each basic lens law separately.
I GetPut: Let s ∈ S. We calculate as follows

⌊l⌋.put (⌊l⌋.get s) (⌊l⌋.res s)
= ⌊l⌋.put (l.get s) s by deànition ⌊l⌋.get and ⌊l⌋.res
= l.put (l.get s) (c, r ◦ g) by deànition ⌊l⌋.put

where c, r = l.res s
and g = align(l.get s, l.get s)

= l.put (l.get s) (c, r) by GC and RC
and as align(l.get s, l.get s) = id

= l.put (l.get s) (l.res s) by deànition (c, r)
= s by GP for l

168

and obtain the required equality.

I PutGet: Let v ∈ V and s ∈ S. We calculate as follows

⌊l⌋.get (⌊l⌋.put v s)
= ⌊l⌋.get (l.put v (c, r ◦ g)) by deànition ⌊l⌋.put

where c, r = l.res s
and g = align(v, l.get s)

= l.get (l.put v (c, r ◦ g)) by deànition ⌊l⌋.get
= v by PG for l

and obtain the required equality.

I CreateGet: Let v ∈ V . We calculate as follows

⌊l⌋.get (⌊l⌋.create v)
= ⌊l⌋.get (l.create v {||}) by deànition ⌊l⌋.create
= l.get (l.create v {||}) by deànition ⌊l⌋.put
= v by CG for l

and obtain the required equality. �

.
.

k′ ∈ S′ C′
⇐⇒ V ′

k ∈ S
C⇐⇒ V

k̂ ∈ S
C,k′⇐⇒ V

4.2.1 Lemma: Let k ∈ S
C⇐⇒ V and k′ ∈ S′ C′

⇐⇒ V ′ be basic lenses. Then k̂ is a resourceful lens in
S

C,k′⇐⇒ V .

Proof: We prove each resourceful lens law separately.
I GetPut: Let s ∈ S be a string. We calculate as follows

k̂.put (k̂.get s) (k̂.res s)
= k̂.put (k.get s) (k.res s, {||}) by deànition of k̂.get and k̂.res
= k.put (k.get s) (k.res s) by deànition of k̂.put
= s by GP for k

and obtain the required equality.

I PutGet: Let v ∈ V be a string, c ∈ C a rigid complement, and r ∈ {|N 7→ k′.C|} a resource. We
calculate as follows

k̂.get (k̂.put v (c, r))
= k̂.get (k.put v c) by deànition k̂.put
= k.get (k.put v c) by deànition k̂.get
= v by PG for k

and obtain the required equality.

I CreateGet: Let v ∈ V be a string and r ∈ {|N 7→ k′.C|} a resource. We calculate as follows

k̂.get (k̂.create v r)
= k̂.get (k.create v) by deànition k̂.create
= k.get (k.create v) by deànition k̂.get
= v by CG for k

169

and obtain the required equality.

I GetChunks: Let s ∈ S. We calculate as follows

locs(s) = ∅ as S is a language of ordinary strings
= locs(k̂.get s) as V is a language of ordinary strings

and obtain the required equality.

I ResChunks: Let s ∈ S be a string, c ∈ C a rigid complement, and r ∈ {|N 7→ k′.C|} a resource such
that (c, r) = k̂.res s. By the deànition of k̂.res we have that r = {||}. Using this fact, we calculate as
follows

locs(s) = ∅ as S is a language of ordinary strings
= dom(r) as r = {||}

and obtain the required equality.

I ChunkPut: Vacuously holds. Suppose, for a contradiction, that there exists a string v ∈ ⌊V ⌋, a
resource r ∈ {|N 7→ k′.C|}, and a location x ∈ (locs(v) ∩ dom(r)). As V is a language of ordinary
strings, we have locs(v) = ∅, which contradicts x ∈ locs(v).

I ChunkCreate: Vacuously holds by the same argument.

I NoChunkPut: Vacuously holds by the same argument.

I NoChunkCreate: Vacuously holds by the same argument.

I SkelPut: Let v and v′ be strings in V , let c be a rigid complement in C, and let r and r′ be resources in
{|N 7→ k′.C|} such that skel(v) = skel(v′). As V is a language of ordinary strings, we have that v = v′.
Using this fact, we calculate as follows:

skel(k̂.put v (c, r))
= skel(k.put v c) by deànition k̂.put
= skel(k.put v′ c) as v = v′

= skel(k̂.put v′ (c, r′)) by deànition k̂.put

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

..
k ∈ S

C⇐⇒ V

⟨k⟩ ∈ ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩

4.2.2 Lemma: Let k ∈ S
C⇐⇒ V be a basic lens. Then ⟨k⟩ is a resourceful lens in ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩.

Proof: We prove each resourceful lens law separately.
I GetPut: Let s ∈ ⟨S⟩ be a string. We calculate as follows

⟨k⟩.put (⟨k⟩.get s) (⟨k⟩.res s)
= ⟨k⟩.put (k.get s) (�, {|1 7→ k.res s|}) by deànition ⟨k⟩.get and ⟨k⟩.res
= k.put (k.get s) ({|1 7→ k.res s|}(1)) by deànition ⟨k⟩.put

with 1 ∈ dom({|1 7→ k.res s|})
= k.put (k.get s) (k.res s) by deànition application
= s by GP for k

170

and obtain the required equality.

I PutGet: Let v ∈ ⟨V ⟩ be a string, � ∈ {�} a rigid complement, and r ∈ {|N 7→ k.C|} a resource. We
calculate as follows

⟨k⟩.get (⟨k⟩.put v (�, r))

=
{

k.get (k.put v r(1)) if 1 ∈ dom(r)
k.get (k.create v) otherwise

by the deànition of ⟨k⟩.get
and ⟨k⟩.put

= v by PG and CG for l

and obtain the required equality.

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s ∈ ⟨S⟩ be a string. We calculate as follows

locs(s) = {1} by deànition locs
= locs(⟨k⟩.get s) by deànition locs

and obtain the required equality.

I ResChunks: Let s ∈ ⌊⟨S⟩⌋ be a string, � ∈ {�} a rigid complement, and r ∈ {|N 7→ k.C|} a resource
such that (�, r) = ⟨k⟩.res s. We calculate as follows

dom(r) = dom({|1 7→ k.res s|}) by deànition ⟨k⟩.res
= {1} by deànition dom
= locs(s) by deànition locs

and obtain the required equality.

I ChunkPut: Let v ∈ ⟨V ⟩ be a string, � ∈ {�} a rigid complement, r ∈ {|N 7→ k.C|} a resource, and
x ∈ (locs(v)∩dom(r)) a location. As locs(v) = {1}we must have x = 1 and 1 ∈ dom(r). We calculate
as follows

(⟨k⟩.put v (�, r))[x]
= ⟨k⟩.put v (c, r) by deànition [·] and x = 1
= k.put v (r(1)) by deànition ⟨k⟩.put

with 1 ∈ dom(r)
= k.put (v[x]) (r(x)) by deànition [·] and x = 1

and obtain the required equality.

I ChunkCreate: Similar to the proof of CP.

I NoChunkPut: Let v ∈ ⟨V ⟩ be a string, � ∈ {�} a rigid complement, r ∈ {|N 7→ k.C|} a resource,
and x ∈ (locs(v) − dom(r)) a location. As locs(v) = {1} we must have x = 1 and 1 ̸∈ dom(r). Using
these facts and deànitions, we calculate as follows

(⟨k⟩.put v (�, r))[x]
= ⟨k⟩.put v (c, r) by deànition [·] and x = 1
= k.create v by deànition ⟨k⟩.put

with 1 ̸∈ dom(r)
= k.create (v[x]) by deànition [·] and x = 1

and obtain the required equality.

I NoChunkCreate: Similar to the proof of NCP.

171

I SkelPut: Let v and v′ be strings in ⟨V ⟩, let � ∈ {�} be a rigid complement, and let r and r′ be
resources in {|N 7→ k.C|} such that skel(v) = skel(v). We calculate as follows

skel(⟨k⟩.put v (�, r))
= � by deànition skel
= skel(⟨k⟩.put v′ (�, r′)) by deànition skel

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

.
.

l1 ∈ S1
C1,k⇐⇒ V1 ⌊S1⌋·!⌊S2⌋

l2 ∈ S2
C2,k⇐⇒ V2 ⌊V1⌋·!⌊V2⌋

l1·l2 ∈ (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2)

4.2.3 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋·!⌊S2⌋ and

⌊V1⌋·!⌊V2⌋. Then l1·l2 is a resourceful lens in (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2).

Proof: We prove each resourceful lens law separately.
I GetPut: Let s be a string in s1·s2 ∈ S1·S2. We calculate as follows

(l1·l2).put
((l1·l2).get (s1·s2)) ((l1·l2).res (s1·s2))

= (l1·l2).put
((l1.get s1)·(l2.get s2)) ((l1·l2).res (s1·s2)) by deànition (l1·l2).get

= (l1·l2).put
((l1.get s1)·(l2.get s2)) ((c1, c2), r1 ++ r2) by deànition (l1·l2).res
where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

= (l1.put (l1.get s1) (c1, r
′
1))·

(l2.put (l2.get s2) (c2, r
′
2)) by deànition (l1·l2).put

where r′1, r
′
2 = split(|l.get s1|, r1 ++ r2)

with V1·!V2 and cod(l1.get) = V1 and cod(l2.get) = V2

= (l1.put (l1.get s1) (c1, r1))·
(l2.put (l2.get s2) (c2, r2)) by GC

with RC for l1 and deànition split
= s1·s2 by GP for l1 and l2

and obtain the required equality.

I PutGet: Let v = v1·v2 be a string in V1·V2, let (c1, c2) be a rigid complement in C1 ×C2, and let r be

172

a resource in {|N 7→ k.C|}. We calculate as follows

(l1·l2).get
((l1·l2).put (v1·v2) ((c1, c2), r))

= (l1·l2).get
((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))) by deànition (l1·l2).put
where r1, r2 = split(|v1|, r)

= (l1.get (l1.put v1 (c1, r1)))·
(l2.get (l2.put v2 (c2, r2))) by deànition (l1·l2).get

with ⌊S1⌋·!⌊S2⌋ and cod(l1.put) = S1 and cod(l2.put) = S2

= v1·v2 by PG for l1 and l2

and obtain the required equality.

