
Deep Programmability:
A New Lens on Networking

Nate Foster
Cornell & Intel

1960s: The Software Crisis

...in those days one often encountered the naive expectation that, once
more powerful machines were available, programming would no longer
be a problem, for then the struggle to push the machine to its limits
would no longer be necessary and that was all what programming was
about, wasn’t it? But in the next decades something completely different
happened: more powerful machines became available, not just an order
of magnitude more powerful, even several orders of magnitude more
powerful. But instead of finding ourselves in the state of eternal bliss of
all programming problems solved, we found ourselves up to our necks
in the software crisis!

—Edsger Dijkstra, “The Humble Programmer”

Modern Challenges
(perhaps even crises!)

Large-scale
distributed

systems

Shift to
heterogeneous

hardware

Security
(full stop)

Networks play a
central role in
modern systems...

But if we can
program them at
all, we use the
analogues of
machine code!

Status Quo: Bottom-Up Design
This is how I can
process packets

Network capabilities defined by:
• Standards bodies
• Distributed protocols
• Equipment vendors

Hard for system owners to build
networks with the structure and
properties they want

Custom behaviors must be
encoded using low-level
notions: IP addresses, VLANs,
link weights, etc.

Emerging: Top-Down Design
Network capabilities defined by
system owners as programs!

Key ingredients:
• Programmable hardware
• Domain-specific languages
• Compilers, verification tools, etc.

This is how you must
process packets

Deep Programmability

Data plane
forwards packets,
enforces access control,
monitors flows, etc.

Control Plane
discovers topology,
computes routes,
manages policy, etc.

Conventional Network

1. Separate control plane and data plane

Software-Defined Network

2. Pick the right "unit of abstraction" for control plane

Software-Defined Network

3. Standardize run-time configuration APIs

Software-Defined Network

4. Replace control plane with general-purpose machine

Your program goes here!

Software-Defined Network

5. Replace the data plane with programmable hardware

Your program goes here too!

Software-Defined Network
Deep programmability
network infrastructure that
can be fully programmed:
from top to bottom and
from end to end!

Killer Applications (so far...)

Network Virtualization
Virtualize a private
network, enabling running
in cloud environments

Traffic Engineering
Optimize network paths,
reducing cost, latency,
congestion, etc.

In-Network Computing
Offload services like
caching, coordination,
failure detection, etc.

Network Monitoring
Implement per-packet
monitoring that tracks
paths, delay, causality, etc.

Programming Model

Dataplane Model

00000001 00000010 00000000 00000011
00000000 00000011 00000001 10101010
10111011 01010000 01100101 01110100
01110010 00110100 00100000 01101001
01110011 00100000 01100001 01110111
01100101 01110011 01101111 01101101
01100101 00100001

00000001 00000011 00000000 00000011
00000001 10101010 10111011 01010000
01100101 01110100 01110010 00110100
00100000 01101001 01110011 00100000
01100001 01110111 01100101 01110011
01101111 01101101 01100101 00100001

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

1. Parse
Extract structured packet
representation

2. Process
Looking headers in routing
tables, make forwarding decision

3. Deparse
Transform packet back into bits
and forward along to next hop(s)

Control-Plane API

Switch to controller
• SwitchConnect
• SwitchDisconnect
• PortStatus
• PacketIn
• StatisticsReply

Controller to switch
• InstallRule
• DeleteRule
• ModifyRule
• PacketOut
• StatisticsRequest

SDN’s built-in programming
model describes behavior in
terms of device-level constructs
like pipelines of match-action
tables on single switches

Bu
ilt
-In

Fu
nc

ti
on

al A better approach is to use a
domain-specific model that
describes behavior using
simple, composable
programming abstractions

p

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

Match Action

ip.dst = h1 forward 1

ip.dst = h2 forward 2

* drop

set of packetspacket

{⟨pk,..⟩}⟨pk,..⟩

From Pipelines to Functions

DSL Design

Packets → Packet Set

{ }
src = 10.0.0.1
dst = 10.0.0.2
switch = A
port = 1 For experts: yes, we can

also model functions on
packet histories, but I’ll
elide that detail here

{ }
src = 10.0.0.1
dst = 10.0.0.2
switch = A
port = 1

{ }src = 10.0.0.1

dst = 10.0.0.2

switch = A

port = 2

DSL Design

Packets → Packet Set

port := 2

Note: still a pure function!

A → B

Whole network is
programmable,
even the links!

DSL Design

DSL Design

if then

else
p

q

f = n

Conditionals: classify
traffic and apply
different policies

f g;

Composition: combine
functionality specified by
different program pieces

DSL Design

Loops: specify
network-wide

processing in terms of
iterated steps

DSL Design

while do
f

a

a,b,c ::=
| true
| false
| f = n
| not a
| a and b
| a or b

p,q,r ::=
| id
| drop
| f := n
| p ; q
| if a then p else q
| while b do p
| A → B

Data Plane DSL: Take I

⚠ Problem: impossible to write a program that produces multiple packets!

