
Hydra: Effective Runtime Network Verification
Sundararajan Renganathan

Stanford University

rsundar@stanford.edu

Benny Rubin

Cornell University

bcr57@cornell.edu

Hyojoon Kim

Princeton University

hyojoonk@cs.princeton.edu

Pier Luigi Ventre

Intel

pier.ventre@intel.com

Carmelo Cascone

Intel

carmelo.cascone@intel.com

Daniele Moro

Intel

daniele.moro@intel.com

Charles Chan

Intel

charles.chan@intel.com

Nick McKeown

Stanford University & Intel

nickm@stanford.edu

Nate Foster

Cornell University

jnfoster@cs.cornell.edu

ABSTRACT
It is notoriously difficult to verify that a network is behaving as

intended, especially at scale. This paper presents Hydra, a system

that uses ideas from runtime verification to check that every packet

is correctly processed with respect to a specification in real time.We

propose a domain-specific language for writing properties, called In-

dus, and we develop a compiler that turns properties thus specified

into executable P4 code that runs alongside the forwarding code

at line rate. To evaluate our approach, we used Indus to model a

range of properties, showing that it is expressive enough to capture

examples studied in prior work. We also deployed Hydra checkers

for validating paths in source routing and for enforcing slice isola-

tion in Aether, an open-source cellular platform. We confirmed a

subtle bug in Aether’s 5G mobile core that would have been hard to

detect using static techniques. We also evaluated the overheads of

Hydra on hardware, finding that it does not significantly increase

latency and often does not require additional pipeline stages.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; Network properties; • Software and its engineering →
Domain specific languages;

KEYWORDS
Programmable networks, runtime verification, P4.

ACM Reference Format:
Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi Ventre,

Carmelo Cascone, DanieleMoro, Charles Chan, NickMcKeown, andNate Fos-

ter. 2023. Hydra: Effective Runtime Network Verification. In ACM SIGCOMM
2023 Conference (ACM SIGCOMM ’23), September 10–14, 2023, New York, NY,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3603269.

3604856

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3604856

1 INTRODUCTION
At first glance, most packet-switched networks appear simple. Each

device implements straightforward tasks like looking up headers

in routing tables, filtering packets using access control lists, and

adding or removing tunneling headers. But operating a network

correctly is a real challenge, especially at scale. Faults, outages,

performance degradation, and security breaches occur often in

practice, for reasons ranging from simple misconfigurations to

pernicious hardware and software bugs. Misconfigurations and

bugs can appear anywhere—the control plane or the data plane,

fixed-function switches or programmable switches, conventional

NICs or smart-NICs, the end host networking stack, and so on.

Prior work has proposed methods and tools to check if a network

correctly forwards traffic according to a formal specification. For

example, static checkers take snapshots of the network forward-

ing state (e.g., device configurations or forwarding rules) to build

mathematical models of network behavior. These models can be

used to verify cloud contracts [9], to answer “what if” questions

about router configurations [7, 17], and to verify network-wide

properties like connectivity, waypointing, and freedom from loops

[4, 27, 28, 30, 38, 51]. Despite enjoying great success, they have

well-known limitations regarding scalability [26], the complexity

of collecting data plane snapshots [55], and the restriction to sta-

ble configurations [7]. Moreover, there is a growing sense (e.g.,

at Google [2], Facebook [39], and Microsoft [49]) that the success

of static checking has shifted the goalposts—the most important

failures now often relate to switch hardware and software bugs

rather that simple misconfigurations.

Perhaps the most important limitation of static checkers, how-

ever, is that they rely on an accurate model of the network. Hence,

static checkers can make mistakes if the abstract models they rely

upon do not reflect the “ground truth” experienced by packets trav-

eling through the data plane. For example, a static checker might

deduce that an end-to-end path exists (based on its model of the

forwarding state), but due to bugs in the end host networking stack

or some other part of the network that the static checker does not

model (e.g., the low-level driver code for the switches) the packet

might actually follow a different path. In this situation, ironically,

rudimentary tools like ping or traceroute can successfully detect

a bug that the static checker cannot! This modelling limitation ex-

ists irrespective of how the static checker builds its model—if any

https://doi.org/10.1145/3603269.3604856
https://doi.org/10.1145/3603269.3604856
https://doi.org/10.1145/3603269.3604856

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

aspect of the network’s behavior is not reflected in the model, then

some bugs may go undetected.

In contrast, runtime verification systems can verify the behavior

of the network in real time, directly in the data plane. One approach

is to send special probe packets and check them against a model [10,

40, 43, 44, 54]. However, this technique only works if the probe

packets test all the paths (in the topology and in the code). A second

approach is to attach additional information or telemetry data to

real data packets, which are collected and analyzed offline at a

centralized server [24, 29, 46, 47, 57]. This technique is hard to scale

for large or fast networks, because the centralized server quickly

becomes the bottleneck.

This paper sets out to answer the following question:

Can a network check that every packet is correctly pro-
cessed, in real-time, against a specification?

Our Approach.We present Hydra, a system that uses ideas from

the field of runtime verification [6] and applies them to networking.

Rather than analyzing idealized models or performing post-hoc

analysis of telemetry, Hydra allows an operator to verify that each

packet traversing the network is processed according to a formal

specification. Properties are specified in Indus, a domain-specific

language (DSL) we designed.

Indus is designed to require little to no understanding of the for-

warding specification, and operates at a higher level of abstraction.

In fact, it reads like typical imperative programming languages

that operators are already familiar with. A key distinguishing fea-

ture of Indus is that it models network-wide, stateful properties

using telemetry (comprising packet state, switch-local state, and

control-plane state) and checkers, which are predicates over teleme-

try that determine whether a packet should be forwarded, rejected,

or reported to the control plane. Indus operates at a higher layer of

abstraction than existing DSLs (e.g., P4, eBPF, and DPDK), enabling

operators to focus on higher-level behaviors, without concern for

how and where they are implemented, or what devices they are

compiled to.

Hydra verifies every packet by collecting telemetry data, adding

it to packets as they make their way through the network. Indus

only requires programmers to specify what telemetry should be

collected at each hop and what the predicate on that telemetry

should be. By checking each packet, on switch, without the need

for a central server, Hydra is inherently scalable and can enforce

properties in real time.

Contributions. Our contributions are as follows:

• We present Hydra, the first practical system for checking

network-wide properties in real time at line rate (see Sec-

tion 2).

• We design Indus, a DSL that allows an operator to specify

runtime verification policies concisely (see Section 3)

• Wedevelop a compiler for Indus that generates switch-specific

checking code that executes independent of the forwarding

code (see Section 4).

• We demonstrate that Hydra can find bugs in real-world net-

works by building a working prototype and using it to im-

plement a form of path validation for source routing, and to

detect a subtle bug in Aether [19] (see Section 5).

/* Variable declarations */
control dict <bit <8>,bit <8>> tenants;
tele bit <8> tenant;
header bit <8> in_port;
header bit <8> eg_port;

/* Code blocks */
init { /* Executes at first hop */

tenant = tenants[in_port];
}
telemetry { /* Executes at every hop */ }
checker { /* Executes at the last hop */

if (tenant != tenants[eg_port]) { reject; }
}

Figure 1: Indus program for bare-metal multi-tenancy.

• We assess the expressiveness of Indus from the theoretical

and practical perspectives. We show that Indus can express

all properties that can be encoded using Linear Temporal

Logic over finite traces (LTL𝑓) (see Section 3). We also de-

velop Indus programs for a range of properties studied pre-

viously in the network verification literature (see Section 6).

• We evaluate the overheads of Hydra on Tofino switches [25],

finding that the costs of implementing Indus checkers are

modest, whether measured in terms of pipeline resources,

packet-processing latency, or throughput (see Section 6).

2 HYDRA BY EXAMPLE
In this section, we present a series of examples based on real-world

scenarios where there is a need for verification. These examples

showcase how Hydra takes runtime verification (RV) ideas and

applies them to networking, a hitherto underexplored avenue for

said ideas. Each example first describes the real-world scenario,

then gives an intuitive description of the property being verified,

and then presents a program that expresses the property in Indus.