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s = s1·s2 be a string in S1·S2. We calculate as follows

locs(s1·s2)
= {1, . . . , |s1| + |s2|} by deànition locs
= {1, . . . , |l1.get s1| + |l2.get s2|} by GC for l1 and l2
= locs((l1.get s1)·(l2.get s2)) by deànition locs
= locs((l1·l2).get (s1·s2)) by deànition (l1·l2).get

and obtain the required equality.

I ResChunks: Let s = s1·s2 be a string in S1·S2, (c1, c2) a rigid complement in C1 × C2, and r a
resource in {|N 7→ k.C|} with ((c1, c2), r) = (l1·l2).res s. We calculate as follows

dom(r)
= dom(r1 ++ r2) by deànition (l1·l2).res

where r1, c1 = l1.res s1 and r2, c2 = l2.res s2

= dom(r1) ∪ {i + |r1| | i ∈ dom(r2)} by deànition (++) and dom
= locs(s1) ∪ {i + |s1| | i ∈ locs(s2)} by RC for l1 and l2
= locs(s1·s2) by deànition locs

and obtain the required equality.

I ChunkPut: Let v = v1·v2 be a string in V1·V2, let (c1, c2) be a rigid complement in C1 × C2, let r be
a resource in {|N 7→ k.C|}, and let x be a location in locs(v) ∩ dom(r). We analyze two cases.

Case x ∈ locs(v1): We calculate as follows

((l1·l2).put (v1·v2) ((c1, c2), r))[x]
= ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)))[x] by deànition (l1·l2).put

where r1, r2 = split(|v1|, r)
= (l1.put v1 (c1, r1))[x] by Lemma 4.1.3

and deànition [·]
= k.put (v1[x]) (r1(x)) by CP for l1
= k.put ((v1·v2)[x]) ((r1 ++ r2)(x)) by deànition [·] and (++)
= k.put ((v1·v2)[x]) (r(x)) by deànition split ,

r1, and r2

and obtain the required equality.

173

Case x ̸∈ (locs(v1)): Similar to the previous case.

I ChunkCreate: Similar to the proof of CP.

I NoChunkPut: Similar to the proof of CP.

I NoChunkCreate: Similar to the proof of CP.

I SkelPut: Let v = v1·v2 and v′ = v′1·v′2 be strings in V1·V2, let (c1, c2) be a rigid complement in C1×C2,
and let r and r′ be resources in {|N 7→ k.C|} such that skel(v) = skel(v′). By ⌊V1⌋·!⌊V2⌋ and as V1·V2

is chunk unambiguous, we have skel(v1) = skel(v′1) and skel(v2) = skel(v′2). Using these facts and
deànitions, we calculate as follows

skel((l1·l2).put (v1·v2) ((c1, c2), r))
= skel(l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)) by deànition (l1·l2).put

where r1, r2 = split(|v1|, r)
= skel(l1.put v1 (c1, r1))·skel(l2.put v2 (c2, r2)) by deànition skel
= skel(l1.put v′1 (c1, r

′
1))·skel(l2.put v′2 (c2, r

′
2)) by SP for l1 and l2

where r′1, r
′
2 = split(|v′1|, r′)

= skel(l1.put v′1 (c1, r
′
1))·(l2.put v′2 (c2, r

′
2)) by deànition skel

= skel((l1·l2).put (v′1·v′2) ((c1, c2), r′)) by deànition (l1·l2).put,
r′1 and r′2

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

.
.

⌊S⌋!∗ ⌊V ⌋!∗

l ∈ S
C,k⇐⇒ V

l∗ ∈ S∗ (C list),k⇐==⇒ V ∗

4.2.4 Lemma: Let l ∈ S
C,k⇐⇒ V be a resourceful lens such that ⌊S⌋!∗ and ⌊V ⌋!∗. Then l∗ is a resourceful

lens in S∗ K list,R⇐==⇒ V ∗.

Proof: We prove each resourceful lens law separately.
I GetPut: Let s = s1 · · · sn be a string in S∗. To shorten the proof, let (ci, ri) = l.res si and (r′i, r

′′
i) =

split(|l.get si|, r′′i) for i from 1 to n where r′′0 = π2(l∗.res s). Using these facts and deànitions, we
calculate as follows

l∗.put (l∗.get(s1 · · · sn)) (l∗.res (s1 · · · sn))
= l∗.put ((l.get s1) · · · (l.get sn)) (l∗.res (s1 · · · sn)) by deànition l∗.get
= l∗.put

((l.get s1) · · · (l.get sn))
([c1, . . . , cn], r1 ++ . . . ++ rn) by deànition l∗.res

= (l.put (l.get s1) (c1, r
′
1)) · · · (l.put (l.get sn) (cn, r′n)) by deànition l∗.put

with V !∗ and cod(l.get) = ⌊V ⌋ and deànition r′1 to r′n
= (l.put (l.get s1) (c1, r1)) · · · (l.put (l.get sn) (cn, rn)) by GC for l

with RC and deànition split
= s1 · · · sn by GP for l

and obtain the required equality.

174

I PutGet: Let v = v1 · · · vn be a string in V ∗, let [c1, . . . , cm] be a rigid complement in C list, and let
r ∈ {|N 7→ k.C|} be a resource. To shorten the proof, let r′0 = r and (ri, r

′
i) = split(|vi|, r′(i−1)) for i

from 1 to n. We calculate as follows

l∗.get (l∗.put (v1 · · · vn) ([c1, . . . , cm], r))
= l∗.get (s′1 · · · s′n) by deànition l∗.put

where s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . ,min(n,m)}
l.create vi ri i ∈ {m + 1, . . . , n}

= (l.get s′1) · · · (l.get s′n) by deànition l∗.get
with ⌊S⌋!∗ and cod(l.put) = S = cod(l.create)

= v1 · · · vn by CG
and PG for l

and obtain the required equality.

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s = s1 · · · sn be a string in S∗. We calculate as follows

locs(s1 · · · sn)
= {1, . . . ,

∑n
i=1 |si|} by deànition locs

= {1, . . . ,
∑n

i=1 |l.get si|} by GC for l
= locs((l.get s1) · · · (l.get sn)) by deànition locs

with ⌊V ⌋!∗ and cod(l.get) = V

= locs(l∗.get (s1 · · · sn)) by deànition l∗.get

and obtain the required equality.

I ResChunks: Let s = s1 · · · sn be a string in S∗, let c be a rigid complement in C list , and let r be a
resource in {|N 7→ k.C|} such that (c, r) = l∗.res s. To shorten the proof, let (ci, ri) = l.res si for i from
1 to n. Using these fact and deànitions, we calculate as follows

dom(r)
= dom(r1 ++ . . . ++ rn) by deànition l∗.res
=

∪n
i=1 {j +

∑(i−1)
k=1 |rk| | j ∈ dom(ri)} by deànition (++)

=
∪n

i=1 {j +
∑(i−1)

k=1 |l.get sk| | j ∈ locs(l.get si)} by RC for l
= {1, . . . ,

∑n
i=1 |l.get si|} by deànition | · |

= locs((l.get s1) · · · (l.get sn)) by deànition locs
= locs(l∗.get (s1 · · · sn)) by deànition l∗.get

and obtain the required equality.

I ChunkPut: Let v = v1 · · · vn be a string in V ∗, let [c1, . . . , cm] be a rigid complement in C list , let
r be a resource in {|N 7→ k.C|}, and let x be a location in locs(v) ∩ dom(r) a location. To shorten the
proof, let r′0 = r and (ri, r

′
i) = split(|vi|, r′(i−1)) and

s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . ,min(n, m)}
l.create vi ri i ∈ {m + 1, . . . , n}

for i ∈ {1, . . . , n}. We analyze several cases.

175

Case x ∈ locs(v1): We calculate as follows

(l∗.put (v1 · · · vn) ([c1, . . . , cm], r))[x]
= (s′1 · · · s′n)[x] by deànition l∗.put,
= s′1[x] by deànition [·]

with Lemmas 4.1.3 and 4.1.4
= k.put v1 (r1(x)) by CC

and CP for l
= k.put (v1 · · · vn)[x] ((r1 ++ . . . ++ rn)(x)) by deànition [·]

with deànition (++) and r1 to rn

= k.put (v1 · · · vn)[x] (r(x)) by deànition application

and obtain the required equality.

Case x ̸∈ locs(v1): Similar to the previous case.

I ChunkCreate: Similar to the proof of CP.

I NoChunkPut: Similar to the proof of CP.

I NoChunkCreate: Similar to the proof of CP.

I SkelPut: Let v = v1 · · · vn and v′ = v1 · · · vm be strings in V ∗, let [c1, . . . , co] be a rigid complement
in C list , and let r and r′ be resources in {|N 7→ k.C|} such that skel(v) = skel(v′). By ⌊V ⌋!∗ and as
V ∗ is chunk unambiguous, we have m = n and skel(vi) = skel(v′i) for i from 1 to n. To shorten the
proof, let

r′0 = r (ri, r
′
i) = split(|vi|, r′(i−1))

r′′0 = r′ (r′′i , r′′′i) = split(|v′i|, r′′′(i−1))

and

s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . , min(n, o)}
l.create vi ri i ∈ {o + 1, . . . , n}

and

s′′i =
{

l.put v′i (ci, r
′
i) i ∈ {1, . . . ,min(n, o)}

l.create v′i r
′
i i ∈ {o + 1, . . . , n}

for i from 1 to n. Using these facts and deànitions, we calculate as follows

skel(l∗.put (v1 · · · vn) ([c1, . . . , co], r))
= skel(s′1 · · · s′n) by the deànition of l∗.put
= (skel(s′1)) · · · (skel(s′n)) by the deànition of skel
= (skel(s′′1)) · · · (skel(s′′n)) by SC

and SP for l
= skel(s′′1 · · · s′′n) by the deànition of skel
= skel(l∗.put (v′1 · · · v′n) ([c1, . . . , co], r′)) by deànition l∗.put

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

.

.

