Deep Programmability:
A New Lens on Networking

Nate Foster
Cornell & Intel

UN/
\\ (2
S m
o/ |8 B|\a
¥ <
Ny ®
D

'l L =

[S |
..in those days one often encountered the naive expectation that, once
more powerful machines were available, programming would no longer
be a problem, for then the struggle to push the machine to its limits
would no longer be necessary and that was all what programmming was
about, wasn't it? But in the next decades something completely different
happened: more powerful machines became available, not just an order
of magnitude more powerful, even several orders of magnitude more
powerful. But instead of finding ourselves in the state of eternal bliss of
all programming problems solved, we found ourselves up to our necks
in the software crisis!

!

—Edsger Dijkstra, “The Humble Programmer’

1960s: The Software Crisis

Modern Challenges
(perhaps even crises!)

Large-scale Shift to Security

distributed heterogeneous
systems hardware

(full stop)

Networks play a
central rolein
modern systems...

But if we can
program them at
all, we use the
analogues of
machine code!

Status Quo: Bottom-Up Design

This is how | can
process packets

Network capabilities defined by:
e Standards bodies

« Distributed protocols

* Equipment vendors

Hard for system owners to build
networks with the structure and
properties they want

Custom behaviors must be
encoded using low-leve|
notions: IP addresses, VLANS,
ink weights, etc.

Emerging: Top-Down Design

This is how you must
process packets

Network capabilities defined by
system owners as programs!

Key ingredients:

* Programmable hardware

* Domain-specific languages

« Compilers, verification tools, etc.

Conventional Network

Control Plane
discovers topology,
computes routes,
manages policy, etc.

Data plane
\ forwards packets,

enforces access control,

monitors flows, etc.

Software-Defined Network

1. Separate control plane and data plane

Software-Defined Network

2. Pick the right "unit of abstraction” for control plane

Software-Defined Network

3. Standardize run-time configuration APIs

Software-Defined Network
Your program goes here! v

;/

4. Replace control plane with general-purpose machine

Software-Defined Network

/Deep programmability N /ﬁ
network infrastructure that
can be fully programmed:
from top to bottom and =

\from end to end! d

ur program goes here too!

5. Replace the data plane with programmable hardware

Killer Applications (so far...)

WJar
Wwar
wyr

Traffic Engineering
Optimize network paths,

e

g
Network Virtualization
Virtualize a private

network, enabling running
in cloud environments

Network Monitoring
Implement per-packet
monitoring that tracks
paths, delay, causality, etc.

reducing cost, latency,
congestion, etc.

In-Network Computing
Offload services like

caching, coordination,
failure detection, etc.

P > ' ;’ ‘\r e | e SIS .:.'3 w rL
(P . . &*b(')' hx - .‘0*
y o(o). 2b* (2?[[X "{ y =3y g

| \\Ar)’ & ab+4e < é) c(.xv
2]

Tﬂ 2}’ fX _,‘o’v-szf';’j

\ - :v 4’5
> 39544

Igr‘ﬁgrai’ﬁémmg M@dek,. ‘o2

P -

Dataplane Model

HHHE

Match Action
00000001 00000010 80000000 00000011 00000001 P0PPER11 GPEPEES BPES11

00000000 00000011 00001 10101010 00000001 10101010 10111011 01010000

ip.dst = hl forward 1
10111011 01010000 01100101 ©1110100 - p ® - 01100101 01110100 01110010 00110100

01116016 @0110100 80100000 01161061 00100000 01101001 01110011 00100000

01110011 00100000 01100001 01110111 1p. dst = h2 forward 2 01100001 01110111 01100101 01110011
01100101 01110011 01101111 01101101 91101111 01101101 01100101 00100001
01100101 00100001 R

drop

1. Parse 2. Process 3. Deparse

Transform packet back into bits
and forward along to next hop(s)

Extract structured packet Looking headers in routing
representation tables, make forwarding decision

Control-Plane API

Switch to controller Controller to switch

e SwitchConnect e InstallRule
« SwitchDisconnect e DeleteRule
 PortStatus ModifyRule
e PacketlIn PacketOut

« StatisticsReply StatisticsRequest

v

v

From Pipelines to Functions

, e : ‘ P —
< SDN'sbuilt-in programming r—["'= ‘
& model describes behavior in : 5
o— : : ip.dst = hl forward 1
S5 terms of device-level constructs =
o Im ip.dst = h2 forward 2
ike pipelines of match-action " drop
tables on single switches
— A better approach is to use a)
: . acket
S domain-specific model that P] €l C;fpaCketS
= describes behavior using (pk...) {pk,..)}
S simple, composable
LL.

programming abstractions

DSL Design

rc = 10.0.0.1

dﬂ—10002 l////////

For experts: yes, we can
also model functions on

<

packet histories, but I'll
elide that detail here

\

Packets — Packet Set

DSL Design

Note: still a pure function!

ort := 2
dst=10.0.0.2 P
switch = A
port=1

Packets — Packet Set

DSL Design

Whole network is
programmable,
even the links!

