
Bidirectional Programming
Languages

Nate Foster
University of Pennsylvania

Dissertation Defense
11 September 2009

V S

Updated
V

update

 S V

Updated
S

 S V

Updated
V

The View Update Problem

In databases, this is known as the view update problem.

Database ViewQuery

false3z
2y true
1x true

CBA

100
x 1
A

false
B C

truey

[Bancilhon, Spryatos ’81]

3

The View Update Problem In Practice

It also arises in data converters and synchronizers...

Replica in format B

Replica in format A
Common target

format

Synchronized replica in
format A

Synchronized replica in
format B

[Foster, Greenwald, Pierce, Schmitt JCSS ’07]— Harmony
3

The View Update Problem In Practice

...in picklers and unpicklers...

Binary file In-memory representation

Updated binary file

application
update

[Fisher, Gruber ’05]— PADS
3

The View Update Problem In Practice

...in model-driven software development...

Updated Java code

refactor

Java code

translate(int x,int y)

x : int
y : int

Point

translate(int x, int y)
moveTo(int x, int y)

x : int
y : int

Point

UML model

[Stevens ’07]— bidirectional model transformations
3

The View Update Problem In Practice

...in tools for managing operating system configurations...

Configuration file Abstract tree

Updated file

edit
operation

[Lutterkort ’08]— Augeas
3

Problem

How do we write these bidirectional transformations?

4

Problem: Why is it hard?

We want updates to the view to be translated “exactly”...

4

Problem: Why is it hard?

We want updates to the view to be translated “exactly”...

4

Problem: Why is it hard?

...but some updates have many corresponding source updates...

?

4

Problem: Why is it hard?

...while others have none!

 ?

4

We can implement updatable views in C...

or Java...

or C++...

Possible Approaches

Bad: write the two transformations as separate functions.

• tedious to program

• difficult to get right

• a nightmare to maintain
5

Or we can use a language designed for the task at hand!

Possible Approaches

Good: derive both transformations from the same program.

• Clean semantics: behavioral laws guide language design

• Natural syntax: parsimonious and compositional

• Better tools: type system guarantees well-behavedness
6

Thesis

“Bidirectional programming languages are an

effective and elegant means of describing

updatable views”

7

Outline

1. Lenses
I Design goals
I Semantics

2. String Lenses
I Core operators
I Type system

3. Quotient Lenses
4. Resourceful Lenses
5. Boomerang

I High-level syntax
I Implementation
I Adoption in industry

6. Secure Lenses
7. Conclusion

8

[Foster, Greenwald, Moore, Pierce, Schmitt TOPLAS ’07]

Lenses

’‘Never look back unless you are planning to go that way”

—H D Thoreau

Terminology

get

9

Terminology

put

9

Terminology

lens

9

Bidirectional vs. Bijective

Goal #1: lenses should be capable of hiding source data.

• In general, get may be non-injective

• and so put needs to take the original source as an argument

put

(Of course, the purely bijective case is also very interesting.)

10

Bidirectional vs. Bijective

Goal #1: lenses should be capable of hiding source data.

• In general, get may be non-injective

• and so put needs to take the original source as an argument

put

(Of course, the purely bijective case is also very interesting.)

10

Choice of Put Function

Recall that for some view updates there are many corresponding
source updates.

?

11

Choice of Put Function

Goal #2: programmers should be able to choose a put function
that embodies an appropriate policy for propagating updates
back to sources.

“Bidirectionalization” appears attractive...

put

get
unidirectional

program

bidirectionalize

compile

...but does not provide a way to make this choice.
11

Totality

Recall that some view updates do not have any corresponding
source updates.

 ?

12

Totality

Goal #3: the put function should be a total function, capable of
doing something reasonable with every view and source.

 ⊥
Totality ensures that the view is a robust abstraction, but forces
us to use an extremely precise type system.

12

Well-Behaved Lenses

A lens l mapping between a set S of sources and V of view is a
pair of total functions

l .get ∈ S → V

l .put ∈ V → S → S

obeying “round-tripping” laws

l .get (l .put v s) = v (PutGet)

l .put (l .get s) s = s (GetPut)

for every s ∈ S and v ∈ V .

13

Related Frameworks

Databases: many related ideas

• [Dayal, Bernstein ’82] “exact translation”

• [Bancilhon, Spryatos ’81] “constant complement”

• [Gottlob, Paolini, Zicari ’88] “dynamic views”

Quantum Computing: [Bennet ’73] “reversible Turing machine”

User Interfaces: [Meertens ’98] “constraint maintainers”

14

Related Languages

Harmony Group @ Penn

• [Foster et al. TOPLAS ’07] — trees

• [Bohannon, Pierce, Vaughan PODS ’06] — relations

• [Foster et al. JCSS ’07] — data synchronizer

Bijective languages

• [PADS Project @ AT&T] — picklers and unpicklers

• [Hosoya, Kawanaka ’06] — biXid

• [Braband, Møller, Schwartzbach ’05] — XSugar

Bidirectional languages

• [PSD @ Tokyo] — “bidirectionalization”, structure editors

• [Gibbons, Wang @ Oxford] — Wadler’s views

• [Vöıgtlaender ’09] — bidirectionalization “for free”

• [Stevens ’07] — lenses for model transformations
14

String Lenses

Data Model

strings

Why strings?

