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1960s: The Software Crisis

...in those days one often encountered the naive expectation that, once 
more powerful machines were available, programming would no longer 
be a problem, for then the struggle to push the machine to its limits 
would no longer be necessary and that was all what programming was 
about, wasn’t it? But in the next decades something completely different 
happened: more powerful machines became available, not just an order 
of magnitude more powerful, even several orders of magnitude more 
powerful. But instead of finding ourselves in the state of eternal bliss of 
all programming problems solved, we found ourselves up to our necks 
in the software crisis!

—Edsger Dijkstra, “The Humble Programmer”



Modern Challenges
(perhaps even crises!)

Large-scale 
distributed 

systems

Shift to 
heterogeneous 

hardware

Security 
(full stop)



Networks play a 
central role in 
modern systems...

But if we can 
program them at 
all, we use the 
analogues of 
machine code!



Status Quo: Bottom-Up Design 
This is how I can 
process packets

Network capabilities defined by:
• Standards bodies
• Distributed protocols
• Equipment vendors

Hard for system owners to build 
networks with the structure and 
properties they want

Custom behaviors must be 
encoded using low-level 
notions: IP addresses, VLANs, 
link weights, etc.



Emerging: Top-Down Design
Network capabilities defined by 
system owners as programs!

Key ingredients:
• Programmable hardware
• Domain-specific languages
• Compilers, verification tools, etc.

This is how you must
process packets



Deep Programmability



Data plane
forwards packets, 
enforces access control, 
monitors flows, etc.

Control Plane
discovers topology, 
computes routes, 
manages policy, etc.

Conventional Network



1. Separate control plane and data plane

Software-Defined Network



2. Pick the right "unit of abstraction" for control plane

Software-Defined Network



3. Standardize run-time configuration APIs

Software-Defined Network



4. Replace control plane with general-purpose machine

Your program goes here!

Software-Defined Network



5. Replace the data plane with programmable hardware

Your program goes here too!

Software-Defined Network
Deep programmability
network infrastructure that 
can be fully programmed: 
from top to bottom and 
from end to end!



Killer Applications (so far...)

Network Virtualization
Virtualize a private 
network, enabling running 
in cloud environments

Traffic Engineering
Optimize network paths, 
reducing cost, latency, 
congestion, etc. 

In-Network Computing
Offload services like 
caching, coordination, 
failure detection, etc. 

Network Monitoring
Implement per-packet 
monitoring that tracks 
paths, delay, causality, etc. 



Programming Model



Dataplane Model

00000001 00000010 00000000 00000011 
00000000 00000011 00000001 10101010 
10111011 01010000 01100101 01110100 
01110010 00110100 00100000 01101001 
01110011 00100000 01100001 01110111 
01100101 01110011 01101111 01101101 
01100101 00100001

00000001 00000011 00000000 00000011 
00000001 10101010 10111011 01010000 
01100101 01110100 01110010 00110100 
00100000 01101001 01110011 00100000 
01100001 01110111 01100101 01110011 
01101111 01101101 01100101 00100001

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

1. Parse
Extract structured packet 
representation

2. Process
Looking headers in routing 
tables, make forwarding decision

3. Deparse
Transform packet back into bits 
and forward along to next hop(s)



Control-Plane API

Switch to controller
• SwitchConnect
• SwitchDisconnect
• PortStatus
• PacketIn
• StatisticsReply

Controller to switch
• InstallRule
• DeleteRule
• ModifyRule
• PacketOut
• StatisticsRequest



SDN’s built-in programming 
model describes behavior in 
terms of device-level constructs
like pipelines of match-action
tables on single switches

Bu
ilt
-In

Fu
nc

ti
on

al A better approach is to use a 
domain-specific model that 
describes behavior using 
simple, composable 
programming abstractions

p

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

set of packetspacket

{⟨pk,..⟩}⟨pk,..⟩

From Pipelines to Functions



DSL Design

Packets → Packet Set

{ }
src = 10.0.0.1
dst = 10.0.0.2
switch = A
port = 1 For experts: yes, we can 

also model functions on 
packet histories, but I’ll 
elide that detail here



{ }
src = 10.0.0.1
dst = 10.0.0.2
switch = A
port = 1

{ }src = 10.0.0.1

dst = 10.0.0.2

switch = A

port = 2

DSL Design

Packets → Packet Set

port := 2

Note: still a pure function! 



A → B

Whole network is 
programmable, 
even the links!