⌊S1⌋ ∩ ⌊S2⌋ = ∅ ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋
l1 ∈ S1

C1,k⇐⇒ V1

l2 ∈ S2
C2,k⇐⇒ V2

l1 | l2 ∈ (S1 ∪ S2)
(C1+C2),k⇐===⇒ (V1 ∪ V2)

176

4.2.5 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋ ∩ ⌊S2⌋ = ∅
and ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋. Then l1 | l2 is a resourceful lens in (S1 ∪ S2)

(C1+C2),k⇐===⇒ (V1 ∪ V2).

Proof: We prove each resourceful lens law separately.
I GetPut: Let s be a string in S1 ∪ S2. We analyze two cases.

Case s ∈ S1: We calculate as follows

(l1 | l2).put ((l1 | l2).get s) ((l1 | l2).res s)
= (l1 | l2).put (l1.get s) ((l1 | l2).res s) by deànition (l1 | l2).get

with s ∈ S1

= (l1 | l2).put (l1.get s) (Inl(c1), r) by deànition (l1 | l2).res
with s ∈ S1

where (c1, r) = l1.res s
= l1.put (l1.get s) (c1, r) by deànition (l1 | l2).put

with cod(l.get) = V1

= l1.put (l1.get s) (l1.res s) by deànition (c1, r)
= s by PG for l1

and obtain the required equality.

Case s ∈ S2: Symmetric to the previous case.

I PutGet: Let v be a string in V1 ∪ V2, let c be a rigid complement in C1 + C2, and let r be a resource
in {|N 7→ k.C|}. We analyze several cases.

Case v ∈ V1 and c = Inl(c1): We calculate as follows

(l1 | l2).get ((l1 | l2).put v (c, r))
= (l1 | l2).get (l1.put v (c1, r)) by deànition (l1 | l2).put

with v ∈ V1 and c = Inl(c1)
= l1.get (l1.put v (c1, r)) by deànition (l1 | l2).get

with cod(l1.put) = S1

= v by PG for l

and obtain the required equality.

Case v ∈ V2 and c = Inr(c2): Symmetric to the previous case.

Case v ̸∈ V2 and c = Inr(c2): We calculate as follows

(l1 | l2).get ((l1 | l2).put v (c, r))
= (l1 | l2).get (l1.create v r) by deànition (l1 | l2).put

with v ̸∈ V2 and c = Inr(c2)
= l1.get (l1.create v r) by deànition (l1 | l2).get

with cod(l1.create) = S1

= v by CG for l

and obtain the required equality.

Case v ̸∈ V1 and c = Inl(c1): Symmetric to the previous case.

177

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s be a string in S1 ∪ S2. As ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋, for every v ∈ V1 ∩ V2 the
chunks of v as identiàed by V1 and by V2 are identical. We analyze two cases.

Case s ∈ S1: We calculate as follows

locs(s) = locs(l1.get s) by GC for l1
= locs((l1 | l2).get s) by deànition (l1 | l2).get

with s ∈ S1

and obtain the required equality.

Case s ∈ S2: Symmetric to the previous case.

I ResChunks: Let s be a string in S1 ∪ S2, let c be a rigid complement in C1 + C2, and let r be a
resource in {|N 7→ k.C|} with (c, r) = (l1 | l2).res s. We analyze two cases.

Case s ∈ S1: By the assumption of the case and the deànition of (l1 | l2).res we have c = Inl(c1) where
c1, r = l1.res s. The required equality, locs(s) = dom(r), is immediate by RC for l1.

Case s ∈ S2: Symmetric to the previous case.

I ChunkPut: Let v be a string in V1 ∪ V2, let c be a rigid complement in C1 + C2, let r be a resource in
{|N 7→ k.C|}, and let x be a location in locs(v) ∩ dom(r). We analyze several cases.

Case v ∈ V1 and c = Inl(c1): As ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋, for every v ∈ V1 ∩ V2 we have that if x is a
location of a chunk in v as speciàed by V1, then it is also a chunk in v as speciàed by V2, and vice
versa. Using this fact, we calculate as follows

(l1 | l2).put v (c, r)[x]
= l1.put v (c1, r)[x] by deànition (l1 | l2).put

with v ∈ V1 and c = Inl(c1)
= k.put (v[x]) (r(x)) by CP for l1

and obtain the required equality.

Case v ∈ V2 and c = Inr(c2): Symmetric to the previous case.

Case v ̸∈ V2 and c = Inr(c2): We calculate as follows.

(l1 | l2).put v (c, r)[x]
= l1.create v r[x] by deànition (l1 | l2).put

with v ̸∈ V2 and c = Inr(c2)
= k.put (v[x]) (r(x)) by CC for l1

and obtain the required equality.

Case v ̸∈ V1 and c = Inl(c1): Symmetric to the previous case.

I ChunkCreate: Similar to the proof of CP.

I NoChunkPut: Similar to the proof of CP.

I NoChunkCreate: Similar to the proof of CP.

I SkelPut: Let v and v′ be strings in V1 ∪ V2, let c be a rigid complement in C1 + C2, and let r and r′

be resources in {|N 7→ k.C|} such that skel(v) = skel(v′). We analyze several cases.

178

Case v ∈ V1 and v′ ∈ V1 and c = Inl(c1): We calculate as follows

skel((l1 | l2).put v (c, r))
= skel(l1.put v (c1, r)) by deànition (l1 | l2).put

with v ∈ V1 and c = Inl(c1)
= skel(l1.put v′ (c1, r

′)) by SP for l1
= skel((l1 | l2).put v′ (c, r′)) by deànition (l1 | l2).put

with v′ ∈ V1 and c = Inl(c1)

and obtain the required equality.

Case v ∈ V2 and v′ ∈ V2 and c = Inr(c2): Similar to the previous case.

Case v ∈ V1 and v′ ∈ V1 and c = Inr(c2): Similar to the àrst case.

Case v ∈ V2 and v′ ∈ V2 and c = Inl(c1): Similar to the àrst case.

Case v ∈ V1 and v′ ̸∈ V1: Can’t happen. As skel(v) = skel(v′), we have the sets of locations locs(v)
and locs(v′) are identical. Let v′′ be the string obtained from v by setting the chunk at every
location in locs(v) to the corresponding chunk in v′. By construction, we have v′ = v′. By chunk
compatibility we also have v′′ ∈ V1. However, by the assumptions of the case, we have v′ ̸∈ V1,
which is a contradiction.

Case v ∈ V2 and v′ ̸∈ V2: Symmetric to the previous case.

I SkelCreate: Similar to the proof of SP. �

.
.

l1 ∈ S
C1,k1⇐==⇒ U

l2 ∈ U
C2,k2⇐==⇒ V

l1;l2 ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

4.2.6 Lemma: Let l1 ∈ S
C1,k1⇐==⇒ U and l2 ∈ U

C2,k2⇐==⇒ V be resourceful lenses. Then (l1;l2) is a

resourceful lens in S
(C1⊗C2),(k1;k2)⇐=====⇒ V .

Proof: We prove each resourceful lens law separately.
I GetPut: Let s ∈ S. We calculate as follows

(l1;l2).put ((l1;l2).get s) ((l1;l2).res s)
= (l1;l2).put (l2.get (l1.get s)) (⟨c1, c2⟩, zip r1 r2) by deànition (l1;l2).get

where c1, r1 = l1.res s and (l1;l2).res
and c2, r2 = l2.res (l1.get s)

= l1.put (l2.put (l2.get (l1.get s)) (c2, r
′
2)) (c1, r

′
1) by deànition (l1;l2).put

where r′1, r
′
2 = unzip (zip r1 r2)

= l1.put
(l2.put (l2.get (l1.get s)) (l2.res (l1.get s)))
(l1.res s) by deànition (c1, r1)
with unzip(zip r1 r2) = r1, r2 and (c2, r2)

= l1.put (l1.get s) (l1.res s) by GP for l2
= s by GP for l1

179

and obtain the required equality.

I PutGet: Let v be a view in V , let ⟨c1, c2⟩ be a rigid complement in C1 ⊗ C2, and let r be a resource
in {|N 7→ (k1;k2).C|}. We calculate as follows

(l1;l2).get ((l1;l2).put v (⟨c1, c2⟩, r))
= (l1;l2).get (l1.put (l2.put v (c2, r2)) (c1, r1)) by deànition (l1;l2).put

where r1, r2 = unzip r
= l2.get (l1.get (l1.put (l2.put v (c2, r2)) (c1, r1))) by deànition (l1;l2).get
= l2.get (l2.put v (c2, r2)) by PG for l1
= v by PG for l2

and obtain the required equality.

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s be a string in S. We calculate as follows

locs(s) = locs(l1.get s) by GC for l1
= locs(l2.get (l1.get s)) by GC for l2
= locs((l1;l2).get s) by deànition (l1;l2).get

and obtain the required equality.

I ResChunks: Let s be a string in S, let ⟨c1, c2⟩ be a rigid complement in C1 ⊗ C2, and let r be a
resource in {|N 7→ (k1;k2).C|} a resource with (c, r) = (l1;l2).res s. The proof goes in three steps.

First, we show that the set of locations in s is equal to the domain of the resource computed from
s using l1.res,

locs(s) = dom(r1) by RC for l1

where c1, r1 = l1.res s.
Next, we show that the set of locations in s is equal to the domain of the resource computed from

l1.get s using l2.res,
locs(s) = locs(l1.get s) by GC for l1

dom(r2) by RC for l2

where c2, r2 = l2.res (l1.get s).
Finally, using both of these facts, we calculate as follows

locs(s)
= dom(zip r1 r2) by deànition zip

with dom(r1) = dom(r2)
= dom(r) by deànition (l1;l2).res

and obtain the required equality.

IChunkPut: Let v be a string in ⌊V ⌋, let ⟨c1, c2⟩ be a rigid complement inC1⊗C2 be a rigid complement,
let r be a resource in {|N 7→ (k1;k2).C|}, and let x be a location in locs(v) ∩ dom(r). We calculate as
follows

((l1;l2).put v (⟨c1, c2⟩, r))[x]
= (l1.put (l2.put (c2, r2)) (c1, r1))[x] by deànition (l1;l2).put

where r1, r2 = unzip r
= k1.put ((l2.put v (c2, r2))[x]) (r1(x)) by CP for l1
= k1.put (k2.put (v[x]) (r2(x))) (r1(x)) by CP for l2
= (k1;k2).put (v[x]) ⟨r1(x), r2(x)⟩ by deànition of (k1;k2).put
= (k1;k2).put (v[x]) (r(x)) by deànition (r1, r2) and unzip

180

and obtain the required equality.

