
Formal Abstractions for
Packet Scheduling
Mohan, Liu, Foster, Kappé, Kozen

2

SDN made networks
programmable.

2

SDN made networks
programmable.

Early goal: routing.

2

SDN made networks
programmable.

Early goal: routing.

But now we need
control over scheduling.

2

SDN made networks
programmable.

Early goal: routing.

But now we need
control over scheduling.

2

SDN made networks
programmable.

Early goal: routing.

But now we need
control over scheduling.

Basic tools work fine…

2

SDN made networks
programmable.

Early goal: routing.

But now we need
control over scheduling.

FIFO
Basic tools work fine…

2

SDN made networks
programmable.

Early goal: routing.

But now we need
control over scheduling.

FIFO
Basic tools work fine…

PIFO

3

But modern scheduling
requires more.

3

R traffic goes to either
Porto or Torres Vedras.

But modern scheduling
requires more.

3

Interleave R and B;
 interleave P and T.

R traffic goes to either
Porto or Torres Vedras.

Goal:

But modern scheduling
requires more.

3

R traffic goes to either
Porto or Torres Vedras.

…
==

… …
=

…=
Goal:

But modern scheduling
requires more.

3

R traffic goes to either
Porto or Torres Vedras.

…
==

… …
=

…=
Goal:

But modern scheduling
requires more.

PIFO Tree

4

PIFO Tree

New plan!

4

PIFO Tree

Interleave .
small, medium, and large

packets.

New plan!

4

PIFO Tree

Interleave .
small, medium, and large

packets.

New plan!

 S L M

= ==

4

PIFO Tree

Interleave .
small, medium, and large

packets.

New plan!

 S L M

= ==

No general way to deploy our gadget.

5

No general way to deploy our gadget.

A human needs a
range of trees.

5

…

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

5

…

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

5

?…

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

5

?…

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

5

?… this work

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

5

?…

this work

this work

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1, 2

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1, 2

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1, 2

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1, 2

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

 2, 2, 1

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?

interleave R and B;

 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

B3, B2, P2, B1, P1

1 2
This behaves like a queue!

6

Aside: PIFO trees

How do we pop it?
How do we push into it?

interleave R and B;

 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1

push T1

B3, B2, P2, B1, P1

1 2 1 2

 2, 2, 1, 2, 1

 P2, P1

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1

push T1

B3, B2, P2, B1, P1

1 2 1 2

 2, 2, 1, 2, 1

 P2, P1

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

 2, 2, 1, 2, 1

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

 2, 2, 1, 2, 1

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

 2, 2, 1, 2, 1

 B3, B2, B1 P2, P1

push T1

B3, B2, P2, B1, P1 B3, P2, B2, T1, B1, P1

1 2 1 2

T1,

1,

6

Aside: PIFO trees

interleave R and B;
 interleave P and T.

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a
scheduling algorithm.

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a
scheduling algorithm.

B1

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

A program is precisely a
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

B1

7

Key Insight

 2, 2, 1, 2, 1

……………………

1 2

A PIFO tree manifests a
programming language.

tree
shape

language
expressivity

A program is precisely a
scheduling algorithm.

B1

Path: [(2,),(B1,)]r1 r2

2

B1

8

Which leads to some very PL-ey questions:

tree
shape

language
expressivity

8

Which leads to some very PL-ey questions:

tree
shape

language
expressivity

Compare expressivity of languages?

8

Which leads to some very PL-ey questions:

tree
shape

language
expressivity

Compare expressivity of languages?
Compare expressivity of trees?

8

Which leads to some very PL-ey questions:

tree
shape

language
expressivity

Compare expressivity of languages?
Compare expressivity of trees?

Compile a program so it runs against a new tree?

The hardware wants
to support one tree.

A human needs a
range of trees.

9

…

No general way to deploy our gadget.

The hardware wants
to support one tree.

A human needs a
range of trees.

9

…

No general way to deploy our gadget.

some
sufficiently  

expressive tree

The hardware wants
to support one tree.

A human needs a
range of trees.

9

…

No general way to deploy our gadget.

some
sufficiently  

expressive tree

compilation

10

Contributions

Formal model of PIFO trees

10

Contributions

Formal model of PIFO trees

10

General theorems of expressiveness
w.r.t. tree shape

Contributions

Formal model of PIFO trees

10

Compiler

General theorems of expressiveness
w.r.t. tree shape

Contributions

Formal model of PIFO trees

10

Simulator
Compiler

General theorems of expressiveness
w.r.t. tree shape

Contributions

Expressivity of trees

Trees with more leaves are more expressive.
Taller trees are more expressive.