Add a broadcast primitive?

flood

⚠ Puzzle: how many packets should flood;flood produce?

p,q,r ::=
| true
| false
| f = n
| !p
| f := n
| p + q
| p ; q
| p*
| A → B

Data Plane DSL: Take II
Key changes:
• Added union (+) operator, which

duplicates packets
• Added iteration (*) operator
• Combined tests (a,b) and programs

(p,q) into a single syntactic category
(and is ;, or is +)

• Loops, conditionals, and trivial programs
(id, drop) can be derived

• flood can also be encoded using +

p,q,r ::=
| true
| false
| f = n
| !p
| f := n
| p + q
| p ; q
| p*
| A → B

DSL is a KAT!
Boolean
Predicates

Regular
Expressions

+

Packet
Primitives

+

} KAT}NetKAT

Provides guidance for the
language design and an (almost)

ready-made verification toolkit

〚p〛

Denotational

Axiomatic Operational
⊢ p ≡ q

Formal Semantics

Kleene’s Theorem
[POPL ‘15]

Soundness + Completeness
[POPL ‘14]

Proof-Carrying Code
[CCS ‘19]

Virtual Compilation

2 2

5

5

2

1 1

5

3 4 6 7

0 0 0 0

3
4 6

7

1

2 5

3 4 6 7

Vi
rt
ua

l
Ph

ys
ic
al

Virtual Policy

if ip4Dst=10.0.0.3 then
vport:=3

else if ip4Dst=10.0.0.4 then
vport:=4

else if ip4Dst=10.0.0.6 then
vport:=6 else

if ip4Dst=10.0.0.7 then
vport:=7

else
drop

Compiler Demo
% frenetic dump virtual vpol.kat
+-----------------------------------+
| Switch 1 | Pattern | Action |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.6 | |
| EthType = 0x800 (ip) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.6 | |
| EthType = 0x806 (arp) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.7 | |
| EthType = 0x800 (ip) | |
|-----------------------------------|
| InPort = 2 | Output(5) |
| IP4Dst = 10.0.0.7 | |
| EthType = 0x806 (arp) | |
|-----------------------------------|
| InPort = 5 | Output(2) |
| IP4Dst = 10.0.0.3 | |

2 2

5

5

2

1 1

5

3 4 6 7

0 0 0 0

1

2 5

3 4 6 7}

Switch = 1

Location = 2

Switch = 2

IP4Dst = 167772166/64

Location = 5

Location = 1

Switch = 3

{[Location := 5]}

IP4Dst = 167772167/64

{}

IP4Dst = 167772163/64

{[Location := 2]}

IP4Dst = 167772164/64

IP4Dst = 167772163/64

Location = 3

Location = 0

Switch = 4

{[Location := 3]} IP4Dst = 167772164/64 IP4Dst = 167772164/64

Location = 4

{[Location := 4]}IP4Dst = 167772166/64

IP4Dst = 167772163/64

{[Location := 1]}

IP4Dst = 167772167/64

IP4Dst = 167772163/64

Location = 2

Location = 0

Switch = 5

{[VSwitch := 1, VPort := 3, Vlan := 65535]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 3, Vlan := 65535]}

{[Location := 2, VSwitch := 1, VPort := 4]}IP4Dst = 167772166/64

{[Location := 2, VSwitch := 1, VPort := 6]}IP4Dst = 167772167/64

{[Location := 2, VSwitch := 1, VPort := 7]}

IP4Dst = 167772163/64

Location = 2

Location = 1

Switch = 6

{[Location := 2, VSwitch := 1, VPort := 3]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 4, Vlan := 65535]}

{[VSwitch := 1, VPort := 4, Vlan := 65535]}IP4Dst = 167772166/64

Location = 6

Location = 0

Switch = 7

{[Location := 6]} IP4Dst = 167772167/64

IP4Dst = 167772163/64

Location = 7

{[Location := 7]}

IP4Dst = 167772164/64

IP4Dst = 167772163/64

IP4Dst = 167772164/64

IP4Dst = 167772166/64

IP4Dst = 167772163/64

Location = 5

Location = 0

{[Location := 5, VSwitch := 1, VPort := 3]}IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 6, Vlan := 65535]}

{[Location := 5, VSwitch := 1, VPort := 4]}IP4Dst = 167772166/64

{[VSwitch := 1, VPort := 6, Vlan := 65535]}IP4Dst = 167772167/64

{[Location := 5, VSwitch := 1, VPort := 7]}

IP4Dst = 167772163/64

Location = 5

IP4Dst = 167772164/64

{[Location := 0, VSwitch := 1, VPort := 7, Vlan := 65535]}

IP4Dst = 167772166/64

{[Location := 5, VSwitch := 1, VPort := 6]}IP4Dst = 167772167/64

{[VSwitch := 1, VPort := 7, Vlan := 65535]}

NetKAT Automaton

Internally, the compiler exploits the semantic foundation provided by KAT
to convert the program to an automaton, which then guides the
generation of match-action forwarding rules

