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Abstract

We propose a novel approach to the well-knoview update problerfor the case of tree-structured data: a domain-
specific programming language in which all expressions @ehdirectional transformations on trees. In one di-
rection, these transformations—dubbedses—map a “concrete” tree into a simplified “abstract view”; retother,
they map a modified abstract view, together with the origomadcrete tree, to a correspondingly modified concrete
tree. Our design emphasizes both robustness and ease @uasanteeing strong well-behavedness and totality
properties for well-typed lenses.

We identify a natural mathematical space of well-behaveditgictional transformations over arbitrary structures,
study definedness and continuity in this setting, and stateeise connection with the classical theory of “update
translation under a constant complement” from databasesth@éh instantiate this semantic framework in the form
of a collection oflens combinatorshat can be assembled to describe transformations on fféese combinators
include familiar constructs from functional programmimgfposition, mapping, projection, conditionals, recomsi
together with some novel primitives for manipulating trégslitting, pruning, copying, merging, etc.). We illusta
the expressiveness of these combinators by developing heruph bi-directional list-processing transformations as
derived forms. An extended example shows how our combisatm be used to define a lens that translates between
a native HTML representation of browser bookmarks and argeabstract bookmark format.



1 Introduction

Computing is full of situations where one wants to transfeome structure into a different form—v@&w—in such a
way that changes made to the view can be reflected back asespgddhe original structure. Thisew update problem
is a classical topic in the database literature, but hasrdzeten little studied by programming language researchers.

This paper addresses a specific instance of the view updaléepr that arises in a larger project called Har-
mony [38]. Harmony is a generic framework for synchronizirege-structured data—a tool for propagating updates
between different copies of tree-shaped data structuossilgy stored in different formats. For example, Harmony
can be used to synchronize the bookmark files of severareiffaveb browsers, allowing bookmarks and bookmark
folders to be added, deleted, edited, and reorganized ifmwser and propagated to the others. The ultimate aim
of the project is to provide a platform on which a Harmony pesgmer can quickly assemble a high-quality synchro-
nizer for a new type of tree-structured data that is storedstandard low-level format such as XML. Other Harmony
instances currently in daily use or under development ahelsynchronizers for calendars (Palm DateBook, ical, and
iCalendar formats), address books, slide presentatibmstsred documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize disparata flzrmats, we define one common abstract view and
a collection oflensegthat transform each concrete format into this abstract .viemr example, we can synchronize
a Mozilla bookmark file with an Internet Explorer bookmarleflby transforming each into aabstract bookmark
structureand synchronizing the results. Having done so, we need tottekupdated abstract structures and perform
the corresponding updates to the concrete structures., €aah lens must include not one lwb functions—one
for extracting an abstract view from a concrete one and &ndtr pushing an updated abstract view back into the
original concrete view to yield an updated concrete view.dAkthese thgetandputbackcomponents, respectively.
The intuition is that the mapping from concrete to abstractommonly some sort of projection, so thetdirection
involves getting the abstract part out of a larger concrgteture, while thegoputbackdirection amounts to putting a
new abstract part into an old concrete structure. We preseoncrete example of this process in Section 2.

The difficulty of the view update problem springs from a furrdantal tension betweesxpressivenesmdrobust-
ness The richer we make the set of possible transformationsgeidirection, the more difficult it becomes to define
corresponding functions in thputbackdirection so that each lens is battell behaved-its getandputbackbehaviors
fit together in a sensible way—amatal—its getandputbackfunctions are defined on all the inputs to which they may
be applied.

To reconcile this tension, any approach to the view updaiblpm must be carefully designed with a particular
application domain in mind. The approach described heraried to the kinds of projection-and-rearrangement
transformations on trees and lists that we have found ufafirhplementing Harmony instances. It does not directly
address some well-known difficulties with view update in thssical setting of relational databases—such as the
difficulty of “inverting” queries involving joins—though & hope that our work may suggest new attacks on these
problems.

A second difficulty concernsase of useln general, there are many ways to equip a gigetfunction with a
putbackfunction to form a well-behaved and total lens; we need somamns of specifying whicputbackis intended
that is natural for the application domain and that does matlive onerous proof obligations or checking of side
conditions. We adopt a linguistic approach to this issueppsing a set of lensombinators—a small domain-specific
language—in which every expression simultaneously sgschbth aget function and the correspondinmtback
Moreover, each combinator is accompanied byme declarationdesigned so that the well-behavedness and—for
non-recursive lenses—totality of composite lens expoesstan be verified by straightforward, compositional ckeck
(Proving totality of recursive lenses, like ordinary resiue programs, requires global reasoning that goes beyond
types.)

The first step in our formal development, in Section 3, is tdgimg a natural mathematical space of well-behaved
lenses over arbitrary data structures. There is a good fiéadriory to be explored at this semantic level, before we
fix the domain of structures being transformed or the syndaxvfiting down transformations. First, we must phrase
our basic definitions to allow the underlying functions indes to be partial, since there will in general be structures
to which a given lens cannot sensibly be applied. The setgwdtares to which walo intend to apply a given lens
are specified by associating it with a type of the fatm= A, whereC'is a set of concrete “source structures” and
A is a set of abstract “target structures.” Second, we defirmiamof well-behavedness that captures our intuitions
about how thegetandputbackparts of a lens should behave in concert. (For example, ifseetliegetpart of a lens



to extract an abstract viewfrom a concrete view and then use thputbackpart to push the very sameback into

¢, we should get back.) Third, we use standard tools from domain theory tandafionotonicity and continuity for
lens combinators parameterized on other lenses, estalgliatfoundation for defining lenses by recursion(which we
need because the trees that our lenses manipulate may irageaee arbitrarily deep nested structure—e.g., when
they represent directory hierarchies, bookmark foldecs).g=inally, to allow lenses to be used to create new cdacre
structures rather than just updating existing ones (whaht@appen, for example, when new records are added to a
database in the abstract view), we show how to adjoin a dp'eeissing” element to the structures manipulated by
lenses and establish suitable conventions for how it iddtea

With these semantic foundations in place, we proceed taagynid/e first (Section 4) present a group of generic
lens combinators (identities, composition, and consjaatlsich can work with any kind of data. Next (Section 5),
we focus attention on tree-structured data and presentaaewere combinators that perform various manipulations
on trees (hoisting, splitting, mapping, etc.) and show howgsemble these primitives, along with the generic com-
binators from before, to yield some useful derived formscti®a 6 introduces another set of generic combinators
implementing various sorts of bi-directional conditionélve defer these to a separate section for the sake of getting
to concrete examples early, and because they are amongakigrtiprimitives). Section 7 gives a more ambitious
illustration of the expressiveness of these combinatorgrplementing a number of bi-directional list-processing
transformationsas derived forms; our main example is arbetionall i st fi | t er lens whosegutbackdirection
performs a rather intricate “weaving” operation to recongbapotentially updated abstract list with the concrete lis
elements that were filtered away by tipet Section 8 further illustrates the use of our combinatorgat-world lens
programming by walking through a substantial example @erfvom the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat diffezgitn of the lens design space: lenses for dealing
with relational data encoded as trees. We define three mamitigpes—a “flattening” combinator that transforms a
list of (keyed) records into a bush, a “pivoting” combinattwait can be used to promote a key field to a higher position
in the tree, and a “transposing” combinator related to thergain operation on databases. The first two combinators
play an important role in Harmony instances for relatioratbdsuch as address books encoded as XML trees.

Section 10 surveys a variety of related work and states aggreorrespondence (amplified in [37]) between our
well-behaved lenses and the closely related idea of “updatslation under a constant complement” from databases.
Section 11 sketches directions for future research.

2 A Small Example
Suppose our concrete treés a small address book:

Pat {]Phone — 333- 4444
. — URL — http://pat.com
Chris ﬂPhone — 888- 9999 ﬂ
URL — http://chris.org

(We draw trees sideways to save space. Each set of hollowlmartes corresponds to a tree node, and edch-“...”
inside denotes a child labeled with the stridgThe children of a node are unordered. To avoid clutter, vareadge
leads to an empty tree, we usually omit the bracesithgymbol, and the final childless node—e.33- 4444”
above actually stands fov{]‘333- 4444 — {[]}[}.” When trees are linearized in running text, we separateian with
commas for easier reading.)

Now, suppose that we want to edit the data from this concretein a simplified format where each name is
associated directly with a phone number.

_ (|Pat — 333- 4444
¢ = Y chris — 888-9999

Why would we want this? Perhaps because the edits are going p@rformed by synchronizing this abstract tree
with another replica of the same address book in which no URttrination is recorded. Or perhaps there is no
synchronizer involved, but the edits are going to be peréatiny a human who is only interested in phone information



and whose screen should not be cluttered with URLs. Whatbeareason, we are going to make our changes to the
abstract tree, yielding a new abstract tre¢ of the same form but with modified contenEor example, let us change
Pat 's phone number, dro@hr i s, and add a new friend,0.

,_ [|Pat — 333-4321
“ = 3o~ 555-6666

Lastly, we want to compute a new concrete treeflecting the new abstract treé That is, we want the parts of
¢’ that were kept when calculating(e.g.,Pat 's phone number) to be overwritten with the correspondifigrmation
froma’, while the parts of that were filtered out (e.gPat 's URL) have their values carried over fram

Pat 1 Phone — 333-4321
;L URL — http://pat.com

© = Phone — 555- 6666
Jo — )
URL — http://google.com

We also need to “fill in” appropriate values for the partgofin particular,Jo’s URL) that were created in’ and for
which ¢ therefore contains no information. Here, we simply setdRe to a constant default, but in general we might
want to compute it from other information.

Together, the transformations frano a and froma’ andc to ¢/ form a lens. Our goal is to find a set of combinators
that can be assembled to describe a wide variety of lensesdnase, natural, and mathematically coherent manner.
(Just to whet the reader’s appetite, the lens expressidnnipdements the transformation sketched above is written
map (f ocus Phone {URL — http://googl e. cont).)

3 Semantic Foundations

Although many of our combinators work on trees, their seiantderpinnings can be presented in an abstract setting
parameterized by the data structures (“views”) manipdlatelenseg. In this section—and in Section 4, where we
discuss generic combinators—we simply assume some fixéd skviews; from Section 5 on, we will choogéto

be the set of trees.

Basic Structures

When f is a partial function, we writef(a) | if f is defined on argument and f(a) = L otherwise. We write
fla) Cbfor f(a) = LV f(a) = b. We writedom(f) for the set of arguments on whighis defined. Wher$ C U,
we write f(S) for {r | s € S A f(s) | A f(s) = r}. We take function application to be strict, i.¢(g(z)) | implies

g(z) |.

3.1 Definition [Lenses]: A lens! comprises a partial functiol” from U to U, called theget functionof /, and a
partial function™\, from/ x U to U, called theputback function

The intuition behind the notatioris”™ andl™\, is that thegetpart of a lens “lifts” an abstract view out of a concrete
one, while theputbackpart “pushes down” a new abstract view into an existing cetecview. We often say “put
into ¢ [usingl]” instead of “apply theputbackfunction [of{] to (a, ¢).”

INote that we are interested here in the final wéenot the particular sequence of edit operations that was testransforma into o/. This
is important in the context of Harmony, which is designedupport synchronization of off-the-shelf applications,ard in general we only have
access to the current states of the replicas, rather thaice of modifications; the tradeoffs between state-basedracelbased synchronizers are
discussed in [39].

2We use the word “view” here in a slightly different sense tisame of the database papers that we cite, where a viewgigrythat maps
concrete to abstract states—i.e., it is a function thateémh concrete database state, picks out a view in our sense.



3.2 Definition [Well-behaved lenses]:Let be a lens and lef' and A be subsets dff. We say that is awell behaved
lens from C to A, writterl € C' = A, iff it maps arguments i@’ to results in4 and vice versa

L/7(C)c A (GET)
INAXxC)CC (PuT)

and itsgetandputbackfunctions obey the following laws:

INN(I /¢, c)Ce forallce C (GETPUT)
L (IN(a, ¢)) CEa forall (a,c) € AxC (PUTGET)

We call C thesourceand A thetargetin C = A. Note that a giverdi may be a well-behaved lens fro@ to A
for many differentC's andAs; in particular, every is trivially a well-behaved lens frorfi to (). Conversely, the
everywhere-undefined lens belongsita= A for everyC andA.

Intuitively, the GETPUT law states that, if wgetsome abstract viewfrom a concrete view and immediatelyputback
a (with no modifications) inta:, we must get back exactly(if both operations are defined).UPGET, on the other
hand, demands that tipaitbackfunction must capture all of the information contained ia #bstract view: if putting
aviewa into a concrete view yields a viewc’, then the abstract view obtained frafms exactlya.

An example of a lens satisfyingu? GET but not GETPUT is the following. Suppos€' = string x int and
A = string, and defing by:

1/ "(s,n) = s
l\(S/, (Svn)) = (S/,O)

Thenl\, (I (s,1), (s,1)) = (s,0) # (s, 1). Intuitively, the law fails because thpeitbackfunction has “side effects™
it modifies information from the concrete view that is noteefed in the abstract view.

An example of a lens satisfyingegPuT but not RUITGET is the following. LetC' = string and A = string x
int, and defin€ by :

/s = (s,0)
IN((s',n),s) = &

PUTGET fails here because some information contained in the attstiew does not get propagated to the new
concrete view. For example,” (1\,((s',1), s)) =178 = (s/,0) £ (s, 1).

The GETPUT and RUTGET laws reflect fundamental expectations about the behavitemsies; removing either
law significantly weakens the semantic foundation. We may ebnsider an optional third law, called FPUT:

IN(@, I\ (a,c) EiN (d,c) foralla,a’ € Aandce C.

This law states that the effect of a sequence of pathacls is (modulo undefinedness) just the effect of the second:
the first gets completely overwritten. Alternatively, aieerof changes to an abstract view may be applied either
incrementally or all at once, resulting in the same final cetecview. We say that a well-behaved lens that also
satisfies BTPUT is very well behavedBoth well-behaved and very well behaved lenses correstmnell-known
classes of “update translators” from the classical datbtesature (see Section 10).

The foundational development in this section is valid fothbwell-behaved and very well behaved variants of
lenses. However, when we come to defining our lens combisn&botree transformations in Section 5, we will not
require RITPUT because one of our most important lens combinatap, fails to satisfy it for reasons that seem to
us pragmatically unavoidable(see Section 5).

For now, a very simple example of a lens that is well behavadbuvery well behaved can be constructed as
follows. Consider the following lens, whefé = string x int andA = string. The second component of each
concrete view intuitively represents a version number.

I/ "(s,n) = s

, ~ (s,m) if s=4¢
IN (s, (¢,n) = (s,n41) ifs%s



Thegetfunction ofl projects away the version number and yields just the “datid’ @dhe putbackfunction overwrites
the data part, checks whether the new data part is the sarhe akitone, and, if not, increments the version number.
This lens satisfies both&PuTt and RUTGET but not RUTPUT, as we havé\ (s, I\, (¢, (¢,n))) = (s,n + 2) #

(s,n+1)=1\.(s, (¢,n)).

A final important property of lenses fstality(with respect to a given source and target).

3.3 Definition [Totality]: Alens! € C = A is said to betotal, written! € C < A, if C C dom(l") and
A x C Cdom(I\).

The reasons for considering both partial and total lensstedd of building totality into the definition of well-
behavedness are much the same as in conventional funciéomgalages. In practice, we always want lenses to be
total® to make Harmony synchronizers work predictably, lenses imeislefined on the whole of the domains where
they are used; thgetdirection should be defined for any structure in the concsete and theputbackdirection
should be capable of putting back any possible updatedorefsim the abstract sét. All of our primitive lenses

are designed to be total, and all of our lens combinators wiaplenses to total lenses—with the sole, but important,
exception of lenses defined by recursion (to which we wilhtur a moment); as usual, recursive lenses must be
constructed in the semantics as limits of chains of increggidefined partial lenses. At the level of types, the type
annotations we give for our lens combinators can be usedt@pghatanywell-typed lens expression is well-behaved,
but only recursion-free expressions can be shown total bypéetely compositional reasoning; for recursive lenses,
more global arguments are required.

Basic Properties

We now explore some simple but useful consequences of thddess.

3.4 Definition: Let f be a partial function fromd x C to C andP C A x C. We say thaff is injective onP if it is
injective (in the standard sense) in the first componentgdiments drawn fronP—i.e., if, for all viewsa, a’, andc
with (a,c¢) € Pand(a’,c) € P, if f(a,c) | andf(a’,c) |, thena # o' implies f(a, c) # f(d’,¢).

3.5Lemma: If I € C = A, thenl\is injective on{(a,¢) | (a,c) e AXxC A 1 (I\(a, ) |}.

Proof: LetP = {(a,c) | (a,¢) € AxC A 1,/(I\\(a, c)) |}, and chooséa,c) € P and(da’,c) € P with
a’ # a. Suppose, for a contradiction, tHat, (a, ¢) =1\, (¢’, ¢). Then, by the definition oP and rule RTGET, we
havea =171\, (a, ¢c) =11\, (¢/, ¢) = d/; hencea = o/, a contradiction. O

The main application of this lemma is the following corajlarhich provides an easy way to show that a total lens
is notwell behaved. We used it many times, while designing our doatbrs, to quickly generate and test candidates.

3.6 Corollary: If [ € C <= A, thenl™\, is injective onA x C.

An important special case arises when thgbackfunction of a lens is completely insensitive to its concrete
argument.

3.7 Definition: A lens! is said to beobliviousif I\ (a, ¢) =1\ (a, ¢) forall a,c,c’ € U.

Oblivious lenses have some special properties that make simapler to reason about than lenses in general. For
example:

3Indeed, well-behavedness is somewhat trivial in the alesehtotality: foranyfunction! ~ from C to A, we can obtain a well-behaved lens
by takingl™\, to be undefined on all inputs—or, very slightly less triwiato be defined only on inputs of the forth,” ¢, ¢).

4Since we intend to use lenses to build synchronizers, thategdstructures here will be the results of synchronizatiat a fundamental
property of the core synchronization algorithm in Harmamyhat, if all of the updates between synchronizations ottjust one of the replicas,
then the effect of synchronization will be to propagate ladise changes to the other replica. This implies thaptitbackfunction in the lens
associated with the other replica must be prepared to aecgpialue from the abstract domain. In other settings, @iffenotions of totality may
be appropriate. For example, Hu, Mu, and Takeichi [21] hageed that, in the context of interactive editors, a reaBlendefinition of totality is
thatl \ (a, ¢) should be defined wheneveriffers by at most one edit operation frdnx"c.



3.8 Lemma: If [ is oblivious and € C; = A; andl € Cy = As, thenl € (C; UCs) = (41 U Ay).
Proof: Straightforward. O
3.9 Lemma: If [ is oblivious and € C' <= A, thenl 7 is a bijection fromC' to A.