Bare-metal multi-tenancy. In bare-metal cloud services, tenants

have full control over physical servers, including the NIC and host

networking stack. To ensure tenant isolation, the Top-of-Rack (ToR)

switch is typically programmed with functions such as Virtual Rout-

ing and Forwarding (VRF) tables and VXLAN encapsulation [5]. In

this setup, all traffic sent and received through a given port con-

nected to a physical server is expected to belong to the same tenant.

If any packet crosses between supposedly isolated tenants, the

cloud provider risks losing business and trust. The Indus program

in Figure 1 enforces network-wide, per-port traffic isolation.

There are two important things to note about this program. First,

while Indus is a kind of specification language, programs looks

more like a program in a scripting language than a formula in logic.

We chose to design a new DSL, rather than re-using an existing

logical framework (e.g., Linear Temporal Logic), to avoid the well-

known challenges that arise when programmers are asked to write

specifications. Second, unlike existing networking DSLs like P4,

which captures the functionality of a single switch, Indus models

the end-to-end behavior of the network. Hence, it can be used to

express network-wide properties—e.g., here, that each packet enters
and exits at ports associated with the same tenant.

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

sensor bit <32> left_load = 0;
sensor bit <32> right_load = 0;
control left_port;
control right_port;
control thresh;
control dict <bit <8>,bool > is_uplink;
tele bit <32 >[15] left_loads;
tele bit <32 >[15] right_loads;
header bit <8> eg_port;

init { }
telemetry {

if (is_uplink[eg_port]) {
if (eg_port == left_port) {

left_load += packet_length;
}
elsif (eg_port == right_port) {

right_load += packet_length;
}

}
left_loads.push(left_load);
right_loads.push(right_load);

}
checker {

for (left_load , right_load in left_loads ,
right_loads) {

if (abs(left_load - right_load) > thresh) {
report;

}
}

}

Figure 2: Indus program for data center load balancing.

More formally, an Indus program comprises three blocks. The

init block executes when a packet enters the network, at the first

hop, before it has undergone any other processing. The telemetry
block executes at every hop, including the first and last hops.

1

The checker block executes only at the last hop, before the packet
exits the network (e.g., in the egress pipeline of the last switch). It

executes a predicate on the collected telemetry, which can either

come from the init or telemetry block, to determine whether the

packet should be halted (“reject”), allowed to proceed, or allowed

to proceed but with a report generated (“report”).
Indus supports several different kinds of variables, each related

to how they are used: tele variables are carried in the packet,

while control variables are switch-local state that are managed

by the control plane. In this example, the tenants control variable

is realized as a table that associates switch ports to tenants. The

tenant telemetry variable records the tenant associated with the

original ingress port in the packet. At the last hop, the checker
block verifies that the ingress and egress ports were associated with

the same tenant, and rejects the packet if not.

Load Balancing. For the next example, consider a tiered data

center network with servers connected to ToR switches. Data center

operators typically spread traffic across multiple paths (e.g., at the

granularity of flows [1], flowlets [3] or even individual packets)

to balance the load, which reduces congestion. In our example,

we will check that the actual usage of the uplink switch ports is

approximately balanced, within a given threshold.

1
In this example the telemetry block is empty but it will be used in other examples.

control dict <(<bit <32>,bit <32>),bool > allowed;
tele bool violated = false;

header bit <32> ipv4_src;
header bit <32> ipv4_dst;

init { /* Checks if packet is allowed to enter */
if (! allowed [(ipv4_src ,ipv4_dst)]) {

violated = true;
}

}
telemetry { /* Checks if packet on reverse

direction has been seen */
if (last_hop && !allowed [(ipv4_dst , ipv4_src)]) {

report ((ipv4_dst ,ipv4_src));
}

}
checker {

if (violated) { reject; }
}

Figure 3: Indus program for stateful firewall.

Figure 2 shows how we can specify load-balancing in Indus in

an intuitive manner. To keep the example simple, we focus on load

balancing across just two ports (left_port and right_port]), but
the program generalizes to any number of ports in a straightfor-

ward manner. Note that load balancing is verified on a per-packet
basis, even if the implementation of load balancing is performed at

per-flow granularity. This approach is more scalable than polling

each switch for per-port utilization information and then checking

whether the load is imbalanced. To implement the desired function-

ality, the Indus program uses sensor variables, which aggregate

telemetry data across multiple packets using switch-local state, and

a non-trivial telemetry block, which records the total amount of

data transmitted on each port in tele variables. The checker block
iterates over the telemetry and flags a report if it detects an im-

balance above a fixed threshold. It is worth noting that the left and

right port numbers, as well as the load imbalance threshold are

control variables. Hence, these values can be changed on the fly,

without having to recompile the Indus program.

As shown in this example, we collect telemetry as the packet

makes its way through the network in the form of a list, and only

perform the check at the last hop. This provides a nice abstraction,

similar to that of classical runtime verification, where the Indus

program only needs to specify a read-only trace that is collected

as the packet flows through the network (telemetry block) and a

predicate on that trace (checker block). Enforcing the check at the

last hop has the nice property of moving programmability from the

core to the edge of the network, where the functionality could be

implemented on a smartNIC or even in the kernel. We elaborate on

this design decision in Section 4.

Stateful Firewall. Figure 3 is a program to enforce the property

that packet flows can only enter the network if a device inside

the network initiated the communication. To accomplish this, the

control plane installs rules in the reverse direction when it sees

a packet in the forward direction. As described earlier, Indus pro-

grams are coupled to the network topology, which might mandate

that packets enter and leave through a designated choke point.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

However, this Indus program is generic enough to check this prop-

erty in other topologies. For example, every edge switch could be

a firewall, instead of all packets going through a choke point. Fol-

lowing standard techniques for ensuring control plane consistency,

the control plane could add firewall rules to all edge switches in

response to a single report [41].

We use the input packet’s contents to check if it is allowed to

reach the destination, and we carry this flag in the packet. At each

hop, we check if a packet along the reverse direction has been

seen (in the telemetry block), and if not, we generate a report

containing the IP addresses so that the control plane can install

the corresponding rules in the allowed dictionary. Dictionaries are
implemented using P4 tables, as we discuss in Section 4.

In the init block, which executes when a packet enters the

network at the first hop, if the source and destination IP address

tuple is not in the allowed dictionary (added by the control plane),

then the packet is marked as violating the firewall rule and will

be rejected by the checker. When a packet reaches its last hop,

if the source and destination IP addresses are not in the allowed

dictionary, Hydra sends a report to the control plane to add it.

last_hop is a built-in keyword that evaluates true if and only if a

packet is at its last hop before it egresses the network.

The three Hydra programs presented in this section are examples

of properties that could not be fully verified by a static checker. It is

possible to imagine a checker that enforces that the proper tenant

isolation rules are installed, or a model checker that ensures that a

switch complies with the firewall rule. But this doesn’t guarantee

correct runtime behavior: For example, a bug in the control-plane

might install an incorrect filtering rule; or a bug in the compiler

or data plane might not process a packet in the way the static

checker assumed. Similarly, hardware faults (memory errors, bit

flips on signals, failing connectors) would be undetectable by a

static checker. Of course, Hydra programs can have bugs too. But it

is less likely that the same bug would appear in the forwarding and
the checker. This independence between forwarding and checking

is key to the value of runtime verification.

3 THE INDUS LANGUAGE
Having introduced some of the main features of Hydra by example,

we now give a more precise definition of Indus, a domain-specific

language we use to specify network-wide properties. To a first

approximation, an Indus program can be thought of as a classical

runtime monitor that is attached to each packet traversing the

network. The monitor runs alongside the forwarding code in the

data plane at line rate. It can observe the behavior of each switch

on the network-wide path, maintain state in telemetry variables

that are carried along with the packet, and aggregate information

across multiple packets using sensors.

3.1 Language Design
Before delving into the details of Indus, it is worth asking: why

design a new language? Generally speaking, prior work on run-

time verification has followed one of two approaches. The first

uses formal logic to specify correctness properties. For example,

to stipulate that a packet must not visit switch 𝐴 twice, we could

use the following formula, □ ¬(𝐴 ∧ d(^ 𝐴)), which is written in

Linear Temporal Logic over Finite Traces (LTL𝑓) [13]. Formally, it

says that globally (□), it is not the case that some event satisfying

𝐴 (i.e., the packet being at switch 𝐴) is followed by (
d
) an event

where 𝐴 eventually occurs (^). More intuitively, it says that the

packet must not traverse a topological loop involving switch 𝐴.

