
.

.

Frenetic: Functional Reactive
Programming for Networks

Nate Foster (Cornell)
Mike Freedman (Princeton)
Rob Harrison (Princeton)

Matthew Meola (Princeton)
Jennifer Rexford (Princeton)
David Walker (Princeton)

.

.

.

IBM PLDay 2010

.

.

Photocredit: http://www.øickr.com/photos/adrianblack

Why Programmable Networks?

Security
• Access control
• Traffic isolation

Monitoring
• Usage / billing
• Anomaly detection

Features
• Virtual Private Networks
• Content Distribution
• Resource Indirection
• Anycast

.

.

3

Current State of Play

It’s a mess! [Caldwell et al. ’03, Oppenheimer et al. ’03]

Conöguration is vendor speciöc and complicated

Hodgepodge of mechanisms:
• OSPF / BGP for routing
• ACLs for security
• Netøow for monitoring

Operator errors common and costly
• Outages
• Degraded performance
• Security vulnerabilities

Conöguration checkers and lint-like tools help a bit... but
they are only a “band-aid”, not a robust solution

4

Current State of Play

It’s a mess! [Caldwell et al. ’03, Oppenheimer et al. ’03]

Conöguration is vendor speciöc and complicated

Hodgepodge of mechanisms:
• OSPF / BGP for routing
• ACLs for security
• Netøow for monitoring

Operator errors common and costly
• Outages
• Degraded performance
• Security vulnerabilities

Conöguration checkers and lint-like tools help a bit... but
they are only a “band-aid”, not a robust solution

4

This Talk

1. OpenFlow

2. Examples

3. Frenetic

4. Implementation

5. Current and Ongoing work

5

OpenFlow

Traditional Switch

.

.

Control Plane
• General-purpose hardware
• Runs (distributed) routing protocols
• Manipulates the forwarding table in the

data plane

Data Plane
• Special-purpose hardware
• Implements high-speed forwarding table
• Processes packets at line speed

7

OpenFlow

Key Ideas
• Move control from switch to a stock machine
• Standardize interface between switches and controller

.

.
Switches

Controller

http://www.openflowswitch.org/
8

http://www.openflowswitch.org/

OpenFlow Switch

Switches process packets using rules described by:
• pattern – identify a set of packets
• priority – disambiguate rules with overlapping patterns
• actions – specify processing of packets
• counters – track number and size of packets processed

Example (OpenFlow Rules)

Pattern Priority Actions Counters

{in port=2, trans src=80} HIGH [(OFPAT OUTPUT, PORT 1)
(OFPAT OUTPUT, CONTROLLER)] (3,1455)

{in port=2} LOW [(OFPAT OUTPUT, PORT 1)] (20,12480)

9

OpenFlow Switch

Switches process packets using rules described by:
• pattern – identify a set of packets
• priority – disambiguate rules with overlapping patterns
• actions – specify processing of packets
• counters – track number and size of packets processed

Example (OpenFlow Rules)

Pattern Priority Actions Counters

{in port=2, trans src=80} HIGH [(OFPAT OUTPUT, PORT 1)
(OFPAT OUTPUT, CONTROLLER)] (3,1455)

{in port=2} LOW [(OFPAT OUTPUT, PORT 1)] (20,12480)

9

OpenFlow Controller

Controller runs a program that responds to events in the
network by installing / uninstalling rules and collecting
statistics from counters.

Event Handlers
• switch join(switch)
• switch leave(switch)
• packet in(switch, inport, packet)
• stats in(switch, pattern, stats)

Messages
• install(switch, pattern, priority, action)
• uninstall(switch, pattern)
• query stats(switch, pattern)

10

Examples

Topology

.

.

Controller

Switch

1 2

12

Static Forwarding

..

def static forwarding():
patterns
p1 = {IN PORT:1}
p2 = {IN PORT:2}
actions
a1 = [(OFPAT OUTPUT, PORT 2)]
a2 = [(OFPAT OUTPUT, PORT 1)]
install rules
install(switch, p1, HIGH, a1)
install(switch, p2, HIGH, a2)

.

.

Controller

Switch

1 2

13

Forwarding + Per-Host Monitoring

..

def static forwarding per host monitoring():
patterns
p1 = {IN PORT:1}
p2 = {IN PORT:2}
actions
a1 = [(OFPAT OUTPUT, PORT 2)]
a2 = [(OFPAT OUTPUT, CONTROLLER)]
install rules
install(switch, p1, HIGH, a2)
install(switch, p2, LOW, a2)

..

def packet in(switch, inport, packet):
patterns
p = {DL DST:dstmac(packet)}
pweb = {DL DST:dstmac(packet), DL TYPE:IP,

NW PROTO:TCP, TP SRC:80}
action
a = [(OFPAT OUTPUT, PORT 1)]
install rules
install(switch, pweb, HIGH, a)
install(switch, p, MEDIUM, a)
query counters
query stats(switch, pweb)

.

.

Controller

Switch

1 2

14

Forwarding + Per-Host Monitoring

..

def static forwarding per host monitoring():
patterns
p1 = {IN PORT:1}
p2 = {IN PORT:2}
actions
a1 = [(OFPAT OUTPUT, PORT 2)]
a2 = [(OFPAT OUTPUT, CONTROLLER)]
install rules
install(switch, p1, HIGH, a2)
install(switch, p2, LOW, a2)

..

def packet in(switch, inport, packet):
patterns
p = {DL DST:dstmac(packet)}
pweb = {DL DST:dstmac(packet), DL TYPE:IP,

NW PROTO:TCP, TP SRC:80}
action
a = [(OFPAT OUTPUT, PORT 1)]
install rules
install(switch, pweb, HIGH, a)
install(switch, p, MEDIUM, a)
query counters
query stats(switch, pweb)

.