I ChunkCreate: Similar to the proof of CP.

I NoChunkPut: Similar to the proof of CP.

I NoChunkCreate: Similar to the proof of CP.

I SkelPut: Let v and v′ be strings in V , let ⟨c1, c2⟩ ∈ C1 ⊗ C2 be a rigid complement, and let r and r′

be resources in {|N 7→ k.C|} with skel(v) = skel(v′). To shorten the proof, let r1 and r2 and r′1 and r′2
be resources and let u and u′ be strings deàned as follows:

r1, r2 = unzip r
r′1, r

′
2 = unzip r′

u = l2.put v (c2, r2)
u′ = l2.put v′ (c2, r

′
2)

Observe that skel(u) = skel(u′) by SP for l2. Using these facts and deànitions, we calculate as
follows

skel((l1;l2).put v (⟨c1, c2⟩, r))
= skel(l1.put (l2.put v (c2, r2)) (c1, r1)) by deànition (l1;l2).put
= skel(l1.put u (c1, r1)) by deànition u
= skel(l1.put u′ (c1, r

′
1)) by SP for l1

= skel(l1.put (l2.put v′ (c2, r
′
2)) (c1, r

′
1)) by deànition u′

= skel((l1;l2).put v′ (⟨c2, c2⟩, r′)) by deànition (l1;l2).put

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

.
.

l1 ∈ S1
C1,k⇐⇒ V1 ⌊S1⌋·!⌊S2⌋

l2 ∈ S2
C2,k⇐⇒ V2 ⌊V2⌋·!⌊V1⌋

l1 ∼ l2 ∈ (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1)

4.4.1 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be resourceful lenses such that ⌊S1⌋·!⌊S2⌋ and

⌊V1⌋·!⌊V2⌋. Then l1 ∼ l2 is a resourceful lens in (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1).

Proof: We prove each resourceful lens law separately.

181

I GetPut: Let s = s1·s2 be a string in S1·S2. We calculate as follows

(l1 ∼ l2).put
((l1 ∼ l2).get (s1·s2)) ((l1 ∼ l2).res (s1·s2))

= (l1 ∼ l2).put
((l2.get s2)·(l1.get s1)) ((l1 ∼ l2).res (s1·s2)) by deànition (l1 ∼ l2).get

= (l1 ∼ l2).put
((l2.get s2)·(l1.get s1)) ((c2, c1), r2 ++ r1) by deànition (l1 ∼ l2).res
where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

= (l1.put (l1.get s1) (c1, r
′
1))· by deànition (l1 ∼ l2).put

(l2.put (l2.get s2) (c2, r
′
2))

with ⌊V2⌋·!⌊V1⌋ and cod(l2.get) = V2 and cod(l1.get) = V1

where r′2, r
′
1 = split(|l2.get s2|, r2 ++ r1)

= (l1.put (l1.get s1) (c1, r1))· by GC for l1
(l2.put (l2.get s2) (c2, r2)) and l2

with RC for l1 and deànition split
= s1·s2 by GP for l1 and l2

and obtain the required equality.

I PutGet: Let v = v1·v2 be a string in V1·V2, let (c2, c1) be a rigid complement in C2 ×C1, and let r be
a resource in {|N 7→ k.C|}. We calculate as follows

(l1 ∼ l2).get
((l1 ∼ l2).put (v2·v1) ((c2, c1), r))

= (l1 ∼ l2).get
((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))) by deànition (l1 ∼ l2).put
where r2, r1 = split(|v2|, r)

= (l2.get (l2.put v2 (c2, r2)))·
(l1.get (l1.put v1 (c1, r1))) by deànition (l1 ∼ l2).get

with ⌊S1⌋·!⌊S2⌋ and cod(l1.put) = S1 and cod(l2.put) = S2

= v2·v1 by PG for l2 and l1

and obtain the required equality.

I CreateGet: Similar to the proof of PG.

I GetChunks: Let s = s1·s2 be a string in S1·S2. We calculate as follows

= locs(s1·s2)
= {1, . . . , |s1| + |s2|} by deànition locs
= {1, . . . , |l1.get s1| + |l2.get s2|} by GC for l1 and l2
= locs((l2.get s2)·(l1.get s1)) by deànition locs
= locs((l1 ∼ l2).get (s1·s2)) by deànition (l1 ∼ l2).get

and obtain the required equality.

I ResChunks: Let s = s1·s2 be a string in S1·S2, let (c2, c1) be a rigid complement in C2 ×C1, and let

182

r be a resource in {|N 7→ k.C|} with ((c1, c2), r) = (l1 ∼ l2).res s. We calculate as follows

dom(r)
= dom(r2 ++ r1) by deànition (l1 ∼ l2).res

where r1, c1 = l1.res s1

and r2, c2 = l2.res s2

= dom(r2) ∪ {i + |r2| | i ∈ dom(r1)} by deànition (++) and dom
= locs(s2) ∪ {i + |s2| | i ∈ locs(s1)} by RC for l2 and l1
= locs(s1·s2) by deànition locs

and obtain the required equality.

I ChunkPut: Let v = v1·v2 be a string in V2·V1, let (c2, c1) be a rigid complement in C2 × C1, let r be
a resource in {|N 7→ k.C|}, and let x be a location in locs(v)∩ dom(r). To shorten the proof, deàne the
following resources and permutations:

q2 = l2.perm (l2.put v2 (c2, r2)) r2, r1 = split(|v2|, r)
q1 = l1.perm (l1.put v1 (c1, r1)) q = (q2 ∗∗ q1)

We analyze two cases.

Case x ∈ locs(v2): Let y be the unique location satisfying q(y) = x. From x ∈ locs(v2) we have that
y > n1 and q(y) = q2(y − n1) where n1 = |l.put v1 (c1, r1)|. Using these facts, we calculate as
follows

((l1 ∼ l2).put (v2·v1) ((c2, c1), r))[y]
= ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)))[y] by deànition (l1 ∼ l2).put

where r2, r1 = split(|v2|, r)
= l2.put v2 (c2, r2)[y − n1] by deànition [·]
= k.put v2[x] (r2(x)) by CP for l2
= k.put (v1·v2)[x] ((r2 ++ r1)(x)) by deànition [·]
= k.put (v1·v2)[x] (r(x)) by deànition split ,

r1, and r2

and obtain the required equality.

Case x ̸∈ locs(v2): Similar to the previous case.

I ChunkCreate: Similar to the proof of CP.

I SkelPut: Let v = v2·v1 and v′ = v′2·v′1 be strings in V2·V1, let (c2, c1) be a rigid complement in C2×C1,
and let r and r′ be resources in r ∈ {|N 7→ k.C|} such that skel(v) = skel(v′). By ⌊V2⌋·!⌊V1⌋ and as
V2·V1 is chunk unambiguous, we have skel(v2) = skel(v′2) and skel(v1) = skel(v′1). Using these facts
and deànitions, we calculate as follows

skel((l1 ∼ l2).put (v2·v1) ((c1, c2), r))
= skel(l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)) by deànition (l1 ∼ l2).put

where r2, r1 = split(|v2|, r)
= skel(l1.put v1 (c1, r1))·skel(l2.put v2 (c2, r2)) by deànition skel
= skel(l1.put v′1 (c1, r

′
1))·skel(l2.put v′2 (c2, r

′
2)) by SP for l1 and l2

where r′2, r
′
1 = split(|v′2|, r′)

= skel(l1.put v′1 (c1, r
′
1))·(l2.put v′2 (c2, r

′
2)) by deànition skel

= skel((l1 ∼ l2).put (v′2·v′1) ((c1, c2), r′)) by deànition (l1 ∼ l2).put,
r′1, and r′2

183

and obtain the required equality.

I SkelCreate: Similar to the proof of SP. �

Secure Lens Proofs

5.1.1 Lemma: The redact lens is a secure lens at the following type:

((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted
| (ASTERISK·TIME·DESC·LOCATION·NEWLINE):Trusted)∗

.
.⇐⇒ ((TIME·DESC·NEWLINE):Tainted

| (TIME·BUSY·NEWLINE):Trusted)∗

Proof: Suppose that we have annotated some of the regular expressions in the redact lens with security
labels indicating that the data handled by the public lens is tainted:

let public : lens =
del (SPACE:Tainted)

. copy ((TIME . DESC):Tainted)

. del (LOCATION:Tainted)

. copy (NEWLINE:Tainted)

let private : lens =
del ASTERISK

. copy TIME

. (DESC . LOCATION) <-> "BUSY"

. copy NEWLINE

let redact : lens =
public* . (private . public*)*

We do not explicitly add annotations for Trusted data since every regular expression R is equivalent to
R:Trusted in the two-point integrity lattice.

By the typing rules for del, copy, <->, and concatenation we have:

public ∈
(SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted

.
.⇐⇒ (TIME·DESC·NEWLINE):Tainted

private ∈
(ASTERISK·TIME·DESC·LOCATION·NEWLINE)

.
.⇐⇒ (TIME·BUSY·NEWLINE)

The syntactic type that would be computed mechanically using our typing rules is slightly more com-
plicated but semantically equivalent. We use such equivalences throughout this proof.