1. Simple setting→ exposes fundamental issues

2. There’s a lot of string data in the world

3. Programmers are already comfortable with regular operators
(union, concatenation, and Kleene star)

15

Computation Model

based on
regular operators

Why strings?

1. Simple setting→ exposes fundamental issues

2. There’s a lot of string data in the world

3. Programmers are already comfortable with regular operators
(union, concatenation, and Kleene star)

15

Example: Redacting Lens (Get)

16

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Lens (Update)

16

08:30 BUSY

12:15 PLClub

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Lens (Put)

16

*08:30 Coffee with Sara (Starbucks)

12:15 PLClub (Seminar room)

*15:00 Workout (Gym)

16:00 Meeting (Unknown)

08:30 BUSY

12:15 PLClub

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = ([^\n\\()] | "\\(" | "\\)" | "\\\\")*

let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE

let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lens =

del SPACE .

copy TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

copy TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = event*

16

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = ([^\n\\()] | "\\(" | "\\)" | "\\\\")*

let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE

let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lens =

del SPACE .

copy TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

copy TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = event*

16

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = ([^\n\\()] | "\\(" | "\\)" | "\\\\")*

let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE

let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lens =

del SPACE .

copy TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

copy TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = event*

16

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = ([^\n\\()] | "\\(" | "\\)" | "\\\\")*

let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE

let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lens =

del SPACE .

copy TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

copy TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = event*

16

Example: Redacting Lens (Definition)

(* regular expressions *)

let TEXT : regexp = ([^\n\\()] | "\\(" | "\\)" | "\\\\")*

let TIME : regexp = DIGIT{2} . COLON . DIGIT{2} . SPACE

let LOCATION : regexp = SPACE . LPAREN . TEXT . RPAREN

(* helper lenses *)

let public : lens =

del SPACE .

copy TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

copy TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)"

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = event*

16

copy E (Get)

17

copy E (Put)

17

E ↔ d (Get)

 d

18

E ↔ d (Put)

 d

d

18

(l1 | l2) (Get)

Type system ensures that choice is deterministic.

19

(l1 | l2) (Put)

Type system ensures that choice is deterministic.

19

l∗ (Get)

Type system ensures that strings are split the same way.

20

l∗ (Get)

Type system ensures that strings are split the same way.

20

l∗ (Put)

Type system ensures that strings are split the same way.

20

l∗ (Put)

Type system ensures that strings are split the same way.

20

l∗ (Put)

Type system ensures that strings are split the same way.

20

String Lens Type System

Based on regular expression types...

copy E ∈ [[E]]⇐⇒ [[E]] E ↔ d ∈ [[E]]⇐⇒ {d}

l ∈ S ⇐⇒ V d ∈ [[S]]

default l d ∈ S ⇐⇒ V

l1 ∈ S1 ⇐⇒ V1 S1 ·! S2

l2 ∈ S2 ⇐⇒ V2 V1 ·! V2

(l1 · l2) ∈ S1 · S2 ⇐⇒ V1 · V2

l1 ∈ S1 ⇐⇒ V1 S1 ∩ S2 = ∅
l2 ∈ S2 ⇐⇒ V2

(l1 | l2) ∈ S1 ∪ S2 ⇐⇒ V1 ∪ V2

l ∈ S ⇐⇒ V S !∗ V !∗

l∗ ∈ S∗ ⇐⇒ V ∗

S1 ·! S2 (or S !∗) means that the concatenation (or iteration) is unambiguous.

Theorem

If l ∈ S ⇐⇒ V then l is a well-behaved lens.

21

String Lens Type System

Based on regular expression types...

copy E ∈ [[E]]⇐⇒ [[E]] E ↔ d ∈ [[E]]⇐⇒ {d}

l ∈ S ⇐⇒ V d ∈ [[S]]

default l d ∈ S ⇐⇒ V

l1 ∈ S1 ⇐⇒ V1 S1 ·! S2

l2 ∈ S2 ⇐⇒ V2 V1 ·! V2

(l1 · l2) ∈ S1 · S2 ⇐⇒ V1 · V2

l1 ∈ S1 ⇐⇒ V1 S1 ∩ S2 = ∅
l2 ∈ S2 ⇐⇒ V2

(l1 | l2) ∈ S1 ∪ S2 ⇐⇒ V1 ∪ V2

l ∈ S ⇐⇒ V S !∗ V !∗

l∗ ∈ S∗ ⇐⇒ V ∗

S1 ·! S2 (or S !∗) means that the concatenation (or iteration) is unambiguous.

Theorem

If l ∈ S ⇐⇒ V then l is a well-behaved lens.

