Frenetic: A High-Level Language
for OpenFlow Networks

Nate Foster, Rob Harrison,
Matthew L. Meola, Michael J.
Freedman, Jennifer Rexford, David
Walker

PRESTO 2010,
Philadelphia, PA 11.28.2010

Background

OpenFlow/NOX allowed us to take back the
network

* Direct access to dataplane hardware
* Programmable control plane via open API

OpenFlow/NOX made innovation possible, not
easy

* Low level interface mirrors hardware

* Thin layer of abstraction

* Few built-in features

So let's give the network programmer some help...

2

OpenFlow Architecture

4)

A4
Controller [g]l Control Messages
y——

» Send packet

= « Add/remove flow
,'_./ % * Statistics Queries
Network Events ’ I
* Flow table miss , : M
 Port status / I \\
* Join/leave <j;1 : \\
* Query responses I
|

E

E?SWItCheS
I

7 —

)

OpenFlow Switch Flow Table
Priority | Pattern Action Counters

©-65535 Physical Port, Link Source/Destination/Type, Forward Bytes, Count
VLAN, Network Source/Destination/Type, Modify
Transport Source/Destination Drop

Programming Networks with NOX
I EEEEEEEEEEEE——————

Application

[Forwarding J

Access Control
* Individual MACs

Monitoring

* Destination addressin * Transport ports

v

-’
In general, program modules do not compose
* If m yields r, and some mflyields], then (m An#) does not yield (r A

Example

cOntmuerE]I

Simple Network Repeater
 Forward packets received on port 1 out 2; vice versa

5

Simple Repeater

NOX Program

\ A 4
def simple repeater(): Controller D]I
Repeat Port 1 to Port 2 A—”
pl = {IN _PORT:1} e
al = [(OFPAT_OUTPUT, PORT_2)]
install(switch, pl, HIGH, al)
Repeat Port 2 to Port 1 2
p2 = {IN_PORT:2}
a2 = [(OFPAT_OUTPUT, PORT 1)]
g install(switch, p2, HIGH, a2))
Flow Table
Priority Pattern Action Counters
HIGH IN PORT:1 OUTPUT: 2 (0,0)

HIGH IN_PORT:2 OUTPUT:1 (0,0)

Example

cOntmuerg]l

Simple Network Repeater with Host Monitoring
 Forward packets received on port 1 out 2; vice versa
* Monitor incoming HTTP traffic totals per host :

Simple Repeater with Host Monitoring

/f; Repeat port 1 to 2

def portl to 2():
pl = {IN_PORT:1}
al = [(OFPAT_OUTPUT, PORT 2)]
install(switch, p1, HIGH, al)

Callback to generate rules per host
def packet in(switch, inport, pkt):
p = {DL_DST:dstmac(pkt)}
pweb = {DL_DST:dstmac(pkt),
DL_TYPE:IP,NW_PROTO:TCP,
TP_SRC:80}
a = [(OFPAT_OUTPUT, PORT_1)]
install(switch, pweb, HIGH, a)
install(switch, p, MEDIUM, a)

def main():
register callback(packet in)

\\> portl to 2()

~

def simple repeater():
Port 1 to port 2
pl = {IN_PORT:1}
al = [(OFPAT_OUTPUT, PORT_2)]
install(switch, pl, HIGH, al)

Port 2 to Port 1

p2 = {IN_PORT:2}

a2 = [(OFPAT_OUTPUT, PORT 1)]
install(switch, p2, HIGH, a2)

J

Priority | Pattern

HIGH
HIGH

{IN_PORT:1}

{DL DST:mac,DL_TYPE:IP TYPE,NW PROTO:TCP, TP SRC:80}

OUTPUT:2
OUTPUT:1

(0,0)
(0,0)

]

OpenFlow/NOX Difficulties

Low-level, brittle rules

* No support for operations like union and
Intersection

Split architecture
 Between logic running on the switch and controller

No compositionality

* Manual refactoring of rules to compose
subprograms

Asynchronous interactions 9

' N A Y T T e |

Our Solution: Frenetic

A High—level Language Frenetic Program
* High-level patterns to .

describe flows :ﬂ T SURMASLIS
* Unified abstraction Run-Time System

« Composition .
uninstall i packet_in

A Run-time System
* Handles module ' .