By the typing rule for iteration we have:

public* ∈
((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted)∗

.
.⇐⇒ ((TIME·DESC·NEWLINE):Tainted)∗

184

Next, by the typing rule for concatenation, and as Trusted observes the unambiguous concatenability
of the types in the view, we have:

private . public* ∈
(ASTERISK·TIME·DESC·LOCATION·NEWLINE)·
((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted)∗

.
.⇐⇒ (TIME·BUSY·NEWLINE)·((TIME·DESC·NEWLINE):Tainted)∗

Then, by the typing rule for iteration, as Trusted observes the unambiguous iterability of the types in
the view, we have:

(private . public*)* ∈
((ASTERISK·TIME·DESC·LOCATION·NEWLINE)·
((SPACE·TIME·DESC·LOCATION·NEWLINE):Tainted)∗)∗

.
.⇐⇒ ((TIME·BUSY·NEWLINE)·((TIME·DESC·NEWLINE):Tainted)∗)∗

Finally, by the typing rule for concatenation, and again as Trusted observes the unambiguous concaten-
ability of the types in the view, we have:

public* . (private . public*)* ∈
(((SPACE·TIME·DESC·LOCATION·NEWLINE)∗):Tainted)∗·
(ASTERISK·TIME·DESC·LOCATION·NEWLINE)·
(((SPACE·TIME·DESC·LOCATION·NEWLINE)∗):Tainted)∗

.
.⇐⇒ (((TIME·DESC·NEWLINE)∗):Tainted)∗·

(TIME·BUSY·NEWLINE)·
(((TIME·DESC·NEWLINE)∗):Tainted)∗

The equivalent type stated in the lemma can be obtained using the equivalence between

(R :Tainted)∗·(S·(R :Tainted)∗)∗

and
((R :Tainted) |S)∗

which holds when R and S are disjoint and unambiguously iterable. �

5.2.2 Lemma: Secure lenses admit the following inference rule:

v′ ≈k l.get s ≈k v

l.put v′ (l.put v s) ≈k l.put v′ s
(PPT)

Proof: Let k ∈ Q be a label, and let v, v′ ∈ V and s ∈ S be strings such that v ≈k (l.get s) and
v′ ≈k (l.get s). By PG for l and the reáexivity of ≈k we have:

l.get (l.put v s) ≈k v ≈k v′

Using this fact, we calculate as follows:

l.put v′ (l.put v s)
≈k l.put v s by GP for l
≈k s by GP for l

Also by GP for l we have
l.put v′ s ≈k s

The required equivalence follows from the transitivity of ≈k. �

185

..
E well-formed

copy E ∈ E
.

.⇐⇒ E

5.4.1 Lemma: Let E ∈ R be a well-formed security-annotated regular expression. Then copy E is a
secure lens in E

.
.⇐⇒ E.

Proof: We prove the secure lens laws separately. In this chapter, we will omit the proofs of PG
and CG because they are identical to the basic lens proofs.
I GetPut: Let k be a label in Q and let e and e′ be strings in E such that e′ ≈k (copy E).get e. We
calculate as follows

(copy E).put e′ e
= e′ by deànition of (copy E).put
≈k (copy E).get e by assumption
= e by deànition of (copy E).get

and obtain the required equivalence.

I GetNoLeak: Let j be a label in P and let e and e′ be strings in E such that e′ ∼j e. We calculate as
follows

(copy E).get e
= e by deànition of (copy E).get
∼j e′ by assumption
= (copy E).get e′ by deànition of (copy E).get

and obtain the required equivalence. �

..
E, F well-formed F = {u}

const E F ∈ E
.

.⇐⇒ F

5.4.2 Lemma: Let E and F be well-formed security-annotated regular expressions such that F = {u}
for some string u. Then const E F is a secure lens in E

.
.⇐⇒ F .

Proof: We prove each secure lens law separately.
I GetPut: Let k be a label in Q, let e be a string in E, and let u be a string in F such that:

u ≈k (const E F).get e

We calculate as follows

(const E F).put u e
= e by deànition (const E F).put
≈k e by reáexivity

and obtain the required equivalence.

I GetNoLeak: Let j be a label in P and let e and e′ be strings in E such that e ∼j e′. Let u be the
unique element of F .

(const E F).get e
= u by deànition (const E F).get
= (const E F).get e′ by deànition (const E F).get

and obtain the required equivalence by the reáexivity of ∼j . �

186

.

.

S1 ∩ S2 = ∅
l1 ∈ S1

.
.⇐⇒ V1

l2 ∈ S2
.

.⇐⇒ V2

q =
∨
{k | k min obs. V1 ̸= V2 ∧ V1 & V2 agree}
p =

∨
{k | k min obs. S1 ∩ S2 = ∅}

l1 | l2 ∈ (S1 |S2):q
.

.⇐⇒ (V1 |V2):p

5.4.3 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be secure lenses such that S1 ∩ S2 = ∅. Then
l1 | l2 is a secure lens in (S1 |S2):q

.
.⇐⇒ (V1 |V2):p where the label q is

∨
{k | k min obs. V1 ̸= V2∧V1 &

V2 agree} and the label p is
∨
{k | k min obs. S1 ∩ S2 = ∅}.

Proof: We prove each secure lens law separately.
I GetPut: Let k be a label in Q, let s be a string in (S1 |S2):q, and let v be a string in (V1 |V2):p such
that v ≈k get s. We analyze two cases.

Case k ̸⊒ q: Then the equivalence≈k is the total relation on (S1 |S2):q and (l1 | l2).put v s≈k s trivially.

Case k ⊒ q and v ∈ V1 and s ∈ S1: From

v ∈ V1 v ≈(V1 |V2):p
k (l1 | l2).get s k observes V1 & V2 agree

we have v ≈V1
k l1.get s. Using this fact, we calculate as follows

(l1 | l2).put v s
= l1.put v s by deànition of (l1 | l2).get
≈k s by GP for l1

and obtain the required equivalence.

Case k ⊒ q and v ∈ V2 and s ∈ S2: Symmetric to the previous case.

Case k ⊒ q and v ∈ V2 − V1 and s ∈ S1: Can’t happen. The assumptions k observes V1 ̸= V2 and
v ≈k (l1 | l2).get s lead to a contradiction.

Case k ⊒ q and v ∈ V1 − V2 and s ∈ S2: Symmetric to the previous case.

I GetNoLeak: Let j be a label in P and let s and s′ be strings in (S1 |S2) : q with s ∼j s′. We analyze
two cases.

Case j ̸⊒ p: Then the equivalence∼j is the total relation on (V1 |V2):p and (l1 | l2).get s≈j (l1 | l2).get s′
trivially.

Case j ⊒ p and s ∈ S1: From

s ∈ S1 s∼js
′ k observes S1 ∩ S2 = ∅

we have s′ ∈ S1 and s ∼S1
k s′. Using these facts, we calculate as follows

(l1 | l2).get s
= l1.get s by deànition of (l1 | l2).get
∼k l1.get s′ by GNL for l1
= (l1 | l2).get s′ by deànition of (l1 | l2).get

and obtain the required equivalence.

187

Case j ⊒ p and s ∈ s2: Symmetric to the previous case. �

.

.

l1 ∈ S1
.

.⇐⇒ V1 S1·!S2

l2 ∈ S2
.

.⇐⇒ V2 V1·!V2

q =
∨
{k | k min obs. V1·!V2}

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2):q
.

.⇐⇒ (V1·V2):p

5.4.4 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be secure lenses such that S1·!S2 and V1·!V2.
Then (l1·l2) is a secure lens in (S1·S2): q

.
.⇐⇒ (V1·V2):p where the label q is

∨
{k | k min obs. V1·!V2}

and the label p is
∨
{k | k min obs. S1·!S2}.

Proof: We prove each secure lens law separately.
I GetPut: Let k be a label in Q, let s1·s2 be a string in (S1·S2):q, and let v1·v2 be a string in (V1·V2):p
such that (v1·v2) ≈k (l1·l2).get (s1·s2). We analyze two cases.

Case k ̸⊒ q: Then ≈k is the total relation on (S1·S2):q and so

(l1·l2).put (v1·v2) (s1·s2) ≈k (s1·s2)

trivially.

Case k ⊒ q: From k observes V1·!V2 we also have:

v1 ≈V1
k l1.get s1 v2 ≈V2

k l2.get s2

Using these equivalences, we calculate as follows

(l1·l2).put (v1·v2) (s1·s2)
= (l1.put v1 s1)·(l2.put v2 s2) by deànition (l1·l2).put
≈k s1·s2 by GP for l1 and l2

and obtain the required equivalence.

I GetNoLeak: Let j be a label in P and let s1·s2 and s′1·s′2 be strings in (S1·S2):q such that:

s1·s2 ∼j s′1·s′2

We analyze two cases.

Case j ̸⊒ p: Then ∼j is the total relation on (V1·V2):p and so

(l1·l2).get (s1·s2) ∼j (l1·l2).get (s′1·s′2)

trivially.

Case j ⊒ p: From j observes S1·!S2 we also have:

s1 ∼S1
j s′1 s2 ∼S2

j s′2

188

Using these equivalences, we calculate as follows

(l1·l2).get (s1·s2)
= (l1.get s1)·(l2.get s2) by deànition of (l1·l2).get
∼j (l1.get s′1)·(l2.get s′2) by GNL for l1 and l2
= (l1·l2).get (s′1·s′2) by deànition of (l1·l2).get

and obtain the required equivalence. �

.

.

S!∗ V !∗

l ∈ S
.

.⇐⇒ V
q =

∨
{k | k min obs. V !∗}

p =
∨

{k | k min obs. S!∗}

l∗ ∈ (S∗):q
.

.⇐⇒ (V ∗):p

5.4.5 Lemma: Let l ∈ S
.

.⇐⇒ V be a secure lens such that S!∗ and V !∗. Then l∗ is a secure lens in
(S∗):q

.
.⇐⇒ (V ∗):p where q =

∨
{k | k min obs. V !∗} and p =

∨
{k | k min obs. S!∗}.

Proof: We prove each secure lens law separately.
I GetPut: Let k be a label in Q, let s1 · · · sm be a string in (S∗):q, and let v1 · · · vn be a string in (V ∗):p
such that (v1 · · · vn) ≈k l∗.get (s1 · · · sm). We analyze two cases:

Case k ̸⊒ q: Then ≈k is the total relation on (S∗):q and so

l∗.put (v1 · · · vn) (s1 · · · sm) ≈k (s1 · · · sm)

trivially.