Proof: If C = 0, then, becausgis total, A is also empty and " is trivially bijective. If C' is non-empty, then
we can choose an arbitracye C' and define the inverse ¢§" as f = Aa. 1\, (a, ¢). The fact that(l") o f =
id follows directly from RUTGET. The fact thatf o (I,) = id follows becausef (I, ) = I\, (', ¢c) =
IN. (¢, ) (by obliviousness)= ¢’ (by GETPUT). O

Conversely, every bijection between C and A induces a watiaved oblivious lens frod' to A—that is, the set
of bijections between subsetsdfforms a subcategory of the category of lenses. Many of thebawetors defined
below actually live in this simpler subcategory, as doeshfdhe related work surveyed in Section 10.

Recursion

Since we will be interested in lenses over trees, and simEs tin many interesting application domains may have
unbounded depth (e.g., a bookmark item can be either a lirkkfofder containing a list of bookmark items), we
will often want to define lenses by recursion. Our next tadiset up the necessary structure for interpreting such
definitions.

The development follows familiar lines. We introduce arommfiation ordering on lenses and show that the set of
lenses equipped with this ordering is a complete partiadiofcpo). We then apply standard tools from domain theory
to interpret a variety of common syntactic forms from pregnaing languages—in particular, functional abstraction
and application (“higher-order lenses”) and lenses definesingle or mutual recursion.

We say that a leng is more informativethan a lend, written! < ', if both thegetand putbackfunctions ofl’
have domains that are at least as large as thosardd if their results agree on their common domains:

3.10 Definition: I < I’ iff dom(l,") C dom(l' "), dom(I\,) C dom(I"\,), !¢ =1'cforall ¢ € dom(l ), and
I\ (a, c) =1\, (a, c) forall (a,c) € dom(I\).

3.11 Lemma: < is a partial order on lenses.
Proof: Straightforward from the definitions. O

A cpois a partially ordered set in which every increasing chaielements has a least upper bound in the set. If
lo <1l <... =<1, < ... isanincreasing chain, we writg, . I, (often shortened gs|, /,,) for its least upper
bound. Acpo with bottonis a cpo with an element that is smaller than every other element. In our settings the
lens whosegyetandputbackfunctions are everywhere undefined.

3.12Lemma: Letly < 1; < ... <[, < ...beanincreasing chain of lenses. The ledsfined by

IN(a, ¢)=1; \\(a, ¢) ifl;\ (a,c) | forsomei
l/'c=1; /¢ if I; /¢ | forsome;

and undefined elsewhere is a least upper bound for the chain.

Proof: We first check that is a lens, i.e., that both\, and/ ~ are functions. This is easy since, by definition of
the ordering on lenses, we hake\ (a, ¢) = v = Vj >i. [;\,(a, ¢) = v, and the same far,”. Moreover,
dom(l,) = |, dom(l; /) anddom(I\,) = |, dom(;\,).

We now show that is a least upper bound. First, it is clearly an upper boundshfaw it is least, let’ be another
upper bound. Then, for all, we havedom(l; /) C dom(l’, ) anddom(l;\,) C dom(I"\); hencedom(i ") C
dom(l’ /) anddom(I\,) C dom(I"\,). Moreover, ifc € dom(l,”), then there is somé such that/; “c | and
l/c=1; /c, thus (ad’ is an upper bound), we havec = I; /'c = | /c. The same property holds for tipeitback
function, sol < I’ and! is indeed a least upper bound. O



3.13 Corollary: Letly <1y < ... <1, < ...beanincreasing chain of lenses. For every € I/, we have:
1L (U, ln) c=v <= Fi. [,/ c=v.
2. U, ln)\(a,0) =v <= Fi. I;\/(a, c) =v.

3.14 Lemma: Letly < 1; < ... <[, < ...beanincreasing chain of lenses, anddgtC C; C ...andAy C A; C
... beincreasing chains of subsetd6fThen:

1. Well-behavedness commutes with limifsi € w. I; € C; = 4;) = (,,In) € (U, Ci) = (U, 4i).
2. Totality commutes with limits(Vi € w. [; € C; <= A;) = (L, ln) € (U; Ci) <= (U, 4i).

Proof: Leti =], [, letC ={J,C;, and letA = | J, A;.

We rely on the following property (which we cal}): if [ c is defined for some € C, then there is somesuch
thatc € C; andl "¢ = [; / c. To see this, let € C; then there is somg such thatvk > j. ¢ € C,. Moreover, by
Corollary 3.13, there exist somésuch thai ¢ =1, /" c. Leti be the max ofi andj’; then we have (by definition
of )i, "c=1ly /" c=1,/candc e C;.

Similarly, we have the property,: if 1\ (a, c) is defined for some. € A andc € C, then there is somé
such thatu € A;, ¢ € C;, andi\ (a, ¢) = [;\,(a, ¢). To see this, let € A andc € C; then there are somg
andj’ such thatvk > j. a € Ay andVk > j'. ¢ € C,. Moreover, by Corollary 3.13, there exists sopfesuch
that! ™\ (a, ¢) = l;» \\(a, ¢). Leti be the max ofj, j/, andj”; then we have (by definition ok) I; \ (a, ¢) =
Lin \ (a, ¢) =1\, (a, ¢), witha € 4; andc € C;.

We can now show thdtsatisfies the typing conditions €& and RuT) of well-behaved lenses. Chooses C.
If I cis defined, then by, there is someé such thatc € C; andl,"c = I; c. Asl; isin A; = C;, we have
l;/ c e A; T A. Conversely, leta,c) € A x C; thenifl™\ (a, c) is defined, then by, there is some such that
(a,c) € A; xC; andl\(a, C) =1;\ (a, C). Asl; € A, = C;, we hani\(a, C) e (C; CC.

We next show that satisfies GTPUT and RUTGET. Usingx, andx,, we calculate as follows:

GETPUT: Suppose: € C. If I (I "¢, ¢) = L, then we are done. Otherwise there is sammach that € C; and
li/"¢c=1/c=aec A; C A. Hence there is somgesuch thats € A; andl; \ (a, ¢) = ¢. Letk be the max
of ¢ andj, so we haves € A, andc € Cj. By definition of<, we havel, "¢ = a andl; \,(a, ¢) = /. As
GETPuUT holds forl;,, we have:’ = ¢, hence GTPuT holds fori.

PUTGET: Supposer € A andc € C. If [ 1\ (a, ¢) = L, then we are done. Otherwise there is sanseich
thata € A;, c € C;, andl; \, (a, ¢) = I\ (a, ¢) = ¢ € C; C C. Hence there is somgsuch thatt € C;
andl; /¢ = a'. Letk be the max of andj, so we haver € A, andc € Cy. By definition of <, we have
Ik \\(a, ¢) = andly, /¢ = a'. As PUTGET holds forl;, we haven’ = a, hence BTGET holds forl.

Finally, we show that is total if all thel; are. If¢ € C, then there is somésuch thate € C;, hencel; ¢
is defined, hencé ¢ is defined. Ifa € A andc € C, then there is somésuch thata € A; andc € C;, hence
l; \\ (a, c) is defined, thug ™\ (a, c) is defined. O

3.15 Theorem: Let £ be the set of well-behaved lenses fréito A. Then(L, <) is a cpo with bottom.

Proof: First, the lens that is undefined everywhere is well behatéidfally satisfies all equations) and is obviously
the smallest lens. We write this leds. Second, iy <13 < ... <, < ...is an increasing chain of well-behaved
lenses, then by Lemma 3.14, it has a least upper bound thailibehaved. O

When defining lenses, we will make heavy use of the followitapdard theorem from domain theory (e.g.,
[45]). Recall that a functiorf between two cpos isontinuousif it is monotonic and if, for all increasing chains
lo <l < ... <1y < ...,wehavef(l ], = L, f(ln). A fixed point of f is a functionfiz(f) satisfying
fiw(f) = f(fiz(f))-



3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function fro® to D, whereD is a cpo with bottom.
Define

fir(f) =] (1)

Thenfiz(f) is a fixed point off.

Theorem 3.15 tells us that we can apply Theorem 3.16 to asmtis functions from lenses to lenses—i.e., it
justifies defining lenses by recursion. The following capll packages up this argument in a convenient form; we
will appeal to it many times in later sections to show thatirsive derived forms are well behaved and total.

3.17 Corollary: Supposef is a continuous function from lenses to lenses.
1. IfleC = Aimpliesf(l) e C = Aforalll, thenfiz(f) € C = A.

2. Suppos® = Co C C; C...and)) = Ag C A; C ... are increasing chains of subsetgbflf | € C; < A;
implies f(I) € Ciy1 <= A4 forall i andl, thenfiz(f) € (U, C;) <= (U, 4i).

Proof:

1. First recall thatf°(1;) = 1, € C = A foranyC and A. From this, a simple induction on(using the
given implication at each step) yieldd(L;) € C = A. By 3.14(1),(LJ, fi(L;)) € C = A. By 3.16,
fix(f) e C = A.

2. First note that, sinc€y = Ay = 0, we havef’(1;) = 1; € Cy —<= Ay. From this, a simple induction on
(using the given implication at each step) yiefdé L ;) € C; <= A;. By 3.14(2),(L|; fi(L1)) € (U, Ci) <=
(U; 4i)- By 3.16,fiz(f) € (U, Ci) <= (U; Ai)- U

We can now apply standard domain theory to interpret a waoktonstructs for defining continuous lens com-
binators. We say that an expressioiis continuous in the variable if the function Axz.e is continuous. An ex-
pression is said to be continuous in its variables, or singplytinuous, if it is continuous in every variable sepa-
rately. Examples of continuous expressions are variabtasstants, tuples (of continuous expressions), projestio
(from continuous expressions), applications of contirufunctions to continuous arguments, lambda abstractions
(whose bodies are continuous), let bindings (of continueqmessions in continuous bodies), case constructions (of
continuous expressions), and the fixed point operatoff.itSElpling and projection let us define mutually recur-
sive functions: if we want to defing as F'(f,g) andg asG(f, g), where bothF andG are continuous, we define
(fs g) = fir(A(z, y)(F(xa y)? G(z, y)))

When proving the totality of recursive lenses, we sometimasd to use a more powerful induction scheme in
which a lens is proved, simultaneously, to be total on a wholkection of different types (any of which can be used
in the induction step). This is supported by a generalipaticthe proof technique in 3.17(2).

We specify aotal typeby a pair(C, A) of subsets of{, and say that a lerishas this type, writtei € (C, A) iff
l € C < A. We use the variable for total types andl for sets of total types. We writeC, A) C (C’, 4') iff
C C C"andA C A’ and write(C, A) U (C', A") for (CUC', AU A").

3.18 Definition: The increasing chainy C 71 C ... is anincreasing instancef the sequenc&y, Ty, .. . iff for all ¢
we haver; € T;.

Note thatTy, Ty, . .. is an arbitrary sequence of total types, here—there is noinement that the sequence be
increasing. This is the trick that makes this proof techaiguork: we start with a sequence of sets of total types
Ty, Ty,. .. that, a priori, have nothing to do with each other; we themstiat some continuous functighon lenses
gets us from eacfi; to T;+1, in the sense that takes any lens that belongs tall of the total types irT; to a lens
f(1) that belongs to all of the total types ;. Finally, we identify an increasinghain of particular total types
70 € 11 C ... whose limitis the total type that we desire to show for thedigeint of f and such that each belongs
to T;, and hence is a type fgf* (L;).

Here is the generalization of Lemma 3.14(2) to the case wikases may be given multiple types.



3.19Lemma: Letly <1; < ... <1, < ...beanincreasing chain of lenses, andllgtT1, . .. be a sequence of sets
of total types, such that for al{ € T; we havel; € 7;. Then for any increasing instaneg C 7, C ... of Ty, Ty, .. .,
we have |, I, € |, 7.

Proof: Letr = J, 74; then, by definitionyy € 7 C ... andr = |J, 7;. By hypothesis, we havie € ; for all 7,
hence by Lemma 3.14 we hay¢, [, € 7. O

Similarly, we generalize Corollary 3.17(2) to increasingtances of sequences of sets of total types.

3.20 Corollary: Supposg is a continuous function from lenses to lenses&@pdr, . . . is a sequence of sets of total
types withTy = {(0,0)}. If the following property is satisfied for allands,

VreT,. ler) = (Vre€Tita. f()er),
thenfiz(f) € |, = for all increasing instances, 7, . .. of To, Ty, .. ..

Proof: First note that, sinc&, = {(0, ()}, we havef’(L,) = 1, € 7 forall 7 € To. From this, a simple induction
oni (using the given implication at each step) yielti$¢ | ;) € 7 for all 7 € T;. By 3.19, for any increasing instance
T0,T1,...0f To, Ty, ..., we have |, f*(L) € U, . By 3.16,fiz(f) € |, 74 O

To support totality proofs fomutuallyrecursive lens definitions (e.g., dur st _f i | t er example in Section 7),
we need to generalize the above argument yet one step fuuheplesof total types (and, accordingly, tuples of sets
of total types, etc.). To avoid too much notation, we showffus special case where the tuples are pairs.

3.21 Definition: The increasing chaifry, 7)) C (71, 71) C ... of pairs of total types is aimcreasing instancef the
sequencéTy, T(), (T1,T}),. .. iff forall i we haver; € T; and7] € T;.

3.22 Lemma: Let (Ip, 1) < (l1,1}) < ... be an increasing chain of pairs of lenses, andTgt T,), (T, T}),...
be a sequence of pairs of sets of total types, such that fef &l T; we havel, € 7; and for all7/ € T, we have
I; € 7/. Then for any increasing instan¢e), 7)) C (71, 7) C ... of (To, T(), (Ty,T}),...,we have | I, € U, 7
and| |, I, € U, 7/

Proof: Immediate consequence of Lemma 3.19 (just apply 3.19 torgtemponents of all the pairs and then again
to the second components). O

3.23 Corollary: Suppose f is a continuous function from pairs of lenses to pairs of ésnsand that
(To,Ty), (Tq,T),... is a sequence of pairs of sets of total types iith = T, = {(0,0)}. If the following
two implications hold for all, I, andi:

1. from(Vr € T;. l € 7)and(Vr' € T,. I’ € 7') itfollows that(v7 € T;11. w1 (f(1,1") € 1)
2. from(Vr € Tiy1. 1 € 7)and(vV7r' € Tj. I’ € 7') itfollows that(vV7' € T;, ;. m(f(l,1")) € 7')
thenfiz(f) € (U, 7, U, ) for all increasing instancesy, 7,) C (71, 71) € ... of (To, T), (T1,T),.. ..

Proof: We first define an auxiliary continuous functigrirom pairs of lenses to pairs of lenses such ftatf) =
fiz(g), then show thag’(_L;, L;) has every pair of total types;, 7/) in T; x T/, and conclude by Lemma 3.22.
Let f{ = m o fandfy, = o o f. As f is continuous, botlf; and f> are continuous. Lej be the function from
pairs of lenses to pairs of lenses definegas A (I1,12).(f1(l1,12), f2(f1(l1,12),12)). The functiong is continuous
from pairs of lenses to pairs of lenses.
We first show thaffiz(f) = fiz(g). Let (I1,l2) be a fixed point off, then we havé, = fi(l1,l2) andiy =

f2(l1,12). We calculate as follows:

g(l1,12) = (fi(l, l2), f2(f1(l1,12),12))
= (Iy, fa(l1,12))
= (11712)
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Hence(l4, l2) is a fixed point ofy. Conversely, letis, I2) be a fixed point ofy. Then we have(l,12) = (I1,12); that
is, f1(l1,12) = Iy and fa(f1(l1,12),1l2) = l2, hencefa(l1,12) = lo. Thus(ly,ls) is a fixed point off. As a pair of
lenses is a fixed point of iff it is a fixed point ofg, the smallest fixed point of is the smallest fixed point gf, hence
fie(f) = fiz(g).

We show thay*(L;, L;) has every pair of total typds;, 7/) in T; x T for all , by induction oni. The case where
i = 0 is immediate:g®(L;, L;) = L; € (79, 7)) sincery = 7, = (0,0). We now prove the induction case, showing
thatg' ™' (L, L) € (i1, 7{,q) forall (71, 7/, 1) € Tiyr x Tipa.

Let 7,41 € T;y:1. By the induction hypothesis, we hay§ L;, L,;) € (r;,7}) for all (1;,7/) € T; x T;. Hence, by
definition of g and by the first implication hypothesis, it follows that

(g™ (L, L)) = fi(g" (Lo, L)) = m(f(g"(Li, L0))) € Tisa.

Letr],, € T ,. By the previous argument, we hayg(g’( L, 1)) € 7i1 forall 7,11 € T;41. By the induction
hypothesis we haves(g*(L;, L;)) € 7/ for all 7/ € T}. Hence, by definition of and by the second implication
hypothesis, it follows that

ma(g™ (L, L1)) = fo(fr(g" (Ly, L1)), ma(g" (Ly, 14))) = mo(f (f1(g" (Ls, L1)), ma(g" (Ly, 14)))) € 741y

Combining these two arguments, we thus hge (L, 1;) € (Tig1,7iyq) forall (rip1, 77, 1) € Tipr x Tj .

Let (70, 7) C (m1,7) C ... be anincreasing instance @, T(), (T1,T}), . ... In what follows, we writd; for
T (gi(J_l, J_l)) andlg for Wg(gi(J_l, J_l)).

By Lemma 3.22, we have|, l; € |J,  and| |, I} € |, 7/.

By continuity of pairing, we conclude th@t |, I;,| |, 1) = fiz(g) = fiz(f) € (U, 7. U, 7). O

Dealing with Creation

In practice, there will be cases where we need to applythackfunction, but where no old concrete view is available,
as we saw witllo’s URL in Section 2. We deal with these cases by enriching the use¢éof views with a special
placeholdef?, pronounced “missing,” which we assume is not already.iWhensS C U, we write S, for S U {Q}.
Intuitively, 1\ (a, ) means “create aewconcrete view from the information in the abstract vievBy conven-
tion, Q2 is only used in an interesting way when it is the second arguitoetheputbackfunction: in all of the lenses
defined below, we maintain the invariants that (1) Q) = Q, (2) 1\, (2, ¢) = Q for anye, (3)1 "¢ # Q for any
c# Q,and (4)\ (a, c) # Q foranya # 2 and anyc (including2). We writeC' <= A for the set of well-behaved
lenses fronCy, to A obeying these conventions agd<% A for the set of total lenses obeying these conventions.
For brevity in the lens definitions below, we always assunag ¢h~ Q when defining " ¢ and thate # © when
definingl \ (a, ¢), since the results in these cases are uniquely determinétebg conventions. (There are other,
formally equivalent, ways of handling missing concretemse The advantages of this one are discussed in Section 5.)
A useful consequence of these conventions is that allen§ == A also has typ& = A.

3.24 Lemma: For any lend and sets of view§' and A:
1L.1eC2A = leC=A.

2.leC < A — e (0 < A.

Proof: Letl e C 2 A.

1. We must provethatforatle C,1,"c € A. Asl " c € Aq, and since # 2, by convention we have” ¢ # ().
Similarly, leta, cin A x C, thenl\ (a, ¢) € C.

