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Iwo new algorithms,
pboth starting with heterogeneous source trees.

1. If target tree Is regular d-ary for some @.
2. It target tree Is Itself heterogeneous.
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neN ts € Topo”

* € Topo Node(ts) € Topo

neN ts € Topo” p € PIFO({1,..., n})

p € PIFO(Pkt) V1 < i < n.gs|i] € PIFOTree(ts|i])
Leaf(p) € PIFOTree(x) Internal(gs, p) € PIFOTree(Node(ts))
Topo Topo
r € Rk ts € Topo” 1<i<n r € Rk pt € Path(ts[i])
r € Path(x) (i,r) :: pt € Path(Node(ts))
Topo Topo
PUSH(p, pkt,r) = p’ push(gs[i], pkt, pt) = ¢’ PUSH(p, i,r) = p’

push(Leaf (p), pkt,r) = Leaf(p") push(Internal(gs, p), pkt, (i,r) :: pt) = Internal(gs[i/q’], p")
PIFOTree Path PIFOTree




A general way to deploy PIFO trees.



A general way to deploy PIFO trees.

| et the hardware
SUPPOrt Some tree.



A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



A general way to deploy PIFO trees.

X

Compilable”

(D

| et the human O | et the hardware
orogram against some tree. support some tree.



Formal Abstractions for
Packet Scheduling

Mohan, Liu, Foster, Kappe, Kozen

cs.cornell.edu/~amohan



Path: [(2,ry), (1,17), ...]
tree L ___, language g

shape expressivity

1 2
B

e
" ..

cs.cornell.edu/~amohan