21

String Lens Type System

Based on regular expression types...

copy E ∈ [[E]]⇐⇒ [[E]] E ↔ d ∈ [[E]]⇐⇒ {d}

l ∈ S ⇐⇒ V d ∈ [[S]]

default l d ∈ S ⇐⇒ V

l1 ∈ S1 ⇐⇒ V1 S1 ·! S2

l2 ∈ S2 ⇐⇒ V2 V1 ·! V2

(l1 · l2) ∈ S1 · S2 ⇐⇒ V1 · V2

l1 ∈ S1 ⇐⇒ V1 S1 ∩ S2 = ∅
l2 ∈ S2 ⇐⇒ V2

(l1 | l2) ∈ S1 ∪ S2 ⇐⇒ V1 ∪ V2

l ∈ S ⇐⇒ V S !∗ V !∗

l∗ ∈ S∗ ⇐⇒ V ∗

S1 ·! S2 (or S !∗) means that the concatenation (or iteration) is unambiguous.

Theorem

If l ∈ S ⇐⇒ V then l is a well-behaved lens.

21

String Lens Type System

Based on regular expression types...

copy E ∈ [[E]]⇐⇒ [[E]] E ↔ d ∈ [[E]]⇐⇒ {d}

l ∈ S ⇐⇒ V d ∈ [[S]]

default l d ∈ S ⇐⇒ V

l1 ∈ S1 ⇐⇒ V1 S1 ·! S2

l2 ∈ S2 ⇐⇒ V2 V1 ·! V2

(l1 · l2) ∈ S1 · S2 ⇐⇒ V1 · V2

l1 ∈ S1 ⇐⇒ V1 S1 ∩ S2 = ∅
l2 ∈ S2 ⇐⇒ V2

(l1 | l2) ∈ S1 ∪ S2 ⇐⇒ V1 ∪ V2

l ∈ S ⇐⇒ V S !∗ V !∗

l∗ ∈ S∗ ⇐⇒ V ∗

S1 ·! S2 (or S !∗) means that the concatenation (or iteration) is unambiguous.

Theorem

If l ∈ S ⇐⇒ V then l is a well-behaved lens.

21

Comparison: Separate Functions

module B = Buffer
module R = Str
module L = List
module U = Unix
let rx = R.regexp
let sch = R.search_forward

(* helpers *)
let error s =

print_string s;
exit 1

let exec s =
let buf = B.create 17 in
let p = U.open_process_in s in
(try
while true do B.add_char buf (input_char p) done

with End_of_file -> ());
ignore (U.close_process_in p);
B.contents buf

(* regexps *)
let begin_event = rx "BEGIN:VEVENT"
let text = "[^\n]*"
let esctext = "([^\n\\()]\\|\\\\\\|\\(\\|\\))*"
let date = "[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]T[0-9][0-9][0-9][0-9][0-9][0-9]Z"
let codes = [("\\", "\\\\"); ("(","\\("); (")","\\)")]

let today () = exec "date +%Y%m%d | tr -d ’\n’"
let now () = exec "date +%H%M%S | tr -d ’\n’"
let uid () = exec "cat /dev/urandom|uuencode -m -|tail +2|tr -dc ’a-zA-Z0-9’|head -c25"

(* dictionary lens helpers *)
let escape codes s =

L.fold_right
(fun (p,r) s -> R.global_replace (rx p) r s)
codes
s

let unescape codes s =
L.fold_left
(fun s (p,r) -> R.global_replace (rx r) p s)
s codes

let distance s1 s2 =
let m,n = String.length s1, String.length s2 in
let aodd,aeven = Array.make (succ n) 0,Array.make (succ n) 0 in
for j=0 to n do aeven.(j) <- j done;
for i=1 to m do
let apredi = if i mod 2 = 0 then aodd else aeven in
let ai = if i mod 2 = 0 then aeven else aodd in
ai.(0) <- i;
for j = 1 to n do
let x =
if String.get s1 (pred i) = String.get s2 (pred j) then 0 else 1 in

ai.(j) <-
(min (apredi.(j) + 1) (min (ai.(j-1) + 1) (apredi.(j-1) + x)));

done
done;
if m mod 2 = 0 then aeven.(n) else aodd.(n)

let rec lookup k l =
let l’ = L.map (fun (ki,ci) -> (distance ki k,ki,ci)) l in
let rec aux acc l = match acc,l with

None,[] -> None
Some(_,ki,ci),[] -> Some(ki,ci)
Some(di,ki,ci),(dj,kj,cj)::rest when dj < di -> aux (Some(dj,kj,cj)) rest
None,(dj,kj,cj)::rest -> aux (Some(dj,kj,cj)) rest
,::rest -> aux acc rest in

aux None l’

let remove k l =
let rec loop acc = function

[] -> L.rev_append acc []
h::t when k = fst h -> L.rev_append acc t
h::t -> loop (h::acc) t in

loop [] l

let wrap b =
let b_len = String.length b in
let buf,line_buf,aux_buf = B.create b_len, B.create 75, B.create 75 in
let do_it s b =
if B.length line_buf <> 0 then B.add_string buf s;
B.add_buffer buf b;
B.reset b in

let rec loop i =
let sum =
let aux_len = B.length aux_buf in
let line_len = let n = B.length line_buf in if n=0 then n else succ n in
aux_len + line_len in

if sum > 75 then do_it "\n" line_buf;

if i = b_len then (do_it " " aux_buf; do_it "\n" line_buf)
else
(if b.[i] = ’ ’ then do_it " " aux_buf
else B.add_char aux_buf b.[i];
loop (succ i)) in