Case k ⊒ q: From
v1 · · · vn ≈k l∗.get (s1 · · · sm) k observes V !∗

we have:
m = n vi ≈k l.get si for i ∈ {1, . . . , n}

Using these facts, we calculate as follows

l∗.put (v1 · · · vn) (s1 · · · sn)
= (l.put v1 s1) · · · (l.put vn sn) by deànition l∗.put
≈k s1 · · · sn by GP for l

and obtain the required equivalence.

I GetNoLeak: Let j be a label in P and let s1 · · · sm and s′1 · · · s′n be strings in (S∗) : q such that
(s1 · · · sm) ∼j (s′1 · · · s′n). We analyze two cases.

Case j ̸⊒ p: Then ∼j is the total relation on (V ∗):p and so

l∗.get (s1 · · · sn) ∼j l∗.get (s′1 · · · c′n)

trivially.

189

Case j ⊒ p: From
(s1 · · · sm)∼j(s′1 · · · s′n) j observes S!∗

we have
m = n si ∼S

j s′i for i ∈ {1, . . . , n}

Using these facts, calculate as follows

l∗.get (s1 · · · sn)
= (l.get s1) · · · (l.get sn) by deànition l∗.get
∼j (l.get s′1) · · · (l.get s′n) by GNL for l
= l∗.get (s′1 · · · s′n) by deànition l∗.get

and obtain the required equivalence. �

.
.

l1 ∈ S
.

.⇐⇒ U

l2 ∈ U
.

.⇐⇒ V

l1;l2 ∈ S
.

.⇐⇒ V

5.4.6 Lemma: Let l1 ∈ S
.

.⇐⇒ U and l2 ∈ U
.

.⇐⇒ V be secure lenses. Then l1;l2 is a secure lens in
S

.
.⇐⇒ V .

Proof: We prove each secure lens law separately.
IGetPut: Let k be a label inQ, let s be a string in S, and let v be a string in V such that v ≈k (l1;l2).get s.
By the deànition of (l1;l2).get we have:

v ≈k l2.get (l1.get s)

By the GP law for l2 we also have

l2.put v (l1.get s) ≈k l1.get s

Using this fact and the GP law for l1 we obtain

(l1;l2).put v s = l1.put (l2.put v (l1.get s)) s ≈k s

as required.

I GetNoLeak: Let j be a label in P , and let s and s′ strings in S such that s ∼j s′. We calculate as
follows:

(l1;l2).get s
= l2.get (l1.get s) by deànition of (l1;l2).get
∼j l2.get (l1.get s′) by GNL for l1 and l2
= (l1;l2).get s′ by deànition of (l1;l2).get

and obtain the required equivalence. �

.

.

E, F well-formed E ∩ F = ∅ (E |F)!∗
q =

∨
{k | k min obs. E!∗}

p ⊒
∨
{k | k observes E·!F and F ·!E}

àlter E F ∈ (E:q |F :p)∗
.

.⇐⇒ E∗

190

5.4.7 Lemma: Let E and F be well-formed security-annotated regular expressions such that E∩F = ∅
and (E |F)!∗. Then for every label p such that p ⊒

∨
{k | k observes E·!F and F ·!E} the secure lens

àlter E F is in (E:q |F :p)∗
.

.⇐⇒ E∗ where q =
∨

{k | k min obs. E!∗}.

Proof: We prove each secure lens law separately. To shorten the proof, we will abbreviate filter E F
as l.
I GetPut: Let k be a label in Q, let s1 · · · sm be a string in (E:q |F :p)∗, and let v1 · · · vn be a string in
E∗ such that

v1 · · · vn ≈k (l.get (s1 · · · sm))

We consider several cases.

Case k ̸⊒ q: We will prove that for all v1 · · · vn in E∗ we have

l.put (v1 · · · vn) (s1 · · · sm) ≈k (s1 · · · sm)

by induction on n. Note that we use a strengthened induction hypothesis that does not assume

v1 · · · vn ≈k l.get (s1 · · · sm).

We analyze several subcases:

Subcase m = 0: We calculate as follows:

l.put (v1 · · · vn) ϵ
= str unfilter F (v1 · · · vn) ϵ by deànition l.put
= v1 · · · vn by deànition str unfilter

As k ̸⊒ q we have hidek(v1 · · · vn) = hidek(ϵ), as required.

Subcase m > 0 and s1 ∈ F : We calculate as follows:

l.put (v1 · · · vn) (s1 · · · sm)
= str unfilter F (v1 · · · vn) (s1 · · · sm) by deànition l.put
= s1·(str unfilter F (v1 · · · vn)(s2 · · · sm)) by deànition str unfilter

with s1 ∈ F

= s1·(l.put (v1 · · · vn) (s2 · · · sm)) by deànition l.put

The required equivalence follows by the induction hypothesis and the deànition of ≈k with
k ̸⊒ q.

Subcase m > 0 and s1 ∈ E: Similar to the previous subcase.

Case k ⊒ q: Similar to the previous case.

I GetNoLeak: Let j be a label in P and let s1 · · · sm and s′1, · · · s′n be strings in (E:q |F :p)∗ such that
(s1 · · · sm) ∼j (s′1 · · · s′n). We analyze two cases

Case j ̸⊒ p: Let [e1, . . . , ei] and [e′1, . . . , e
′
j] be the sequences of substrings of s1 · · · sm and s1 · · · s′n that

belong to E. As hidej function maps each string in F to ϵ we have:

hidej(e1 · · · ei) = hidej(e′1 · · · e′j)

191

We calculate as follows

hidej(e1 · · · ei) = hidej(e′1 · · · e′j)
i.e., hidej(str filter E (s1 · · · sm)) = hidej(str filter E (s′1 · · · s′n))

by deànition of str filter
i.e., hidej(l.get (s1 · · · sm)) = hidej(l.get (s′1 · · · s′n))

by deànition l.get
i.e., l.get (s1 · · · sm) ∼j l.get (s′1 · · · s′n)

by deànition of ∼j

and obtain the required equivalence.

Case j ⊒ p: Let [e⃗1, . . . , e⃗o] and [e⃗1
′, . . . , e⃗p

′] be the sequences of contiguous elements of E in s1 · · · sm

and s′1 · · · s′n—i.e, elements not separated by an F . As j observes E·!F and F ·!E we have o = p
and hidej(e⃗i) = hidej(e⃗i

′) for i from 1 to o. We calculate as follows

hidej(e⃗1) · · · hidej(e⃗o) = hidej(e⃗1
′) · · · hidej(e⃗p

′)
i.e., hidej(str filter E (s1 · · · sm)) = hidej(str filter E (s′1 · · · s′n))

by deànition of str filter
i.e., hidej(l.get (s1 · · · sm)) = hidej(l.get (s′1 · · · s′n))

by deànition of l.get
i.e., (l.get (s1 · · · sm)) ∼j (l.get (s′1 · · · s′n))

by deànition of ∼j

and obtain the required equivalence. �

.
.

q ∈ Q p ∈ P
l ∈ S

.
.⇐⇒ V

l ∈ S:q
.

.⇐⇒ V :p

5.4.8 Lemma: Let l ∈ S
.

.⇐⇒ V be a secure lens and let q be a label in Q and p a label in P be labels.
Then l is also a secure lens in S:q

.
.⇐⇒ V :p.

Proof: We prove each secure lens law separately.
I GetPut: Let k be a label in Q, let s be a string in S:q, and let v be a string in V :p with v ≈k l.get s.
We analyze two cases:

Case k ̸⊒ q: Then ≈k is the total relation on S:q and l.put v s ≈k s trivially.

Case k A q: By the deànition of ≈(V :p)
k we have v ≈V

k l.get s. By GP for l we have l.put v s ≈S
k s.

Finally, by the deànition of ≈(S:q)
k we have l.put v s ≈(S:q)

k s, as required.

I GetNoLeak: Let j be a label in P and let s and s′ be strings in S : q with s ∼k s′. We analyze two
cases:

Case j ̸⊒ p: Then ∼j is the total relation on V :p and l.get s ≈j l.get s′ trivially.

Case j ⊒ p: By the deànition of∼(S:q)
j we have s∼S

j s′. By GNL for l we have l.get s∼V
k l.get s′.

Finally, by the deànition of ∼(V :q)
j we have l.get s ∼(V :q)

j l.get s′ as required. �

192

..
E well-formed ∀ (j, k) ∈ C. ∼j ⊆ ≈k

copy E ∈ E
.

.⇐⇒ E

5.5.1 Lemma: Let E be a well-formed security-annotated regular expression such that for every clear-
ance (j, k) in C we have ∼j ⊆ ≈k. Then copy E is a dynamic secure lens in E

.
.⇐⇒ E.

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let s be a string in E, and let v be a string in E with
(copy E).safe (j, k) v s. We calculate as follows

(copy E).put v s
= v by deànition (copy E).put
≈k s by deànition (copy E).safe

and obtain the required equivalence.

I PutNoLeak: Let (j, k) be a clearance in C, let s, s′, v and v′ be strings in E such that:

s ∼j s′ (copy E).safe (j, k) v s
v ∼j v′ (copy E).safe (j, k) v′ s′

We calculate as follows

(copy E).put v s
= v by deànition of (copy E).put
∼j v′ by assumption
= (copy E).put v′ s′ by deànition of (copy E).put

and obtain the required equivalence.

I SafeNoLeak: Let (j, k) be a clearance in C, and let s, s′, v and v′ be strings in E such that v ∼j v′

and s ∼j s′. Then as ∼j ⊆ ≈k we have s ≈k s′ and v ≈k v′. Using these equivalences, we calculate as
follows

(copy E).safe (j, k) v s
= v ≈k s by deànition of (copy E).safe
= v′ ≈k s′ by symmetry and transitivity of ≈k

= (copy E).safe (j, k) v′ s′ by deànition of (copy E).safe

and obtain the required equality. �

..
E, F well-formed F = {u}

const E F d ∈ E
.

.⇐⇒ F

5.5.2 Lemma: Let E and F be well-formed security-annotated regular expressions such that F = {u}
for some string u. Then const E F is a dynamic secure lens in E

.
.⇐⇒ F .

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let s be a string in E, and let v be a string in F with
(const E F).safe (j, k) v s. We calculate as follows

(const E F).put u s
= s by deànition (const E F).put
≈k s by reáexivity of ≈k

193

and obtain the required equivalence.