[} \

interactions |

. Deals with asynchronous ~ <E=74 y—
4 =

behavior

\

OpenFlow Switches

10

Frenetic Version

//; Static repeating between ports 1 and Zﬁ\\
def simple repeater():
rules=[Rule(inport_fp(1), [output(2)]),
Rule(inport fp(2), [output(1l)])]

y ______ /

register_static(rules) Controller D]l
——

[—

per host monitoring es: E(int)
def per_host monitoring():
q = (Select(bytes) *
Where (protocol(tcp) & srcport(80))*

\|

GroupBy([dstmac]) * 1 2
Every(60)) g?
log = Print (“HTTP Bytes:”) -
q >> 1 o Switch
Composition of two separate modules il
def main():

simple_repeater()
per_host monitoring()

N

11

Frenetic Version

//; Static repeating between ports 1 and 2‘\\
def simple repeater():
rules=[Rule(inport_fp(1), [output(2)]),
Rule(inport fp(2), [output(1l)])]
register static(rules)

per host monitoring es: E(int)
def per_host monitoring():
q = (Select(bytes) *
Where (protocol(tcp) & srcport(80))*
GroupBy([dstmac]) *
Every(60))
log = Print (“HTTP Bytes:”)
q > 1

Composition of two separate modules
def main():

simple_repeater()
\\‘per_host_monitoring()

* No refactoring of rules

* Pure composition of
modules

* Unified “see every packet”
abstraction

 Run-time deals with the rest

12

Frenetic Language

Network as a stream of discrete, heterogenous events
* Packets, node join, node leave, status change, time, etc...

Unified Abstraction

* “See every packet”
* Relieves programmer from reasoning about split architecture

Compositional Semantics
» Standard operators from Functional Reactive Programming

(ERP)
Single Value or Event

..... ..'..................@.

Event Stream

Frenetic Run-time System

Frenetic programs
Interact only with the
run-time

* Programs create subscribers
* Programs register rules

Run-time handles the

details
* Manages switch-level rules
* Handles NOX events

* Pushes values onto the
appropriate event streams

Frenetic Program

subscribe
1 E {pkts,hdrs,stats} I

Run-Time System

install
uninstall

packet_in

]
[} |
|

OpenFlow Switches

\

14

Run-time System Implementation

Reactive, microflow based run-time system

Frenetic Program

Packets Subscribe Pmr Stats

& H H &

\

Update Stats]‘
(Monitoring I
L Loop

NOX

Ve

““““ ® Stats In

.....

—Pr Stats Request

@SN |

Frenetic Run-time System

o

Flow
Removed

P> Install Flow

P> Send Packet

15

Optimizing Frenetic

“See every packet” abstraction can negatively
affect performance in the worst case

* Naive implementation strategy

* Application directed

Using an efficient combination of operators, we
can keep packets in the dataplane
* Must match switch capabilities
—Filtering, Grouping, Splitting, Aggregating, Limiting
* Expose this interface to the programmer explicitly

16

Does it Work in Practice?

Frenetic programs perform comparably with pure NOX
* But we still have room for improvement

Learning Web Stats Web Stats Heavy

Switch Static Learning Hitters
Learning

Pure NOX

Lines of Code 121 125

Traffic to Controller (Bytes) g;?j @j 5300 18010
Naive Frenetic

Lines of Code 15 7 19 36

Traffic to Controller (Bytes) 120104 6590 14075 95440

Optimized Frenetic

Lines of Code 16 32
Traffic to Controller (Bytes) [;gjj gij 5368 19360 | -

Frenetic Scalability

Frenetic scales to larger networks comparably with

OX
=t N

801 Frenetic —e—
- NOX ——

o))
o

Traffic to Controller (kB)
N S
CIJ o

Larger Applications

Memcached with dynamic membership
 Forwards queries to a dynamic member set
» Works with unmodified memcached clients/servers

4)

y / / /
Client ||i|set(k,v) y—
get(e/ Y
\M emcached

Defensive Network Switch
* |[dentifies hosts conducting network scanning
* Drops packets from suspected scanners

Servers

19

Ongoing and Future Work

Surface Language
* Current prototype is in Python — to ease transition
* Would like a standalone language

Optimizations
* More programs can also be implemented efficiently

* Would like a compiler to identify and rewrite
optimizations

Proactive Strategy
* Current prototype is reactive, based on microflow rules
* Would like to enable proactive, wildcard rule installation

Network Wide Abstractions

* Current prototype focuses only on a single switch
* Need to expand to multiple switches 20

Questions?

See our recent submission for more details...

http://www.cs.cornell.edu/~jnfoster/papers/frenetic-
draft.pdf

21

	Slide 1: Frenetic: A High-Level Language for OpenFlow Networks
	Slide 2: Background
	Slide 3: OpenFlow Architecture
	Slide 4: Programming Networks with NOX
	Slide 5: Example
	Slide 6: Simple Repeater
	Slide 7: Example
	Slide 8: Simple Repeater with Host Monitoring
	Slide 9: OpenFlow/NOX Difficulties
	Slide 10: Our Solution: Frenetic
	Slide 11: Frenetic Version
	Slide 12: Frenetic Version
	Slide 13: Frenetic Language
	Slide 14: Frenetic Run-time System
	Slide 15: Run-time System Implementation
	Slide 16: Optimizing Frenetic
	Slide 17: Does it Work in Practice?
	Slide 18: Frenetic Scalability
	Slide 19: Larger Applications
	Slide 20: Ongoing and Future Work
	Slide 21: Questions? See our recent submission for more details… http://www.cs.cornell.edu/~jnfoster/papers/frenetic-draft.pdf