loop 0;
B.contents buf

let unwrap c = R.global_replace (rx "\n") (String.make 1 ’ ’) c

let field tag r s =
try
ignore(sch (rx (tag ^ ":" ^ "\\(" ^ r ^ "\\)\n")) s 0);
R.matched_group 1 s

with Not_found -> error ("Couldn’t find " ^ tag ^ " in " ^ s ^ "\n")

let times s = String.sub s 9 2, String.sub s 11 2

let get c =
let buf = B.create 17 in
let add = B.add_string buf in
let events = L.tl (R.split begin_event c) in
let event e =
let p = field "CLASS" "PUBLIC\\|PRIVATE" e in
let t1,t2 = times (field "DTSTART" date e) in
let s = escape codes (field "SUMMARY" text e) in
let l = escape codes (field "LOCATION" text e) in
if p = "PUBLIC" then add " " else add "*";
add (t1 ^ ":" ^ t2 ^ " ");
add (wrap s ^ " (" ^ l ^ ")");
add "\n" in

L.iter event events;
B.contents buf

let put a c =
let is_noop a c = a ^ "\n" = get ("BEGIN:VCALENDAR\nBEGIN:VEVENT" ^ c ^ "END:VCALENDAR\n") in
let buf = B.create 17 in
let line s v = B.add_string buf (s ^ ":" ^ wrap v ^ "\n") in
let c_line s v c = B.add_string buf (s ^ ":" ^ field s v c ^ "\n") in
let preamble,c_events = match R.split begin_event c with

[] -> error "ill-formed"
h::t -> (h,t) in

let c_assoc = L.map (fun c -> (field "SUMMARY" text c ^ field "LOCATION" text c,c)) c_events in
let a_events =
L.map
(fun a ->

let p = a.[0] = ’ ’ in
let t = (String.sub a 1 2) ^ (String.sub a 4 2) in
ignore (sch (rx ("[*][0-9][0-9]:[0-9][0-9] \\(" ^ esctext ^ "\\) (\\(" ^ esctext ^ "\\))")) a 0);
(p,t,R.matched_group 1 a,R.matched_group 2 a,a))

(R.split (rx "\n") (unwrap a)) in
let event dict (p,t,s,l,a) =
line "BEGIN" "EVENT";
if p then line "CLASS" "PUBLIC"
else line "CLASS" "PRIVATE";
let dict’ = match lookup (s ^ l) dict with

Some (k,c) ->
let dtstart = field "DTSTART" date c in
let ymd,s = String.sub dtstart 0 8,String.sub dtstart 13 2 in
line "DTSTART" (ymd ^ "T" ^ t ^ s ^ "Z");
c_line "DTEND" date c;
c_line "DTSTAMP" date c;
c_line "CREATED" date c;
if is_noop a c then c_line "LAST-MODIFIED" date c
else line "LAST-MODIFIED" (today () ^ "T" ^ now () ^ "Z");
c_line "UID" text c;
c_line "TRANSP" text c;
c_line "DESCRIPTION" text c;
c_line "STATUS" text c;
c_line "SEQUENCE" text c;
(remove k dict)

None ->
line "DTSTART" (today () ^ "T" ^ t ^ "00Z");
line "DTEND" (today () ^ "T" ^ t ^ "00Z");
line "DTSTAMP" (today () ^ "T" ^ now () ^ "Z");
line "CREATED" (today () ^ "T" ^ now () ^ "Z");
line "LAST-MODIFIED" (today () ^ "T" ^ now () ^ "Z");
line "UID" (uid ());
line "TRANSP" "OPAQUE";
line "DESCRIPTION" "";
line "STATUS" "TENTATIVE";
line "SEQUENCE" "0";
dict in

line "SUMMARY" (unescape codes s);
line "LOCATION" (unescape codes l);
line "END" "EVENT";
dict’ in

B.add_string buf preamble;
let _ = L.fold_left event c_assoc a_events in
B.add_string buf "END:VCALENDAR\n";
B.contents buf

Helpers

Source to View

View to Source

22

Comparison: String Lens

module B = Buffer
module R = Str
module L = List
module U = Unix
let rx = R.regexp
let sch = R.search_forward

(* helpers *)
let error s =

print_string s;
exit 1

let exec s =
let buf = B.create 17 in
let p = U.open_process_in s in
(try
while true do B.add_char buf (input_char p) done

with End_of_file -> ());
ignore (U.close_process_in p);
B.contents buf

(* regexps *)
let begin_event = rx "BEGIN:VEVENT"
let text = "[^\n]*"
let esctext = "([^\n\\()]\\|\\\\\\|\\(\\|\\))*"
let date = "[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]T[0-9][0-9][0-9][0-9][0-9][0-9]Z"
let codes = [("\\", "\\\\"); ("(","\\("); (")","\\)")]

let today () = exec "date +%Y%m%d | tr -d ’\n’"
let now () = exec "date +%H%M%S | tr -d ’\n’"
let uid () = exec "cat /dev/urandom|uuencode -m -|tail +2|tr -dc ’a-zA-Z0-9’|head -c25"