I PutNoLeak: Let (j, k) be a clearance in C, let s and s′ be strings in E, and let v and v′ be strings in
F such that:

s ∼j s′ (const E F).safe (j, k) v s
v ∼j v′ (const E F).safe (j, k) v′ s′

We calculate as follows

(const E F).put v s
= s by deànition of (const E F).put
∼j s′ by assumption
= (const E F).put v′ s′ by deànition of (const E F).put

and obtain the required equivalence.

I SafeNoLeak: Let s and s′ be strings in E and let v and v′ be strings in F such that s ∼j s′ and v ∼j v′.
By the deànition of (const E F).safe we immediately have

(const E F).safe (j, k) v s = ⊤ = (const E F).safe (j, k) v′ s′,

as required. �

.

.

l1 ∈ S1
.

.⇐⇒ V1 S1·!S2

l2 ∈ S2
.

.⇐⇒ V2 V1·!S2

p =
∨
{k | k min obs. S1·!S2}

l1·l2 ∈ (S1·S2)
.

.⇐⇒ (V1·V2):p

5.5.3 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be dynamic secure lenses such that S1·!S2

and V1·!V2. Then l1·l2 is a dynamic secure lens in (S1·S2)
.

.⇐⇒ (V1·V2) : p where the label p is∨
{k | k min obs. S1·!S2}.

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let v1·v2 be a string in (V1·V2): p, and let s1·s2 be a string in
S1·S2 such that (l1·l2).safe (j, k) (v1·v2) (s1·s2). By the deànition of (l1·l2).safe we have:

l1.safe (j, k) v1 s1 l2.safe (j, k) v2 s2

Using these facts, we calculate as follows

(l1·l2).put (v1·v2) (s1·s2)
= (l1.put v1 s1)·(l2.put v2 s2) by deànition of (l1·l2).put
≈k s1·s2 by GP for l1 and l2

and obtain the required equivalence.

I PutNoLeak: Let (j, k) be a clearance in C, let s1·s2 and s′1·s′2 be strings in S1·S2, and let v1·v2 and
v′1·v′2 be strings in (V1·V2):p such that:

(s1·s2) ∼j (s′1·s′2) (l1·l2).safe (j, k) (v1·v2) (s1·s2)
(v1·v2) ∼j (v′1·v′2) (l1·l2).safe (j, k) (v′1·v′2) (s′1·s′2)

194

By the deànition of (l1·l2).safe, we have j observes S1·!S2 and V1·!V2 and:

s1 ∼S1
j s′1 s2 ∼S2

j s′2 l1.safe (j, k) v1 s1 l2.safe (j, k) v2 s2

v1 ∼V1
j v′1 v2 ∼V2

j v′2 l1.safe (j, k) v1 s′1 l2.safe (j, k) v2 s′2

Using all these facts, we calculate as follows

(l1·l2).put (v1·v2) (s1·s2)
= (l1.put v1 s1)·(l2.put v2 s′2) by deànition of (l1·l2).put
∼j (l1.put v′1 s′1)·(l2.put v′2 s′2) by PNL for l1 and l2
= (l1·l2).put (v′1·v′2) (s′1·s′2) by deànition of (l1·l2).put

and obtain the required equivalence.

I SafeNoLeak: Let (j, k) be a clearance in C, let s1·s2 and s′1·s′2 be strings in S1·S2, and let v1·v2 and
v′1·v′2 be strings in (V1·V2):p such that:

(s1·s2) ∼j (s′1·s′2) (v1·v2) ∼j (v′1·v′2)

We analyze two cases.

Case j observes S1·!S2 and V1·!V2: From the assumptions of the case and the deànition of ∼j we have:

s1 ∼S1
j s′1 s2 ∼S2

j s′2

v1 ∼V1
j v′1 v2 ∼V2

j v′2

Using these facts, we calculate as follows

(l1·l2).safe (j, k) (v1·v2) (s1·s2)
= (l1.safe (j, k) v1 s1) ∧

(l2.safe (j, k) v2 s2) by deànition of (l1·l2).safe
= (l1.safe (j, k) v′1 s′1) ∧

(l2.safe (j, k) v′2 s′2) by SNL for l1 and l2
= (l1·l2).safe (j, k) (v′1·v′2) (s′1·s′2)

and obtain the required equality.

Case j does not observe S1·!S2 and V1·!V2: By the deànition of (l1·l2).safe we immediately have

(l1·l2).safe (j, k) (v1·v2) (s1·s2) = ⊥ = (l1·l2).safe (j, k) (v′1·v′2) (s′1·s′2)

as required. �

.

.

S1 ∩ S2 = ∅
l1 ∈ S1

.
.⇐⇒ V1

l2 ∈ S2
.

.⇐⇒ V2

p =
∨
{k | k min obs. S1 ∩ S2 = ∅}

l1 | l2 ∈ (S1 |S2)
.

.⇐⇒ (V1 |V2):p

195

5.5.4 Lemma: Let l1 ∈ S1
.

.⇐⇒ V1 and l2 ∈ S2
.

.⇐⇒ V2 be dynamic secure lenses such that (L(S1) ∩
L(S2)) = ∅. Then l1 | l2 is a dynamic secure lens in (S1 |S2)

.
.⇐⇒ (V1 |V2) : p where the label p is∨

{k | k min obs. (S1 ∩ S2) = ∅}.

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let s be a string in S1 |S2, and let v be a string in (V1 |V2): p
such that (l1 | l2).safe (j, k) v s. We analyze two cases.

Case s ∈ S1: By the deànition of (l1 | l2).safe (j, k) v s we have v ∈ V1 and l1.safe (j, k) v s. Using these
facts, we calculate as follows

(l1 | l2).put v s
= l1.put v s by deànition of (l1 | l2).put

with v ∈ V1

≈k s by GP for l1

and obtain the required equivalence.

Case s ∈ S2: Symmetric to the previous case.

I PutNoLeak: Let (j, k) be a clearance in C, let s and s′ be strings in S1 |S2, and let v and v′ be strings
in (V1 |V2):p such that:

s ∼j s′ (l1 | l2).safe (j, k) v s
v ∼j v′ (l1 | l2).safe (j, k) v′ s′

We analyze two cases.

Case s ∈ S1: By the deànition of (l1 | l2).safe we have that j observes S1 ∩ S2 = ∅ and V1 & V2

agree. Thus, from s ∼j s′ we have s′ ∈ S1 and s ∼S1
j s′. Next, from (l1 | l2).safe (j, k) v s

and (l1 | l2).safe (j, k) v′ s′ we have:

v ∈ V1 l1.safe (j, k) v s
v′ ∈ V1 l1.safe (j, k) v′ s′

Finally, from j observes V1 & V2 agree we also have v ∼V1
j v′. Putting all these facts together, we

calculate as follows
(l1 | l2).put v s

= l1.put v s by deànition of (l1 | l2).put
with v ∈ V1

∼j l1.put v s′ by PNL for l1
= (l1 | l2).put v s′ by deànition of (l1 | l2).put

with v′ ∈ V1

and obtain the required equivalence.

Case s ∈ S2: Symmetric to the previous case.

I SafeNoLeak: Let (j, k) be a clearance in C, let v and v′ be strings in (V1 |V2): p, and let s and s′ be
strings in S1 |S2 such that v ∼j v′ and s ∼j s′ and (l1 | l2).safe v s and (l1 | l2).safe v′ s′. We analyze
several cases.

196

Case j observes S1 ∩ S2 = ∅ and V1 & V2 agree and s ∈ S1:
By the facts of the case we have s′ ∈ S1 and s ∼S1

j s′ and also that v ∈ V1 if and only if v′ ∈ V1

and v ∼V1
j v′. Using these facts we calculate as follows

(l1 | l2).safe (j, k) v s
= v ∈ V1 ∧ l1.safe (j, k) v s by deànition (l1 | l2).safe
= v′ ∈ V1 ∧ l1.safe (j, k) v′ s′ by SNL for l1
= (l1 | l2).safe (j, k) v′ s′ by deànition (l1 | l2).safe

Case j observes S1 ∩ S2 = ∅ and V1 & V2 agree and s ∈ S2:
Similar to the previous case.

Case j does not observe S1 ∩ S2 = ∅ and V1 & V2 agree:
By the deànition of (l1 | l2).safe we immediately have

(l1 | l2).safe (j, k) v s = ⊥ = (l1 | l2).safe (j, k) v′ s′,

as required. �

.
.

l ∈ S
.

.⇐⇒ V
p =

∨
{k | k min obs. S!∗}

l∗ ∈ S∗
.

.⇐⇒ (V ∗):p

5.5.5 Lemma: Let l ∈ S
.

.⇐⇒ V be a dynamic secure lens such that S!∗ and V !∗. Then l∗ is a dynamic
secure lens in (S∗)

.
.⇐⇒ (V ∗):p where p =

∨
{k | k min obs. S!∗}.

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let v1 · · · vn be a string in (V ∗):p, and let s1 · · · sm be a string
in S∗ such that l∗.safe (j, k) (v1 · · · vn) (s1 · · · sm). By the deànition of l∗.safe we have n = m and
l.safe (j, k) vi si for i from 1 to n. Using these facts, we calculate as follows

l∗.put (v1 · · · vn) (s1 · · · sm)
= (l.put v1 s1) · · · (l.put vn sn) by deànition l∗.put
≈k s1 · · · sm by GP for l

and obtain the required equivalence.

I PutNoLeak: Let (j, k) be a clearance in C, let v1 · · · vm and v′1 · · · v′n be strings in (V ∗): p, and let
s1 · · · so and s′1 · · · s′p be strings in S∗ such that

(v1 · · · vm) ∼j (v′1 · · · v′n) l∗.safe (j, k) (v1 · · · vm) (s1 · · · so)
(s1 · · · so) ∼j (s′1 · · · s′p) l∗.safe (j, k) (v′1 · · · v′n) (s1 · · · s′p)

By the deànition of l∗.safe we have that j observes S!∗ and V !∗ and so m = n = o = p and

vi ∼V
j v′i l.safe (j, k) vi si

si ∼S
j s′i l.safe (j, k) v′i s′i

197

for i from i to n. Using these facts, we calculate as follows

l∗.put (v1 · · · vn) (s1 · · · so)
= (l.put v1 s1) · · · (l.put vn sn) by deànition of l∗.put
∼j (l.put v′1 s′1) · · · (l.put v′m s′m) by PNL for l
= l∗.put (v′1 · · · v′m) (s′1 · · · s′p) by deànition of l∗.put

and obtain the required equivalence.