But while formal logic is very well understood, we ultimately

elected not to use it as the specification language for Hydra. First, we

did not believe that network operatorswould like or use formal logic.

Second, it was not clear how to cleanly accommodate all of the state

related to packet-processing—e.g., packet headers and metadata,

mutable state on switches, not to mention any new data we might

add to support verification [14]. Instead, we followed the second

main approach used in runtime verification, relying on a domain-

specific instrumentation language (e.g., Eagle [6] or JavaMOP [11])

to specify correctness properties. Here, the programmer writes a

program that monitors the execution of the program being verified,

using introspection features such as aspect-oriented programming.

Ultimately, the program implements a predicate that determines

whether the execution should be allowed or not.

The design of Indus is guided by three fundamental principles.

First, it provides direct access to all state in the data plane and the

control plane that could be relevant to how a packet is processed.

To put it another way, the language strives to make it easy to

observe network-wide behaviors. Second, the language enforces

a strict separation between the variables that track network state,

which are read-only, and other variables, which can be read and

written. This separation is to ensure that the Indus program does

not interfere with the network’s forwarding behavior, except at the

edge, where it rejects packets that violate the specified property.

Third, the language incorporates a number of restrictions to ensure

that programs can be compiled to high-speed packet-processing

hardware—e.g., all state must be statically allocated and it must be

possible to show that all loops terminate.

3.2 Syntax and Semantics
Indus syntax is based on familiar imperative programming con-

structs (e.g., variables, conditionals, loops, etc.) and it provides a rich

set of data types (e.g., bitstrings, booleans, arrays, sets, dictionaries,

etc.) and operators (e.g., arithmetic, boolean, and bitwise operations)

to express network-wide correctness properties. Figure 4 defines the

formal syntax of a core fragment of the language. Our prototype im-

plementation supports a few extensions to this core language, such

as for loops that iterate over multiple variables, report exceptions
that carry values, etc. We elide these from our formalization for sim-

plicity. A program 𝑝 consists of a list of declarations 𝑑 followed by

an initialization block, telemetry block, and checking block. Each

variable is tagged with a modifier: tele variables reside on the

packet and aggregate information along the network-wide path;

sensor variables reside on the switch and aggregate information

across multiple packets; header variables provide read-only access

to data plane variables, such as packet headers and metadata; like-

wise control variables provide read-only access to control-plane

state and other configuration information.

The initialization block is executed when the packet first enters

the network. Its purpose is to perform computations that cannot

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

𝑝 ::= 𝑑 𝑠init 𝑠tele 𝑠check Programs
𝑑 ::= Declarations

| tele 𝑡 𝑥 := 𝑒

| sensor 𝑡 𝑥 := 𝑒

| header 𝑡 𝑥
| control 𝑡 𝑥

𝑒 ::= Expressions
| 𝑥

| 𝑣

| ⊕(𝑒)
| 𝑒1 [𝑒2]

𝑠 ::= Statements
| pass
| 𝑠1; 𝑠2
| 𝑥 := 𝑒

| if (𝑒1) then 𝑠1 else 𝑠2
| for (𝑥 in 𝑒) 𝑠
| exn

𝑡 ::= Types
| bit⟨𝑛⟩
| bool
| 𝑡 [𝑛]
| set⟨𝑡⟩
| dict⟨𝑡1, 𝑡2⟩

⊕ ::= Operators
| + | − | ∗ | /
| ∼ | & | |
| == | < | <= | ! | && | | |
| ∈ | ∉
| length | push

𝑣 ::= Values
| 𝑛

| 𝑏

| [𝑣]
exn ::= Exceptions

| report
| reject

Figure 4: Indus syntax.

be easily encoded using the initializers for variable declarations—

e.g., computing a function over multiple control-plane variables.

The telemetry block is executed at each hop. Often the telemetry

block will push data obtained from header variables into arrays

maintained in tele variables, but other approaches are also possible.
The telemetry block can also update sensor variables. Finally, the

checking block is executed at the last hop. Its main purpose is to

decide whether the packet is allowed to exit the network or if it

needs to be rejected and/or reported to the management plane.

By design, Indus is strongly typed, which means all operations

are checked to ensure that variables are used in ways consistent

with their declaration. Types are also important for ensuring termi-

nation — e.g., because arrays have a maximum size that is known

at compile time, for loops are guaranteed to terminate. As men-

tioned above, the language also enforces a clear separation between

data-plane and control-plane variables, which are read only, and

telemetry, sensor, and local variables, which can be read and written.

Formally, this ensures that for packets that do not trigger a property

violation (i.e., by raising an exception), the final output packet(s)

will be identical to the packet(s) that would have been produced had

the Indus program not been running at all. To put it another way, In-

dus does not interfere with the execution of packets that satisfy the

property, only those that violate it. Similarly, the telemetry, sensor,

and local variables, which are used to implement the checking logic,

are kept separate from the other variables. Hence, the network can-

not subvert the property being enforced simply by injecting certain

packets into the network or issuing control-plane commands. Indus

can be used to verify that a network is free of infinite forwarding

loops, but the overhead is non-trivial—one must either enforce a

maximum length on forwarding paths, or keep track of the packet’s

path and periodically check for duplicates. Moreover, because loops

are almost always undesirable, many networks already offer robust

mechanisms for avoiding them—e.g., IPv4’s time-to-live (TTL) field.

𝜑 ::= 𝐴 | ¬𝜑 | 𝜑1 ∧ 𝜑2 | d𝜑 | 𝜑1 U 𝜑2

J𝐴K𝑥 ≜ 𝐴(𝑥)
J¬𝜑K𝑥 ≜ ¬J𝜑K𝑥

J𝜑1 ∧ 𝜑2K𝑥 ≜ J𝜑1K𝑥 ∧ J𝜑2K𝑥
J d𝜑K𝑥 ≜ ∃𝑦. 𝑠𝑢𝑐𝑐 (𝑥,𝑦) ∧ J𝜑K𝑦

J𝜑1 U 𝜑2K𝑥 ≜ ∃𝑦. 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ last ∧ J𝜑2K𝑦 ∧
∀𝑧. 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ⇒ J𝜑1K𝑧

Figure 5: LTL𝑓 syntax (top) and encoding into first-order logic
(bottom) [13].

Hence, in examples, we will often elide the additional logic that

would be needed to encode loop freedom in Indus.

3.3 Expressiveness
Having defined Indus, it is natural to wonder about the class of

properties that it can capture. Generally speaking, questions about

expressiveness are settled by giving translations that map programs

from one language into another—e.g., this is how we show that

Turing machines and 𝜆-calculus capture the same class of compu-

tations. We are not aware of any logic or existing language that

precisely captures the set of properties that can be expressed using

an Indus program. Among other things, the presence of header and
control variables, which operate as a kind of “foreign function

interface” to the data plane and the control plane, as well as sensor
variables, make the relationship difficult to state. Nevertheless, to

establish a lower bound, we prove here that Indus is rich enough

to express all LTL𝑓 formulas. Along the way, we also show that it

also corresponds to first-order logic formulas over finite traces.

Recall that LTL𝑓 can be understood as defining predicates on

traces. Each trace is made up of an ordered sequence of events,

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

which are assumed to be finite. Figure 5 gives the formal syntax

of LTL𝑓 . Formulas 𝐴 correspond to atomic predicates that either

hold or do not hold at a given event. For instance, atomic predicates

could keep track of the location of the packet in the network, or

the value of the destination address in the IPv4 header. Formulas

¬𝜑 and 𝜑1 ∧ 𝜑2 correspond to logical negation and conjunction

respectively. Formulas
d𝜑 state that 𝜑 holds in the next event—i.e.,

the one that follows the current event in the ordered sequence.

Finally, formulas 𝜑1 U 𝜑2 state that 𝜑1 holds at all events until
some point at which 𝜑2 holds. As usual, other formulas can be

encoded. For example both □𝜑 , which states that 𝜑 always holds,

and ^𝜑 , which states that 𝜑 eventually holds, can be encoded using

the until operator.