(* dictionary lens helpers *)
let escape codes s =

L.fold_right
(fun (p,r) s -> R.global_replace (rx p) r s)
codes
s

let unescape codes s =
L.fold_left
(fun s (p,r) -> R.global_replace (rx r) p s)
s codes

let distance s1 s2 =
let m,n = String.length s1, String.length s2 in
let aodd,aeven = Array.make (succ n) 0,Array.make (succ n) 0 in
for j=0 to n do aeven.(j) <- j done;
for i=1 to m do
let apredi = if i mod 2 = 0 then aodd else aeven in
let ai = if i mod 2 = 0 then aeven else aodd in
ai.(0) <- i;
for j = 1 to n do
let x =
if String.get s1 (pred i) = String.get s2 (pred j) then 0 else 1 in

ai.(j) <-
(min (apredi.(j) + 1) (min (ai.(j-1) + 1) (apredi.(j-1) + x)));

done
done;
if m mod 2 = 0 then aeven.(n) else aodd.(n)

let rec lookup k l =
let l’ = L.map (fun (ki,ci) -> (distance ki k,ki,ci)) l in
let rec aux acc l = match acc,l with

None,[] -> None
Some(_,ki,ci),[] -> Some(ki,ci)
Some(di,ki,ci),(dj,kj,cj)::rest when dj < di -> aux (Some(dj,kj,cj)) rest
None,(dj,kj,cj)::rest -> aux (Some(dj,kj,cj)) rest
,::rest -> aux acc rest in

aux None l’

let remove k l =
let rec loop acc = function

[] -> L.rev_append acc []
h::t when k = fst h -> L.rev_append acc t
h::t -> loop (h::acc) t in

loop [] l

let wrap b =
let b_len = String.length b in
let buf,line_buf,aux_buf = B.create b_len, B.create 75, B.create 75 in
let do_it s b =
if B.length line_buf <> 0 then B.add_string buf s;
B.add_buffer buf b;
B.reset b in

let rec loop i =
let sum =
let aux_len = B.length aux_buf in
let line_len = let n = B.length line_buf in if n=0 then n else succ n in
aux_len + line_len in

if sum > 75 then do_it "\n" line_buf;

if i = b_len then (do_it " " aux_buf; do_it "\n" line_buf)
else
(if b.[i] = ’ ’ then do_it " " aux_buf
else B.add_char aux_buf b.[i];
loop (succ i)) in

loop 0;
B.contents buf

let unwrap c = R.global_replace (rx "\n") (String.make 1 ’ ’) c

let field tag r s =
try
ignore(sch (rx (tag ^ ":" ^ "\\(" ^ r ^ "\\)\n")) s 0);
R.matched_group 1 s

with Not_found -> error ("Couldn’t find " ^ tag ^ " in " ^ s ^ "\n")

let times s = String.sub s 9 2, String.sub s 11 2

let get c =
let buf = B.create 17 in
let add = B.add_string buf in
let events = L.tl (R.split begin_event c) in
let event e =
let p = field "CLASS" "PUBLIC\\|PRIVATE" e in
let t1,t2 = times (field "DTSTART" date e) in
let s = escape codes (field "SUMMARY" text e) in
let l = escape codes (field "LOCATION" text e) in
if p = "PUBLIC" then add " " else add "*";
add (t1 ^ ":" ^ t2 ^ " ");
add (wrap s ^ " (" ^ l ^ ")");
add "\n" in

L.iter event events;
B.contents buf

let put a c =
let is_noop a c = a ^ "\n" = get ("BEGIN:VCALENDAR\nBEGIN:VEVENT" ^ c ^ "END:VCALENDAR\n") in
let buf = B.create 17 in
let line s v = B.add_string buf (s ^ ":" ^ wrap v ^ "\n") in
let c_line s v c = B.add_string buf (s ^ ":" ^ field s v c ^ "\n") in
let preamble,c_events = match R.split begin_event c with

[] -> error "ill-formed"
h::t -> (h,t) in

let c_assoc = L.map (fun c -> (field "SUMMARY" text c ^ field "LOCATION" text c,c)) c_events in
let a_events =
L.map
(fun a ->

let p = a.[0] = ’ ’ in
let t = (String.sub a 1 2) ^ (String.sub a 4 2) in
ignore (sch (rx ("[*][0-9][0-9]:[0-9][0-9] \\(" ^ esctext ^ "\\) (\\(" ^ esctext ^ "\\))")) a 0);
(p,t,R.matched_group 1 a,R.matched_group 2 a,a))

(R.split (rx "\n") (unwrap a)) in
let event dict (p,t,s,l,a) =
line "BEGIN" "EVENT";
if p then line "CLASS" "PUBLIC"
else line "CLASS" "PRIVATE";
let dict’ = match lookup (s ^ l) dict with