DSL Design



DSL Design

if then

else
p

q

f = n

Conditionals: classify 
traffic and apply 
different policies



f g;

Composition: combine 
functionality specified by 
different program pieces

DSL Design



Loops: specify 
network-wide 

processing in terms of 
iterated steps

DSL Design

while         do
f

a



a,b,c ::= 
| true
| false
| f = n
| not a 
| a and b
| a or b

p,q,r ::= 
| id
| drop
| f := n
| p ; q
| if a then p else q
| while b do p
| A → B

Data Plane DSL: Take I

⚠ Problem: impossible to write a program that produces multiple packets!



Add a broadcast primitive?

flood

⚠ Puzzle: how many packets should flood;flood produce?



p,q,r ::= 
| true
| false
| f = n
| !p
| f := n
| p + q
| p ; q
| p*
| A → B

Data Plane DSL: Take II
Key changes:
• Added union (+) operator, which 

duplicates packets
• Added iteration (*) operator
• Combined tests (a,b) and programs 

(p,q) into a single syntactic category 
(and is ;, or is +)

• Loops, conditionals, and trivial programs 
(id, drop) can be derived

• flood can also be encoded using +



p,q,r ::= 
| true
| false
| f = n
| !p
| f := n
| p + q
| p ; q
| p*
| A → B

DSL is a KAT!
Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

} KAT}NetKAT

Provides guidance for the 
language design and an (almost) 

ready-made verification toolkit



〚p〛

Denotational

Axiomatic Operational
⊢ p ≡ q

Formal Semantics

Kleene’s Theorem
[POPL ‘15]

Soundness + Completeness
[POPL ‘14]

Proof-Carrying Code
[CCS ‘19]



Virtual Compilation
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Virtual Policy

if ip4Dst=10.0.0.3 then 
vport:=3 

else if ip4Dst=10.0.0.4 then 
vport:=4 

else if ip4Dst=10.0.0.6 then 
vport:=6 else

if ip4Dst=10.0.0.7 then 
vport:=7 

else 
drop



Compiler Demo
% frenetic dump virtual vpol.kat
+-----------------------------------+
| Switch 1 | Pattern | Action |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.6 | |
| EthType = 0x800 (ip) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.6 | |
| EthType = 0x806 (arp) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.7 | |
| EthType = 0x800 (ip) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.7 | |
| EthType = 0x806 (arp) | |
|-----------------------------------| 
| InPort = 5 | Output(2) |
| IP4Dst = 10.0.0.3 | |
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Switch = 1

Location = 2

Switch = 2

IP4Dst = 167772166/64

Location = 5

Location = 1

Switch = 3

{[Location := 5]}

IP4Dst = 167772167/64

{}

IP4Dst = 167772163/64

{[Location := 2]}

IP4Dst = 167772164/64

IP4Dst = 167772163/64

Location = 3

Location = 0

Switch = 4

{[Location := 3]} IP4Dst = 167772164/64 IP4Dst = 167772164/64

Location = 4

{[Location := 4]}IP4Dst = 167772166/64

IP4Dst = 167772163/64

{[Location := 1]}

IP4Dst = 167772167/64

IP4Dst = 167772163/64

Location = 2

Location = 0

Switch = 5

{[VSwitch := 1, VPort := 3, Vlan := 65535]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 3, Vlan := 65535]}

{[Location := 2, VSwitch := 1, VPort := 4]}IP4Dst = 167772166/64

{[Location := 2, VSwitch := 1, VPort := 6]}IP4Dst = 167772167/64

{[Location := 2, VSwitch := 1, VPort := 7]}

IP4Dst = 167772163/64

Location = 2

Location = 1

Switch = 6

{[Location := 2, VSwitch := 1, VPort := 3]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 4, Vlan := 65535]}

{[VSwitch := 1, VPort := 4, Vlan := 65535]}IP4Dst = 167772166/64

Location = 6

Location = 0

Switch = 7

{[Location := 6]} IP4Dst = 167772167/64

IP4Dst = 167772163/64

Location = 7

{[Location := 7]}

IP4Dst = 167772164/64

IP4Dst = 167772163/64

IP4Dst = 167772164/64

IP4Dst = 167772166/64

IP4Dst = 167772163/64

Location = 5

Location = 0

{[Location := 5, VSwitch := 1, VPort := 3]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 6, Vlan := 65535]}