2. By conventionCa C dom(l,”) impliesC C dom(l,), andA x Cq C dom(I\) impliesA x C' C dom(IY),
as required. O
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4 Generic Lenses

With these semantic foundations in hand, we are ready to rapwe syntax. We begin in this section with several
genericlens combinators (we will usually say junsesfrom now on), whose definitions are independent of the
particular choice of univerdd. Each definition is accompanied by a type declaration asgdts well-behavedness
under certain conditions (e.g., “the identity lens belotogs = C for anyC”).

Most of the lens definitions in this and following sections parameterized on one or more arguments. These may
be of various types: views (e.g.pnst ), other lenses (e.g., composition), predicates on vievgs, (#ne conditional
lenses in Section 6), or—in some of the lenses for trees itiddes—edge labels, predicates on labels, etc.

We prove that every lens we define is well behaved (i.e., tiatytpe declaration accompanying its definition is
a theorem) and total, and that every lens that takes othse$ems parameters is continuous in these parameters and
maps total lenses to total lenses. Indeed, nearly all ofehsds argerywell behaved (if their lens arguments are),
the only exceptions beingap andf | at t en; we do not prove very well behavedness, however, since waaiay
interested just in the well-behaved case.

Identity

The simplest lens is the identity. It copies the concreteniethe getdirection and the abstract view in tipaitback
direction.

id "¢ = ¢
id\ (a,c) =

VOCU. ideC <= C

Having defined d, we must now prove that it is well behaved and total—i.e { ifsatype declaration is a theorem.
Since we will need similar arguments for every lens we defsoene shorthand is useful. By our conventions on
the treatment of2, the GET condition in Definition 3.2 need only be checked @r(not C,) and RUT need only be
checked ford x Cg. Similarly, GETPUT need only be checked fare C, and RITGET for a € A andc € Cq,.

4.1 Lemma [Well-behavedness]vCClU{.id € C = C.

Proof:

GET: id/c=ceC.

Put: id\ (a,c)=acC.

GETPUT: id\,(id "¢c,c)=id\ (¢, c)=c.

PUTGET: id "id\,(a,¢)=id,"a=a. O

4.2 Lemma [Totality]: YVCCU.id € C <= C.
Proof: Immediate: both thgetandputbackdirections ofi d are total functions. O

For each lens definition, the totality lemma will be almosritical to the well-behavedness lemma, just replacing
2 py <% . In the case of d, we could just as well combine the two into a single lemmagesiwell-behavedness
is part of the definition of totality. However, when we comdedns definitions that are parameterized on other lenses
(like composition, just below), the totality of the compallens will depend on the totality (not just well-behaved)es
of its argument lenses; if all we know is that the argumerasigll behaved, then we cannot use the combined lemma
to establish the well-behavedness of the compound lense 8 expect this situation will be common in practice—
programmers will always want to check that their lenses a#behaved, since the reasoning involved is simple and
local, but may not want to go to the trouble of setting up theemistricate global reasoning needed to prove that their
recursive lens definitions are total—we prefer to statewelétmmas separately.
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Composition

The lens composition combinathrk places two lenselsandk in sequence.

Gk e = k/(1L7¢)
(RN (a, ¢) = IN(k\(a, 17 ¢), ¢)
VA, B,CCUNI€eC2BYke B2 A LkeC2A
VA, B,CCUNI € C <2 B.Vke B« A, Lke(C <= A

Thegetdirection applies thgetfunction of! to yield a first abstract view, on which tigetfunction ofk is applied. In
the other direction, the twputbackfunctions are applied in turn: first, thputbackfunction ofk is used to put into
the concrete view that thgetof £ was applied to, i.el " c; the result is then put inte using theputbackfunction
of [. (If the concrete view: is Q, then,l ¢ will also be{2 by our conventions on the treatment(®f so the effect of
(l; k) \\ (a, ) is to usek to puta into 2 and ther! to put the result int&2.) Note that we record two different type
declarations for composition: one for the case where tharpater lensesandk are only known to be well behaved,
and another for the case where they are also known to be total.

To aid in checking well-behavedness, we will sometimes tateaises of the composition operator with a suitable
“cut type,” writing [ ;5 k instead of just; k. We will maintain the invariant that, whenever we are inséed in
checking the well-behavedness of a composite lenis k, the source and target typésand A will be determined
by the context; the annotatiaB allows us to propagate this invariantit@nd k. We sometimes annotate and A
explicitly by writing € C' 1 < A. (This infix notation—where is written between its source and target types, instead
of the more conventionale C <= A—looks strange in-line, but it works well for multi-line gikys. In particular,
we use it heavily in the bookmark lenses in Section 8.)

4.3 Lemma [Well-behavedness]VA, B,CCU.Vl e C £ B.VYke B2 A. l;ke C & A.

Proof:
GeT: If k1l "c=(l;k) " cis defined, theh, " c € B by GETforl, so (; k), c € A by GET for k.

Put: If 1IN (BN (a,1"¢), ¢) = (I;k)\\(a, ¢) is defined, theri /¢ € Bq by GET for [ and our convention on
treatment of2 by getfunctions, sd: \ (a, I " ¢) € B by PuT for k, sol \, (k\\ (a, [/ ¢), ¢) € C by PuT for .

GETPUT: Assume thati( k) " cis defined. Then:
GRN (G R) e ¢

= (RN ¢ o) by definition (of the underlined expression)
— N (k\ k1 e /), c) by definition

C INU/ ¢ GETPUT for k

C ¢ GETPuUT for |

PUTGET: Assume thatlf k) \ (a, ¢) is defined. Then:

(k) (k) \ (a, o)
= (k) 1IN (kN (a, 1 7"¢), ¢) by definition
kU7 IN (BN (a, 17 ¢), ¢) by definition
k/ k\ (a,l "c) PUTGET for [
a PUTGET for k d

M

4.4 Lemma [Totality]: VA,B,CCU.Vl € C <= B.Vke€ B <5 A. l;k e C <= A.
Proof: Letc € C; theni ¢ is defined (by totality of) and is inB, hencek "1, c = (I;k) / c is defined (by

totality of k). Conversely, let. € A andc € Cq; thenl "¢ is defined and is iBg. Thus,k ™\ (a, I/ ¢) is defined
andisinB,and sd \ (k\ (a, " ¢), ¢) = (I;k) \\ (a, ¢) is defined. O
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Besides well-behavedness and totality, we must also shathehs composition is continuous in its arguments.
This will justify using composition in recursive lens definns: in order for a recursive lens definedfagAl. [1;12)
(wherel; andi, may both mentiori) to be well formed, we need to apply Theorem 3.16, which meguihat the
function \i. I1; 15 be continuous ifd. According to the following lemma, this will be the case wheer/; andlis
are continuous ii. We will prove an analogous lemma for each of our lens conibisahat takes other lenses as
parameters, so that the continuity of every lens expressibfollow from the continuity of its immediate constituén

4.5 Lemma [Continuity]: Let F' and G be continuous functions from lenses to lenses. Then thetitmc
Al (F(1); G(1)) is continuous.

Proof: We first argue thahl. (F'(I); G(I)) is monotone. Let and!’ be two lenses witth < I’. We must show that
F();G(l) < F(I'); G(I'). For thegetdirection, letc € U, and assume thaf'(1); G(1)) /" cis defined. We have:

(F(1); (1)) /¢
= GO/ F() /e
= GU)/F(l')/ ¢ byF()=<F(),sinceF(l), cis defined
= GU)/F(l)/ c byG(l)<G(I')
= (FI");G1) e

For theputbackdirection, let(a, c) € U x Uq, assume thatF'(1); G(1)) \, (a, ¢) is defined, and calculate as follows:

(F(1); G(1) (@, €)
= FON(GO)\(a, F() /7 ¢),
= FON(GO) N (a, F(I') /¢), ¢) by F(l) < F(I')
= FON(GU) N (a, F(I')7¢), ¢)  byG(l) < G(I')
= FU)N(GU) N (a, F(I')/¢), ) by F(l) < F(I')
= (FI);G01))\(a, ¢).

ThusAl. (F(1); G(l)) is monotone. We must now prove that it is continuous.
Letlp <1, <... <1, < ... be anincreasing chain of well-behaved lenses./lze{ |, /;. We have, for € U,

(F(1);G(1) /e =
= G/ F(l)/c: v by definition of ;
= GU)/F i)/ c=v by definition of!
= G/, Fli)/ c=v by continuity of
— Ju.G)/F(;)/ c=v by Corollary 3.13 (&T)
— Ji.G(U; L)/ F(l;)/ " c=v by definition ofi
<~ 3Ji.(U;Gl)) /" F(li,)/ ¢ =wv by continuity ofG
<~ Jis,i1.G(ly,) /" F(l;;)/"¢c=v byCorollary 3.13 (&T)
lettingi = max (i1, i2)
= Gl Fl) e=v monotonicity of " andG
—  Ji.(F(,);G(,)) c=wv by definition of ;
= (U,(F:);Gl:) ec=v by Corollary 3.13 (&T)
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and

(F(1); (D) \.(a, ¢) = v

— FUON(GI)\(a, F(I)/"¢c),c) = by definition of ;

—= FUONGD) N\ (a, F(LU; 1)/ ¢),c) =0 by definition ofl

= FON(GON(a, (U, Fly),/¢),c)=v by continuity of

—= F . FON(G) N\ (a, F(l;;) /¢c),c)=v by Corollary 3.13 (&T)

= Ji.FON (G L) \(a, F(li,) /¢), ¢c)=v by definition of!

— Ji.F(O)N\ (U, Gly) \(a, F(l;,) /" ¢),c)=wv by continuity ofG

<~ Jig,i1. F()\(G(liy) \(a, F(l;,) /" ¢),c) =v by Corollary 3.13 (BT)

= Fig,i1. F(,; 1d) \(G(li,) \\(a, F(l;,)/¢), ¢c)=v by definition ofl

= Fig,i1.(; F(l) \(G(li,) \\(a, F(l;;) /" ¢), ¢) =v by continuity of

<—  Tis, iz, 1. F(liy) \\(G(li,) \\(a, F(l;;),¢), ¢)=v by Corollary 3.13 (PT)

=  Ji.F(l)\(Gl:) \(a, F(l;) /c), c) =v ﬁgwgtgnicrﬂixé;; ;Qné?g

= F.(F);Gl)\(a,¢c)=v by definition of ;

= (U,(F);Gl:)) \(a, c)=v by Corollary 3.13 (PT).
Hence the lensds|,(F'(1;); G(1;)) and F'(I); G(I) are equal. O

Constant

Another simple combinator isonst v d, which transforms any view into the constant viewn thegetdirection. In
the putbackdirection,const simply restores the old concrete view if one is availablehé concrete view i§), it
returns a default viewl.

(const vd) "¢ = v
(const vd)\,(a,¢c) = ¢ ifc#Q
d ife=Q

VOCU. Vvell. YdeC. const vd € C <= {v}

Note that the type declaration demands thafhtbackdirection only be applied to the abstract argument

We can define a similar lenspnst v, that is identical to the standard version except thaptitbackfunction is
undefined when the concrete viewfls This lens has typ€ < {v} (note that this type does not mentif¥). Later
(in Section 6) we will see how to use conditional combinatorerrap lenses likeonst v to produce a lens whose
putbackfunction is extended to handle missing concrete views.

4.6 Lemma [Well-behavedness]YCCU. Vveld. YdeC. const vd € C 2 {v}.

Proof:

GET: (const vd), c=v € {v}.

PuT: (const vd)\ (v, ¢) € {¢,d} CC.

GETPUT: (const vd)\,((const vd), "¢, ¢) = (const vd)\ (v, ¢) =c.

PUTGET: If ¢ # Q, then gonst vd),((const vd)\ (v, c)) = (const vd) "¢ = wv. Otherwise,
(const vd), ((const vd)\, (v, Q) =(const vd),"d=n. O

4.7 Lemma [Totality]: YCCU. Vveld. VdeC. const vd € C <= {v}.
Proof: Immediate: both thgetandputbackdirections of €onst v d) are total functions for every andd. O
We will define a few more generic lenses in Section 6; for nbugh, let us turn to some lens combinators that

work on tree-structured data, so that we can ground our tiefisiin specific examples.
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5 Lenses for Trees

To keep our lens definitions as straightforward as possi@ayork with an extremely simple form of trees: unordered,
edge-labeled trees with no repeated labels. This does weugi—primitively—all the structure we need for some
applications; in particular, we will need to deal with ordédata such as lists and XML documents via an encoding
(shown in Section 8) instead of primitively. Experience Bhswn that the reduction in the complexity of the lens
definitionsobtained in this way far outweighs the increase in compefitensprogramsdue to manipulating ordered
data in encoded form.

Notation

From this point on, we choose the univetééo be the sef of finite, unordered, edge-labeled trees with labels drawn
from some infinite sefV" of names—e.g., character strings—and with the children of a givedenall labeled with
distinct names. Trees of this form are sometimes cdbature treege.g., [34]). The variables, ¢, d, andt range
overT7; by convention, we use for trees that are thought of as abstract ad d for concrete trees.

Atree is essentially a finite partial function from namestioen trees. It will be more convenient, though, to adopt
a slightly different perspective: we will consider a tiee 7 to be atotal function fromN to 7, that yieldsQ2 on
all but a finite number of names. We wridem(t) for the domain of—i.e., the set of the names for which it returns
something other thaft—andt(n) for the subtree associated to namim ¢, or Q) if n & dom().

Tree values are written using hollow curly braces. The enygty is written{}. (Note that{}, a node with no
children, is different fronf2.) We often describe trees by comprehension, writﬂrmg»—> F(n)|ne€ N[}, whereF
is some function from\ to 7o and N C A is some set of names. Wherandt’ have disjoint domains, we write
t-t or {]t t’[} (the latter especially in multi-line displays) for the tne@ppingn to t(n) for n € dom(t), tot'(n) for
n € dom(t’), and tof2 otherwise.

Whenp C N is a set of names, we wrigefor A'\ p, the complement of. We writet|,, for the restriction of to
children with names fromp—i.e., the treg{n  t(n) | n € p N dom(t)}—andt\,, for {n - t(n) | n € dom(t)\p}}.
Whenp is just a singleton seftn }, we drop the set braces and write justandt\,, instead oft|,,; andt\ ;.

To shorten some of the lens definitions, we adopt the cormesithaidom(Q2) = ), and that2|,, = Q for anyp.

For writing down types, we extend these tree notations to sets of treeg. ¢ 7 andn € N, then{]n — T[}
denotes the set of singleton tregn — t[} |t € T}. If T C 7 andN C N, then{N — T’} denotes the set of

trees{t | dom(t) = N andVn € N. t(n) € T} andﬂ]\f N Tl} denotes the set of tre€s | dom(t) C N andVvn €

N.t(n) € Tq}. We writeT - Ty for {¢1 - to | t1 € T3, t2 € To} andT'(n) for {¢t(n) |t € T} \ {Q}. If T C T, then
dom(T') = {dom(¢) | t € T'}. Note thatdom(T") is a set of sets of names, whilem(¢) is a set of names.
A value is a tree of the special fornﬂk — {]]}[}, often written justk. For instance, the phone number

{333- 4444 — {}}} in the example of Section 2 is a value.

Hoisting and Plunging

Let's warm up with some combinators that perform simpledtrtal transformations on trees of very simple shapes.
We will see in Section 5 how to combine these with a powerfatking” operator to perform related operations on
more general sorts of trees.

Hoist

The lenshoi st n is used to shorten a tree by removing an edge at the top. lgetftirection, it expects a tree that
has exactly one child, named It returns this child, removing the edge In theputbackdirection, the value of the
old concrete tree is ignored and a new one is created, withglesedgen pointing to the given abstract tree. (In
Section 5, we will meet a derived forhpi st _nonuni que, that works on bushier trees.)

5Note that, although we are defining a syntax for lens exprassihe types used to classify these expressions are semtrgy are just sets
of lenses or views. We are not (yetl—see Section 11) progaainalgebra of types or an algorithm for mechanically chegzkinembership of lens
expressions in type expressions.
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(hoist n) "¢ = t ifc:{]n»—wf[}
(hoi st n)\,(a,c) = {]n»—>a[}

YCCT.VneN. hoi st ne{]nHC[}é C

5.1 Lemma [Well-behavedness]vCCT. VneN. hoi st n € {n— C[} & C.

Proof:

GEeT: (hoi st n),/ ﬂan[}:CEC

Put: (hoi st n)\,(a, ¢) = {]n|—> a[} € {]nl—> C[}

GETPUT: (hoi st n)\, (((hoi st n) /" {nt}), {n— t]}) = (hoi st n)\,(t, {n —t}) = {n—t}.
PUTGET: (hoi st n) 7 ((hoi st n)\ (a, ¢)) = (hoi st n),/ {]n — a[} = a. O
5.2 Lemma [Totality]: YCCT.VneN. hoist ne {n— C} <= C.

Proof: Straightforward: the@utbackdirection is a total function, and thygetdirection is clearly defined for every tree
in the source typdn — C|. a

Plunge

Conversely, thel unge lens is used to deepen a tree by adding an edge at the top. detttieection, a new tree is
created, with a single edgepointing to the given concrete tree. In thetbackdirection, the value of the old concrete
tree is ignored and the abstract tree is required to havelgxae subtree, labeled, which becomes the result of the
pl unge.

(plungen) ¢ = {n— cf}
(plungen)\, (a,c) = t ifa={n—t}

VCCT.VneN. plungene C <% {n— C|

5.3 Lemma [Well-behavedness]vCCT. VneN. pl ungen € C 2 {n — C}.

Proof:
GET: (plungen)/ c={n— c} € {n— C}.

PuT: (plungen)\, ({n—t},c)=teC.
GETPUT: (pl unge n)\, ((p! unge n) ¢, ¢) = (pl unge n) \, ({n — ¢}, ¢) =c.
PUTGET: (pl unge n) ” ((pl unge n)\, ({n — tf}, ¢)) = (pl unge n), /'t = {n  t}. a

5.4 Lemma [Totality]: VCCT.VneN.plungen e C <= {n+— CJ}.

Proof: Straightforward: theget direction is a total function, and thgutbackdirection is defined for every pair
consisting of a tree in the target tygja — C [} and any concrete tree whatsoever()r O

Forking

The lens combinatoxf or k applies different  lenses to different parts of a tree: ittsggthe tree into two parts ac-
cording to the names of its immediate children, appliesfeidiht lens to each, and concatenates the results. Formally
xf or k takes as arguments two sets of names and two lensegettlieection ofxf or k pc pa [1 I can be visualized

as in Figure 1 (the concrete tree is at the bottom). The thesrgbeleche denote trees whose immediate child edges
have labels irpc; dotted arrows represent splitting or concatenating tréke result of applying, " to c|,. (the tree
formed by dropping the immediate childrencofvhose names are not jrr) must be a tree whose top-level labels are
in the setpa; similarly, the result of applying,  to ¢\, must be inpa. That is, the lenses andi, are allowed to
change the sets of names in the trees they are given, but asthmmap from its own part gic to its own part ofpa.
Conversely, in th@utbackdirection,/; must map fronpa to pc andl, from pa to pe. Here is the full definition:
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7 ~
pa pa
(GY) (I2.7)
pc pc
~ 7

Figure 1: Thegetdirection ofxf or k

(xforkpepalils), ¢ = (Li/clpe) - (U2, c\pe)
(xforkpepali o)\ (a,c) = (l1\ (alpa; clpc)) - L2\ (@\pa, \pe))

Vpe, paCN . VCL1CT |pe. VAICT |pa-

VCCT\ po. VAL CT \ pa-

Vi, € Cy LN A1Vl € Cy 2 As.
xforkpecpalyly € (Cr - Cy) 2 (A; - As)

Vpe, paCN . VCL1CT |pe. VAICT |pa.-

VO CT\pe. VAL CT\ o

Vi, € Cy é A1Vl € Oy FELN As.
xfork pc pa l11ly € (Cl . Cg) é (Al . Ag)

We rely here on our convention th@t,, = €2 to avoid explicitly splitting out thé) case in theutbackdirection.