Dynamic Network Updates

So, what about the control plane?
We’ve seen how to raise the level of
abstraction, going from match-action tables
to network-wide forwarding functions

But the control plane often needs to make
changes, in response to events such as:
• Topology changes
• Shifts in traffic demands
• Device or link failures
• Operator-initiated maintenance

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic
must not reach
internal servers

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic
must not reach
internal servers

Configuration A:
• VPN via Firewall #1
• Public via Firewalls #2-3

Network Updates

Configuration A:
• VPN via Firewall #1
• Public via Firewalls #2-3

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Configuration B:
• VPN via Firewalls #1-2
• Public via Firewall #3

Public traffic
must not reach
internal servers

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic
must not reach
internal servers

Configuration A:
• VPN via Firewall #1
• Public via Firewalls #2-3

Configuration B:
• VPN via Firewalls #1-2
• Public via Firewall #3

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic
must not reach
internal servers

Configuration A:
• VPN via Firewall #1
• Public via Firewalls #2-3

Configuration B:
• VPN via Firewalls #1-2
• Public via Firewall #3

Network Updates

VPN
+

Public

Internet Routers Firewalls

1

2

3

Servers

Internal

External

Public traffic
must not reach
internal servers

Configuration A:
• VPN via Firewall #1
• Public via Firewalls #2-3

Configuration B:
• VPN via Firewalls #1-2
• Public via Firewall #3

Network Updates in Practice
Network updates are a frequent
source of faults including:
• Broken connections
• Access control violations
• Degraded quality of service
• Transient forwarding loops

Common heuristics, like “make
before break,” do not handle every
situation that arises in practice

Consistent Updates

Definition [Per Packet Consistency]: an update from A to B
is per-packet consistent if every packet is either entirely
processed by A or by B (but not a mixture of the two!)

Theorem [Preservation]: a per-packet consistent update
preserves every safety property

Intuitively, the problem with naïve updates is that they can
processes packets with a mixture of old and new configurations

Key insight: view the network as a
function, rather than a distributed
collection of routing tables

Two-Phase Updates
Algorithm
• Modify forwarding rules to check packet version
• Install new configuration in network core
• Install configuration at network edge to stamp
packets with new version

• Wait for all in-flight packets to exit network
• Garbage collect old configurations

Pros
• Handles arbitrary network updates
• Many operations can be parallelized
Cons
• Requires extra memory (2X in worst case)
• Packets must carry version tag

Looking Ahead

P4 Language

• P4: a new-ish DSL for specifying the
behavior of programmable data planes

• Does not bake in any legacy protocols

• Instead, packet formats and pipeline are
defined as imperative program

• Supports limited forms of state

• Programs terminate* and can be
compiled to high-speed hardware

• Formal semantics

• Termination theorem

• Language extension

Reference Interpreter Core Calculus

• Clean-slate implementation

• Architecture “plugins”

• Validated against open-
source compiler

Petr4 Framework
Coq Mechanization

• Mechanized semantics

• Automata model of parsers

• Program equivalence

Emerging Opportunities
Deep programmability provides many opportunities to apply PL ideas to
networking problems—come join the party!

Relevance and adoption:
• NetKAT-like policy languages used in intent frameworks for SDN

controllers (Cisco, ONF, OpenDayLight, and others)
• Network virtualization is key technology behind VMware’s NSX
• Consistent updates are used in Google Cloud
• Network verification teams at big companies (Amazon, Intel, VMware,

Google) and startups (Intentionet, Forward Networks, Veriflow Systems)
• Galois developing a cellular verification framework based on NetKAT
• Growing community of academic and industrial users of Petr4

Some Open Problems...
Language Design: intent models, “chain-of-trust” networks
Compilation: heterogeneous architectures, P4, eBPF, WASM
Verification: compilers, hardware, timing channels, program logics, etc.
“The Edge”: cellular, access, Linux kernel, etc.
Cross-cutting issues:
• Stateful functions
• Failures
• Performance
• ML is coming...

Thank You
Collaborators
• Carolyn Anderson (Wesleyan)
• Arjun Guha (Northeastern)
• Dexter Kozen (Cornell)
• Nick McKeown (Intel)
• Mark Reitblatt (Facebook)
• Jennifer Rexford (Princeton)
• Cole Schlesinger (Akita)
• Steffen Smolka (Google)
• Alexandra Silva (Cornell)
• David Walker (Princeton)
• Spiros Eliopoulos (Jane Street)

www.cs.cornell.edu/~jnfoster

