Formal Abstractions for
Packet Scheduling

Mohan, Liu, Foster, Kappe, Kozen

’

X

X

SDN made networks a
programmable. x .

. —~.Torres Vedras

eeeee

7
=]

l

Mg
Vila Franca

Z'Xira -
— AIVgrca do . '

Ribatejo

] . -
Barreiro
Costada ‘ N K,
Caparica Npmora /‘
;\ -‘

SDN made networks a
programmable. x .

. —~.Torres Vedras

eeeee

,

Mg
Vila Franca

carly goal: routing.

Ribatejo

‘ dz'xira -
— __~Alverca do . '
4

] . -
Barreiro
Costada ‘ N K,
Caparica Npmora /‘
;\ -‘

SDN made networks a
programmable. x .

. —~.Torres Vedras

Farly goal: routing. PRy

,

{ .
Vila Franca

But now we need SR A
control over scheduling. NN

dares
-' “‘ S
'y Barreiro K ,
Costada { By
Caparica ~\p 10 ,
‘
.A\ .\‘

SDN made networks

programmable.
carly goal: routing. ,,,,
But now we need , e .

~——Alvercado
Ribatejo

control over scheduling.

SDN made networks

B Ali{ggca do
Ribatejo

programmable.
carly goal: routing. ;
But now we need , e .

control over scheduling.

Basic tools work fine...

XD\
\ -
_ -~ S i -
Barreiro -‘
L n 6 “ﬁ(

»

SDN made networks
1%

programmable.

carly goal: routing. (

de'Xira

But now we need 1\

control over scheduling. /
Basic tools work fine...

V5, o AV
n;

D, .
; ’ Mar da Palha]
4
Lisbon
! Barreiro .
Ag‘arid.a’ fgina ‘\‘

|/
Vs C A

A
~—~

SDN made networks
1%

programmable.

carly goal: routing. <

de'Xira

But now we need 1\

control over scheduling. p
Basic tools work fine...

V5, o AV
n;

D, .
; ’ Mar da Palha]
4
Lisbon
! Barreiro .
Ag‘arid.a’ fgina ‘\‘

-
Ves C A

A
~—~

But modern scheduling
requires more.

= l

Vila Franca
deXira

B Ali{ggca do
Ribatejo

But modern scheduling
requires more.

= traffic goes to either
Porto or lorres Vedras.

eeeeeee

/

f .
Vila Franca
deXira

B Ali{ggca do
Ribatejo

-

)/

‘\ —— -

2

] : .
Barreiro
Costada " - K,
Capmysic: \

But modern scheduling
requires more.

eeeee

= traffic goes to either I
~orto or lorres Vedras. O e

/

deXira

B Ali{ggca do
Ribatejo

Goal:

INnterleave R and B;
iNterleave P ana |I.

-

J/

-

—

Barreirof*
Costada_ () g K,
Lar pric A

/)

I

2

But modern scheduling
requires more.

= traffic goes to either
Porto or lorres Vedras.

Goal:

But modern scheduling

‘/
requires more. !,

R traffic goes to either < < 5
Al

Ribatejo

/i

3

Goal:

ara

-

m
ar
\

N
Bar
e
\

New plan!

=~/
Ribamar

14

<Torres Ve?ras
|)

Alenquer _

7

)~]
’ ' //
Vila Franca
de'Xira

Alvercado
Ribatejo

/i

'm

New plan!

X

que
=

/
‘ nte r‘ eave Torres‘Veciiras
small, medium, and large <

packets. o -y,

Z ‘ deA'Xira
Alileugca

do
Py

rel(

N
Bar
e
\

New plan!

X

que
=

/
‘ nte r‘ eave Torres‘Veciiras
small, medium, and large <

packets. o -y,

Z ‘ deA'Xira
Alileugca

do
Py

3

rel(

N
Bar
e
\

New plan!
J

X

‘ nte r‘ eave Torres‘Veciiras |
small, medium, and large < "e
packets. A o]

Alilerca*do
Ribatejo

/i

3

rel(

N
Bar
e
\

NO general way to deploy our gadget.

NO general way to deploy our gadget.

(>

A human needs a O
range of trees.

NO general way to deploy our gadget.

(>

A human needs a S 1he haraware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

NO general way to deploy our gadget.

this work

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

Aside: PIFO trees interleave R and B;
iNterleave P and |.

Aside: PIFO trees interleave R and B;
iNterleave P and |.

Aside: PIFO trees interleave R and B;
iNterleave P and |.

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!
How do we pop It/

Aside: PIFO trees interleave R and B;
iNterleave P and |.

This behaves like a queue!

How do we pop It/
How do we push into it

B3, Bo, P_z, B4, P

Aside: PIFO trees interleave R and B;

Aside: PIFO trees interleave R and B;

Aside: PIFO trees interleave R and B;

Bs, Bs, P2, By, P

Aside: PIFO trees interleave R and B;

Bs, Bs, P2, By, P

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

Bs, Bs, P2, By, P

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

BS! BZ! P_Z! B15 31 BS, PZ, BQ, T1, B‘I, P‘]

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

BS! BZ! P_Z! B15 31 BS, 32, BZ,?‘I, B‘], E‘]

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

Aside: PIFO trees interleave R and B;

iNterleave P and |.
m

Key Insignt

Key Insignt

A PIFO tree manifests a
programming language.

Key Insignt

A PIFO tree manifests a
programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt

A PIFO tree manifests a

. S =
programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a B, —>

programming language.

A program IS precisely a 1 &

scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

Key Insignt
Path: [(2,7q),(B1,1,)]

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

Key Insignt

A PIFO tree manifests a
programming language.

