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Introduction. Software-defined networking (SDN) makes it possible to control an entire network in software, by writing programs
that tailor network behavior to suit specific applications and environments. Unfortunately, developing correct SDN programs is easier
said than done. SDN programmers today must deal with several complications:

• Two-tiered architecture: An SDN “program” has two distinct components: the controller program itself and the packet-
processing rules installed on switches. These pieces have intricate dependencies that make reasoning difficult—e.g., installing
or removing a rule can prevent the controller from receiving future network events. Hence, a programmer must reason about
the behavior of the controller program, the rules on switches, and the interactions between the two via asynchronous messages.

• Low-level operations: SDN platforms such as OpenFlow force programmers to use a low-level API to express high-level
intentions, which makes reasoning about SDN unnecessarily hard. Recent revisions of OpenFlow expose even more hardware
details, such as multiple typed tables, port groups, and vendor-specific features, which makes the problem worse.

• Event reordering: Hardware switches employ a number of techniques to maximize performance, including reordering con-
troller messages. This makes the semantics of SDN programs highly non-deterministic, further complicating reasoning. For
example, in the absence of barriers, a switch may process messages from the controller in any order.

Together, these complications make it difficult to reason rigorously about SDN programs. Even establishing basic reachability
properties—e.g., the program provides connectivity, correctly enforces access control policies, or is free of loops—involves intricate
reasoning that exceeds the capabilities of most programmers.

Our goal is to provide a mathematical foundation for software-defined networking that can be used to build and verify high-
level SDN tools. A programmer who uses these tools will be assured that certain specified formal guarantees will not be violated.
To this end, we have developed a low-level model of SDN, called Featherweight OpenFlow. This model is based on the informal
OpenFlow specification, but has a precise mathematical definition that makes it suitable for formal reasoning. We have implemented
Featherweight OpenFlow in the Coq theorem prover as an executable artifact that can be used to build practical, high-level tools.
Using this executable model, we have built a verified controller for the NetCore policy language [3] that addresses several serious
bugs that were present in our original unverified controller. We have also built an automatic property-checking tool for NetCore
policies, and have developed libraries of theorems that capture key correctness properties involving controllers and flow tables. We
expect these libraries will be useful in other developments.

This talk will present an overview of our approach, our main results, and our verified controller. A forthcoming paper in the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI) describes our system in further detail [2].

Vision. In other fields of computing, techniques ranging from testing to formal modeling to full-blown verification have been
successfully used to build reliable systems. For example, in processor development, automated theorem proving routinely uncovers
deep bugs in designs before they become costly errors in silicon; avionics developers use program analysis to verify critical safety
properties of the embedded software running on airplanes; and operating system vendors have successfully used model checking to
eliminate whole classes of bugs in device drivers. Yet, until recently, networks have largely resisted analysis using formal techniques.

Our vision is a mathematical foundation for SDNs that enables and facilitates formal network reasoning. Recent advances in for-
mal methods have made it possible to precisely model systems of realistic size. In particular, operational semantics have been used
to model the behavior of complex systems such as the C programming language, x86 processors, and even whole operating systems.
We seek to develop detailed models of SDNs that support reasoning about essential network functionality such as forwarding, as
well as complex features such as bandwidth, queues, controller resources, and failures. With these models, researchers can commu-
nicate their ideas concisely and unambiguously; developers of SDN controller platforms and tools can verify that their features are
implemented correctly; and users and network operators can be assured that critical safety properties are correctly enforced.
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Figure 1: Verified controller stack.

Contributions. Featherweight OpenFlow models key features of OpenFlow networks,
including the semantics of switches, flow tables, and links, and all essential sources of
asynchrony (control message and packet reordering). The model is implemented in Coq
and is thus an executable artifact. Using Featherweight OpenFlow as a foundation, we have
built a verified software stack (depicted in the figure). The stack implements a compiler
from NetCore to flow tables, a flow table optimizer, and a controller. All these components
are verified to be correct: the only unverified component is the low-level serialization of
OpenFlow messages (which could also be verified if desired).

We have established two fundamental correctness results for our system:

• Simple Controller Correctness Principles: Proving from scratch that a given con-
troller correctly implements a given packet-processing function is a formidable task.
Doing so requires reasoning about intricate details such as asynchrony in the network
and the possibility of message reordering. We have developed a generic reasoning
technique that dramatically simplifies the proof task. To verify a controller, it is
only necessary to prove two natural properties: (i) the controller program must im-
plement the packet-processing function, and (ii) each switch must approximate the
packet-processing function and otherwise send packets to the controller. For most
controllers, proving these properties is straightforward.
This result encapsulates a large amount of intricate reasoning about OpenFlow pro-
grams and packages it up into a generic controller-correctness theorem. This is a
powerful result: to establish correctness for a new controller, we do not have to start
from scratch; we only have to prove two simple properties. Thus, controllers that
use our technique can safely provide high-level abstractions to SDN applications.

• Compiler Correctness and Flow Table Manipulation Library: Using our theorem , we rapidly developed (and formally verified
in Coq!) several different controllers that use various schemes for managing the rules installed on switches. In particular,
we built a compiler from a high-level SDN policy language, NetCore [3], to flow tables. NetCore policies have a simple,
high-level semantics that is also more expressive than flow-tables, since NetCore supports many different ways to compose
policies. We verified that the compiler and run-time system are semantics-preserving: the compiler translates NetCore policies
into equivalent flow-tables, and the run-time system correctly installs these rules on switches. In the course of developing our
verified implementation, we uncovered several bugs in our previous work on NetCore as well as other SDN policy languages.
The key tool we use is a library of flow table transformation functions and associated theorems, none of which are specific to
NetCore. This library precisely states how flow tables match packets (including subtle dependencies in patterns); it includes
operations to compose and transform flow tables in several ways; and it proves several useful properties about these operations.
Using these theorems, we built and verified a generic flow table optimizer that is part of our stack.

Future work. We hope that our SDN model will serve as a useful foundation for building other tools. For example, the model could
be used as a test-oracle for OpenFlow switches, or as an engine for an OpenFlow software model-checker, in the style of NICE [1].
The model could also be used to develop property-checking tools for high-level abstractions. We have built such a tool for NetCore
based an encoding in first-order logic extended with fixed points.

The model can also serve as a foundation for future extensions to OpenFlow and complementary APIs. We designed Feather-
weight OpenFlow to be extensible by modeling individual devices as independent processes. The first version of our model elides
communication errors and failures, but it would be easy to account for them by adding rules that drop or modify packets non-
deterministically. It is also easy to add new kinds of devices such as switches with additional capabilities (e.g., queues).
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