5.5 Lemma [Well-behavedness]Vpe, paCN. YC1CT |pe. YAICT |pa. VO2CT \pe. VAICT \pa. VI € O 2
A1Vl € Cy 2 As. xfork pc pa i1y € (Cl . Cg) LN (Al . Ag)

Proof:

GET: If ¢ € Cy - Cy, thenc|,. € C7 andc\,. € Cy. Hencely c|,. € A andlz, ¢\, € Az, and so we have
(Xf ork pc pa 1 lQ)/C € Al - As.

Put: Similarly, 1\ (a|pa; ¢|pc) € C1 andiz \ (a\pa, c\pc) € C2, hence(xf ork pcpaly l2)\ (a, ¢) € Cy -
Cs.

GETPUT: Suppose thax(f or k pc pa l; 13),/ cis defined. Them, " c|,. - l2,/ ¢\ is defined and

(ll/ C|pc : ZQ/C\pC)LDG = ll/c'lﬂc
(ll/ C|pc : l?/c\pc)\lm = ZQ/C\PC'

Thus,

' ((ll/ C|pc Ao/ C\pc)|P¢la C|pC> =0\ (ll/c|pm C|p¢:) C C|pc
by GETPUT for [;. Similarly,

la\, ((ln,” C|pc : ZZ/C\pC)\paa C\pC) C C\pc
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by GETPUT for [,. Assembling these pieces, we have

(xfork pcpaly l2) \, (xXfork pcpaly l2),"c, c)

(xfork pepalyla) N\, (l1,/ ¢lpe - 2,/ €\pe, €)

(ll AN ((ll/c|pc : l2/C\pC)|pav C|pC)) : (12 N ((ll/‘dpc : ZZ/C\pC)\pav C\pC))
C  clpe - C\pe

= C.

PUTGET: Suppose thatf or k pc pa l1 1)\ (a, ) is defined. Ther; \ (alpa, c|pc) - l2\\ (a\pa; €\pe) IS de-
fined, with

(ll N (a|pa= C|p0) “la ™\ (a\pav C\pC))|pc =h\ (a|pa7 C|p0)

and

(ll N (@lpas lpe) = l2 ™\ (a\pa, C\pC))\pc = la \\ (a\pas \pe)-
By PUTGET for [y,

L/ (I N\ (@lpas €lpe) - 12\ (@\pas €\pe))lpe) =11,/ (l1 \d (alpas Clpe)) E alpa
and by RITGET for [,

la,/ (11 \u (alpas €lpe) - l2 o (@\pas €\pe))\pe) = 2,/ (l2 \\ (@\pas €\pc)) T a\pa

Assembling these pieces, we have

(xfork pcpaly o) /((xfork pepaly l2)\ (a, ¢))
(xfork pecpalil2),/ (I1\ (alpa, clpe) - l2\ (@\pa, c\pe))
(ll/ (I ™\ (a|pav C|p0) “la N\ (a\pav C\pC))|pC) : (12/ (li\ (a|paa C|pC) “la N (a\paa C\pC))\pC)

alpa * @\pa

a. O

[

5.6 Lemma [Totality]: Vpc, paCN. YC1CT |pe. YAICT |pa. VO2CT \pe. VA2CT \po. Vi1 € C1 <= AVl €
Cy é As. xfork pc pa lily € (Ol . 02) <£> (A1 . AQ)

Proof: Suppose: € C; - Cy. Then we have|,. € Cy andc\,. € C>. By the totality ofl; andi,, we know that
L1,/ c|pc is defined and is iM; andl,, " c\,. is defined and is iM,. As these two views have disjoint domains,
I,/ ¢lpe - Lo,/ c\pe = (XFOrk pepa ly 13) /" cis defined.

Leta € A; - As andC € (C - C2)q. We have:

o alp, € A;
o ¢y € C1U{Q};
o a\pg € Ag;
o ¢\, € C2U{Q}.
Hence:
o 11\, (a|pa, ¢|pc) = 1 is defined and iy, and
o Iy N\, (a\pa; c\pc) = c2 is defined and irCs.
As ¢; andes have disjoint domaing; - ¢; = (Xf or k pepa l; 13) \ (a, c) is defined. O

5.7 Lemma [Continuity]: Let F' and G be continuous functions from lenses to lenses. Then thetiimc
Al xfork pe pa F(1) G(1) is continuous.
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Proof: Begin with monotonicity. Let andi!’ be two lenses with < I’. We must show thatf or k pc pa F(I) G(I) <
xfork pepa F(I') G(I'). Choose: € T such thakf or k pc pa F(I) G(1) / cis defined. Then

(xfork pepa F(l) G(1)),/ ¢
(F(1) /" clpe) - (G(1) /" \pe) )
= (F(U')/ clpe) - (GU') /" c\pe) sinceF(l) < F(I')andG(l) < G(I")
= (xforkpcpa F(I') G(I')) /c.
Now choos€a, c) € T x Tq with xf or k pc pa F(I) G(1) \, (a, c) is defined. We have:
(xfork pepa F(l) G(1)) \\(a, c¢)
= (F()\(alpa; clpe)) - (G() \(a\pa, C\pe))
(F'(1') \ (alpa; clpe)) - (G(I') i (a\pa, €\pe)) sinceF () < F(I') andG(l) < G(I')
(xfork pepa F(I') G(I")) \(a, c).

Thusi. xf or k pc pa F (1) G(I) is monotone. We next prove it is continuous.
Letly < < ... <1, < ... beanincreasing chain of well-behaved lenses, aniddet |, ;. We have:

(xfork pcpa F(1) G(l)) /c=t

— (F()/clpe) - (GI)/c\pe) =t by definition
= (F(U,L)/ clpe) - (G L)/ \pe) =t by definition
— (U, Fl:))/ elpe) - ((U; Gl:)),/ ¢\pe) =t by continuity of ' andG
< Ti1,i9.(F(li,) clpe) - (G(li,) /" c\pe) =t by Corollary 3.13 (&T) twice
= F(Fl)dlpe) - (Gll) /7 \pe) =t by inf)rin(?t}é(rfllclg)ofF andG
<~ Fi.(xforkpepa F(l;) GUi))/c=t by definition
<~ (U, xforkpcpa F(l;) G(l;)) c=t by corollary 3.13 (&T)
and
(xfork pepa F(1) G(1)) \.(a, ¢) =
= (F()\(alpa, clpc)) - (G1) (a\pa, Ape)) =t by definition
= (F(U; 1)\ (alpas clpe)) - (G(; 1)\ (@\pas \pe)) =1 by definition
— ((l—lz F(l:) ™\ (a|paa C|p0)) ((I_lz G(l:) ™\ (a\paa C\pC)) by continuity of F andG
<= Fig,i0.(F(l,) \d(alpas clpe)) - (G(liy) i (a\pa, C\pe)) = t by Corollary 3.13 (PT) twice
= 3 (F )\ (@lpas clpe)) - (G N @\ A\pe)) = 1 by{ o andG
<— Ji.(xforkpepa F(l;) Gl;))\\(a, c) =t by definition
<~ (U, xforkpecpa F(l;) G(l;)) \.(a, ¢) =t by corollary 3.13 (PT). O

We have now defined enough basic lenses to implement sewefal derived forms for manipulating trees.
In many uses okf or k, the sets of names specifying where to split the concreteatne where to split the abstract
tree are identical. We can define a simgler k as:

forkplllg = xforkpplllg

VpCN. ¥C1, A1 CT],. ¥Cs, A2CT,.

Vi, € Cl Al Vi, € OQ A2
forkplils € (Cr-Co) 2 (A - Ad)

Vpgj\/ VCl,A1§T|p. VCQ, AQQT\p

Vi, € C é Aq1.Viy € Cy é As.
forkpll Iy € (Cl Cg)é} (Al Ag)

We can usd or k to define a lens that discards all of the children of a tree wh@smes do not belong to some
setp:
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filter pd = forkpid(const {}d)

VOCT.VpCN . Vd € C\,.
filter pde (C|,-C\p) <= Cl,

In the getdirection, this lens takes a concrete tree, keeps the ehildith names i (usingi d), and throws away
the rest (usingonst {} d). The treed is used when putting an abstract tree into a missing contregteproviding
a default for information that does not appear in the abstrae but is required in the concrete tree. The type of
filter follows directly from the types of the three primitive lesseonst {} d, with typeC\, <= {{}}, the
lensi d, with typeC|, <= C|,, andf or k (with the observation that|, = C|, - {}). Using the version of onst
that does not require a default tree, we can build a variaift oft er that does not require a default (and whose
putbackfunction is undefined if the concrete treef13. Letfilter p =fork pid (const {}). Then we have
filter pe (Clp,-C\p) <= Clp.

Another way to thin a tree is to explicitly specify a child tis&ould be removed if it exists:

prunend = fork{n} (const {} {n—df})id

VCCT.VneN.VdeC(n).
prunendec (Cl, - C\,) <= C\,

This lens is similar td i | t er, except that (1) the name given is the child to be removed(2nthe default tree is
the one to go undet if the concrete tree i§. Just likef i | t er, we can define a variant @fr une that does not
require a default view gsr une n = f or k {n} (const {}) id, with type(C|,, - C\,) < C\,..

Conversely, we can grow a tree in tetdirection by explicitly adding a child. The type annotatidisallows
changes in the newly added tree, so it can be dropped iputteack

addnt = xfork{}{n} (const ¢{}; plungen)id

VneN.VCCT\,.Vte T.
addnte C <% {n—{t}}-C

Another lens focuses attention on a single child

focusnd = (filter {n}d); (hoist n)

VneN.VCCT\, VdeC.YDCT. focusnde (C- {n— D}) <= D

Inthegetdirection,f ocus filters away all other children, then removes the edgad yields:’s subtree. As usual, the
default tree is only used in the case of creation, where ftesdefault for children that have been filtered away. Again
the type off ocus follows from the types of the lenses from which it is defineoserving thati | t er {n} d € (C -
{n — D}) <= {n — D} andthahoi st n € {n — D} <= D. We can also define a versionfobcus that does
not require a default tree &cus n =fil ter {n}; (hoi st n), with typef ocus n € (C - {n— D|}) <= D.
Thehoi st primitive defined in Section 5 requires that the name beingtad be theiniquechild of the concrete
tree. It is often useful to relax this requirement, hoistimg child out of many. This generalized versiorhof st is
annotated with the setof possible names of the grandchildren that will becomedeéil after the hoist, which must
be disjoint from the names of the existing children.

hoi st _nonuniquenp = xfork {n}p(hoist n)id

hoi st _nonuni que np € ({n+— CJ} - D) <= (C - D)

A last derived lens renames a single child.
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renamemn = xfork{m}{n} (hoi st m; plungen)id

Vm,neN.YOCT . VDCT \ () 7
rename mn € ({m— C} - D) <= ({n— C}} - D)

In the getdirection,r enane splits the concrete tree in two. The first tree has a singliel ¢hi(which is guaranteed
to exist by the type annotation) and is hoisted up, remouiegeidge namegh, and then plunged under. The rest
of the original tree is passed through iha lens. Similarly, theputbackdirection splits the abstract view into a tree
with a single childn, and the rest of the tree. The tree undds put back using the len$oi st m; pl unge n),
which first removes the edge namednd then plunges the resulting tree ungerNote that the type annotation on
r enane demands that the concrete view have a child nameahd that the abstract view have a child namedn
Section 6 we will see how to wrap this lens in a conditionallitain a lens with a more flexible type.

Mapping

So far, all of our lens combinators do things near the roohefttees they are given. Of course, we also want to be
able to perform transformations in the interior of treesefap combinator is our fundamental means of doing this.
When combined with recursion, it also allows us to iterater®tructures of arbitrary depth.

Themap combinator is parameterized on a single lerfs thegetdirection,map applies ” to each subtree of the
root and combines the results together into a new tree. (batee section, we will define a more general combinator,
calledwnap, that can apply a different lens to each subtree. Definig first lightens the notational burden in the
explanations of several fine points about the behavior apiddyof both combinators.) For example, the lenep [
has the following behavior in thgetdirection when applied to a tree with three children:

ny — tl ny — l/tl
ng +— to|p becomes{|ng — 1 "ty
ng +— t3 ng r— l/tg

The putbackdirection of map is more interesting. In the simple case wherand ¢ have equal domains, its
behavior is straightforward: it usés, to combine concrete and abstract subtrees with identicaésand assembles
the results into a new concrete treg,

1=t my — t) 1= 0N (1, 1)
(map 1)\ 2 oo, A2 =ty o | = Qa2 = I\ (t2, t5)
3 — 13 ng — th 3= I\ (3, t5)

In general, however, the abstract teeim theputbackdirection need not have the same domain <., the edits that
produced the new abstract view may have involved adding atetidg children); the behavior afap in this case

is a little more involved. Observe, first, that the domairofs determined by the domain of the abstract argument
to putback Since we aim at building total lenses, we may suppose (tap 1), ((map )\ (a, ¢)) is defined,

in which case it must be equal toby rule RUTGET. Thusdom((map ),/ ((map )\ (a, ¢))) = dom(a), hence
dom((map 1)\, (a, ¢)) = dom(a) as thegetof map does not change the domain of the tree. This means we can
simply drop children that occur idom(c) but not indom(a). Children bearing names that occur bothdism(a)
anddom(c) are dealt with as described above. This leaves the childir@nonly appear irlom(a), which need to

be passed throughso that they can be included ify; to do this, we need some concrete argument to pass,to
There is no corresponding child in so instead these abstract trees are put into the missmf-tdndeed, this case

is precisely why we introduced. Formally, the behavior afrep is defined as follows. (It relies on the convention
thate(n) = Qif n € dom(c); the type declaration also involves some new notation ampt below.)
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(mapl) ¢ = {]n — 1/ c(n)|ne dom(c)[}
(map ) \\(a, c) = {]n — I\ (a(n), ¢(n)) | n € dom(a)[}
VO, ACT withC = C°, A = A®, dom(C) = dom(A).
Vi€ (Npen - Cln) & A(n)). mapleC 24

VO, ACT with C = 0O, A = A®, dom(C) = dom(A).
Vi€ (Npen - Cn) <= A(n)). mapleC <= A

Because of the way that it takes tree apart, transforms teepj and reassembles them, the typingeg is a little
subtle. For example, in thgetdirection,map does not modify the names of the immediate children of theca
tree and in th@utbackdirection, the names of the abstract tree are left unchangechight therefore expect a simple
typing rule stating that, if € (N, C(n) = A(n))—i.e., if L is a well-behaved lens from the concrete subtree type
C(n) to the abstract subtree typEn) for each childn—thenmap I € C 2 A. Unfortunately, for arbitrary>’ and

A, themap lens is not guaranteed to be well-behaved at this type. ticpéar, if dom(C), the set of domains of trees

in C, is not equal talom(A4), then theputbackfunction can produce a tree that is notif as the following example
shows. Consider the sets of trees

C={{x—=m, {y—n}}

A=Cu{{x—my—nf}}
and observe that with trees

a:ﬂx»—»myn—m[}

c={x—m}

we havemap i d \ (a, c) = a, a tree thatis not il". This shows that the type ofap must include the requirement
thatdom(C) = dom(A). (Recall that for any typ& the sedom(T') is a set of sets of names.)

A related problem arises when the sets of traemdC have dependencies between the names of children and the
trees that may appear under those names. Again, one migktyiakpect that, if has typeC'(n) == A(m) for each
namem, thenmap [ would have type”’ = A. Consider, however, the set

A={{x—=myw—p} {x—=n,y—al},

in which the valuemonly appears under whenp appears under, and the set

C={{x—my—p} x—my—q}, {x—ny—p} {x—ny—aq}l},

where bottmandn appear with botlp andq. When we consider just the projections@fand A at specific names,
we obtain the same sets of subtre€gx) = A(x) = {{n}, {n}} andC(y) = A(y) = {{p},{a}}. Thelens d
has typeC'(x) = A(x) andC(y) = A(y) (andC(z) = @ = () = A(z) for all other names). But it is clearly not
the case thatap i d € C 2 A. To avoid this error (but still give a type forap that is precise enough to derive
interesting types for lenses defined in termsrap), we require that the source and target sets in the typapfbe
closed under the “shuffling” of their children. Formally,fifis a set of trees, then the setabfufflingsof 7', denoted
T, is

T = U {n—T(n)|ne D}
Dedom(T)

where{n — T'(n) | n € D} is the set of trees with domaib whose children undes are taken from the sét(n).
We say thafl" is shuffle closedff T = T°. For instance, in the example abovE; = C°© = C—i.e., C is shuffle
closed, butd is not.

In the situations whereap is used, shuffle closure is typically easy to check. For examgmy set of trees
whose elements each have singleton domains is shuffle class for every set of tre€f, the encoding introduced
in Section 7 of lists with elements ifi is shuffle closed, which justifies usimgap (with recursion) to implement
operations on lists.  Furthermore, types of the fofm+— T | n € N} with infinite domain but with the same
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structure under each edge, which are heavily used in daabasnples (where the top-level names are keys and the
structures under them are records) are shuffle closed.

Another point to note aboutap is that it does not obey thel®PuT law. Consider a lensand(a, ¢) € dom(I\)
such that \ (a, ¢) # 1\ (a, Q). We have

(map )\, ({n > a}, ((map )\ ({1, {n = c})))
(map )\ ({n =~ al. 1)
— ﬂnHl\(a,Q)l}

whereas

{n—=iN(a, of = (mp)\ ({n—a}, {n—c}).

Intuitively, there is a difference between, on the one hamatjifying a childn and, on the other, removing it and then
adding it back: in the first case, any information in the cetewriew that is “projected away” in the abstract view will
be carried along to the new concrete view; in the second, isicimation will be replaced with default values. This
difference seems pragmatically reasonable, so we prefeepmap and lose BTPUT.®

A final point of interest is the relation betweemp and the missing tre@. The putbackfunction of every other
lens combinator only results infutbackinto the missing tree if the combinator itself is called@nIn the case of
map [, calling itsputbackfunction on some andc wherec is not the missing tree may result in the application of the
putbackof [ to Q2 if a has some children that are notdnin an earlier variant ofrap, we dealt with missing children
by providing a default concrete child tree, which would bedisrhen no actual concrete tree was available. However,
we discovered that, in practice, it is often difficult to findiagle default concrete tree that fits all possible abstract
trees, particularly because »f or k (where different lenses are applied to different parts efttiee) and recursion
(where the depth of a tree is unknown). We tried parametweyittiis default concrete tree by the abstract tree and the
lens, but noticed that most primitive lenses ignore the oetectree when defining thgutbackfunction, as enough
information is available in the abstract tree. The natunalice for a concrete tree parameterizecitgnd! was thus
I\\ (a, Q), for some special tre®. The only lens for which thputbackfunction needs to be defined éhis const ,
as itis the only lens that discards information. This ledauthe present design, where only tenst lens (and other
lenses defined from it, such &scus) expects a default tre¢ This approach is much more local than the others we
tried, since one only needs to provide a default tree at thetgoint where information is discarded.