11

Expressivity of trees

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

Trees with more leaves are more expressive.
Taller trees are more expressive.

11

Captured elegantly by:

Expressivity of trees

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

11

so
ur

ce

ta
rg

et

Expressivity of trees

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

11

so
ur

ce

ta
rg

et

Expressivity of trees

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

11

so
ur

ce

ta
rg

et

Compiling programs

…

…

12

…

…

…

…

 1 2 3
1 2

1 2

Compiling programs

…

…

12

…

…

…

…

 1 2 3
= == 1 2

1 2

Compiling programs

…

…

12

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2

Compiling programs

…

…

12

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

12

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

12

…

…

…

…

⅓ ⅔

1 2 3
= == 1 2

1 2==

Compiling programs

…

…

12

…

…

…

…

 1 2 3
= == 1 2

1 2

Compiling programs

…

…

12

…

…

…

…

 1 2 3
= == 1 2

1 2

rootroot

Compiling programs

…

…

12

…

…

…

…

 1 2 3
= == 1 2

1 2

transient

rootroot

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

21

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

21

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B

= ==

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2
Path: [(2, ?), (1, ?), …]

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2
Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2
Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Compiling programs

13

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

 1, 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2
Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

13

Given an embedding, we lift
it to arrive at a compiler.

1 2

 1, 3, 1, 2, 3, 1, 2, 3

… …

3
…

B 1, 2, 3, 1, 2, 3, 1, 2, 3

= ==
Path: [(2,), …]r1

…

…

2

…

2

1

 1, 3, 1, 2, 3, 1, 2, 3

 3, 2, 3, 2, 3 2, 1, 2, 1, 2

B

 1, 2, 1, 2, 1, 2

21

 1, 2, 1, 2, 2, 1, 2, 2 1, 2, 2, 1, 2, 2, 1, 2, 2
Path: [(2, ?), (1, ?), …]Path: [(2,), (1,), …]r1 r1

Generating embeddings automatically!

14

Generating embeddings automatically!

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

14

Generating embeddings automatically!

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

14

Two new algorithms,
both starting with heterogeneous source trees.

Generating embeddings automatically!

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

14

Two new algorithms,
both starting with heterogeneous source trees.

1. If target tree is regular d-ary for some d.

Generating embeddings automatically!

Homomorphic embedding.
Map root to root, leaves to leaves. Respect ancestry.

14

Two new algorithms,
both starting with heterogeneous source trees.

1. If target tree is regular d-ary for some d.
2. If target tree is itself heterogeneous.

Workflow

15

Workflow

15

logical

Workflow

15

But the hardware supports
a regular-branching binary tree.

logical

Workflow

15

But the hardware supports
a regular-branching binary tree.

No problem.
Here’s how I’ll use that tree.

logical

Workflow

15

No problem.
Here’s how I’ll use that tree.

logical

Workflow

15

logical

actual

15

logical

actual

Simulation

15

logical

actual

Simulation

15

logical

actual

Simulation

Underlying formalism

16

Underlying formalism

16

Path PIFOTreePIFOTree

Topo

Topo

Topo

Topo

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

Let the human
program against some tree.

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

Let the human
program against some tree.

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

Let the human
program against some tree.

Compilable?

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

Let the human
program against some tree.

Compilable?

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

Let the human
program against some tree.

Compilable?

17

A general way to deploy PIFO trees.

Let the hardware
support some tree.

18

Let the human
program against some tree.

A general way to deploy PIFO trees.

Let the hardware
support some tree.

18

Let the human
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware
support some tree.

18

Let the human
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware
support some tree.

18

Let the human
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware
support some tree.

19

Let the human
program against some tree.

A general way to deploy PIFO trees.

Let the hardware
support some tree.

19

Let the human
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Let the hardware
support some tree.

19

Let the human
program against some tree.

Compilable?

A general way to deploy PIFO trees.

Formal Abstractions for
Packet Scheduling
Mohan, Liu, Foster, Kappé, Kozen

cs.cornell.edu/~amohan

Formal Abstractions for
Packet Scheduling
Mohan, Liu, Foster, Kappé, Kozen

cs.cornell.edu/~amohan