{[Location := 5, VSwitch := 1, VPort := 4]}IP4Dst = 167772166/64

{[VSwitch := 1, VPort := 6, Vlan := 65535]}IP4Dst = 167772167/64

{[Location := 5, VSwitch := 1, VPort := 7]}

IP4Dst = 167772163/64

Location = 5

IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 7, Vlan := 65535]}

IP4Dst = 167772166/64

{[Location := 5, VSwitch := 1, VPort := 6]}IP4Dst = 167772167/64

{[VSwitch := 1, VPort := 7, Vlan := 65535]}

NetKAT Automaton

Internally, the compiler exploits the semantic foundation provided by KAT 
to convert the program to an automaton, which then guides the 
generation of match-action forwarding rules



Dynamic Network Updates



So, what about the control plane?
We’ve seen how to raise the level of 
abstraction, going from match-action tables 
to network-wide forwarding functions

But the control plane often needs to make 
changes, in response to events such as:
• Topology changes
• Shifts in traffic demands
• Device or link failures
• Operator-initiated maintenance



Network Updates

VPN
+ 

Public

Internet Routers Firewalls
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Servers

Internal

External



Network Updates

VPN
+ 

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic 
must not reach 
internal servers



Network Updates

VPN
+ 

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic 
must not reach 
internal servers

Configuration A: 
• VPN via Firewall #1
• Public via Firewalls #2-3



Network Updates

Configuration A: 
• VPN via Firewall #1
• Public via Firewalls #2-3
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Configuration B: 
• VPN via Firewalls #1-2
• Public via Firewall #3

Public traffic 
must not reach 
internal servers
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Network Updates

VPN
+ 

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic 
must not reach 
internal servers

Configuration A: 
• VPN via Firewall #1
• Public via Firewalls #2-3

Configuration B: 
• VPN via Firewalls #1-2
• Public via Firewall #3



Network Updates in Practice
Network updates are a frequent 
source of faults including:
• Broken connections
• Access control violations
• Degraded quality of service
• Transient forwarding loops

Common heuristics, like “make 
before break,” do not handle every 
situation that arises in practice



Consistent Updates

Definition [Per Packet Consistency]: an update from A to B 
is per-packet consistent if every packet is either entirely 
processed by A or by B (but not a mixture of the two!)

Theorem [Preservation]: a per-packet consistent update 
preserves every safety property

Intuitively, the problem with naïve updates is that they can 
processes packets with a mixture of old and new configurations

Key insight: view the network as a 
function, rather than a distributed 
collection of routing tables



Two-Phase Updates
Algorithm
• Modify forwarding rules to check packet version
• Install new configuration in network core
• Install configuration at network edge to stamp 
packets with new version

• Wait for all in-flight packets to exit network
• Garbage collect old configurations

Pros
• Handles arbitrary network updates
• Many operations can be parallelized
Cons
• Requires extra memory (2X in worst case)
• Packets must carry version tag



Looking Ahead



P4 Language

• P4: a new-ish DSL for specifying the 
behavior of programmable data planes

• Does not bake in any legacy protocols

• Instead, packet formats and pipeline are 
defined as imperative program

• Supports limited forms of state

• Programs terminate* and can be 
compiled to high-speed hardware



• Formal semantics

• Termination theorem

• Language extension

Reference Interpreter Core Calculus

• Clean-slate implementation

• Architecture “plugins”

• Validated against open-
source compiler

Petr4 Framework
Coq Mechanization

• Mechanized semantics

• Automata model of parsers

• Program equivalence



Emerging Opportunities
Deep programmability provides many opportunities to apply PL ideas to 
networking problems—come join the party!

Relevance and adoption:
• NetKAT-like policy languages used in intent frameworks for SDN 

controllers (Cisco, ONF, OpenDayLight, and others)
• Network virtualization is key technology behind VMware’s NSX
• Consistent updates are used in Google Cloud
• Network verification teams at big companies (Amazon, Intel, VMware, 

Google) and startups (Intentionet, Forward Networks, Veriflow Systems)
• Galois developing a cellular verification framework based on NetKAT
• Growing community of academic and industrial users of Petr4



Some Open Problems...
Language Design: intent models, “chain-of-trust” networks
Compilation: heterogeneous architectures, P4, eBPF, WASM
Verification: compilers, hardware, timing channels, program logics, etc.
“The Edge”: cellular, access, Linux kernel, etc.
Cross-cutting issues:
• Stateful functions
• Failures
• Performance
• ML is coming...
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