.

Controller

Switch

1 2

14

OpenFlow Limitations

Low-level interface to switch hardware
• priorities used to disambiguate overlapping rules
• no support for negation
• wildcard vs. exact-match rules

Two-tier programming model
• controller program manipulates rules
• asynchronous callbacks
• tricky race conditions

Program pieces don’t compose
• many programs decompose naturally into modules—e.g.,

forwarding + monitoring + access control
• but difficult to program in a compositional style because in general

the rules manipulated by each module will overlap

15

Frenetic

Frenetic Ingredients

High-level pattern algebra
• Hides details of how rules are implemented on switches
• Includes standard logical operators (e.g., negation)

Uniöed programming model
• Programs “see every packet”
• Based on FRP→ no asynchronous callbacks

Fully compositional
• Programs can operate on overlapping subsets of the traffic
• Run-time system handles switch-level implementation details

Main Challenge: having all these features without
sacriöcing performance.

17

Frenetic Ingredients

High-level pattern algebra
• Hides details of how rules are implemented on switches
• Includes standard logical operators (e.g., negation)

Uniöed programming model
• Programs “see every packet”
• Based on FRP→ no asynchronous callbacks

Fully compositional
• Programs can operate on overlapping subsets of the traffic
• Run-time system handles switch-level implementation details

Main Challenge: having all these features without
sacriöcing performance.

17

Frenetic Core

.. E α event stream carrying values of type α

EF α β operator that transforms an E α into an E β

..

Packets ∈ E packet
Seconds ∈ E int

Apply ∈ (EF a b× E a) → E b
Lift ∈ (a → b) → EF a b
|O| ∈ EF a b → EF b c → EF a c
First ∈ EF a b → EF (a× c) (b× c)

Merge ∈ (E a× E b) → E (a option × b option)
LoopPre ∈ (c× EF (a× c) (b× c)) → EF a b

Calm ∈ EF a a
Filter ∈ (a → bool) → EF a a

Group ∈ (a → b) → EF a (b× E a)
Regroup ∈ ((a× a) → bool) → EF (b× E a) (b× E a)
Ungroup ∈ int option × (b× a → b) → b → EF (c× E a) (c× b)

18

Forwarding + Per-Host Monitoring

..

sum sizes: (packet list) -> int
def sum sizes(l):

return (reduce(lambda n,p:n + size(p),l,0))

per host monitoring ef: EF packet (mac * int)
def per host monitoring ef():

return (Filter(inport fp(2) & srcport fp(80)) |O| # E packet
Group(dstmac gp()) |O| # E (mac * E packet)
ReGroupByTime(30) |O| # E (mac * packet list)
Lift(lambda (m,l):(m,sum sizes(l)))) # E (mac * int)

rules: (rule list)
rules = [Rule(inport fp(1), [output(2)]),

Rule(inport fp(2), [output(1)])]

main function
def per host monitoring():

register static(rules)
stats = Apply(Packets(), per host monitoring ef())
print stream(stats)

19

Ethernet Learning

..

add rule: (mac * packet) * ((mac * rule) list) -> ((mac * rule) list) * ((mac * rule) list)
def add rule(((m,p),t)): . . .

complete rules: ((mac * rule) list) -> (rule list)
def complete rules(t): . . .

learning switch ef: EF packet
def learning switch ef():

return (Group(srcmac gp()) |O| # E (mac * E packet)
Regroup(inport rf()) |O| # E (mac * E packet)
Ungroup(1, lambda n,p:p, None) |O| # E (mac * packet)
LoopPre({}, Lift(add rule)) |O| # E ((mac * rule) list)
Lift(complete rules)) # E (rule list)

main function
def learning switch():

rules = Apply(Packets(), learning switch ef())
register stream(rules)

20

Per-Host Monitoring + Learning

..

def per host monitoring learning switch():
ethernet learning
rules = Apply(Packets(), learning switch ef())
register stream(rules)
per-host monitoring
stats = Apply(Packets(), per host monitoring ef())
print stream(stats)

21

Implementation

.

. OpenFlow Switches

NOX

Run-Time System

 Frenetic Program

install
uninstall packet_in

subscribe
register Packets

22

Implementation

Push-based FRP implementation
• Classic pull-based strategy is not a good öt for networks
• Frenetic implementation based on strategy developed in FrTime

[Cooper and Krishnamurthi ’06]

Subscribe / Register Library
• Programs can subscribe to streams of packets, headers, ints
• They can also register packet-forwarding policies
• Semantics is fully compositional
• Run-time system manages switch-level rules, event handlers, etc.
• Two strategies: proactive (eager) and reactive (lazy)

23

Current and Ongoing Work

Surface Language
• Current prototype is implemented as a Python library
• We want a front end with convenient syntax, typechecker, etc.

Algebraic Optimizer
• Key optimization is moving processing from controller to switches
• Currently programmers must transform programs by hand
• We want an optimizer that rewrites programs automatically

Formal Semantics
• Want a framework for modeling network behavior
• Use to prove optimizations correct
• And to develop new constructs for manipulating traffic atomically

Applications
• Application-level load balancing
• Isolation in multi-tenant networks

24

Questions?

.

.

Collaborators
Mike Freedman, Rob Harrison, Matt Meola,
Jen Rexford, Dave Walker

http://www.cs.cornell.edu/~jnfoster
25

http://www.cs.cornell.edu/~jnfoster