We now define a more general formmép that is parameterized on a total function from names to kereter
than on a single lens.

(Wwrap m), "¢ = ﬂn —m(n),/c(n)|ne dom(c)[}

(wmap m)\(a, ¢) = {n—m(n)\(a(n), c(n)) | n € dom(a)}
VO, ACT withC = C°, A = A°, dom(C) = dom(A).
Vm € (IIneN. C(n) 2 A(n)). wmapme C = A

VO, ACT With C = C, A = A©, dom(C) = dom(A).
vm € (IIneN. C(n) <= A(n)). wmapm € C <= A

In the type annotation, we use the dependent type notatienlIn. C(n) = A(n) to mean thatn is a total function
mapping each name to a well-behaved lens fror@(n) to A(n). Althoughm is a total function, we will often
describe it by giving its behavior on a finite set of names alap#ing the convention that it maps every other name to
i d. For example, the lensrmap {z — pl unge a} mapspl unge a over trees undet andi d over the subtrees of
every other child.

6Alternatively, we could use a refinement of the type systeinack when RTPUT does hold, annotating some of the lens combinators with
extra type information recording the fact that they arewdlis, and then giveap two types: the one we gave here plus another saying “witsgn
is applied to an oblivious lens, the result is very well bettht

24



5.8 Lemma [Well-behavedness]vC, ACT with C = C°, A = A°, dom(C) = dom(A). Vm €
(IIneN. C(n) = A(n)). wmap m € C = A.

Proof:

GET: Suppose: € C andm(n),c(n) is defined for eacm € dom(c). Then, by the (dependent) type wof,
we havem(n),”c¢(n) € A(n) for eachn. Sincedom(A4) = dom(C), there exists a non-empty subsetdfvhose
elements all have domaiP = dom(c). Also, the tree{n — m(n),” c(n) | n € dom(c)|} is an element of the set
{]n — A(n) | n € D[}, which is itself a subset ol sinceA is shuffle closed. Hencemap m), " c € A.

PuT: Leta € Aandc € C. Foralln € dom(a), we haven(n) \ (a(n), ¢(n)) € C(n) (with ¢(n) possibly being?).
Hence, by a similar argument as above, side@(A) = dom(C) andC = C°, we havewrap m) \ (a, c¢) € C.

GETPUT: Assume thatmap m) " cis defined. Then
(wmap m) \ ((wrap m) "¢, c)
= (wrap m)\, ({n — m(n) “c(n) | n € dom(c)}, c)
Hn — m(n)\, (m(n) /" c(n), c(n)) | n € dom(c)[
n— c(n) | n € dom(c)|} by GETPUT for eachm(n)

C.

PUTGET: Assume thatymap m) \ (a, c¢) is defined. Then

(wrap m) /((wrap m)\ (a, c))

= (wmap m)~ {]n — m(n)\, (a(n), c(n)) |n € dom(a)[}

= Hn — m(n),/(I\\ (a(n), ¢(n))) | n € dom(a)]} .

C {n—a(n)|nedom(a)] by PUTGET for m(n) on each child
= a. O

5.9 Lemma [Totality]: VC, ACT withC = C°, A = A°,dom(C) = dom(A4). Vm € (IlneN. C(n) <=
A(n)). wmap m € C <= A.

Proof: Suppose: € C andm(n) is a total function for eacln. Then for anyn € dom(c), we havec(n) €
C(n); hence,m(n) " c¢(n) is defined for each, i.e., fmmap m), "¢ is defined. Conversely, suppogec A and
c € Cq. For anyn in dom(a), we havea(n) € A(n) andc(n) € C(n)q; hencel \ (a(n), c(n)) is defined. Thus,
(wrap m) \ (a, c) is defined. O

5.10 Lemma [Continuity]: For each name, let F},, be a continuous function from lenses to lenses. Then thditmc
Al wrap (An. F,(1)) is continuous.

Proof: To show monotonicity, let and!’ be lenses with < [I’. We must show thatwrap (An. F, (1)) <
wap (An. F,(1")). Lete € T, and suppose thémap (An. F,(1))),/ cis defined. We have

(wmap (An. Fn(1))),/
= {n—F.0)/ ()lnedom()l}
= {ne FE,(')/c(n) | n € dom(c)} sincel <!’ and each, is monotone
= (wmap (An. Fu(l'))),/”

Conversely, suppose that, c) € 7 x 7T and thatwrap (An. F,(1))) \ (a, c) is defined. Then

(wmap (An. F, (1)) \ (a, c)
= ﬂ"HF() (a(n), ())|”€d0m()|}
= {n— F.(')\.(a(n), c(n)) | n € dom(a)} sincel < I’ and eachF,, is monotone
= (wmap (An. F,(1))) \(a, ).

ThusAl. wmap (An. F, (1)) is monotone. We now show that it is continuous.
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Letlp <1 < ... <1, < ... beanincreasing chain of lenses dne- | |, ;. Letc € 7. For notational
convenience, we assume some total ordering on the namescififdren ofc and writef (¢) and1(c) for the first and
last names of, respectively. We have

t = (wmap (An. F,(1))) ¢
— t={n— F,()/¢c(n) |n€dom(c)[}
— t={n— E, ;L) c(n)|n e dom(c)|
= t={n (U; Fa(ls)) c(n) | n €dom(c)} by continuity of each,

N ﬂif(c), .. il(c)
t={nw (F.(li,))/ ¢(n) | n € dom(c)} by 3.13for GeT, |[dom(c)| times
> Ji.t ={n (F,(L;) c(n) | n € dom(c)|} by monotonicity of eacl#,
with ¢ = max(if(c), e 7i1(c))
— Fi. t = (wmap (An. F,,(1;))), "¢
<= t=(;,(wmap (An. F,(;)))) ¢ by 3.13 for G=T.

Conversely, leta,c) € T x Tq. We assume an ordering on the names of the children ahd writef (a) and1(a)
for the first and last names af respectively. We have

t = (wrap (An. F, (1)) \(a, c)

= t={n— F,(0)\(a(n), ())|”€d°m()ﬂ

= t={n~ Fu(;L) \(a(n), ¢(n)) | n € dom(a)}

=  t={n (U; F(l)) \(a(n), c(n)) | n € dom(a)[} by continuity of eachF;,
<~ Hif(a), .. .,il(a).

by 3.13 for RUT,

|dom(a)| times

by monotonicity of eacl¥;,
with i = max(if(a), . 7i1(a))

t = ﬂn — (F, (1)) \(a(n), c(n)) | n € dom(a)[}

<« Ji.t = {n (F,(L;) \ (a(n), c(n)) | n € dom(a)|

< Ji. t = (wmap (An. F,(1;))) \ (a, ¢)
= t=(;,(wrap (An. F,(;)))) \(a, ¢ by 3.13 for RJT.

Note the use here of the fact that all trees have finite donfdais. is not just a technicality: if trees are allowed to have
infinitely many children, continuity fails in general. O

Having definedmrap, we can easily defineap as a derived form:

mapl = wrap (AzeN. )

VO, ACT withC = C°, A = A°, anddom(C) = dom(A).
VI € (Npep - Cln) 2 A(n)).

mplcC2A
VO, ACT withC = C°, A = A®, anddom(C) = dom(A).

VL€ (Nyen - Cln) €5 A(n)).
mapleC <= A

Copying and Merging

We next consider two lenses that duplicate information ie direction and re-integrate (by performing equality
checks) in the other.
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Copy

A view of some underlying data structure may sometimes reghat two distinct subtrees maintain a relationship,
such as equality. For example, under the subtree repregemtnanager, Alice, an employee-manager database may
list the name and ID number of every employee in Alice’s grolfiBob is managed by Alice, then Bob’s employee
record will also list his name and ID number (as well as othfarimation including a pointer to Alice, as his manager).
If Bob’s name changes at a later date, then we expect thatlibevupdated (identically) under both his record and
under Alice’s record. If the concrete representation dasthis name in only a single location, we need to duplicate
the information in thegetdirection. To do this we need a lens that copies a subtreeth@mdallows us to transform
the copy into the shape that we want.

In the getdirection, (copy m n) takes a treeg, that has no child labeled. If ¢(m) exists, thencopy m n)
duplicates:(m) by setting bothu(m) anda(n) equal toc(m). In theputbackdirection,copy simply discards:(n).
The type ofcopy ensures that no information is lost, becauge) = a(n).

(copymn), "¢ = c-{]an(m)l}
(copy mn)\(a, ¢) = a\n

VYm, neN. VCQT\{myn}. VDCT.
copy mn €
(C- {m— Dol}) <& (C-{{m—d, n—d} | de€ Dq})

5.11 Lemma [Well-behavedness]¥m, neN. VCCT \ (y.n}. YDCT. copy mn e (C - {m Dql) = (C -
{{m—d, n—d}} | de Dq}).

Proof:

GET: Immediate. (copy m n),” ¢ unconditionally copieg(m) to a(n) (even whenc(m) = (), guaranteeing
thata(m) = a(n). Because:(m) € Dg, and botha(m) anda(n) = ¢(m), we have ¢opy mn),"c € (C -
{{]ml—>d, nl—>dﬂ | d € Dq}).

PuT: Immediate: restricting. from the target set yields the source set.

GETPUT: Supposedopy m n)\ ((copy mn), "¢, ¢) is defined. Thenqopy m n) \, ((copy mn), "¢, ¢) =
(c- n—cm))\n=c

PUTGET: Suppose ¢opy mn), ((copy mn)\,(a, ¢)) is defined. Then, sincea € C

{{m—d, n—d} | d € Dgq}, we can writta as ¢ - {mwd, n—d} for somed € Dq.
Then €opy m )/ ((copy mn)\(a, ¢)) = (copy mn)/((copy mn)\,((¢ - {m+d, nd}), c)) =
(Copymn)/‘(c'-ﬂde[}):c'-ﬂde,n»—»d[}:a. O

5.12 Lemma [Totality]: Vm,neN. VOCT\(ynny. YDCT. copy mn €  (C - {m— Do}) <= (C -
{{]ml—>d, nl—>dﬂ | d € Dq}).

Proof: Thegetdirection ofcopy will be defined as long as the inpuatacks the name; this is guaranteed by its
type. Theputbackdirection is a total function. O

Readers may note thabpy with the type given here is not very useful. TheTET law imposes strict con-
straints on the lenses that subsequently operatg(or) anda(n). In particular, leta; anda, denote the results of
applyingl; / andl, " to a(m) anda(n), respectively. Suppose we guarantee that all updates radeand as
are “consistent” with each other — that any information ntaiimed in common by, andas will be updated in an
identical manner. Behaviorally, this is all we desire. Hoam in theputbackdirection our type annotations require
us to ensuré; \ (af, a(m)) = l2 \, (a, a(n)). But this is impossible to ensure unldssndi, preserve exactly the
same information. For example, consider a case whé&ea record in an address book. Applyihg” transforms:
to an abstract view in which only names and phone numbergaceded, and, transforms a copy of to an abstract
view that includes, in one form or another, the entire cotstefic. Now suppose we edit the addressain The
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putbackdirection ofly will push the new address back ind6n). However, theputbackdirection ofl; can only try to
restore the address from the old value store€(in). So unles$; andi; preserve exactly the same set of information,
there is no way to satisfy the type requirement thah) = a(n). However, ifl; andl, preserve exactly the same
information, no more, no less, then there are very few usefiriteresting lens that can be applied afterclopy.

An alternative is to remove the constraint ta&tn) = a(n). However, a more permissive type foopy raises
problems with respect to totality and well-behavednesselfemove the equality constraint, then thebacldirection
of copy must be defined even whefm) anda(n) are unequal. IEopy removesi(n) in theputbackdirection, then
there is no way to restore the informationdfr) in thegetdirection, and consequentlyyPGET will not hold.

In our use of lenses to synchronize tree-structured dataawve hot experienced a need foopy. This is not
surprising, because if a concrete representation demhatisaime invariant hold within the data structure, we assume
that (a) each application will locally maintain the invanigin its own representation, and (b) the function of Harynon
is simply to propagate changes from one well-formed reglicanother. We can assume that the synchronizer will
always be presented with abstract views in which the dutgécenformation is consistent, and so will only ever create
such views. Moreover, if one field in a concrete represesnasi derivable from another (or a set of other fields), then
we need not expodaothfields in the abstract view. Instead, we aaerrgethe fields (see below). Any change to the
merged field is thus guaranteed to preserve the invariatiteafoncrete representation when the change to the single
field in the abstract view is pushed back down to all the ddrfields in the concrete view. In our settinggr ge,
the inverse ot opy, makes far more sense thaapy. Fortunately, because of the asymmetrgefandputback the
problematic interaction with T GET does not arise when merging two equal subtrees in a condesteas we show
in the next subsection.

By contrast, some have argued for the needhfiore powerfuforms ofcopy in settings such as editing a user-
friendly view of a structured document [21, 32]. For examphnsider editing a WYSIWYG view of a document in
which the table of contents is automatically generated fitoersection headings in the text. One might feel that adding
a new section should add an entry to the table of contentssiamithrly that adding an entry to the table of contents
should create an empty section in the text with an apprapsettion title. Such functionality is not consistent with
our PUTGET law: both adding a section heading and adding an entry inahile of contents will result in the same
concrete document afterutback such aputbackfunction is not injective and cannot participate in a len®ium
sense. In contexts where such functionality is a primary,g@yatem designers may be willing to weaken the promises
they make to programmers by guaranteeing weaker propértdasRuTGET. For example, Mu et al [32] only require
their bidirectional transformations to obey aFGETPUT law. PUTGETPUT is weaker than BTGET in two ways.
First, they do not require "(I\,(a, ¢)) to equaki. Rather, they require thatif = I\ (a, ¢), anda’ =1 7(¢'), thena’
should “contain the same information @8 in the sense that\ (a’, ¢') = ¢’. Second, they allowetto be undefined
over parts of the range @utback— PUTGETPUT is only required to hold when it is defined, but no requirersent
are made on how broadfyetmust be defined. (Given that their setting is interactives reasonable to say, as they
do, that ifgetof a putbackis undefined, then the system can signal the user that thdioaditin toa was illegal and
must be withdrawn). Hu et al [21] supparbpy functionality in a different way. They weakdyoth PUTGET and
GETPUT by only requiring RTGET to hold whena is alreadyi (c), and by only requiring @TPUT to hold where
is I\\(a, ¢') for somea andc’.

Merge

It sometimes happens that a concrete representation esqguality between two distinct subtrees within a view. A
nmer ge lens is one way to preserve this invariant when the abstiesti¢ updated. In thgetdirection,mer ge takes

a tree with two (equal) branches and deletes one of them.elputbackdirection,ner ge copies the updated value
of the remaining branch teothbranches in the concrete view.
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(mergemn), "¢ = c\n
{ a- HnHa(m)l} if c(m) =
a- {n—cn)} if c(m)#
Ym,neN. VCQT\{myn}. VDCT.
mergemn €
(C - {]m»—»DQ, n|—>DQ[}) <= (C - {]m»—»DQI})

(merge mn)\ (a,c) =

There is some freedom in the typeroér ge. On one hand, we can give it a precise type that expressestéreled
equality constraint in the concrete view; the lens is welhéived and total at that type. Alternatively, we can give it a
more permissive type (as we do) by ignoring the equality taits—even if the two original branches are unequal,
ner ge is still defined and well-behavedness is preserved. Thisssiple because the old concrete view is an argu-
ment to theputbackfunction, and can be tested to see whether the two branchesgeal or not ire. If not, then the
value ina does not overwrite the value in the deleted branch, allowiggge to obey RITGET.

Note thatrer ge, unlikecopy, can be usefully given a more permissive type that remowvesdiaality constraint
on the type ofrer ge’s concrete view. We can define the behaviwer ge m n) / ¢ even when the subtrees under
m andn are unequal, so thater ge is still total. Even thouglgetmay discard the subtree underwe can restore it
in the putbackdirection, even if it were unequal tgm). We can preserve well-behavedness in this case, because the
old value ofc is passed back in thautbackdirection.

5.13 Lemma [Well-behavedness]vm,neN. YOCT\(, ). VDCT. nerge m n € (C
{m — Daq, n— Dql}) & (C - {m — Dql}).

Proof:

GET: Immediatex(C - {m — Dq, n— Do)\, = C - {m — Dql.

PuTt: By the form of the definition of theputbackdirection of mer ge, there are two cases to consider: First, if
c¢(m) = ¢(n) (i.e., either bothrm andn are missing or both are present and their subtrees are emualitself

is 2), then grerge mn)\,(a, ¢) = a - {n— a(m)}. But this belongs taC' - {m — Dq, n — Dqf, since

a € C - {m Dql} anda(m) € Dq. Second, ife(m) # c(n) (i.e., either one ofn andn is missing and the other

is not, or both are present but they lead to different subjreken (rer ge m n) \ (a, ¢) = a - {]m — c(n)[}. But

this again belongs t6' - {{m — Dq, n — Dql, sincea € C' - {m — Dql andc(n) € Dq.

GETPUT: Supposerter ge m n)\ ((merge mn) "¢, ¢) is defined. There are again two cases to consider. If
¢(m) = c(n), then frer ge mn) \, (Mer ge mn) /¢, ¢) = (c\n) - {n = (\a) (M)} = (\) - {1 e(n)} =

c. On the other hand, if(m) # ¢(n), then grer ge mn) \, ((Merge mn) ¢, ¢) = (c\n) - {n — c(n)} =c.
PUTGET: Supposerter ge m n),” ((mer ge m n)\ (a, c¢)) is defined. There are again two cases to consider. If
c(m) = c¢(n), then (rer ge mn),/ ((merge mn) \, (a, ¢)) = (a - {n+— a(m)})\n = a, sincen ¢ dom(a). On

the other hand, i(m) # c(n), then frer ge m n) /" ((mer ge m n) \, (a, ¢)) = (a - {n — c(n)})\n = a. O

5.14 Lemma [Totality]: Vm,ne€N. VCOCT \(nny. YDCT. mergemn € (C - {m— Dq, n+— Do) <=
(C . {]m = DQI}).

Proof: Thegetdirection ofner ge is a total function. In theutbackdirection, the definedness of theperation is
guaranteed by the fact thate (C' - {m — Dql}) C T\(y}. O
6 Conditionals

Conditional lens combinators, which can be used to seldgtapply one lens or another to a view, are necessary for
writing many interesting derived lenses. Whergéa®r k and its variants split their input trees into two parts, send
each part through a separate lens, and recombine the resctisditional lens performs some test and sendw/tizde
trees through one or the other of its sub-lenses.
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The requirement that makes conditionals tricky is totaliye want to be able to take a concrete view, put it
through a conditional lens to obtain some abstract view,thed takeany other abstract view of suitable type and
push it back down. But this will only work if either (1) we sohwv ensure that the abstract view is guaranteed to be
sent to the same sub-lens on the way down as we took on the way else (2) the two sub-lenses are constrained to
behave coherently. Since we want reasoning about wellveelmess and totality to be compositional in the absence of
recursion (i.e., we want the well-behavedness and tow@fitpmposite lenses to follow just from the well-behavednes
and totality of their sub-lenses, not from special factsialive behavior of the sub-lenses), the second is unacdeptab

Interestingly, once we adopt the first approach, we can go@epletecharacterization of all possible conditional
lenses: we argue that every binary conditional operatdrtiedds well-behaved and total lenses is an instance of
the generatond combinator presented below. Since this geneid is a little complex, however, we start by
discussing two particularly useful special cases.