Some (k,c) ->
let dtstart = field "DTSTART" date c in
let ymd,s = String.sub dtstart 0 8,String.sub dtstart 13 2 in
line "DTSTART" (ymd ^ "T" ^ t ^ s ^ "Z");
c_line "DTEND" date c;
c_line "DTSTAMP" date c;
c_line "CREATED" date c;
if is_noop a c then c_line "LAST-MODIFIED" date c
else line "LAST-MODIFIED" (today () ^ "T" ^ now () ^ "Z");
c_line "UID" text c;
c_line "TRANSP" text c;
c_line "DESCRIPTION" text c;
c_line "STATUS" text c;
c_line "SEQUENCE" text c;
(remove k dict)

None ->
line "DTSTART" (today () ^ "T" ^ t ^ "00Z");
line "DTEND" (today () ^ "T" ^ t ^ "00Z");
line "DTSTAMP" (today () ^ "T" ^ now () ^ "Z");
line "CREATED" (today () ^ "T" ^ now () ^ "Z");
line "LAST-MODIFIED" (today () ^ "T" ^ now () ^ "Z");
line "UID" (uid ());
line "TRANSP" "OPAQUE";
line "DESCRIPTION" "";
line "STATUS" "TENTATIVE";
line "SEQUENCE" "0";
dict in

line "SUMMARY" (unescape codes s);
line "LOCATION" (unescape codes l);
line "END" "EVENT";
dict’ in

B.add_string buf preamble;
let _ = L.fold_left event c_assoc a_events in
B.add_string buf "END:VCALENDAR\n";
B.contents buf

Helpers

Source to View

View to Source

let BEGIN_CALENDAR,END_CALENDAR : (regexp * regexp) = "BEGIN:VCALENDAR","END:VCALENDAR"
let BEGIN_EVENT,END_EVENT : (regexp * regexp) = "BEGIN:VEVENT","END:VEVENT"
let PREAMBLE,POSTAMBLE : (regexp * regexp) = (BEGIN_CALENDAR . NL . (ANY - containing BEGIN_EVENT)),(END_CALENDAR . NL)
let text : lens = Escaping.escape [^\n] #char*string[(’\’,"\\\\");(’(’,"\\(");(’)’,"\\)")]
let TEXT,ESCTEXT : regexp * regexp = ctype text,atype text
let TIME,LOC : regexp * regexp = (DIGIT2 . ":" . DIGIT2), (SPACE . LPAREN . ESCTEXT . RPAREN)

let line (tag:string) (l:lens) : lens = del (tag . ":") . l . del "\n"
let parens (l:lens) : lens = ins "(" . l . ins ")"
let wrapl (l:lens) = left_quot (columnize 75 (ctype l) ’ ’ ("\n ")) l
let wrapr (l:lens) = right_quot l (columnize 75 (atype l) ’ ’ ("\n "))
let now (s:string) : string = exec "date +%H%M%S | tr -d ’\n’"
let today (s:string) : string = exec "date +%Y%m%d | tr -d ’\n’"
let uid (s:string) : string = exec "cat /dev/urandom|uuencode -m -|tail +2|tr -dc ’a-zA-Z0-9’|head -c25"
let date (tag:string) (time:regexp -> regexp -> regexp -> lens) : lens =

line tag (clobber DIGIT8 "" today . del "T" . time DIGIT2 DIGIT2 DIGIT2 . del "Z")
let copy_time (H:regexp) (M:regexp) (S:regexp) : lens = copy H . ins ":" . copy M . del S
let clobber_time (H:regexp) (M:regexp) (S:regexp) : lens = clobber (H . M . S) "" now

let event1 : lens =
del (BEGIN_EVENT . NL) .
fiat (Sort.sort_concat

#lens[
line "CLASS" ("PRIVATE" <-> ASTERISK | "PUBLIC" <-> SPACE)

; date "DTSTART" copy_time . ins DASH
; date "DTEND" copy_time . ins SPACE
; date "DTSTAMP" clobber_time
; date "CREATED" clobber_time
; date "LAST-MODIFIED" clobber_time
; line "UID" (clobber TEXT "" uid)
; line "TRANSP" (const TEXT "" "OPAQUE")
; line "DESCRIPTION" (del TEXT)
; line "STATUS" (const TEXT "" "TENTATIVE")
; line "SEQUENCE" (const NUMBER "" "0")
; line "SUMMARY" (wrapl (text; key ESCTEXT)) . ins SPACE
; line "LOCATION" (parens (wrapl (text; key ESCTEXT)))]) .

del (END_EVENT) . copy NL
let event2 : lens =

copy (SPACE | ASTERISK) . merge_with_sep TIME DASH .
copy SPACE . wrapr (key ESCTEXT . copy LOC) . copy NL

let ical1 : lens = del PREAMBLE . <~ e1:event1 >* . del POSTAMBLE
let ical : lens = ical1; <~ e2:event2 >*

Helpers

Source to View and
View to Source

22

[Foster, Pilkiewicz, Pierce ICFP ’08]

Quotient Lenses

“Good men must not obey the laws too well”

—R W Emerson

Challenge: Ignorable Data

Many real-world data formats contain inessential data.

• whitespace, wrapping of long lines of text

• order of fields in record-structured data

• escaping of special characters

• aggregate values, timestamps, etc.