" o

S S

DSL Design

Conditionals: classify
traffic and apply
different policies

DSL Design

Composition: combine
functionality specified by
different program pieces

N

@\

e o 2

DSL Design

Loops: specify
network-wide
processing in terms of
iterated steps

while ¥ do

/"\

& & 2

Data Plane DSL: Takel

a’b’c . pJq)r: . .=

id

true dro

false P
f :=n

f=n P ;5 q

hot a if a then p else g

a and b i

oo while b do p
A > B

A Problem: impossible to write a program that produces multiple packets!

Add a broadcast primitive?

M flood /V

&

A Puzzle: how many packets should flood; flood produce?

Data Plane DSL: Take ll

Key changes:

« Added union (+) operator, which
duplicates packets

* Added iteration (*) operator

 (Combined tests (a, b) and programs
(p, g) into a single syntactic category
(andis ;,oris+)

e Loops, conditionals, and trivial programs
(id, drop) can be derived

 flood can also be encoded using +

P,q,r

DSL is a KAT! -

Provides guidance for the

Boolean language design and an (almost)
ready-made verification toolkit
Prechcates
Regukﬂ' GotkAT
Expressmns <

Packet
Primitives

Formal Semantics

— —

Denotational

Soundness + Completeness Kleene's Theorem

Axiomatic Operational
Fp=qg Proof-Carrying Code o

Virtual Compilation

Physical

21® 5 \ Virtual Policy

/ if ip4Dst=10.0.0.3 then
2 ' ! 5 vport:=3

@ @ else if ip4Dst=10.0.0.4 then

vport:=4

3 4 6 7
else if ip4Dst=10.0.0.6 then
3 2/ \2 4 6 5/ \5 7 vport:=6 else
@ @ @ @ if ip4Dst=10.0.0.7 then
0 0 0 0 vport:=7
I J I. | //// else
1

drop

Virtual

Compiler Demo

frenetic dump virtual vpol.kat

InPort
IP4Dst
Ox800 (ip)

InPort
IP4Dst
Ox806 (arp)

IP4Dst

0x800 (ip)

InPort
IP4Dst
EthType = 0x806 (arp)

Output(2)

NetKAT Automaton

Internally, the compiler exploits the semantic foundation provided by KAT
to convert the program to an automaton, which then guides the
generation of match-action forwarding rules

Dynamic Network Updates

So, what about the control plane?

We've seen how to raise the level of
abstraction, going from match-action tables
to network-wide forwarding functions

But the control plane often needs to make
changes, in response to events such as:

* Topology changes

e Shifts in traffic demands

e Device or link failures

e QOperator-initiated maintenance

Network Updates

-

S

Internet Routers Firewalls Servers

Internal

External

- . Network Updates

Public traffic
Must Not reach
internal servers

Internal

External

Internet Routers Firewalls Servers

- . Network Updates

Public traffic
Must Not reach
internal servers

Internal

External

Internet Routers Firewalls Servers

Configuration A:
VPN via Firewall #1

 Public via Firewalls #2-3

(@

Public traffic
must not reach
internal servers

J

. Network Updates

Internet Routers Firewalls Servers

Configuration A: Configuration B:

VPN via Firewall #1

Internal

External

VPN via Firewalls #1-2
 Public via Firewalls #2-3 Public via Firewall #3

- . Network Updates

Public traffic
Mmust Not reach
internal servers

J

Internal

External

Q/ /111

Internet Routers Firewalls Servers

Configuration A: Configuration B:

VPN via Firewall #1 VPN via Firewalls #1-2
 Public via Firewalls #2-3 Public via Firewall #3

. . Network Updates

Public traffic
must not reach
internal servers

J

Internal

External

Q/ 11/

Internet Routers Firewalls Servers

Configuration A: Configuration B:

VPN via Firewall #1 VPN via Firewalls #1-2
 Public via Firewalls #2-3 Public via Firewall #3

- . Network Updates

Public traffic
must not reach
internal servers

Internal

J
- A
[
) g

External

Internet Routers Firewalls Servers

Configuration A:

Configuration B:
* VPN via Firewall #1

VPN via Firewalls #1-2
Public via Firewall #3

 Public via Firewalls #2-3 .