Concrete Conditional

Our first conditional,ccond, is parameterized on a predicate on views and two lenses; andls. In the get
direction, it tests the concrete viewand applies theget of [, if ¢ satisfies the predicate argl otherwise. In the
putbackdirection,ccond again examines the concrete view, and applieptitbackof [, if it satisfies the predicate
andl, otherwise. This is arguably the simplest possible way tanéedi conditional: it fixes all of its decisions in the
getdirection, so the only constraint dip andl, is that they have the same target. (However, if we are intlan
usingccond to define total lenses, this is actually a rather strong dard)

lh/ ¢ ifceCy
lo/'c ifecdgCy
_ i\ (a,c) IfeceC
(ccond C1 Iy o) \\(a,¢) = { b (0. c) ifegC
VC,C1, ACU. VI, € CNCY 2 A, Vi, € C\Cl £ A ccond Cilil,eC 24
VO, 01, ACU. VI, € CNOy <= AV, € C\C; <= A. ccond Ol b, e C <= A

(ccond Ci 11 1) e = {

One subtlety in the definition is worth noting: we arbitraichoose tgutbacks? usingls (becausé&) ¢ C; for any
C1 C U). We could equally well arrange the definition so as to $erldroughl; . In fact,/; need not be well-behaved
(or even defined) ofe; we can construct a well-behaved, total lens ugiegnd whenl; € C N C; < A and
b el \ Ch < A

Abstract Conditional

A quite different way of defining a conditional lens is to matignore itsconcreteargument in the@utbackdirection,
basing its decision whether to uge\, or I3\, entirely on its abstract argument. This obliviousness &dbncrete
argument removes the need for any side conditions reladtiedéhavior of; andl,—everything works fine if we
putbackusing the opposite lens from the one that we usegeis-as long as, when wenmediatelyput the result
of get we use the same lens that we used forgae Requiring that the sources and target$,ofindi» be disjoint
guarantees this.
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B /¢ ifceC
(acond C1 A1 lh 1) /"¢ = {12/c if c g Ch

h\(a.¢) facAnced
B LhN\(a, Q) faec A NcgCy

(acond C1 Ay 1 1)\ (a, ¢) = o\ (a,c) fagdAiNncgCy
IaN\(a, Q) fag AiAceCy

VC,A,C1, A1 CU.

Vi, € CNCy é AﬂAl. Viy € (O\Cl) é (A\Al)
acondCi A1 lil,eC2 A

VC,A,Cy, A1 CU.

VI, € CNCY < ANA;.Vl; € (C\Cl) < (A\Al)
acond C; A1 1l e C < A

In Section 5, we defined the lengnane m n, whose type demands that each concrete tree have a childlname
m and that every abstract tree have a child namedsing this conditional, we can write a more permissive kbras
renames a child if it is present and otherwise behaves liédgntity.

rename.i f present mn = acond ({m— T} T\(nny) ({n—= T} T\gnny) (rename mn) i d

VYn,m € N.VYCCT.VD, EQ(T\{m_’n}).
renanme. f _present mn €
({m— C} - D)UE < ({n+— C|} - D)UE

General Conditional

The general conditionakond, is essentially obtained by combining the behavior€obnd andacond. The
concrete conditional requires that the targets of the twede be identical, while the abstract conditional requiras
they be disjoint. More generally, we can let them overlapteatbly, behaving likeccond in the region where they
do overlap (i.e., for arguments, ¢) to putbackwherea is in the intersection of the targets) and lizeond in the
regions where the abstract argumenptabackbelongs to just one of the targets. To this we can add oneiedalit
observation: that the use Ofin the definition ofacond is actually arbitrary. All that is required is that, when waeu
theputbackof /,, the concrete argument should come fr@# ), so that; is guaranteed to do something good with
it. These considerations lead us to the following definition
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l if ceC
(cond C1 A1 Az for fi2li le) /¢ = {12;2 ifZ%Ci
ll\(a, C) if a e AyNAs Ace Cq
lg\(@, C) ifaEAlﬂAg/\C¢01
l , if a e Aj\As Nc e (C
(cond Cy A1 Az for fizlil2) N\ (a, ¢) = 1 (<) “ 1\ Ace (Gr)a

ll\(a, f21(0)) if a € Al\AQ Nc g (Cl)gz
lQ\(CL, C) ifaeAg\Al/\c¢01
lg\(@, flg(c)) if a € Ag\Al Ace Cy

VC,Ch. Ay Ay C U.
Vi, € (CﬂCl) é Aj.
Vi, € (C\Cl) LN As.
Vo1 € (C\Cl) — (CﬂCl)Q.
Vf12 S (CﬂCl) — (C\Cl)g
cond Cl Al A2 f21 f12 ll ZQ eC é (A1UA2)
VC,Cy, Ay, Ay CU.
Vi, € (CﬂCl) é Al.
Vi, € (C\Cl) FELN As.
Vo1 € (C\Cl) — (CﬂCl)Q.
Vfio € (CﬂCl) — (C\Cl)g
cond C7 A1 Ay f21 f12 il el <L (A1UA2)

Whena is in the targets of bothy, andl,, cond\, chooses between them based solely: ¢as doexcond, whose
targets always overlap). iflies in the range of only, or 5, thencond’s choice of lens foputbackis predetermined
(as withacond, whose targets are disjoint). Onkg, is chosen to be eithér™\, or I\, if the old value ofc is not in
ran(I\\)q, then we apply a “fixup function,fa; or f12, to ¢ to choose a new value froman(IN\)q. 2 is one possible
result of the fixup functions, but it is sometimes useful tmpaite a more interesting one, as we will see in Section 7.

Somewhat surprisingly, all this generality can actuallybée useful in practice! We will see an example depend-
ing on the full power ot ond in the next section.

6.1 Lemma [Well-behavedness]vC, Cy, Ay, Ay C U. VI; € (CNCY) = Ay, Vip € (C\C)) = Ay. Vfy €
(C\Cl) — (CﬂCl)Q. Vfie € (CﬂCl) — (C\Cl)g cond C; A; Ay fo1r fianlilo €C 2 (AlUAg).

Proof:

GET: Suppose: € C andl 7 c is defined, where, for brevity here and in the other proofscfond, we write

for (cond Cy Ay As for fiol1 o). If ¢ € Cy, thenl "¢ =11, /"¢c € A1 C A1UA; by the type ofl;. Otherwise,

I/ 'c=1ly,/"ce Ay C A1 U Ay bythetypeoﬂg.

PUT: Supposéa,c) € (A1UA2) x Cq andl\ (a, ¢) is defined. There are six cases to consider, one for eacheclaus
in the definition, and the result in each case is immediaten fitee typing ofl; or I, as the case may be. Note, in

particular, that the range g%, falls within the source of; in the fourth clause, and similarly fgfi, andls in the
sixth clause.

GETPUT: Suppose: € C andl\ (I "¢, c¢) is defined. Ifc € C1, thenl "¢ = l; /¢, which, by the type of;,
belongstad;. Sol\ (1 "¢, ¢) =11 \\ (1 ¢, ¢) by either the first or the third clause in the definitiorisf. This,
in turn, is equal ta- by GETPUT for [;. On the other hand, i ¢ C4, thenl "¢ = l2 /¢, which, by the type of,,
belongs tod,. Sol\, (I2," ¢, ¢) = la\, (l2, ¢, ¢) by either the second or the fourth clause in the definition\of
This is equal ta: by GETPUT for Is.

PUTGET: Supposda,c) € (A1UA2) x Cq andl,” (1, (a, ¢)) is defined. There are again six cases to consider:

1. Ifa € A1NAg andc € Cy, thenl (I, (a, ¢)) =1,/ (l1 \\(a, ¢)). Butly \ (a, ¢) € Cy by the type of;, so
L7 (1 \(a, ¢)) =11,/ (I1 \\(a, ¢)) = a by PUTGET for [;.
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2. Ifa € AiNAg ande ¢ Cy, thenl (1, (a, ¢)) =1,/ (12 \\(a, ¢)). Butly \ (a, ¢) € Cy by the type of3, so
1/ (la\\ (a, ¢)) =12,/ (I2\\ (a, ¢)) = a by PUTGET for I5.

3. Ifa € A1\ Az andc € (Cy)q, thenl, /(I (a, ¢)) =17 (l1 \\(a, ¢)). Butl; \,(a, ¢) € C; by the type of,
sol/ (I1 \(a, ¢)) =11,/ (l1 \\ (a, ¢)) = a by PUTGET for ;.

4. Ifa € Aj\Az andc & (C1)q, thenl /(I (a, ¢)) =17 (I1 \\ (a, f21(c))). Butly \,(a, f21(c)) € Cy by the
types off2; andly, sol,” (i \ (a, f21(c))) =11,/ (li \i(a, f21(c))) = a by PUTGET for [;.

5. Ifa € A2\ A; andc & Cy, thenl 7 (I, (a, ¢)) =17 (I2\\(a, ¢)). Butla \ (a, ¢) € C3 by the type of3, so
L (la\(a, ¢)) =12/ (Ia\\(a, ¢)) = a by PUTGET for ls.

6. If a € A2\ A, andc € C4, thenl,” (I \\ (a, ¢)) = 1, (Ia\\(a, fi2(c))). Butlz\,(a, fi2(c)) € Cs by the
types off12 andlz, sol " (I2 \ (a, fi2(c))) =12,/ (I2\\(a, fi2(c))) = a by PUTGET for [>. O

6.2 Lemma [Totality]: VC,Cy, Ay, Ay CU.VI; € (CNCy) <= Ay. Vip € (O\C1) <= Ay, Vo € (C\Cy) —
(Cﬂcl)gz. Vflz S (CﬂCl) — (O\Cl)gz. cond o Al A2 f21 f12 il el é (A1UA2).

Proof: Straightforward: each clause in the definitiong gf andi™\, directly invokes the corresponding part of either
I or 5, from whose type the definedness of the result then follows. O

6.3 Lemma [Continuity]: Let F; and F> be continuous functions from lenses to lenses. Then thetitmc
Al.cond Cy Ay As for1 f12 Fi(1) Fx(1) is continuous.

Proof: Details omitted—the argumentis similar to other contippitoofs above. O

Before we introducedond, we argued that it captured all the powercafond andacond, and (because of the
fixup functionsf2 and f21), more besides. We now argue that this is the maximum getyepalssible—i.e., that
any well-behaved and total lens combinator that behavesliinary conditional can be obtained as a special case of
cond.

Of course, the argument hinges on what we mean when weldaghaves like a conditional.” We would like to
capture the intuition thdtshould, in each direction, “test its input(s) and decidetivbeto behave liké orl,.” In the
getdirection, there is little choice about how to say this: sitttere is just one argument, the test just amounts to testing
membership in a set (predicat€). In the putbackdirection, there is some apparent flexibility, since the teight
investigate both arguments. However, the requirementsefiflvehavedness (and the feeling that a conditional lens
should be “parametric” ity andl,, in the sense that the choice betwégandi, should not be made by investigating
their behavior) actually eliminate most of this flexibilitlf, for example, the abstract inputfalls in if « € A1NAs,
then the choice of whether to apgly~, or i2\, is fully determined by:: if ¢ € C1, then it may be that =1 " ¢; in
this case, using “\, guarantees that\ (a, c¢) = ¢, as required by GTPUT, whereag,\, gives us no such guarantee;
conversely, ifc € C\Cy, we must usé;.

Similarly if a« € A1\ As, then we have no choice but to uke sincels’s type does not promise that applying it
to an argument of this type will yield a result @. Similarly, if « € A2\ A;, then we must usk. However, here
we do have a little genuine freedom:dfe A;\ A2 while ¢ € C\C4, then, by the type ok, there is no danger that
a = lz /" c. In order to apply;, we needsomeelement of C; ), to use as the concrete argument, but it does not matter
which one we pick; and conversely fbr. The fixup functionsfo; and f12 cover all possible (deterministic) ways of
making this choice based on the given(lt is possible to be slightly more general by makifyg and f,- take both
a andc as arguments, but pragmatically there seems little poidbing this, since eithdy \, or l5\, is going to be
called on their result, and these functions can just as akdld into account.)

Special Types for Conditional Lenses

In this section, we record some additional types that ouditmmal lenses inhabit, which we need for our proof that
listfilter,definedin Section 7, is total. This material can be skimmed brst reading.
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The first theorem presents an alternate total type ford where the target sets in the typed gfl, and the entire
cond lens are intersected with an arbitrary sét,Recall that the standard type focond takes two lenses with type
CNCp <= A andC\ O <= A, (as well as conversion functiorfs; and f1,) and produces a lens with type
C <2 A, U A,. This type is usually the type that we want. However, in soin@sons (when reasoning about
totality), we need to show fixedinstance oftond has many different types. The abstract components of some of
these types may be smaller thaty U As ), whereA; and A, appear literally in theyntaxof theccond instance. The
new type presented here allows us to simplify some of thesesday only considering the lens type that is intersected
with the abstract type we want, reducing the proof burden.

6.4 Theorem: Thecond lens has the following types:

1. VC,C1,A, A1, Ay C U. VI, € (CﬂCl) 2 (AﬂAl) Vi, € (C\Cl) 2 (AﬂAg) Vo € (C\Cl) —
(CﬂCl)Q. Vfie € (CﬂCl) — (C\Cl)Q cond C; A Ay fo1 finlilo €C = (Aﬂ(AlUAg)).

2.VC,C1,A, A1, Ay CU. VI, € (CﬂCl) PELY (AﬂAl) Vi € (C\Cl) < (AﬂAQ) Vo € (C\Cl) —
(Cﬂcl)gz. Vflz S (CﬂCl) — (O\Cl)gz. cond 1 A1 A2 fgl f12 1l el é (Aﬂ(AlLJAQ)).

Proof: We prove (1) by showing that theond lens is well-behaved a@t = (AN (A; U A5)), and then prove (2) by
showing that that the lens is also total if béthandi, are total.

GET: Suppose: € C andl 7 c is defined. (Again, for brevity, we writefor (cond Cy Ay Az fo1 fi2 11 12)). If

ce Cy,thenl/"c=1; /"ce (ANA;) C (AN (A1UAs)) by the type of;. Otherwise] "¢ =15 "c € (AN Ay) C
(AN (A1 U Ay)) by the type ofl,.

PUT: Supposéa,c) € (AN (A1UA3)) x Cq andl ™\ (a, c) is defined. There are six cases to consider, one for each
clause in the definition, and the result in each case is imaediom the typing of; or[,, as the case may be. Note,
in particular, that the range gb; falls within the source of; in the fourth clause, and similarly fgf, andls in the
sixth clause.

GETPUT: Suppose: € C andl\(I,"¢, ¢) is defined. Ifc € Cy, thenl "¢ = I; /¢, which, by the type of;,
belongs to(A N Ay). Sol\,(l1 ¢, ¢) = 1 \\(l1,/ ¢, ¢) by either the first or the third clause in the definition of
I\\. This, in turn, is equal te by GETPUT for [;. On the other hand, if ¢ C1, thenl "¢ = I3 ¢, which, by the
type ofls, belongs ta A N Az). Sol\, (l2¢, ¢) = l2\,(I2" ¢, ¢) by either the second or the fourth clause in the
definition of\,. This is equal ta: by GETPUT for [,.

PUTGET Supposéa, c) € (AN(A1UAz)) x Cq andl 7 (1, (a, ¢)) is defined. There are again six cases to consider:

1. Ifa e (AN (4A1NAz)) andc € Cq, thenl /(I \,(a, ¢)) =1, (l1 \\ (a, ¢)). Butl; \,(a, ¢) € Cy by the type
of l1,s0l, 7 (1 \\(a, ¢)) =11 " (l1 \\(a, ¢)) =a by PUTGET for ;.
(N

2. Ifae (AN (A1NAy)) ande ¢ Cy, thenl / (a, ) =1,/(la\\(a, ¢)). Butiy \ (a, c) € Cs by the type
of Iy, s0l, 7 (Ia\, (a, ¢)) =12, (Ia\\(a, ¢)) =a by PUTGET for 5.

3. Ifa e (AN (A1\Az)) andc € (Cy)q, thenl /(I (a, ¢)) =1,/ (l1 \\(a, ¢)). Butly \,(a, ¢) € C; by the
type ofly, sol,” (I1 \\ (a, ¢)) =11,/ (l1 \\ (@, ¢)) = a by PUTGET for ;.

4. If a € (AN (4\42)) andc ¢ (Cr)a, thenl, " (IN\.(a,c)) = 1
i\ (a, fa1(a,c)) € C1 by the types offs; andiy, sol (11 \ (a, fa1(a,c)))
a by PUTGET for [;.

5. Ifa e (AN (A2\A1)) andc & C1, thenl 7 (!
of Iy, s0l,/ (I2\, (a, ¢)) = l2,/ (I2\\ (a, ¢))

6. Ifa € (AN (A2\A1)) andc € Cq, thenl " (1, (a, ¢)) =1,/ (Ia \\ (a, f12(a,c))). Butla\ (a, fi2(a,c)) €
C5 by the types off12 andly, sol " (I2 \ (a, 12(a, €))) =12,/ (la \\(a, fi2(a,c))) = a by PUTGET for [5.
]

/( ( fgl(a,c))). But
=0/ (l \, (aa f21(a’c))) =

N (a, ¢)) =1,/ (la\\(a, ¢)). Butly\ (a, ¢) € Cs by the type
=a by PUTGET for I,.
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Hence] € C & AN (A; U As). Nextwe prove that s total at that type if; andl, are total, by showing that iget
andputbackfunctions are totally defined on their domains.

We first show that theget function is totally defined or. Pickc € C. If ¢ € Cy thenl "¢ =11 "¢c. As
I, € CNCy < AN A, it follows thatl, /¢ is defined. Similarly, ifc € (C \ C;), thenl /¢ = 15,/ ¢c. As
laeC\Cy <L AN Ay, it follows thatl, ¢ is defined. Hencd,” is a total function.