In their original paper on LTL𝑓 , De Giacamo and Vardi proved

that formulas can be translated to first-order logic [13] over finite

sequences. The bottom half of Figure 5 gives the translation, which

is parameterized on a variable 𝑥 corresponding to an index in the

sequence, initially the index of the first element. Hence, to prove that

TPC can express the same set of properties as LTL𝑓 , we simply have

to show that it canmodel the semantics of these first-order formulas.

Assume that the telemetry block populates an array 𝑇 with an

increasing sequence of integers as well as arrays𝐴 corresponding to

the atomic predicates occurring in the program. With this encoding,

it is straightforward to show that the semantics of every first-order

formula used in the translation of LTL𝑓 can be expressed in Indus.

For example, existential formulas ∃𝑥 . 𝑃 map to a for loop:

bool 𝑟0 := 𝑓 𝑎𝑙𝑠𝑒;

for (𝑖 in 𝑇){
𝑥 := 𝑖;

(|𝑃 |)𝑟0 ;
𝑟 := 𝑟 | | 𝑟0;

}
Here (|𝑃 |)𝑟0 denotes the translation of 𝑃 using an auxiliary variable

𝑟0 to store the result. For the complete formalization, please see the

long version of this paper, which is available online [42].

Theorem 3.1 (Expressiveness). Let 𝜑 be an LTL𝑓 formula, 𝜋 a
trace, I a corresponding first-order interpretation, and 𝜎 the corre-
sponding Indus store. Also let 𝑃 = J𝜑K𝑥 [𝑥 ↦→ 1] and 𝑠 = (|𝑃 |)𝑟 . The
following are equivalent.

• 𝜋, 𝑖 |= 𝜑

• I |= 𝑃

• ⟨𝜎, 𝑠⟩ ⇓ ⟨𝜎 ′, 𝑠 ′⟩ and 𝜎 ′(𝑟) = true.

Proof. The first two cases were given by De Giacamo and

Vardi [13]; the third case follows by induction. □

Corollary 3.2. Every network-wide property that can be ex-
pressed in LTL𝑓 can be expressed in Indus.

Overall, this result shows that Indus is at least as expressive as

the specification language used in many other runtime verification

systems, modulo the choice of atomic predicates 𝐴.

4 THE INDUS COMPILER
This section presents our compiler, which converts Indus programs

to P4 code, which can then be linked with the forwarding code. Our

compiler is designed to make it easy to ensure that the state and

// Hydra Headers
struct hydra_header_t {

eth_type2_t hydra_eth_type;
bit <8> tenant;

}
struct hydra_metadata_t {

bit <8> tenant;
bool reject0;

}
// Generated Init Code
apply {

...
// look up ingress port tenant
tenants_in_port.apply();
// initialize tele variable
hydra_header.tenant = hydra_metadata.tenant;

}
...
// Generated Checker Code
apply {

// lookup output port
tenants_eg_port.apply();
if (hydra_header.tenant != hydra_metadata.tenant) {

// reject if ingress and egress disagree
hydra_metadata.reject0 = true;

}
strip_telemetry (); // strip telemetry at last hop

}

Figure 6: Generated tna code for bare-metal multitenancy.

control-flow of the Indus program are not tampered with during

this process. Our compiler is written in approximately 2500 lines

of OCaml code. Our current prototype only supports P4, but we

envision possible extensions that target other DSLs like eBPF and

DPDK in the future.

4.1 Code Generation
The compiler takes as inputs an Indus program and a topology file

in which each switch is classified as an edge or non-edge switch.

The compiler then generates switch-specific code for each switch

in the topology.

The front-end of the compiler first lexes and parses the Indus

program into an abstract syntax tree. Next, the type checker ensures

programs are well typed and respect constraints such as read-only

access to control and header variables. The type checker also
constructs a symbol table for the declarations in the Indus program,

which is used in the construction of the P4 headers and parsers.

Finally, the compiler generates P4 code for each Indus construct.

Many of the abstractions found in Indus can be directly mapped

onto analogous constructs in P4—e.g., assignments, conditionals, etc.

But for some other abstractions, it is not obvious how to implement

them in P4. The following list summarizes the strategies used to

generate code in the compiler:

• header variables: A header variable declaration requires an

annotation (indicated with an @) that specifies the corre-

sponding name in the forwarding program that tells the

compiler how to translate references to the variable. For

example, if an Indus program needs to refer to the source

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

IP address through the ip_src variable, the required anno-

tation is hdr.ipv4.src_addr. In examples, we omit these

annotations for brevity.

• tele variables: A telemetry variable declaration leads to

an extra field in a special telemetry header generated by

the compiler. The tele variables travel with the packet as

telemetry and are serialized and deserialized using parsers

and deparsers generated by the compiler.

• sensor variables: A sensor variable declaration is imple-

mented as a P4 register. Reads and writes to sensor variables

are translated, provided the underlying target (e.g., BMv2,

Tofino) supports them.

• control variables: A control variable declaration is mapped

to a match-action table. There are two different types of

control variables: a non-dictionary control variable and a

dictionary control variable. A non-dictionary control vari-

able is statically defined by the control plane, and can be

initialized by a default action in a single match-action ta-

ble that executes at the start of the pipeline. On the other

hand, a dictionary control variable requires more complex

lookups. To ensure the lookup operation returns the most

up-to-date value for each dictionary control variable, our

compiler creates and places a match-action table right before

the statement that contains the lookup in the translated P4

code.

• Lists and loop operations: Lists are implemented as header

stacks in P4, which have the semantics of a fixed length array.

P4 does not support loops. Thus, our compiler unrolls Indus’s
for loops into sequential code: the loop body is executed for

each list index that is valid. Our compiler also supports the

in operator, which translates into an expression that tests

if the left-hand side is equal to any valid elements of the

header stack specified on the right-hand side.

At the final hop, before a packet exists the network, we strip

the checking headers produced by the Indus program. This ensures

conformance with software running on end hosts that do not rec-

ognize the extra headers injected by Indus. To this end, the control

plane needs to specify the set of edge ports in the network to the

compiler. Then the compiler generates an extra match-action table

that matches on the egress port and strips the headers for packets

that are sent to these egress ports. A similar process is done for

injecting Indus-generated headers to packets at the first hop. In

principle, we could delegate these “last-hop” and “first-hop” tasks

to the NIC at end hosts. We leave this extension to future work.

4.2 Linking
Figure 6 shows the generated P4 code for the bare-metal multi-

tenancy example described in Section 2. The final compilation step is

to link the generated headers and parsers blocks as well as the init,
telemetry, and checker code blocks with the forwarding code for

the switch, which we assume is also written in P4. Specifically, the

init block must be placed at the beginning of the ingress pipeline

on first-hop switches, the telemetry block is placed at the egress

pipeline on every switch, and the checker block is placed at the

end of the egress pipeline on last-hop switches. Since networks

are bidirectional, the edge switches in the network end up running

control bool is_spine_switch;
tele bool visited_spine;
tele bool to_reject;

init {
visited_spine = false;
to_reject = false;

}
telemetry {

if (is_spine_switch) {
if (visited_spine) {

to_reject = true;
}
visited_spine = true;

}
}
checker {

if (to_reject) {
reject;

}
}

Figure 7: Valley-free routing in Indus.

all three code blocks, while the non-edge switches only run the

telemetry block. Automatically linking our compiler output blocks

with the forwarding P4 program is future work.

4.3 Last-Hop vs. Per-Hop Checking
Our current compiler compiles Indus programs to the network

so that a switch at every hop collects telemetry but the check

only runs at the last hop, or edge, switch. This approach has a

number of advantages. First, it saves resource usage on non-edge

switches since running a check at a switch requires additional

computation. This approach is also more amenable to incremental

deployment since Hydra can still run with switches that are not

fully programmable but can run telemetry and attach information

to packets. Another approach, however, is to execute checks at

every hop. The main advantages of this approach are that it often

requires less telemetry data, and packets that violate the given

property can rejected (or reported) at any switch, not just at the

edge. We plan to implement this approach in the future, using our

compiler to automatically relocate checks from the edge and into

the network core.

5 HYDRA CASE STUDIES
This section presents a pair of case studies that demonstrate the

practical utility of using Hydra for enforcing network-wide prop-

erties using runtime verification. The first case study develops

an application of Hydra to implement path validation in a data

center network with source routing, ensuring that packets follow

“valley-free” paths. The second case study illustrates a use of Hydra

to detect a subtle bug in Aether’s implementation of application

filtering, which provides a form of slicing.