A program IS precisely a
scheaduling algorithm.

free language

shape expressivity

Path: [(2,77),(B1,7)]

Which leads to some very PL-ey questions:

free language

shape expressivity

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”
Compare expressivity of trees”

Which leads to some very PL-ey questions:

free language

shape expressivity

Compare expressivity of languages”
Compare expressivity of trees”

Compile a program so it runs against a new tree”

NoO general way to-deptey-our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

9

NoO general way to-deptey-our gadget.

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

9

NoO general way to-deptey-our gadget.

compilation

(D

A human neeas a . 1he hardware wants
range of trees. to support one tree.

9

Contributions

Contributions

Formal model of PIFO trees

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

10

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

Compiler

10

Contributions

Formal model of PIFO trees

General theorems of expressiveness
w.r.1. tree shape

Compiler

Simulator

10

EXpressivity of trees

Irees with more leaves are more expressive.
laller trees are more expressive.

11

EXpressivity of trees

Irees with more leaves are more expressive.
laller trees are more expressive.

Captured elegantly by:

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

SOuUrce

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

— — —
— —

SOuUrce

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

EXpressivity of trees

SOuUrce

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

Compiling programs

OO0l

Compiling programs

goleli
e

transient

Compiling programs

1,3,1,2,3,1,2,3

1
i

2\3
L] [

Compiling programs

1,3,1,2,3,1,2,3
1 2

N
1 2

1,3,1,2,3,1,2,3

1

2\3
I I I

Compiling programs

1,2,1,2,2,1,2,2
] 2

N
1 2

1,3,1,2,3,1,2,3

1

2\3
I I I

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

1,2,1,2,2,1,2,2

13

Compiling programs

1,3,1,2,3,1,2,3

1

2\3
I I I

1,2,1,2,2,1,2,2

13

Compiling programs

B 1!3!1!2!3!1!2!3

1

2\3
I I I

1,2,1,2,2,1,2,2

13

Compiling programs

1,2,1,2,2,1,2,2

Path: [(2,77), ...]

B 1!3!1!2!3!1!2!3

1
i

2\3
L] [

Compiling programs

1,2,1,2,2,1,2,2
1

Path: [(2,7), ...]
B

1
i

2\3
L] [

Compiling programs

B 1!2!1!2!271!2!2
] 2

]
1 2

Path: [(2,7), ...]
B

1

2\3
I I I

Compiling programs
Path: [(2, 7), (1, 7), ...]
B

] 2

]
1 2

Path: [(2,7), ...]
B

1

2\3
I I I

Compiling programs
Path: ((2,rq), (1,19), ...]
B

] 2

]
1 2

Path: [(2,7), ...]
B

1

2\3
I I I

Compiling programs
Path: ((2,rq), (1,19), ...]
B

] 2

]
1 2

Path: [(2,7), ...]
B

1

2\3
I I I

Compiling programs
Path: ((2,rq), (1,19), ...]
B

] 2

]
1 7

Path: [(2,7), ...]
B

1
i

2\3
L] [

Given an embedding, we lift
t to arrive at a compller. Path: [(2,r), (1,1y), ...]

B 152,251,2,251,252
] 2

]
1 7

Path: [(2,7), ...]
B

1
i

2\3
L] [

Generating embeddings automatically!

Generating embeddings automatically!

Homomorphic embedaing.
Map root to root, leaves to leaves. Respect ancestry.

Generating embeddings automatically!

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

Generating embeddings automatically!

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.

Generating embeddings automatically!

Homomorphic embedaing.
Vlap root to root, leaves to leaves. Respect ancestry.

Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.
2. It target tree Is Itself heterogeneous.

Workflow

8] [RR

D] [WrQ: 10/40/50

15

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

logical o i

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

G

But the hardware supports
a regular-branching binary tree.

15

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

G

But the hardware supports
a regular-branching binary tree.

NO problem.
Here’s how I'll use that tree.

15

Workflow

WFQ: 40/40/20 WFQ 40/40/20

o i = RR
./[l) }Qr 10<W50
ogical ® i & 0

D]

NO problem.
Here’s how I'll use that tree.

Workflow

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

WFQ: 40/40/20

YRR
wac} 10/40/50
: j\c
F

actual

Simulation

WFQ: 40/40/20

e

o i o
D WFQ: 10/40/50

AN

logical o i

WFQ: 40/40/20

YRR
wac} 10/40/50
: j\c
F

actual

Simulation

WFQ: 40/40/20
o =
logical o =

WFQ: 40/40/20

RR

<
ﬂ./ : WFQ: 10/40/50

actual

Simulation

WFQ: 40/40/20

o =
logical o =

WFQ: 40/40/20

RR

<
ﬂ./ : WFQ: 10/40/50

actual

Underlying formalism

Underlying formalism

neN ts € Topo”

* € Topo Node(ts) € Topo

neN ts € Topo” p € PIFO({1,..., n})

p € PIFO(Pkt) V1 < i < n.gs|i] € PIFOTree(ts|i])
Leaf(p) € PIFOTree(x) Internal(gs, p) € PIFOTree(Node(ts))
Topo Topo
r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
Topo Topo
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree

A general way to deploy PIFO trees.

A general way to deploy PIFO trees.

| et the hardware
SUPPOrt Some tree.

A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

A general way to deploy PIFO trees.

X

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.

Formal Abstractions for
Packet Scheduling

Mohan, Liu, Foster, Kappe, Kozen

cs.cornell.edu/~amohan

Path: [(2,ry), (1,17), ...]
tree L ___, language g

shape expressivity

1 2
B

e
" ..

cs.cornell.edu/~amohan