Second, we prove that thrutbackfunction is totally defined ofA N (A4; U As)) x Cq. There are six cases,
corresponding to the six cases in the definition ofgthtbackfunction:

1. Ifae (AN(A1NAy)) andc € Cy, thenl \ (a, ¢) =11 \,(a, c) is defined ag, \ is total on(A N A;) x (C'N
Ch)a-

2. Ifa e (AN (A1NAg)) andc & C1, thenl \ (a, ¢) = l2\, (a, ¢) is defined ag,; "\ is total on(A N A2) x (C'\
Ci)a.

3. Ifa € (AN (A1\Az)) andc € (Ch)a. thenl\ (a, ¢) = 11 \,(a, ¢) is defined ag;\, is total on(4A N A;) x
(C M Cl)Q.

4. Ifa € (AN (A1\A2)) ande & (C1)q, thenl ™\ (a, ¢) = 11\, (a, f21(c)) is defined ag; is a totally defined
function with type:(C' \ C1) — (C N Cq)q andl; N\ is totalon(AN A;) x (C N Ch)q.

5. Ifa e (AN (A2\A1)) andc & Cy, thenthen \ (a, ¢) = I3\ (a, ¢) is defined ag,;\ is total on(A N A3) x
(C\ Ch)a.

6. If a € (AN (A2\A1)) andc € (4, thenl ™\ (a, ¢) = l2\ (a, fi2(c)) is defined asf,, is a totally defined
function with type:(C N Cy) — (C'\ Cy)q andlx\ is total on(A N As) x (C'\ C1)q.

Hence/|\ is a total function.
We conclude thatdond C1 A1 As fo1 f12 1 lg) €l < (A n (Al @] Ag))

The next two theorems record types for conditional lensespatial cases where the conditioablaysselects
one lens or the other (in both directions). In these situatiove can use a more flexible typing rule that makes no
assumptions about the branch that is never used. The firstildesccond instances where the second branch is
always taken.

6.5 Theorem [Always-Falsecond]: VC, Oy, ACU. with C N Cy = ). VI, € C\C; <= A. ccond C; Iy I5 €
C <= A

Proof: First we argue thafccond C; [; l3) = [lo by showing that their respectivget and putbackfunctions
are identical. For any € C, we must have: ¢ (C; N C) (because it is empty) and soe (C' \ C7). Hence,
(ccond Cy 1y l2),/ ¢ = la,/ c. Similarly, for any(a,c) in A x Cq, we must have: ¢ (C N Cy). By definition,
(Ccond Ci 1y lg) \ (CL, C) =1y \‘ (CL, C).

Since (ccond C4 I; ls) = Is, the well-behavedness and totality of theond lens follow from the well-
behavedness and totality Bf In particular, sincé; is never used, we do not need any assumptions about it. O

Note that there is no correspondialgvays-truerule forccond. EvenifC'\ C; = 0, in theputbackdirection, the
Q tree still gets sent through. However, for the generic conditionalond, we can prove aalways-truerule.

6.6 Theorem [Always-Truecond]: VC,Cy, Ay, Ay C U. with CNCy # B and C\C; = (. VI, € CNCy <=
A cond Cq1 A1 Ay f21 f12 il €C PN Aj.

Proof: First we argue thatcond Cy1 A1 As fo1 fi2 11 l2) = 13 by showing that their respectigetand putback
functions are identical. For any € C since(CNCy) # 0 and(C\C:) = () we must have: € (CNCy). Thus,
by definition,(cond C; A1 As fa1 fi12 U1 l2),/ ¢ = 11,/ ¢. Similarly, for any(a,c) in Ay x Cq, eitherc = Q or
¢ € (CNCh); hence, by definitioncond Cy A1 As fo1 fi2 11 l2) \\ (g, ¢) =11 \\(a, ¢).

Since(cond Cy A; Ay fo1 f12 11 l2) = I3, the well-behavedness and totality of thend lens follow from the
well-behavedness and totality [t In particular, sincé; and the conversion functionfs; and f,, are never used, we
do not need any assumptions about them. O
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7 Derived Lenses for Lists

XML and many other concrete data formats make heavy use efeddists. We describe in this section how we can
representlists as trees, using a standard cons cell er;@dhid introduce some derived lenses to manipulate them. We
begin with very simple lenses for projecting the head arldfai list encoded as a cons cell. We then define recursive
lenses implementing some more complex operations on tisgping, reversal, and filtering.

Other list-processing derived forms that we have impleeabut do not show here) include a “grouping” lens
that, in thegetdirection, takes a list whose elements alternate betwesnegits ofD and elements oF and returns a
list of pairs of Ds andEs—e.g., it map§dl el d2 e2d3e3] to[[dlel] [d2e2] [d3e3]].

Encoding

7.1 Definition: A treet is said to be dist iff either it is empty or it has exactly two children, one nairieh and
another nametit , andt(*t ) is also a list. In the following, we use the lighter notatfon . ..¢,] for the tree:

*hl—>t1
*h’—>t2

T gl

In types, we writg[ ] for the set{{}} containing only the empty listC' :: D for the set{]* h—C, *t — D[} of
“cons cell trees” whose head belonggt@and whose tail belongs tB, and[ C] for the set of lists with elements in
C—i.e., the smallest set of trees satisfying] =[] U (C::[ C] ). We sometimes refine this notation to describe
lists of specific lengths, writin§ D*7] for lists of Ds whose length is at leastind at mosjj. The interleaving of a
list of type[ B*7] and a list of typd C™ "] , taking elements from the first list and elements from th@sddn an
arbitrary fashion but maintaining the relative order offgds written[ B*7] &[ C™ "] .

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

hdd = focus*h {*t —df}
VC,DCT.VdeD. hdde (C:D) <= C

tld = focus*t {*h—d}

YO, DCT.VdeC. tl de (C:D) <% D

The lenshd expects a default tree, which it uses in thabackdirection as the tail of the created tree when the concrete
tree is missing; in thgetdirection, it returns the tree undeh. The leng | works analogously. Note that the types
of these lenses apply to both homogeneous lists (the typd ahpliesYCC7.Vde[ C] .hdd e[ C] <= C) as
well as cons cells whose head and tail have unrelated typ#spossibilities are used in the type of theok mar k
lens in Section 8. The types bfi andt | follow from the type off ocus.

Our next lenshoi st _hd, takes a list and “flattens” its first cell usitgi st _nonuni que. It is annotated with
a set of namep specifying the possible domain of the tree at the head ofisheWe will need this operation for one
step of the HTML processing in the example in Section 8.

hoi st _hdp = hoi st _nonuni que *h p; hoi st _nonuni que *t p

VpC(M\{*t }). VOC(T,). YDC(T\,). hoist _hdpe (C::D) <% (C - D)
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Observe that, by assumption, the concrete view has®p® whereC € T|, andD € T\,. Then
hoi st _nonuni que*hpe C:D 2 C - {*t — D|}

and also
hoi st _nonuni que*t pe C - {*t = D} 2 C-D

yielding the desired result for the composition.

List Map

Thel i st _map lens applies a lensto each element of a list:

list mpl = wmap {*h+—1[, *t —|ist_mapl}

VC,ACT . VMieC2 A, listimaple[C] 2 [ A]
VO, ACT. Ve C <2 A. listmaple[C] <= [ A]

Thegetdirection applieg to the subtree undérh and recurses on the subtree untier Theputbackdirection uses

I\, on corresponding pairs of elements from the abstract andretmlists. The result has the same length as the
abstract list; if the concrete list is longer, the extraigathrown away. If it is shorter, each extra element of theralos

list is putbackinto 2.

Sincel i st _map is our first recursive lens, it is worth making a few obsemasi about the way recursive calls
are made in each direction. Thetfunction of thewrap lens simply appliesto the head antli st _map [ to the tail
until it reaches a tree with no children. Similarly, in thetbackdirection,wrap applies! to the head of the abstract
tree and either the head of the concrete tree (if it is pr¢seift, and it applied i st _map [ to the tail of the abstract
tree and the tail of the concrete tree (if it is presentRoin both directions, the recursive calls continue untilé¢ngre
tree—concrete (for thgef or abstract (for thputbach—has been traversed.

Becausd i st _map is defined recursively, proving it is well behaved requirjest) a little more work than has
been needed for the derived lenses we have seen above: wmrsbeav that it has a particular typssuminghat the
recursive use off i st _map has the same type. This is nothing very surprising: exah#tysame reasoning process
is used in typing recursive functional programs. But, sitiig is the first time we meet a recursive lens, we give the
argument in some detail.

Recall that the type ofwmap requires that both sets of trees in its type be shuffle clo®sfore proving that
I i st _map is well-behaved and total, we prove a lemma stating that cethand list types are shuffle closed.

7.2Lemma: VS, TCT.(S=:T) = (S:T)°.

Proof: We calculatgS:: T)° directly. From the definition of cons cells, the getn (S :: T') of possible domains of
treesin(S::T)is {{*h, *t }}. We then calculatéS:: T)° as:

(S::T)O = UDedom(S:.T) {]TL = (ST)(TL) | ne Dl}
{]*h — S, *t — Tl}
S:T. .

7.3Lemma: VI'CT.[T] =[T]°.

Proof: We calculatd 7] © directly. From the definition of lists, the sébm([ 7 ) of domains of trees ifi 7] is
{0, {*h, *t }}. We then calculatgT] © as:

[/T]O = UDGdom([T]){In'—)[T] (TL) |TL€DI}
= {[]}Uﬂ*h»—»T,*t»—»[T][}
= [T]. O
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7.4 Lemma [Well-behavedness]VC, ACT.Vic C 2 A. list . maple[C] 2] 4].

Proof: Note thatl i st _map [ is the fixed point of the functionf = Ak. wmap {*h — I, *t — k}. We use
Corollary 3.17 (1), which states that if, assuming that [ C] = [ A], we can provef(k) € [ C] = [ 4], then
fis(f) e[ C] 2[A].

We assume that € [ C] < [ A] and show thaif (k) has typg C] = [ A] directly, using the type ofmap.
We writem for the total function from names to lenses describedtly — [, *h — k}; i.e.,m maps*htol, *t to
k, and every other name tal. We first show thatn € (IIneN. C(n) = A(n)):

m(*h)=1 € [C](*h)=[A] (*h)
m*hy=1 ¢ 24
by the type of;

ie.,

m(*t)=k e [C](*t)=[A](*t)
ie., m*t)=k € [C] &[A4]
by assumption;

mn)=id € [C](n)=[A4] () Vn & {*h, *t}
ie., mn)=id € 0=
vacuously.

Hence,m has the correct type. The type wfrap also requires that bothC] and[ A] be shuffle closed and that
dom([ C1 ) = dom([ A] ). The first condition follows from Lemma 7.3; the second ctindiis immediate as both
dom([ C] ) anddom([ A] ) are the sef{*h, *t }, 0}.

Using the type ofwrap, we conclude thatf(k) € [C] <= [ A] and by Corollary 3.17, thafiz(f) =
listmaple[C] 2[4]. O

The proof of totality fod i st _map is more interesting. We use Corollary 3.17 (2), noting adfaatl i st _map [
is the fixed point of the functiorf defined above. The corollary requires that we: (1) identifg thains of types,
P=CoCCyC...andJ = Ay C A; C ..., and (2) fromk € C; <= A;, prove thatf (k) € C;yy <= A;y, for
all i. We can then conclude thft(f) € U, C; <= U, A;.

7.5 Lemma [Totality]: VC,ACT.Vic C <= A. list_ mple[C] <= [4].

Proof: We pick these two chains of types:

Co=Ay=10
Cit1=[C"]
Aipq =[ A%

Next, we show thaf () € C;1 <= A;,1. The casé = 0 is immediate becaugg; = A, =[] andl i st _mapl €
[1 <& []. For the case > 0, we calculate the type gf() directly from the type ofurap. As above, we writen
for the function that mapsh to [, *t to k and every othen toi d. From the assumption thate C; <= A;, we
have

m(* h) =] ¢ [ OO..iJrl] (* h) é [AO..iJrl] (* h)
Le, m(*h)=1 ¢ C < A

by i > 0 and the type of;

m*t)=k € [COH1](xt) «Z [A%H] (*t)

by assumption; and

mmn)=id e [C%*](n) A () i g {*h, *t}

ie, m(n)=id € 0
vacuously.

L
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As above, bothf C%-*1] and[ A°%-+1] are shuffle closed and they have equal domains. Using theofyymeap,
we conclude thaf (k) € [ C%+1] <= [ A%#*+1], and hence

list_mapl € U, G <= U4
ie., listimapl € (OuU,[C*T) <= (Oul,[4%])
ie., listmapl ¢ [C] <& [4],
which finishes the proof. O

Reverse

Our next lens reverses the elements of &’list.

The algorithm we use to implement list reversal is a quachtitie algorithm—we reverse the tail of the list and
then use an auxiliary lens to append the old head to the ehé oéversed tail. Before presenting thiest r ever se
lens, we describe this auxiliary lens, calledoc. Thegetdirection ofsnoc m transforms a bush consisting of a
child m adjoined to a list (either the empty view or childreh and* t ) into a non-empty list where the tree under
is the last element.

snocm = acond {m— D} (D:[])
(add *t {}; rename m*h)
(xfork {m*t} {*t}
(hoi st _nonuni que *t {*h*t };
snoc m;
pl unge *t)
(i d))

VDCT. snocmée ({m— D} -[D]) <= [ D]

In the getdirection,snoc has two cases. If the tree has a single childhensnoc m builds a singleton list by
renaming then to * h and adding an empty tail. Otherwise, it moves the childnder the tail tag t , and recurses,
leaving the head in place.

The putbackdirection tests whether the abstract view is a singletdnliist is a singleton, then the lens renames
the head of the list ten and uses th@utbackof the add lens to strip away the empty tail. Otherwise, it uses the
putbackof xf or k to split the abstract and concrete views into children urideand* h. The head is then put back
usingi d; the tail is passed through the composition in reversep(i)nge *t , which hoists up the tail and yields
a list, (2) a recursive call, which removes the last elemémi® list from the first step and places it under the child
namedm, and finally (3)hoi st _nonuni que *t *h *t , which plungeg h and*t under*t, leavingm at the top
level of the tree.

7.6 Lemma [Well-behavedness]vDCT. snoc m € ({m+— D|} - [ D] ) & [ D] .

Proof: First, note thasnoc m is the fixed point of the function:

f=X.acond {m~ D[} (D:[])
(add *t {}; renane m*h)
(xfork {m*t} {*t}
(hoi st _nonuni que *t {*h*t };
l;
pl unge *t)
(i d))

“Malo Denielou has recently suggested a different way of ém@ntingr ever se that is arguably somewhat more intuitive, but we have not
yet pushed through the full proof that it is total (thoughppears to be).
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In the rest of the proof, we use the following abbreviations:

Cc = {]mHD[} -[ D]
A = [D'¥]

c, = {]mHD[}

Ay = D:[]

The structure of the proof is the same as for the well-behaeesiproof fot i st _map. We assume thdtc C = A
and prove thaf (1) € C & A. Using Corollary 3.17 (1), we conclude thfat(f) = snoc m € C = A.

We calculate the type of (1), working top down. The outermost lens is aoond instance; we must prove that
the first branch has this type:

(add *t {};

rename m*h) ¢ cnc, 2 AnA
. (add*t {};

renanem*h) € {m— D} & D[]
which follows from the types cddd andr enane.

i.e.

Similarly, we must show that the second branch has this type:
xfork {m*t} {*t}
(hoi st _nonuni que *t {*h*t}; [; pl unge *t)
ie, xfork{m*t}{*t}
(hoi st _nonuni que *t {*h*t}; [; pl unge *t)
(id) € {m—D}-[D'*] & [D**].

To prove this type for the second branch we show that the twis @f thexf or k have these types,

k; = (hoi st _nonunique*t {*h*t};
l
pl unge *t) € {m—D*t—[DI} & {*t—[D"*]]}
e, k = 6{]m»—>D,*tl—>[D][}
hoi st _nonuni que *t {*h*t}; : {m— D} [ D]
l . [Dl..w]
pl unge *t 2 {*t »[D"]]
which follows from the types dfioi st _nonuni que, [, pl unge and the composition operator;
and k; = id € {*h—=D} 2 {*h— D}

immediately, by the type afd,

and note that

{m=D,*t = [DI} C Tlpm=ty
fft =[D™]} C T
*h— D - T\{m,*t}
*h — D g T\*t

{m—D}-[D**] = ({m—D,*t —[D]}) ({*h— DJ})
[DQ““’] — (H*tH[Dl““’] [})(ﬁ*hHD[})

We use all of these facts, and the typexéfr k, to prove:
xfork {m*t } {*t }kl kQ S {]mp—> DI} . [ Dl..w] & [D2..UJ] )

We conclude that thacond instance (i.e.,f(1)) has typeC < A, and so, by Corollary 3.17 (1), thgtz(f) =
snoc m has the same type. O
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7.7 Lemma [Totality]: VDCT. snoc m € ({m — D[} -[ D] ) <& [ D]

Proof: To prove thasnoc m is total, we use Corollary 3.17 (2). Let

Co=Ag =0 |
Ciy1 = {m — D} - [ D]
Aip =[ D]

be two chains of types. Again, we note ttg&ioc m is the fixed point of the same functioh described in the
well-behavedness proof. In the rest of this proof, we usédt@wing abbreviations:

Cc, = {]mHD[}
Ay = D[]

We prove, by induction o, that if] € C; <% A, thenf (1) € Ciy1 <= Aiy1. LetC =Cipq = ({m — D|} -
[ D% )andA = A;1; = [ D**!]. To show thatf(I) € C <= A, we must show that thecond instance also
has that type.

We first prove that the each branch has the correct type. Tidofanch is straightforward:

(add *t {}; rename m*h) € CNCy <& ANnA
, (add*t {}; renanem*h) € {m— D} <= (D:[])
which follows from the type ofdd, r enane and composition;

i.e.

The second branch must have type:

xfork {m*t} {*t}
(hoi st _nonuni que *t {*h*t}; [; pl unge *t)
, xfork{m*t} {*t}
(hoi st _nonuni que *t {*h*t}; [; pl unge *t)
(id) € ({m— D} -[D*7) \{]mel}
<% [ DM\ (D=[])

ie.