5.1 Example 1: Valley-Free Source Routing
Recall that in source routing, the sender specifies the path the

packet should take through the network. In its purest form, the

path is specified as a list of hops, and each switch simply pops

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

Figure 8: Simple Leaf-Spine Topology

the stack and forwards the packet accordingly. Source routing has

many advantages—e.g., it eliminates the need for large routing ta-

bles and complex routing protocols, since senders are responsible

for computing paths. One downside, however, is that source routing

does not offer operators the same degree of control as traditional,

destination-based forwarding schemes. With Hydra, operators can

specify and enforce policies that restrict the set of legal paths when

using source routing; any packet that attempts to follow an ille-

gal path will be automatically dropped. For example, an important

property in data center routing is that paths are valley-free, pre-

venting an explosion of suboptimal paths in a fat-tree topology. In

particular, packets may not traverse an link that goes “up” in the

topology after they have already traversed a “down” link.

Indus checker for source routing. Figure 8 depicts the topology
of the simple network we instrumented with Hydra, generalizing

code found in the P4 Tutorial [12]. The network contains a leaf-

spine topology with four switches. All the switches run the same P4

program,which implements a simple source routing scheme, andwe

link the program with the valley-free routing checker written with

Indus, shown in Figure 7.While it is possible to write a general Indus

program to check valley-free routing for any given fat-tree topology,

we leverage the fact that Indus is topology-specific to write an

efficient program that only requires a single control variable and

two bits of telemetry to ensure that a spine switch is visited at

most once. This program consists of a simple state machine that

checks if the current switch is a spine switch and marks the packet

to be dropped if it has already visited a spine switch. Note that

the Indus program is independent of the forwarding P4 code: it

could operate on any routing protocol. And while the forwarding

program operates on egress ports, the Indus program operates at a

higher level, using switch-specific control plane state.

Bug caught by Hydra. In this case study, we artificially injected

a bug into the script used by the sender to add extra invalid hops

to the source route. Using Mininet [34], we generated a number of

paths and verified that Hydra allowed all possible valley free paths

between hosts and successfully dropped any packets that followed

errant paths due to the bug in the sender script.

5.2 Example 2: Application Filtering in Aether
Aether [19] is an open-source edge computing platform that offers

private LTE/5G connectivity. Figure 10 shows an Aether edge de-

ployment with three main elements: (1) small cells that provide LTE

or 5G access to mobile clients such as cameras, sensors, or phones;

(2) servers that run edge-applications exposing low-RTT services to

tele bit <32> ue_ipv4_addr;
tele bit <32> app_ipv4_addr;
tele bit <8> app_ip_proto;
tele bit <16> app_l4_port;
tele bit <8> filtering_action = 0; // 1=deny ,2= allow
control dict <(bit <32>,bit <8>,bit <32>,bit <16),bit

<8>> filtering_actions;

header bit <32> inner_ipv4_src;
/* ... Header variable declarations ... */
header bit <16> outer_udp_dport;

init {
if (inner_ipv4_is_valid) {
// this is an uplink packet

ue_ipv4_addr = inner_ipv4_src;
app_ip_proto = inner_ipv4_proto;
app_ipv4_addr = inner_ipv4_dst;
if (inner_tcp_is_valid) {

app_l4_port = inner_tcp_dport;
} elsif (inner_udp_is_valid) {

app_l4_port = inner_udp_dport;
}

} elsif (ipv4_is_valid) {
// this is a downlink packet

ue_ipv4_addr = outer_ipv4_dst;
app_ip_proto = outer_ipv4_proto;
app_ipv4_addr = outer_ipv4_src;
if (tcp_is_valid) {

app_l4_port = outer_tcp_sport;
} elsif (udp_is_valid) {

app_l4_port = outer_udp_sport;
}

}
filtering_action = filtering_actions [(

ue_ipv4_addr , app_ip_proto , app_ipv4_addr ,
app_l4_port)];

}
telemetry {}
checker {

if (filtering_action == 1 && !to_be_dropped) {
reject; report ((ue_ipv4_addr , app_ip_proto ,

app_ipv4_addr , app_l4_port ,
filtering_action));

}
if (filtering_action == 2 && to_be_dropped) {

report ((ue_ipv4_addr , app_ip_proto ,
app_ipv4_addr , app_l4_port ,
filtering_action));

}
}

Figure 9: Aether application filtering in Indus.

mobile clients; and (3) an SDN fabric of P4-programmable switches

that connects small cells to servers and the Internet [20].

The Aether software stack includes an operator-facing portal

and API for system configuration, a 3GPP-compliant dual-mode

4G/5G mobile core, and ONOS, a distributed SDN controller re-

sponsible for controlling the fabric switches. The fabric provides L3

connectivity by routing IPv4 packets over the spine switches using

Equal Cost Multi-Path (ECMP) forwarding. It supports L2 bridging

and VLAN isolation within a rack, and other common features such

as rerouting in case of failures, learning/advertising routes via BGP,

configuring static-routes, DHCP relay, multicast, and ACLs for filter-

ing. A notable feature in Aether is that the switches help implement

the mobile core User Plane Function (UPF) [37] (i.e., with support

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 10: Aether architecture and topology.

for GTP-tunnel encapsulation/decapsulation, downlink buffering,

accounting, QoS, application-filtering, and slicing).

Aether application filtering.We implemented a wide range of

Hydra checkers for Aether (see Section 6, Table 1), but we focus

here on UPF application filtering, which had a subtle bug we de-

tected using Hydra. Application filtering allows operators to create

slices that connect an isolated group of clients and give them with

bandwidth guarantees. Operators can define filtering rules allowing

clients in a slice to access some edge-applications while denying

access to others. Internet access is considered an application, and

applications can be shared across slices. For example, mobile clients

belonging to the camera-slice are allowed to communicate with an

edge application that analyzes video, but cannot access the Internet.

Mobile clients in the phone-slice have the opposite permissions.

Each slice has a prioritized list of filtering rules of the form:

priority : ip-prefix : ip-proto : l4-port : action

where ip-prefix, ip-port, and l4-port identify the application.

The action can be allow or deny, and the priority is used to dis-

ambiguate in case of overlapping rules. For example, to deny all

traffic by default but allow access to applications using UDP port

81, the operator could use the following rules:

• 20 : 0.0.0.0/0 : UDP : 81 : allow
• 10 : 0.0.0.0/0 : any : any : deny

Now, to integrate with any 3GPP-compliantmobile core, Aether’s

ONOS controller uses a standard 3GPP interface named PFCP. This

interface does not allow to specify application filtering rules globally

for a slice. Instead, rules are sent to ONOS on a per-client basis.

This means that ONOS receives the same application filtering rules

for every client that connects to the network. Thus, in each slice,

there are a set of clients (identified by their IMSI, a unique number

associated with a SIM card) and a list of application filtering rules

for each client. When a new client connects to Aether, the mobile

core looks up the slice configuration for the given IMSI and installs

the user plane rules on switches to terminate the GTP tunnels

and enforce application filtering. The P4 program running on the

switch optimizes ASIC resources by splitting UPF processing across

Figure 11: P4 tables demonstrating application filtering bug

different types of tables, and ONOS is responsible for translating

UPF rules into multiple table entries and updating the entries in

each leaf switch. Hence, while the slice and application filtering

configuration is conceptually simple, ensuring the correctness of

the filtering depends on the interaction of multiple software and

hardware components, each of which could be subject to different

bugs. Bugs and errors could result in the installation of erroneous

entries, which may cause traffic to violate the intended policy.

Hydra checker for application filtering. Figure 9 shows the

Indus program to verify application filtering. The init block first

determines the direction of the packet and then fetches the fields of

interest into tele variables, which it then uses to look up a control
variable to know the filtering action. The filtering action is carried

on the packet (in addition to the packet fields used in the lookup).

A simple control plane application that runs atop ONOS as part

of the rest of the deployment configures the control dictionary

variable. At a high level, it receives the application filtering rules

from the operator at startup, listens for attach requests from mobile

clients, and installs the corresponding entries in the table for the

filtering_actions variable.
Bug caught by Hydra.We now describe a known bug in Aether

that causes traffic to be dropped when updating application filter-

ing. Figure 11 provides a simplified representation of the multiple

P4 tables used to realize the UPF function. To reduce memory uti-

lization (in particular, of TCAM), the Applications table is designed
so that entries can be shared by multiple clients of the same slice.