Network Updates in Practice

Network updates are a frequent
source of faults including:

* Broken connections

* Access control violations

* Degraded quality of service
* Transient forwarding loops

Common heuristics, like “make
before break,’do not handle every
situation that arises in practice

amazon

webservices™

At 12:47 AM PDT on April 21st, a network change was
performed as part of our normal scaling activities...

During the change, one of the steps is to shift traffic
off of one of the redundant routers...

The traffic shift was executed incorrectly and the
traffic was routed onto the lower capacity redundant
network.

This led to a “re-mirroring storm”...

During this re-mirroring storm, the volume of
connection attempts was extremely high and nodes
began to fail, resulting in more volumes left needing to
re-mirror. This added more requests to the re-
mirroring storm...

The trigger for this event was a network
configuration change.

Consistent Updates

Intuitively, the problem with naive upd<
processes packets with a mixture of olo

Key insight: view the network as a
function, rather than a distributed
collection of routing tables

Definition [Per Packet Consistency]: an update from Ato B
is per-packet consistent if every packet is either entirely
processed by A or by B (but not a mixture of the two!)

Theorem [Preservation]: a per-packet consistent update

preserves every safety property

\

Two-Phase Updates

Algorithm
- Modify forwarding rules to check packet version
-Install new configuration in network core

-Install configuration at network edge to stamp
packets with new version

- Wait for all in-flight packets to exit network
- Garbage collect old configurations

Pros

* Handles arbitrary network updates

* Many operations can be parallelized
Cons

* Requires extra memory (2X in worst case)
* Packets must carry version tag

¢ ¢ ¢

}
<
}
S
}
<

—
€3
—
—

L win wA
——

e o _ed

s

: STLEETTVIN

i

A
WHEY

: L
1] AN

a

LA
0"~ §aC oow aEw N

A

=
S TR TTHTE
WK AEH BAE
TTERTERE
L LIgTT]

il

ol

P4 Language

P4 a new-ish DSL for specifying the
oehavior of programmable data planes

Does not bake in any legacy protocols

nstead, packet formats and pipeline are
defined as imperative program

Supports limited forms of state

(@

P

Programs terminate® and can be %

compiled to high-speed hardware

Il
=3

T

vy

HEH

Reference Interpreter

* Clean-slate implementation
« Architecture “plugins”

« Validated against open-
source compiler

Petr4 Framework

Core Calculus

I'Fe:T
(g,e) || v

e Formal semantics
e Termination theorem

 Language extension

Coq Mechanization

« Mechanized semantics
« Automata model of parsers

* Program equivalence

Emerging Opportunities

Deep programmability provides many opportunities to apply PL ideas to
networking problems—come join the party!

Relevance and adoption:

NetKAT-like policy languages used in intent frameworks for SODN
controllers (Cisco, ONF, OpenDayLight, and others)

Network virtualization is key technology behind VMware's NSX
Consistent updates are used in Google Cloud

Network verification teams at big companies (Amazon, Intel, VMware,
Google) and startups (Intentionet, Forward Networks, Veriflow Systems)
Galois developing a cellular verification framework based on NetKAT
Growing community of academic and industrial users of Petr4

Some Open Problems...

Language Design: intent models, “chain-of-trust” networks
Compilation: heterogeneous architectures, P4, eBPF, WASM
Verification: compilers, hardware, timing channels, program logics, etc.
“The Edge”: cellular, access, Linux kernel, etc.

Cross-cutting issues:
* Stateful functions

* Failures

* Performance

* MLiscoming..

Thank You

Collaborators

* (Carolyn Anderson (Wesleyan)
* Arjun Guha (Northeastern)

o Dexter Kozen (Cornell)

* Nick McKeown (Intel)

* Mark Reitblatt (Facebook)

* Jennifer Rexford (Princeton)
* (ole Schlesinger (Akita)

« Steffen Smolka (Google)
 Alexandra Silva (Cornell)

o David Walker (Princeton)

* Spiros Eliopoulos (Jane Street)

Www.CcS.cornell.edu/~jnfoster