In practice, to handle these details, we need lenses that are well
behaved modulo equivalence relations on the source and view.

l .get (l .put v s) ∼V v (PutGet)

l .put (l .get s) s ∼S s (GetPut)

23

Quotient Lenses

original lens

quotiented lens

canonizer

24

Quotient Lenses

 v

*

25

[Bohannon, Foster, Pierce, Pilkiewicz, Schmitt POPL ’08]

Resourceful Lenses

“The art of progress is to preserve order amid change

and to preserve change amid order.”

—A N Whitehead

Challenge: Ordered Data

The lenses we have seen so far align data by position.

But we often need to align data according to different
criteria—e.g., using part of the view as a key.

26

Challenge: Ordered Data

The lenses we have seen so far align data by position.

But we often need to align data according to different
criteria—e.g., using part of the view as a key.

26

*08:30 Coffee with Sara (Starbucks)

11:45 Meeting (Seminar Room)

12:15 PLClub (Unknown)

*15:00 Unknown (Unknown)

08:30 BUSY

11:45 Meeting

12:15 PLClub

15:00 BUSY

08:30 BUSY

12:15 PLClu

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 PLClu (Seminar room)

*15:00 Workout (Gym)

A Better Redact Lens

Similar to previous version but with key annotations and a new
combinator that identifies reorderable “chunks”

(* helper lenses *)

let location : lens = default (del LOCATION) " (Unknown)"

let public : lens =

del SPACE .

key TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

key TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)" .

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = < sim : event>*

27

A Better Redact Lens

Similar to previous version but with key annotations and a new
combinator that identifies reorderable “chunks”

(* helper lenses *)

let location : lens = default (del LOCATION) " (Unknown)"

let public : lens =

del SPACE .

key TIME .

copy TEXT .

default (del LOCATION) " (Unknown)"

let private : lens =

del ASTERISK .

key TIME .

default (TEXT . LOCATION <-> "BUSY") "Unknown (Unknown)" .

let event : lens =

(public | private) .

copy NL

(* main lens *)

let redact : lens = < sim : event>*

27

Resourceful Lenses

rigid
complement

resource

The put function takes a rigid complement and a resource
instead of the actual source.

28

Alignment

The resource can be reordered, using any heuristic we like to
align the chunks of the source and view.

29

Boomerang

Challenge: Language Design

Writing big programs only using combinators would not be fun!

Boomerang is a full-blown functional language over the base
types string, regexp, lens,...

Lens
primitives

Functional
Programming
Language

30

Additional Features

Boomerang has other primitives...

• partition
• filter
• permute
• sort
• duplicate
• merge

• sequential composition
• columnize
• normalize
• clobber
• probe
• etc.

and an extremely rich type system...

• regular expression types
• dependent types
• refinement types

• polymorphism
• user-defined datatypes
• modules

implemented in hybrid style [Flanagan ’06][Findler, Wadler ’09]

31

Challenge: Typechecker Engineering

Typechecking uses many automata-theoretic operations.

• “Expensive” operations like intersection, difference, and
interleaving are used often in practice

• Algorithms for checking ambiguity are computationally
expensive rarely implemented

Implementation strategy:

• Compile compact automata [Brzozoswki ’64]

• Aggresive memoization [Foster et al. PLAN-X ’07]

32

The Boomerang System

Lenses

• Bibliographies (BibTeX, RIS)

• Address Books (vCard, XML, ASCII)

• Calendars (iCal, XML, ASCII)

• Scientific Data (SwissProt, UniProtKB)

• Documents (MediaWiki, literate source code)

• Apple Preference Lists (e.g., iTunes)

• CSV

Libraries

• Escaping

• Sorting

• Lists

• XML

System

• Stable prototype complete

• Available under LGPL

Unison Integration

• Coming...
33

Boomerang in Industry

“a configuration API.”

aliases.aug exports.aug logrotate.aug puppet.aug sudoers.aug
aptpreferences.aug fstab.aug monit.aug rsyncd.aug sysctl.aug
aptsources.aug gdm.aug ntp.aug samba.aug util.aug
bbhosts.aug group.aug openvpn.aug services.aug vsftpd.aug
crontab.aug grub.aug pam.aug shellvars.aug webmin.aug
darkice.aug hosts.aug passwd.aug slapd.aug xinetd.aug
dhclient.aug inifile.aug php.aug soma.aug xorg.aug
dnsmasq.aug inittab.aug phpvars.aug spacevars.aug yum.aug
dpkg.aug interfaces.aug postfix_main.aug squid.aug
dput.aug limits.aug postfix_master.aug sshd.aug

Also used in

• Puppet – declarative configuration management tool

• Show – SQL-like queries on the filesystem

• Netcf – a network configuration library

34

Boomerang in Industry

“a configuration API.”

Date: Thu, 13 Aug 2009 11:33:42
From: Matthew Palmer <matt@anchor.net.au>
To: augeas-devel@redhat.com
Subject: 2009 Lens Fiesta! (inetd.conf edition)

> Who ever said writing lenses was hard ? ;)

Probably me, before I got my head around the syntax.
It really is mind-meltingly weird. I can’t see how
you’d do something this powerful any other way, but
I can’t fault people who look at lenses and say "you
know what, I think I’ve got to go feed my cat".