This table determines the application for a packet by matching

on the IPv4 and L4 port headers, and sets the appropriate app ID

metadata for the packet. The Terminations table then uses the app

and client IDs together to determine whether to forward or drop

the packet. This design requires ONOS to correctly manage shared

application entries when clients connect to the network or when

rules are updated in the operator portal.

Figure 11 shows a scenario where a specific slice is first config-

ured with filtering rules that deny all traffic by default (app ID 1)

but allow traffic for apps on UDP port 81 (app ID 2), which has a

higher priority. When client ID 1 connects, two rules are installed:

the default drop rule for client ID 1 with app ID 1, and the allow

rule for client ID 1 with app ID 2. Thus, client ID 1 can successfully

access applications on UDP port 81. Let’s say the operator later

updates the filtering rules in the portal by expanding the UDP port

range to 81-82 and increasing the priority of that rule, and set the

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

(a) RTT comparison over time

(b) RTT CDF comparison

Figure 12: Performance overhead of Hydra

app ID as 3. When client ID 2 connects, the mobile core installs

client-specific rules with this updated policy, thus ONOS installs

a new table entry with range 81-82 in the Applications table. Due
to the new higher-priority entry for app ID 3, packets from client

ID 1 with UDP port 81 will now get an app ID 3 assigned by the

Applications table. As a result, traffic for client ID 1 on port 81 that

was previously allowed is now dropped since the client-app ID pair

does not exist in the Terminations table. This subtle bug is hard

to catch and even harder to pinpoint the exact location where the

packets are being dropped.

With the checker compiled from Figure 9, Hydra detects that

client ID 1’s packets with UDP port 81 are actually to be dropped

when it should have been allowed. With the report action, such
behavior is explicitly reported to the control plane by the switch

where the inconsistency was detected.

6 EVALUATION
To further evaluate our design, we wrote more checkers for verify-

ing a range of properties in the Aether testbed, including examples

studied previously in the network verification literature. We assess

the expressiveness of Indus and and overheads of our Hydra system.

Table 1 summarizes our results.

6.1 Expressiveness and Conciseness
In Table 1, we show the number of lines of Indus code required to

specify each property and the number of lines of P4 code generated

by our compiler. Indus enables expressing properties succinctly,

typically requiring an order of magnitude less code compared to

the direct implementation in P4. We optimized the programs to

streamline their compilation to hardware. For example, in the In-

dus checker for detecting load imbalance, we maintain a boolean

variable that records whether an imbalance has been detected on

any switch on the network-wide path, which eliminates the need

to iterate over multiple arrays in the block. Overall, our evaluation

shows that Indus, our domain-specific language, can express a wide

range of practical network properties in a concise manner.

6.2 Resource and Performance Overheads
Next, we discuss the overheads associated with deploying Hydra

checkers on Intel Tofino switches.

Resource Overhead. The main resources on Tofino switches that

are relevant to Hydra are the number of pipeline stages used and

the amount of Packet Header Vector (PHV) bits used. Other stage

resources (e.g., SRAMs, TCAMs, etc.) are also important, but their

contribution is implicitly accounted for in the usage of pipeline

stages. We first measure the resource utilization of the baseline

forwarding program that runs in the Aether mobile core and then

measure the resource utilization for each of the implemented prop-

erties when linked with this program.

The baseline program is already at 12 stages. In general, de-

ploying a Hydra checker will require extra resources. However,

in this instance, each of the checkers can be executed in parallel

alongside the base program and they do not increase the number of

stages when linked with the base program. This parallel execution

is made possible by the independence between the forwarding and

checking code. We can see that the overhead on PHV resources is

relatively modest, with higher usage for the programs that collect

more telemetry. For instance, the properties that require the most

PHV are source routing path validation and application filtering.

The former carries a significant chunk of telemetry per hop while

the latter collects all its telemetry in the init codeblock. The PHV

resource usage increases from 44.53% to 52.14% with the application

filtering checker on, a 7.6% difference.

Performance Overhead: Setup. Next, we evaluate if Hydra intro-
duces any performance overhead when deployed in practice with

our Aether testbed. We confirmed that mobile devices connected

to the cellular network had stable Internet connectivity even when

Hydra checkers were running. However, although Aether processes

real-world traffic, the data rates in our testbed are currently not

high enough to fully evaluate Hydra’s performance limits. Thus,

for this evaluation, we tapped and mirrored network traffic from a

production campus network and replayed it towards leaf1 in Fig-

ure 10. As illustrated in Figure 13, we utilize an existing P4Campus

infrastructure [31] at Princeton University. The campus network

has network Test Access Point (TAP) devices installed at several

vantage points in the network, which create a mirror of the traffic

they see on links. We tap two /16 campus network subnets at our

border routers and send the mirrored traffic to a P4-based packet

anonymizer [32], which runs on a programmable switch. This P4

program hashes personally identifiable information like MAC and

IP addresses in a prefix-preserving manner at line rate and deliv-

ers the anonymized traffic to the cellular network. The resulting

anonymized packet trace’s load is around 350K packets per second.

Ethical considerations: All packet traces were inspected and sani-

tized by a campus network operator. Personal data, like MAC and

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Property Name Description LoC Tofino Overhead
Indus P4 Output Stages PHV (%)

Baseline Aether P4 program compiled in fabric-upf profile - - 12 44.53

Multi-Tenancy All traffic through a given ToR switch port, facing a

bare-metal server should belong to the same tenant

14 102 11 48.44

Datacenter uplink load

balance

Uplink ports in data center switches should load balance, to

exact equivalence, between specified ports

37 194 12 48.83

Stateful firewall Flows can only enter the network if a device inside initiated

the communication

23 164 12 49.21

Application filtering Clients should only be able to communicate with designated

applications (as identified by layer 4 ports)

64 126 12 52.14

VLAN isolation Packets should traverse switches in the same VLAN 21 119 11 47.85

Egress port validity Packets should only egress a switch at allowed ports 18 132 12 46.09

Routing validity The first and last hop of any packet should be a leaf switch,

while the rest of the hops are spine switches

21 122 12 46.09

Loops (4 hops) Packets should not visit the same switch twice 20 156 12 48.24

Waypointing All packets should pass through a choke point 22 154 12 47.85

Service chains Packets from switch s to switch t should pass through

switches (𝑤1, 𝑤2, ..., 𝑤𝑛) in that order on the way

26 121 12 47.26

Source routing with path

validation

A packet that is source routed through switches (𝑠, 𝑠1, ..., 𝑡)
should pass them in order

34 211 12 51.56

Table 1: Hydra properties.

ISP 1 ISP 2

Network
TAPs

Line-rate
packet anonymizer

Packet
broker
system

Anonymized
traffic

Data centersDepartments …
Cellular network
with 2x2 fabric

Mirrored
traffic

Campus core
network

Figure 13: TAP architecture for mirroring campus network
traffic to Aether.

IP addresses, were removed or hashed before being accessed by

researchers. Addresses were anonymized in a consistent manner

using a one-way hash with a salt, and payloads are discarded. Our

research was discussed and approved by Princeton’s Institutional

Review Board (IRB).

Performance Overhead: Result. Next, we evaluate if Hydra adds
noticeable performance overhead due to its parsing and checking

logic. We perform a microbenchmark with and without Hydra

enabled and compare the two. Our throughput comparison with

and without Hydra were almost identical with around 20 Gb/s.

However, we were not able to push near to the throughput limit

of the hardware switches, which is is 6.5 TB/s. Thus, we focused

our performance evaluation to measuring Hydra’s overhead on

packet-processing latency. First, we generate bidirectional UDP

traffic at 10 Gb/s on our cellular access network testbed using

iperf3. The background traffic utilizes all links between the two

spine and two leaf switches with ECMP routing. Then, we started

a fast ping (every 0.2 s) from one server attached to the leaf1
switch to another service attached to the leaf2 switch. Figure 12a

shows the round-trip times (RTTs) during the experiment. There

appears to be no significant difference between the baseline and

with all checkers enabled. To further evaluate the latency overhead

statistically, we plotted the cumulative distribution function of our

RTT measurements in Figure 12b, and also performed a t-test [23].
Both results confirm that there is no statistical latency difference

between the baseline and with all checkers on.