I SafeNoLeak: Let (j, k) be a clearance in C, let v1 · · · vn and v′1 · · · v′m be strings in (V ∗): p, and let
s1 · · · so and s′1 · · · s′p be strings in S∗ such that:

(v1 · · · vn) ∼j (v′1 · · · v′m) (s1 · · · so) ∼j (s′1 · · · s′p)

We analyze several cases.

Case j observes S!∗ and V !∗ and n = o: From the assumptions and the deànition of l∗.safe we have

m = n = o = p vi ∼V
k v′i si ∼S

j s′i

for i from 1 to n. Using these facts we calculate as follows

l∗.safe (j, k) (v1 · · · vn) (s1 · · · sn)
= l.safe (j, k) v1 s1 ∧ · · · ∧ l.safe (j, k) vn sn by deànition l∗.safe
= l.safe (j, k) v′1 s′1 ∧ · · · ∧ l.safe (j, k) v′n s′n by SNL for l
= l∗.safe (j, k) (v′1 · · · v′n) (s′1 · · · s′n) by deànition l∗.safe

and obtain the required equality.

Case j observes S!∗ and V !∗ and n ̸= o: From the assumptions of the case and

(v1 · · · vn) ∼j (v′1 · · · v′m) (s1 · · · so) ∼j (s′1 · · · s′p)

we have n = m and o = p and hence m ̸= p. By the deànition of l∗.safe we immediately have

l∗.safe (j, k) (v1 · · · vn) (s1 · · · so) = ⊥ = l∗.safe (v′1 · · · v′m) (s′1 · · · s′p),

as required.

Case j does not observe S!∗ and V !∗: By the deànition of l∗.safe we immediately have

l∗.safe (j, k) (v1 · · · vn) (s1 · · · so) = ⊥ = l∗.safe (v′1 · · · v′m) (s′1 · · · s′p),

as required. �

.
.

l1 ∈ S
.

.⇐⇒ U

l2 ∈ U
.

.⇐⇒ V

l1; l2 ∈ S
.

.⇐⇒ V

5.5.6 Lemma: Let l1 ∈ S
.

.⇐⇒ U and l2 ∈ U
.

.⇐⇒ V be dynamic secure lenses. Then (l1;l2) is a dynamic

secure lens in S
.

.⇐⇒ V .

198

Proof: We prove each dynamic secure lens law separately.
I GetPut: Let (j, k) be a clearance in C, let s be a string in S, and let v be a string in V such that
(l1;l2).safe (j, k) v s. By the deànition of (l1;l2).safe we have

l1.safe (l2.put v (l1.get s)) s

Using this fact, we calculate as follows

(l1;l2).put v s
= l1.put (l2.put v (l1.get s)) s by deànition of (l1;l2).put
≈k s by GP for l1

and obtain the required equivalence.

I PutNoLeak: Let (j, k) be a clearance in C, let v and v′ be strings in V , and let s and s′ be strings in
S such that:

s ∼j s′ (l1;l2).safe (j, k) v s
v ∼j v′ (l1;l2).safe (j, k) v′ s′

By the deànition of (l1;l2).safe we have

l1.safe (l2.put v (l1.get s)) s l1.safe (l2.put v′ (l1.get s′)) s′

Using these facts, we calculate as follows

(l1;l2).put v s
= l1.put (l2.put v (l1.get s)) s by deànition of (l1;l2).put
∼j l1.put (l2.put v′ (l1.get s′)) s′ by PNL for l1
= (l1;l2).put v′ s′ by deànition of (l1;l2).put

and obtain the required equivalence.

I SafeNoLeak: Let (j, k) be a clearance in C, let s and s′ be strings in S, and let v and v′ be strings in
V such that s ∼j s′ and v ∼j v′. By GNL for l1 we have that:

(l1.get s) ∼j (l1.get s′)

By PNL for l2 we have

l2.put v (l1.get s) ∼j l2.put v′ (l1.get s′)

By SNL for l1 have

l1.safe (l2.put v (l1.get s)) s = l1.safe (l2.put v′ (l1.get s′)) s′

as required. �

.

.

E, F well-formed E ∩ F = ∅ (E |F)!∗
p ⊒

∨
{k | k observes E·!F and F ·!E}
∀ (j, k) ∈ C. ∼E

j ⊆ ≈E
k

àlter E F ∈ (E |F :p)∗
.

.⇐⇒ E∗

199

5.5.7 Lemma: Let E and F be well-formed security-annotated regular expressions such that E∩F = ∅
and (E |F)!∗ and for every clearance (j, k) in C we have ∼E

j ⊆ ≈E
k . Then for every conàdentiality

label p such that p ⊒
∨
{k | k observes E·!F and F ·!E}, the dynamic secure lens àlter E F is in

(E |F :p)∗
.

.⇐⇒ E∗.

Proof: We prove each dynamic secure lens law separately. To shorten the proof, we will abbreviate
filter E F as l.
I GetPut: Let (j, k) be a clearance in C, let v1 · · · vn be a string in E∗, and let s1 · · · sm be a string in
(E |F :p)∗ such that:

l.safe (j, k) (v1 · · · vn) (s1 · · · sm)

Let [e1, . . . , ei] be the sequence of substrings of s1 · · · sm that belong to E. By the deànition of l.safe
we have

k observes E!∗ (v1 · · · vn) ≈k str filter E (s1 · · · sm)

and hence
n = o vi ≈E

k ei

for i from 1 to n. Using these facts, and the deànition of str unfilter it follows that

hidek(str unfilter F (v1 · · · vn) (s1 · · · sm)) = hidek(s1 · · · sm)

The required equivalence is immediate by the deànition of l.put.

I PutNoLeak: Let (j, k) be a clearance in C, let v1 · · · vm and v′1 · · · v′n be strings in E∗ and s1 · · · so and
s′1 · · · s′p be strings in E |F:p) : ∗ such that:

(v1 · · · vm) ∼j (v′1 · · · v′n) l.safe (j, k) (v1 · · · vm) (s1 · · · so)
(s1 · · · so) ∼j (s′1 · · · s′p) l.safe (j, k) (v′1 · · · v′n) (s′1 · · · s′p)

Let
[f⃗1, . . . , f⃗r] and [f⃗1

′
, . . . , f⃗t

′
]

be the sequences of contiguous elements of F in s1 · · · so and s′1 · · · s′p—i.e. elements not separated by

an E. As j observes E·!F and F ·!E we have r = t and hidej(f⃗i) = hidej(f⃗i
′
) for i from 1 to r. Also,

as j observes E!∗ we have m = n and vi ≈j v′i for i from 1 to n. Using these facts and the deànition of
str unfilter it follows that:

hidej(str unfilter F (v1 · · · vm) (s1 · · · so))
= hidej(str unfilter F (v′1 · · · v′n) (s′1 · · · s′p)

The required equivalence is immediate by the deànition of l.put.

I SafeNoLeak: Let (j, k) be a clearance in C, let v1 · · · vn and v′1 · · · v′m be strings in E∗, and let s1 · · · so

and s′1 · · · s′p be strings in (E |F :p)∗ such that:

(v1 · · · vn) ∼j (v′1 · · · v′m) (s1 · · · so) ∼j (s′1 · · · s′p)

We analyze two cases.

Case j observes E·!F and F ·!E and j and k observe E!∗:
Let [e1, . . . , er] and [e′1, . . . , e

′
t] be the sequences of substrings of s1 · · · so and s′1 · · · s′p that belong

to E. By the assumptions of the case we have that r = t and hidej(ei) = hidej(e′i) for i from 1

200

to n. As ∼E
j ⊆ ≈E

k we also have hidek(ti) = hidek(t′i) for i from 1 to n. Using these facts, we
calculate as follows

l.safe (j, k) (v1 . . . vm) (s1 · · · so)
= (v1 . . . vn) ≈k str filter E (s1 · · · so) by deànition l.safe
= (v1 . . . vn) ≈k (e1 · · · er) by deànition str filter
= hidek(v1 · · · vm) = hidek(e1 · · · er) by deànition ≈k

= hidek(v′1 · · · v′n) = hidek(e′1 · · · e′t) by facts above
= (v′1 . . . v′n) ≈k (e′1 · · · e′t) by deànition ≈k

= (v′1 . . . v′n) ≈k str filter E (s′1 · · · s′p) by deànition str filter
= l.safe (j, k) (v′1 . . . v′n) (s′1 · · · s′p) by deànition l.safe

and obtain the required equivalence.

Case j does not observe E·!F and F ·!E or j or k do not observe E!∗:
By the deànition of l.safe we immediately have

l.safe (j, k) (v1 . . . vm) (s1 · · · so)
= ⊥
= l.safe (j, k) (v′1 . . . v′n) (s′1 · · · s′p)

as required. �

201

	Introduction
	The View Update Problem
	Bidirectional Programming Languages
	Goals and Contributions
	Acknowledgments

	Basic Lenses
	Semantics
	Properties
	Syntax
	Summary

	Quotient Lenses
	Semantics
	Syntax
	Loosening Lens Types
	Typechecking
	Examples
	Summary

	Resourceful Lenses
	Semantics
	Syntax
	Alignments
	Extensions
	Summary

	Secure Lenses
	Example
	Semantics
	Security-Annotated Regular Expressions
	Syntax
	Dynamic Secure Lenses
	Summary

	Boomerang
	Syntax
	Typechecking
	Implementation
	Augeas
	Grammars
	Summary

	Related Work
	Foundations
	Programming Languages
	Databases
	Model Transformations
	Security

	Summary and Future Work
	Data Model
	Syntax
	Audit
	Optimization
	Security

	Bibliography
	Proofs
	Basic Lens Proofs
	Quotient Lens Proofs
	Resourceful Lens Proofs
	Secure Lens Proofs