35

[Foster, Pierce, Zdancewic CSF ’09]

Secure Lenses

“Whoever wishes to keep a secret must

hide the fact that he possesses one.”

—J W von Goethe

“Pennsylvania yanks voter site after data leak”

“Passport applicant finds massive privacy breach”

“Privacy issue complicates push to link medical data”

Challenge: Updating Security Views

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

37

Requirements

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

Today

1. Confidentiality: get does not leak secret data

2. Integrity: put does not taint trusted data

38

Requirements

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

Today
1. Confidentiality: get does not leak secret data

2. Integrity: put does not taint trusted data

38

Example: Redacting Calendars (Get)

39

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Update)

39

08:30 Meeting

12:15 Lunch

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Put)

Observe that propagating the update to the view back to the
source forces put to modify some of the hidden source data:

• The entire appointment at 3pm.

• The description and location of the appointment at 8:30am.

39

08:30 Meeting (Unknown)

12:15 Lunch (Magic Carpet)

08:30 Meeting

12:15 Lunch

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

40

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

40

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

40

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

40

08:30 Group meeting

12:15 BUSY
*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

40

08:30 Group meeting

12:15 BUSY
08:30 Group meeting (Unknown)

*12:15 Unknown (Unknown)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Private events are trusted; public ones are tainted”

Effect: Okay to edit, add, and delete public events, but not to
add or delete private ones, or change between public and private

40

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Private events are trusted; public ones are tainted”

Effect: Okay to edit, add, and delete public events, but not to
add or delete private ones, or change between public and private

40

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Private events are trusted; public ones are tainted”

Effect: Okay to edit, add, and delete public events, but not to
add or delete private ones, or change between public and private

40

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

17:00 TGIF (Unknown)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe! There are many alternatives, trading off which
information in the source is trusted against which information in
the view can be modified.

Policy: “Everything is trusted”

Effect: No edits are allowed

40

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Non-interference

All these policies can be formulated in terms of non-interference.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

41

Non-interference — Integrity

All these policies can be formulated in terms of non-interference.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

E.g., if the data contains “tainted” and “trusted” portions

Trusted

Tainted

Trusted

Tainted

then the trusted parts of the output do not depend on the
tainted parts of the input.

41

Secure Lenses

Public

Secret

Public

Trusted

Tainted

Trusted

Tainted

Secret

42

Labels

Fix a lattice Q of integrity labels, e.g.

Trusted

Tainted

v

43

Annotated Regular Expressions

Annotate the source and view types with labels to indicate which
parts each are Tainted and which are Trusted.

R ::= ∅ | u | R·R | R|R | R∗ | R :q

Read off an equivalence relation ≈q for every q ∈ Q.

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*08:30 Coffee (Starbucks)

##########################

*08:30 Coffee (Starbucks)

###########################

mark mark

*08:30 Coffee (Starbucks) *08:30 Coffee (Starbucks)

erase erase

=

≈Trusted

44

Annotated Regular Expressions

Annotate the source and view types with labels to indicate which
parts each are Tainted and which are Trusted.

R ::= ∅ | u | R·R | R|R | R∗ | R :q

Read off an equivalence relation ≈q for every q ∈ Q.

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*08:30 Coffee (Starbucks)

##########################

*08:30 Coffee (Starbucks)

###########################

mark mark

*08:30 Coffee (Starbucks) *08:30 Coffee (Starbucks)

erase erase

=

≈Trusted

44

Secure Lenses, Formally

The expectation that “Tainted inputs to put should not affect
Trusted outputs” can now be expressed by generalizing the
GetPut law...

l .put (l .get s) s = s (GetPut)

... like this:

v ≈q (l .get s)

l .put v s ≈q s
(GetPutSecure)

To guarantee this law, we refine the typing rules for lenses with
an information-flow analysis.

45

The PutPut Law

The following law can be derived:

v ′ ≈q v ≈q (l .get s)

l .put v ′ (l .put v s) ≈q l .put v ′ s

It says that doing two puts in a row must produce the same
result as just the second.

It implies that the put function must not have “side-effects” on
trusted source data...

...and generalizes the “constant complement” condition, the gold
standard for correct view update in databases.

46

Conclusion

Summary

“Bidirectional programming languages are an effective and
elegant means of describing updatable views”

Lenses
• Semantic space of well-behaved bidirectional transformations
• Provides foundation for bidirectional languages

Boomerang
• Language for lenses on strings
• Natural syntax based on regular operators
• Extensions to handle ordered, ignorable, and trusted data
• Type system guarantees well-behavedness and totality

Implementation and Applications
• Lenses for a number of real-world formats
• Adoption in Augeas
• Updatable security views

47

Thank You!

Adviser: Benjamin Pierce

Informal Mentor: Alan Schmitt

Committee: Zack Ives, Val Tannen, Phil Wadler (external),
Steve Zdancewic (chair)

Collaborators: Davi Barbosa, Aaron Bohannon, Ravi Chugh,
Julien Cretin, Malo Deniélou, Michael Greenberg,
Michael Greenwald, Christian Kirkegaard, Stéphane Lescuyer,
Adam Magee, Jon Moore, Alexandre Pilkiewicz, Danny Puller

48