7 RELATEDWORK
Our work adds to the growing literature on network verification.

Here, we summarize themost relevant pieces of prior work, grouped

in several topical areas.

Runtime Verification. In runtime verification (RV), a system is

instrumented to send events about its execution to a monitor. While

the system executes, the monitor verifies the behavior against a

specification. When a behavior violation occurs, the monitor sends

feedback to correct the behavior or halt the execution. Over time,

researchers have created more expressive languages to specify prop-

erties in runtime verification systems.Work such as Eagle [6] helped

popularize the use of Linear Temporal Logic to specify properties

in the monitor. Eagle’s powerful logic can express a diverse set of

runtime behaviors, such as requiring each request in an application

to have a corresponding response or limiting the size of a queue.

Eagle also provides significant flexibility in what it monitors: any

system can be instrumented to send a log of events to Eagle as the

structure and content of the logs are user defined.

Static Verification for Networks. There is also a large body of

work on static verification for networks. Earlywork by Xie et al. [50]

proposed using static techniques to reason about reachability in IP

networks. It proposed the now-standard approach of computing

the transitive closure of transfer functions that model the behav-

ior of individual devices and links. Header Space Analysis [28],

Anteater [38], and Veriflow [30] emerged later, and applied this

general approach in the context SDN. To improve the scalability of

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA Renganathan, et al.

their analyses, they developed optimized data structures for trans-

fer functions. Atomic predicates [52] replaces complex classifiers

with simple predicates that can be handled efficiently in backend

solvers. NetKAT [4] is an algebraic framework based on a sound

and complete deductive system and a decision procedure based

on automata [18]. Tools like p4v [35], Acquila [48], and Network

Optimized Datalog (NoD) [36] translate P4 code into representa-

tions that can be verified using staic techniques. Vera [45] and

P4-Assert [21] address the same problems using symbolic execu-

tion, while bf4 [15] infers control-plane constraints automatically.

Gravel [56] formally verifies the software of middle boxes such as

NATs and firewalls. A complementary line of work focuses on con-

trol plane verification. Batfish [17] and Minesweeper [7] statically

analyze configuration files for distributed protocols to verify reach-

ability properties automatically. Recent approaches use abstract in-

terpretation to verify simpler representations of programs [8, 16, 22].

Our work builds on the extensive foundation provided by this prior

work, but uses an approach based on runtime rather than static

techniques.

Runtime Verification for Networks. Early work on runtime

checking for networks focused on generating test or probe pack-

ets [10, 40, 54]. P4Consist proposes adding a newmodule to tag pack-

ets with the path and forwarding rules used to process them [44].

However, P4Consist only adds these tags to special probe packets,

which are generated using a traffic generator, and verification is

performed out-of-band—i.e., the tagged packets are sent to a sep-

arate server for analysis. VeriDP follows a similar approach, but

focuses on detecting inconsistencies between control-plane and

data-plane state [57]. In contrast, Hydra instead uses checkers that

execute directly in the data plane, allowing it to detect violations as

they occur and halt erroneous packets. Offline analysis approaches

also face inherent scalability issues or accuracy tradeoffs due to

sampling. Hydra does not rely on sampling—it performs runtime

checking on every packet. DBVal verifies assertions at runtime by

instrumenting the data plane [33]. However, their checks are tied

to how forwarding is implemented. Thus, the verification code and

system being instrumented are not independent, which could lead

to false negatives if forwarding and checking code have the same

bug. Aragog [53] supports defining properties parameterized on

location, stateful variables, and temporal predicates. Additionally, it

checks every execution trace in the system. Aragog differs from Hy-

dra in that it focuses on distributed network functions, rather than

the data plane itself. In that sense, it is a complementary approach to

Hydra. Aragog requires making modest modifications to the source

code for the network functions, in order to send events of interest

to the verifier. Hydra checks every packet and is independent of

the forwarding code.

Summary.Overall, Hydra builds on ideas that have been developed
for years in the runtime verification and formal methods communi-

ties and applies them to the problem of verifying network behavior.

It provides an easy-to-use specification language for expressing

a rich set of network-wide properties as well as a compiler that

translates these programs into executable code that can be deployed

on network switches. Our approach is expressive, scalable, and op-

erates in-band, detecting and blocking errant packets at line rate

and in real time.

8 CONCLUSION
There is an important difference between catching a packet on the

wrong path immediately versus catching it eventually. If an intruder

is exfiltrating confidential data, one packet may be all it takes; if a

single packet passes between two “isolated” virtual tenants, trust

(and business) is lost. Our approach is to check every packet as it
flows through the network.While it is perhaps an extreme approach,

we think it is essential if we are to automate the closed loop control

of networks and minimize human intervention. Hydra programs

are easy to read and write for a large set of expressive properties.

Our experiences deploying Hydra programs on P4 switches and in

the context of an open-source cellular access network with real-

world traffic shows they create little overhead, yet can catch real

bugs in a live system.

ACKNOWLEDGMENTS
We are grateful to Megan Jung, Bruce Spang, Owolabi Leunsen, and

the participants of the Bellairs Workshop on Network Verification

for early ideas and helpful feedback. This work is supported by the

NSF under grant FMiTF-1918396, the ONR under Contract N68335-

22-C-0411, and DARPA under Contract HR001120C0107.

REFERENCES
[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center net-

works. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), page 19, 2010.

[2] Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule, Ali Kheradmand, Stef-

fen Smolka, Konstantin Weitz, Muhammad Timarzi, Jiaqi Gao, and Minlan Yu.

SwitchV: automated SDN switch validation with P4 models. In ACM Special
Interest Group on Data Communication (SIGCOMM), pages 365–379, 2022.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. Conga: Distributed

congestion-aware load balancing for datacenters. In ACM Special Interest Group
on Data Communications (SIGCOMM), page 503–514, 2014.

[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for

networks. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 113–126, 2014.

[5] Manikandan Arumugam, Deepak Bansal, Navdeep Bhatia, James Boerner, Simon

Capper, Changhoon Kim, Sarah McClure, Neeraj Motwani, Ranga Narasimhan,

Urvish Panchal, Tommaso Pimpo, Ariff Premji, Pranjal Shrivastava, and Rishabh

Tewari. Bluebird: High-performance SDN for bare-metal cloud services. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI),
pages 355–370, 2022.

[6] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based

runtime verification. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), pages 44–57, 2004.

[7] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and DavidWalker. A general approach

to network configuration verification. In ACM Special Interest Group on Data
Communication (SIGCOMM), page 155–168, 2017.

[8] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and DavidWalker. Abstract interpreta-

tion of distributed network control planes. In ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL), 2019.

[9] Nikolaj Bjørner and Karthick Jayaraman. Checking cloud contracts in Microsoft

Azure. In International Conference on Distributed Computing and Internet Tech-
nology (ICDCIT), pages 21–32, 2015.

[10] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and Jennifer Rexford.

A NICE way to test OpenFlow applications. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 127–140, 2012.

[11] Feng Chen and Grigore Roşu. Java-MOP: A monitoring oriented programming

environment for Java. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), page 546–550, 2005.

[12] P4 Language Consortium. P4Lang Tutorials, Fetched July 15th, 2023. https:

//github.com/p4lang/tutorials.

[13] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear

dynamic logic on finite traces. In International Joint Conference on Artificial

https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials

Hydra: Effective Runtime Network Verification ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Intelligence (IJCAI), page 854–860, 2013.
[14] Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register

automata. ACM Transactions on Computational Logic (TOCL), apr 2009.
[15] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. bf4:

Towards bug-free P4 programs. In ACM Special Interest Group on Data Commu-
nication (SIGCOMM), page 571–585, 2020.

[16] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas

Sekar, and George Varghese. Efficient network reachability analysis using a

succinct control plane representation. In USENIX Conference on Operating Systems
Design and Implementation (OSDI), page 217–232, 2016.

[17] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,

Ratul Mahajan, and Todd Millstein. A general approach to network configuration

analysis. In USENIX Conference on Networked Systems Design and Implementation
(NSDI), page 469–483, 2015.

[18] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure Thomp-

son. A coalgebraic decision procedure for NetKAT. In ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL), pages 343–355, 2015.

[19] Open Networking Foundation. Aether: An open source 5G connected edge

platform, 2022. https://opennetworking.org/aether/.

[20] Open Networking Foundation. Software Defined Fabric (SD-Fabric) Release 1.2,

Fetched February 15th, 2023. https://docs.sd-fabric.org/master/release/1.2.0.html.

[21] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto Schaeffer-Filho,

and Marinho Barcellos. Uncovering bugs in P4 programs with assertion-based

verification. In ACM SIGCOMM Symposium on SDN Research (SOSR), 2018.
[22] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan.

Fast control plane analysis using an abstract representation. In ACM Special
Interest Group on Data Communications (SIGCOMM), page 300–313, 2016.

[23] William Sealey Gosset. The probable error of a mean. Biometrika, pages 1–25,
1908.

[24] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. I know what your packet did last hop: Using packet histories to

troubleshoot networks. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 71–85, 2014.

[25] Intel. Intel® Tofino™., Fetched February 10th, 2023. https://www.intel.com/

content/www/us/en/products/network-io/programmable-ethernet-switch/

tofino-series.html.

[26] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhar-

gava, Paul-Andre C Bissonnette, Shane Foster, AndrewHelwer, Mark Kasten, Ivan

Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,

Adrian Power, Neha Milind Raje, and Parag Sharma. Validating datacenters at

scale. In ACM Special Interest Group on Data Communication (SIGCOMM), page
200–213, 2019.

[27] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-

own, and Scott Whyte. Real time network policy checking using header space

analysis. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), page 99–112, 2013.

[28] Peyman Kazemian, George Varghese, and Nick McKeown. Header space analysis:

Static checking for networks. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 113–126, 2012.

[29] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Confluo: Distributed moni-

toring and diagnosis stack for high-speed networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 421–436, 2019.

[30] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten

Godfrey. Veriflow: Verifying network-wide invariants in real time. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages 15–27,
2013.

[31] Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer Rexford. Experience-driven

research on programmable networks. ACM SIGCOMM Computer Communication
Review (CCR), 51(1):10–17, January 2021.

[32] Hyojoon Kim and Arpit Gupta. Ontas: Flexible and scalable online network

traffic anonymization system. In ACM SIGCOMM Workshop on Network Meets AI
& ML (NetAI), pages 15–21, 2019.

[33] K Shiv Kumar, K Ranjitha, PS Prashanth, Mina Tahmasbi Arashloo, U Venkanna,

and Praveen Tammana. DBVal: Validating P4 data plane runtime behavior. In

ACM SIGCOMM Symposium on SDN Research (SOSR), 2021.
[34] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid

prototyping for Software-Defined Networks. In ACM SIGCOMMWorkshop on
Hot Topics in Networks (HotNets), 2010.

[35] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert

Soulé, HanWang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4v: Practical

verification for programmable data planes. In ACM Special Interest Group on Data
Communication (SIGCOMM), page 490–503, 2018.

[36] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and

George Varghese. Checking beliefs in dynamic networks. In USENIX Conference
on Networked Systems Design and Implementation (NSDI), page 499–512, 2015.

[37] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan,

Ajay ThakuR, Larry Peterson, Jennifer Rexford, and Oguz Sunay. A P4-based

5G user plane function. In ACM SIGCOMM Symposium on SDN Research (SOSR),
page 162–168, 2021.

[38] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten

Godfrey, and Samuel Talmadge King. Debugging the data plane with Anteater. In

ACM Special Interest Group on Data Communication (SIGCOMM), page 290–301,
2011.

[39] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A large scale

study of data center network reliability. In ACM SIGCOMM Internet Measurement
Conference (IMC), page 393–407, 2018.

[40] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.

P4Pktgen: Automated test case generation for P4 programs. In ACM SIGCOMM
Symposium on SDN Research (SOSR), 2018.

[41] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.

Abstractions for network update. In ACM Special Interest Group on Data Commu-
nications (SIGCOMM), page 323–334, 2012.

[42] Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi Ventre,

Carmelo Cascone, Daniele Moro, Charles Chan, Nick McKeown, and Nate Foster.

Hydra: Effective network verification (full version), September 2023. Available at

https://www.cs.cornell.edu/~jnfoster/papers/hydra-tr.pdf.

[43] Fabian Ruffy, Jed Liu, Prathima Kotikalapudi, Vojtĕch Havel, Hanneli Tavante,

Rob Sherwood, Vlad Dubina, Volodymyr Peschanenko, Anirudh Sivaraman, and

Nate Foster. P4Testgen: An extensible test oracle for P4. In ACM Special Interest
Group on Data Communications (SIGCOMM), 2023. To appear.

[44] Apoorv Shukla, Seifeddine Fathalli, Thomas Zinner, Artur Hecker, and Stefan

Schmid. P4consist: Toward consistent P4 SDNs. IEEE Journal on Selected Areas in
Communications (JSAC), 38(7):1293–1307, 2020.

[45] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. Debugging P4 programs with Vera. In ACM Special Interest Group
on Data Communication (SIGCOMM), page 518–532, 2018.

[46] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Simplifying datacenter

network debugging with Pathdump. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), page 233–248, 2016.

[47] Praveen Tammana, Rachit Agarwal, andMyungjin Lee. Distributed network mon-

itoring and debugging with SwitchPointer. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 453–456, 2018.

[48] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqing Chen, Yu Zhou,

Li Dai, Feng Yan,MengjingMa,Ming Tang, Jie Lu, XionglieWei, HongqiangHarry

Liu, Ming Zhang, Chen Tian, and Minlan Yu. Aquila: A practically usable verifi-

cation system for production-scale programmable data planes. In ACM Special
Interest Group on Data Communications (SIGCOMM), page 17–32, 2021.

[49] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang, Lihua

Yuan, and Ming Zhang. Netpilot: Automating datacenter network failure miti-

gation. ACM SIGCOMM Computer Communication Review (CCR), 42(4):419–430,
August 2012.

[50] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G. Greenberg,

Gísli Hjálmtýsson, and Jennifer Rexford. On static reachability analysis of IP

networks. In IEEE Conference on Computer Communications (INFOCOM), pages
2170–2183, 2005.

[51] Hongkun Yang and Simon S Lam. Real-time verification of network properties

using atomic predicates. IEEE/ACM Transactions on Networking, 24(2):887–900,
2015.

[52] Hongkun Yang and Simon S. Lam. Real-time verification of network properties

using atomic predicates. IEEE/ACM Transactions on Networking, 24(2):887–900,
April 2016.

[53] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. Ara-

gog: Scalable runtime verification of shardable networked systems. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages 701–
718, 2020.

[54] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Auto-

matic test packet generation. In Emerging Networking EXperiments and Technolo-
gies (CoNEXT), page 241–252, 2012.

[55] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda

Liu, Nick McKeown, and Amin Vahdat. Libra: Divide and conquer to verify

forwarding tables in huge networks. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), page 87–99, 2014.

[56] Kaiyuan Zhang, Danyang Zhuo, Aditya Akella, Arvind Krishnamurthy, and

Xi Wang. Automated verification of customizable middlebox properties with

gravel. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 221–239, 2020.

[57] Peng Zhang, Hao Li, Chengchen Hu, Liujia Hu, Lei Xiong, Ruilong Wang, and

Yuemei Zhang. Mind the gap: Monitoring the control-data plane consistency in

software defined networks. In Emerging Networking EXperiments and Technologies
(CoNEXT), page 19–33, 2016.

https://opennetworking.org/aether/
https://docs.sd-fabric.org/master/release/1.2.0.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.cs.cornell.edu/~jnfoster/papers/hydra-tr.pdf

	Abstract
	1 Introduction
	2 Hydra By Example
	3 The Indus Language
	3.1 Language Design
	3.2 Syntax and Semantics
	3.3 Expressiveness

	4 The Indus Compiler
	4.1 Code Generation
	4.2 Linking
	4.3 Last-Hop vs. Per-Hop Checking

	5 Hydra Case Studies
	5.1 Example 1: Valley-Free Source Routing
	5.2 Example 2: Application Filtering in Aether

	6 Evaluation
	6.1 Expressiveness and Conciseness
	6.2 Resource and Performance Overheads

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