There are two cases.
Casei = 0 We calculate that the second branch must have concrete atrdethiype components:
({]mHD[}-[DO”O])\ﬂmHD[} = 0
[DH\(D=[]) = 0,
which vacuously holds.
Casei > 0: We calculate that the second branch must have concrete ahdettlype components:

({m — D} - [ D*1)\ {m+ D} = {m— D} -[ D]
[Dl..i+1] \(D[] ) — [D2..i+1]
To show that the second branch has this type, we must provedbh arm of thef or k lens has the correct type:
k; = (hoi st _nonunique*t {*h*t};

l;
pI unge*t) c {Jm,_, D, *t ,_>[D0..i71] I} <2 ﬂ*t — [ Dl"i] [%

i.e., kl = c {Im — l)7 *t o= [ DO..ifl]
hoi st _nonuni que*t {*h*t}; . {m~ D} -[ D" 1]
l : [ D]
pl unge *t <t = [ D]

which follows from the types ohoi st _nonuni que, [ (using the induction hypothesis),
pl unge, and the composition operator;

ky = id € {*rh—D} <= {*h— D}
immediately, by the type afd,
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and observe that

{m=D,*t = [ D>} C Tl =ty
ﬂ*t — [ D] C Tl

*h— D C T\{m,*t}
*h — D g T\*t

{]m — D[} [ DY

. ( m»—»D,*tH[DO"ifl] [})(ﬂ*h’_’D[})
[D2..z+1] (

*t —[D™]}) - ({*h— D).
We use all of these facts to prove tixdtor k has the following type:
xfork {m*t}{*t} ki ko € ﬂm s D[} ([ DY < [ DY

Then by the type ofcond, we havef(l) € C <= A, which finishes the case and the inductive proof. Using
Corollary 3.17 (2), we conclude that

fir(f) = snocm € U, G <= U A
e, snocm € Oul,{m~ D} -[D*] <= 0OulJ,[ D"
ie., snocm € {m—D}-[D] < [D"]
as required. O

7.8 Lemma: To prove thatl i st _rever se is total, we will use the following precise total type fsnoc m:
Vi.snoc m € ({m — D} - [ D*]) <& [ D41

Proof: The proofis by induction on. As above, we use the following abbreviations in the proof:

c, = {]mHD[}
Ay = D[]

For the base case= 0, we must show thatnoc m € C <= AwhereC = {m — D[} - [] and4 =[ D*'].
The outermost lens is aacond instance so we must first prove that the each branch has ttecttype. The type of
the first branch is straightforward:

(add *t {}; rename m*h) € CNCy <& ANnA
ie, (add*t {}; renamem*h) € {mw— D} <= (D:[])
by the type ofadd, r ename and composition.

The second branch must have type:

xfork {m*t} {*t}
(hoi st _nonuni que*t {*h*t}; [; pl unge *t)
(id) € C\C1 <& A\A4
, xfork{m*t} {*t}
(hoi st _nonuni que *t {*h*t}; [; pl unge *t)
(id) € 050 ;

which it does, vacuously.

Otherwise,i > 0 and we must show thanoc m € C <= A whereC = {m+~ D[} - [ D*] and4 =
[ D'*1] . As above, we must show that taeond instance has this type by showing that each of its branches ha
the correct type. The proof that the first branch has the cbtype is identical to the case above. We calculate that
the second branch must have concrete and abstract type nentgo

i.e.

({]mHD[} .[DO..i])\ﬂmHDI} — ﬂm’__’Dl} [ D]
[Dl..erl] \(D[]) — [D2..z+1]
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To show that the second branch has this type, we must protvedbh arm of thef or k lens has the correct type:

k; = (hoi st _nonunique*t {*h*t};
L
pl unge *t) € ﬂm»—> D, *t — [ D%1] I} <2 {]*t [ D] [%
ie, ki = c ﬂm»—> D, *t — [ D1
hoi st _nonuni que *t {*h*t }; : {]m — D[} [ D7)
SNOC m . [Dlz]
pl unge *t & {*t [ D]

which follows from the types ohoi st _nonuni que, snoc m (using the induction hy-

pothesis to show it has typgm — D[} - [ D*-~1] <& [ D), pl unge, and the

composition operator;

ky = id € {*h— D} <= {*h— D}
immediately, by the type dfd,

and observe that

{m D, *t = [ D] E S Tlmet
{*t =[D"1} < Tl
H*hHDE C T\{m,*t}
*he— D Q T\*t
{m—D}-[D"] = (Hm — D, *t — [ D" ). ({*h— D)
[DQ..H-I] — ( *1 |—>[D1"Z] [}) . (ﬂ*h — D[})

We use all of these facts to prove thxdtor k has the following type:
xfork {m*t} {*t} ki ks € {m— D} - [ D] <& [ D*>H]
Then by the type oficond, we havesnoc m € C' <% A, which finishes the case and the inductive proof. [

Usingsnoc, we can writd i st _r ever se as follows:

list reverse = acond[] []
(i d)
(renanme *h x;
hoi st _nonuni que *t {*h *t };
fork {*h*t} (list_reverse)id;
snoc x)

VDCT. listreverseec[D] <= [ D]

The getdirection has two cases, corresponding to the two arms afdhditional. The first arm maps the empty list
to the empty list via d. The second lens, selected when the concrete tree is noyeisiphe composition of the
following sequence: (1) a lens that renames the head ofgh®k, (2) one that hoists the tail up one level yielding a
list, (3) a recursive call, and (4)noc x, which moves the child underto the end of the (now reversed) tail.
Theputbackdirection also has two cases. Again, the first arm of the dmmdil maps the empty list to the empty
list. The other composite lens runs the sequence descriimaan reverse, to obtain a concrete tree equivalent to
the reversed abstract tree as follows. First,gbthackof snoc x takes the (non-empty) abstract list and produces a
tree where the last element of the list is removed and planddnx. Next, this abstract view, consisting of a chid
and a list isputbackback through thé or k lens, which reverses the list part of the tree and leavestit@ camed
x unchanged. Third, theutbackof hoi st _nonuni que *t {*h, *t } plunges the head and tail under. Finally,
the child named is renamed té h, yielding a well-formed list.
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The algorithm for computing the reversal of a list used harssiin quadratic time. Interestingly, we have not been
able to code the familiar, linear-time algorithm as a detilens (of course, we could introduce a primitive lens for
reversing lists that uses the efficient implementationrirely, but it is more interesting to try to write the efficten
version using our lens combinators plus recursion). Orfeedify arises if we use an accumulator to store the result:
the putbackfunction of such a transformation would be non-injective apn could not satisfy ®TGET. To see this,
consider putting the tree containifg] under the accumulator child afidh a] as the rest of the list. This will yield
the same resulf,a b c], as putting back a tree containifyy under the accumulator child af@ b c] as the rest of
the list.

7.9 Lemma [Well-behavedness]¥DCT. | i st reverse e[ D] &[D].

Proof: First, note that i st _r ever se is the fixed point of the function:

f=AM.acond[] []
(i d)
(rename *h x;
hoi st _nonuni que *t {*h*t };
fork {*h*t}lid;
snoc x)

In the rest of the proof, we use the following type abbreuviasi

C — A4 = [D]
G = A =[]

In outline, the proof proceeds as follows. We assume thatC < A and prove thatf(l) € C 2 A. Using
Corollary 3.17 (1), we conclude th#t:(f) = | i st reverse € C 2 A.

We calculate the type of (1), working top down. The outermost lens is aocond instance; we must prove that
the first branch has the correct type:

id € CnCy 2 AN Aq
ie, id € [1 = 11
which follows from the type of d;

and that the second branch has the correct type:

rename *h x;

hoi st _nonuni que *t {*h*t };

fork{*h*t}lid,

snoc x € C\Cp 2 A\A
ie., renanme*hx;

hoi st _nonuni que *t {*h*t };

fork {*n*t}lid;

snoc x € [DV*] & [D'¥]

To prove this type for the second branch we show:

ki = S [Dl"w]
renane *h x; : X —D,*t —[D] |
hoi st _nonuni que *t {*h, *t }; : X — DIt - [ D]
fork {*h*t1}1id: : X»—»DE-[D]
snoc x 2 [ DV].

Q

(Note that the second to last step follows from the hypothalsout the type df) We conclude thaf(l) e C = A
and by Corollary 3.17 (1), thati st _r ever se has the same typg,D] = [ D]. O
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7.10 Lemma [Totality]: VDCT. |i st reverse e[ D] <= [D].

Proof: The proof, in outline, is as follows. We first note tHatst _r ever se is the fixed point of the functiof,
defined in the well-behavedness proof above. We then pravalife, that f(I) € C;,1 <= A;,; assuming that
l € C; <= A;. By Corollary 3.17 (2), we conclude thfitz(f) € U, C; <= |, A;.

Define two chains of types:

CO = Ao = @ )
Ciy1=Aip1 =[ D1
also used as abbreviations for the types ingbhend lens:
c, = A = [].
We will show thatl € C; <= A, implies f(I) € C;1 <= A4 by induction oni. LetC = C,;yy = [ D]
andA = A;; = [ D"]. To show thatf(l) € C <%= A, we must show that the outerma@stond lens has that

type.
By the type ofacond, we must prove that both branches have the correct type.ypleef the first branch is easy

to calculate and verify:

id € CNnCy <L AN Aq
ie, id € [1 < 1]
by the type of d.
Showing that the second branch has the correct type, ctdduda:

renane *h x;
hoi st _nonuni que *t {*h, *t };
fork {*h,*t}lid;

snoc x € C\C, < A\ A
requires a little more work. There are two caseg.# 0 then
C\Cy = [I\[l =0

ANAr = [1IN[] =0
and the second branch has type= () vacuously. Otherwisé > 0 and
C\Cy = [D“\[] = [D]
A\NAL = [D%]\[] = [D]
Thus, we must show that the second branch has this type.
renamne *h x;

hoi st _nonuni que *t {*h, *t };
fork {*h, *t }li d;

SNocC X c [Dll] PRI [Dlz]
ie., k = c [ D]

rename *h x; . X — D, *t H[DO..ifl][%

hoi st _nonuni que *t {*h, *t }; : X — D[\ . [ D%i—1]

fork {*h,*t}1lid, : X,_,DE,[DO..il]

snoc X <% [ D]

(The last step follows from Lemma 7.8.) This finishes the @awtthe inductive proof. Using Corollary 3.17 (2), we
conclude that

fir(f) = listreverse € U,c <= U4
ie, listreverse € Qul,[D"] <= 0ul,[D"]
ie., listreverse ¢ [D] <= [D]
as required. O
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Filter

Our most interesting derived leris, st fi | t er, is parameterized on two sets of viedisand £/, which we assume
to be disjoint and non-empty. In tlgetdirection, it takes a list whose elements belong to eifber E and projects
away those that belong t&, leaving an abstract list containing onlys; in the putbackdirection, it restores the
projected-away's from the concrete list. Its definition utilizes our most gex lens combinatorswwrap and two
forms of conditionals—and mutual recursion, yielding asléimt is well-behaved and total on lists of arbitrary length

In thegetdirection, the desired behaviorlof st fi | t er D E (for brevity, let us call it) is clear. In thgutback
direction, things are more interesting because there any mays that we could restore projected elements from the
concrete list. The lens laws impose some constraints onghavior ofi™,. The GETPUT law forces theputback
function to restore each of the filtered elements when thigadidist is put into the original concrete list. For exampl
(letting d ande be elements oD and E) we must havé \ ([ d] ,[ed] ) = [e d]. The RUTGET law forces the
putbackfunction to include every element of the abstract list inthgulting concrete list, and these elements must be
the only Ds in the result (there is however no restriction on Bs).

In the general case, where the abstractlist different from the filtered concrete list” ¢, there is some freedom
in how [\, behaves. First, it may selectively restore only some of kaments ofE’ from the concrete list (or indeed,
even less intuitively, it might add some new element&dhat it somehow makes up). Second, it may interleave the
restoredE’s with theDs from the abstract list in any order, as long as the orderefib is preserved from. From
these possibilities, the behavior that seems most natura ts to overwrite elements @ in ¢ with elements ofD
from a, element-wise, until eitheror a runs out of elements ab. If ¢ runs out first, thed, appends the rest of the
elements of: at the end of. If a runs out first, them\, restores the remainings from the end of and discards any
remainingDs in ¢ (as it must to satisfy BTGET).

These choices lead us to the following specification for glsistep of theoutbackpart of a recursively defined
lens implementing. If the abstract list: is empty, then we restore all thes frome. If ¢ is empty and: is not empty,
then we returru. If @ andc are both cons cells whose heads ardinthen we return a cons cell whose head is the
head ofa and whose tail is the result obtained by recursing on the tdibotha andc. Otherwise (i.e.¢ has type
E:: ([ D] &[ E])) we restore the head efand recurse on and the tail ofe. Translating this into lens combinators
leads to the definition below dfi st fi |l ter and a helper lens,nner filter, by mutual recursiofi. The
definitions involve a little new notation and a few additibtegchnicalities, explained below.

listfilter DE=
cond [ E] [] [ DY*] fitrg (Ac. cQ[ anyp] )

(const [] [])
(innerfilter DE)

inner filter DE =
ccond (E: ([ DY+ &[ E]))
(t1 anyg; inner filter DE)
(wrap {*h—id,*t —list filter DE})

VD, ECT. withDNE =0 and D # () and E # ().
list filter DEe[D] & E] <% [ D] and
inner filter DE c[ D] &[ E] <= [ D]

The “choice operatorany, denotes an arbitrary element of the (non-empty)38t The functionfitry, is the usual
list-filtering function which for present purposes we simply assume has been defin@grimitive. (In our imple-
mentation, we actually udel st filter 7; but for expository purposes we avoid this extra bit of rettaness.)

8The singly recursive variant wheienner fi |l t er is inlined has the same dynamic behavior as the version megbdéere. We split out
i nner filter sothatwe can give it a more precise type, facilitating reampabout well-behavedness and totality: in getdirection it maps
lists containing at least on® to (D ::[ D] ); the corresponding types fbi st fi | t er include empty lists.

9We are dealing with countable sets of finite trees here, sathistruct poses no metaphysical conundrums; alterhatiue less readably, we
can pas$i st filter anextraargument € D.
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Finally, the functionic. c@Q[ anyp] appends some arbitrary elementiofto the right-hand end of a list These
“fixup functions” are applied in thputbackdirection by thecond lens.

The behavior of thgetfunction ofl i st fil t er can be described as follows. dfe [ E] , then the outermost
cond selects theonst [] [] lens, which producefs] . Otherwise the&ond selectd nner fi |l t er, which uses
accond instance to test if the head of the list is# If this test succeeds, it strips away the head usihgand
recurses; if not, it retains the head and filters the tailgisimap.

In the putbackdirection, ifa = [] then the outermostond lens selects theonst[] [] lens, withc as the
concrete argumentif € [ E] and(fitr; c) otherwise. This has the effect of restoring all of figfrome. Otherwise,
if @ #[] thenthecond instance selects thmutbackof thei nner fi |l t er lens, using: as the concrete argument
if ¢ contains at least onB, and(\c. @[ anyp] ) ¢, which appends a dummy value of typeto the tail ofc, if not.
The dummy valuegnyy,, is required becausenner fi | t er expects a concrete argument that contains at least one
D. Intuitively, the dummy value marks the point where the hefd should be placed.

To illustrate how all this works, let us step through someneples in detail. In each example, the concrete type
is[ D] &[ E] and the abstract type [sD] . We will write d, ande; to stand for elements dD and E' respectively.

To shorten the presentation, we will writdor | i st filter D E andi fori nner filter D E. In the first
example, the abstract treas [ d,] , and the concrete treeis [ e; d; €3] . At each step, we underline the term that
is simplified in the next step.

I\ (a, c) =i\ (a, c)
by the definition otond, asa € [ D] andc € ([ D] &[ E]) \ [ E]
(t1 anyp; i)\, (a, ¢)
by the definition occond, asc € E:: ([ D] &[ E] )
(t] anyg)\ (2 AN (a, (tl anyg),/” c), c)
by the definition of composition
= (t1 angp)\ (o [daes]), c)
reducing(t | anyg), ¢
= (t1 anyp)\ (wmap {*h —id,*t — 1} \.(a, [ds€2]), )
by the definition otcond, as[ dz €3] & E::([ D] &[ E] )
= (1 angp)\ (i (0. [ea])), )
by the definition ofsmap with i d \ (dy, d3) = d;
= (t1 any)\ (diz((const [1 [1)\ (1. [ea])), ¢)
by the definition ofcond, as[] €[] and[ e;] €[ E]
= (tI anyg) \.(di::[ €], ¢)
by the definition otonst
= [e;d;es] bythedefinitionoft | .

The final two examples illustrate how the “fixup functions’pglied to thecond lens are used. The first function,
fitrg, is used when the abstract list is empty and the concrets ligit in[ E] . Leta =[] andc=[d; e4] .

I\ (a, ) = (const [1 [1)\(I1. firpl di e1] )

by the definition oicond, asa =[] butc & [ E]

(const [] [1)\.([1,[e1])
by the definition offitry,
= [ei1] by definition ofconst.

The other fixup function(Ac. ¢@Q[ anyp] ), inserts a dummyp element wherh i st fi |l ter is called with a non-
empty abstract list and a concrete list whose elements kire &l Leta = [ d;] andc = [ e;] and assume that
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anyp = do.

IN(a, c) =i\, (a, (Ac. cQ[ anyp] ) c)
by the definition otond, asa € [ D**] andc € [ E]
= iN\f(a,[e1do])
by the definition of(Ac. cQ[ anyp] )
= (t1 anyg; i)\ (a, [€1do] )
by the definition otcond, as[ e; dg] € E::([ D**] D&[ E])
= (t1 ange) N (i (o (11 angs) “[erdo] ), [er do] )
by the definition of composition
= (t1 anye)\ (i \(a [do]). [doen] )
reducing(t | anyg), [ do €1]
= (tl anyg)
N (wmap {*h —id,*t =1} \(a, [do] ), [e1do] )
by the definition occond, as[ do] ¢ E:: ([ D'“] &[ E])
= (t1 anyp)\ (dis (N (L [1)). [er do] )
by the definition ofmmap with i d \ (d;, dg) = d;
= (t1 anyg)\(diz((eonst [1 [1)\ (1, 1)), [e1do] )
by the definition oitond, as[] €[] and[] €[ E]
= (t1 anyg)\.(di:[], [e1do])
by the definition oconst
= [e1d;] bythedefinitionoft! .

We now argue thdti st filter is well behaved and total. As before, the well-behavednessfjis straight-
forward: we simply decide on types for recursive uses of baotht fi |t er andi nner filter and then show
that, under this assumption, the bodies of both lenses hage same types.

7.11 Lemma [Well-behavedness]vD, ECT. with DN E = 0 and D # Q) and E # 0. list filter DE €
[D]&[ E] 2 [D] and inner filter DE c[ D" &[ E] & [ D"“].

Proof: We use corollary 3.17 (1), assuming

listfilter DE e [D]&[E] 2[D]
inner filter DE € [D““]&[E] &[D"¥]

and deriving the expected types farst fi | t er andi nner fi |l t er from their recursive definitions.
We first derive the type fdri st fi | t er D E. The outermost combinatoris@nd lens with concrete predicate
C1 = [ E] and abstract predicately =[] andA,; = [ D!«] . We must show that

const [][] € CNCy 2 A
const [1[]1 € ([DI&[E])N[E] =[]
ie., const [1[] € [E] &[]
and
inner filter DE € C\C; = A,
inner filter DE € ([D&[E])\[E] & [D"“]
ie, innerfilter DE € [DV“]&[E] &[D"“].
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The first fact follows from the type afonst ; the second is immediate by hypothesis. Next we prove tledtiictions
fltrg and(Ac. cQ[ anyp] ) have the correct types:

fitrg € ([D"*]1&[E])— ([ E] )
Ac. c@[ anyp] € ([E]) — ([ DY &[ E] )q

Both are immediate. Hence, using the typecoind, we conclude thati st filter D E € ([ D] &[ E]) =
([1U[ D] )—ie,listfilter DE e ([ D] &[ E]) <[ D] —as required.

Next we derive the type farnner fi | t er D E, working top down. The outermost lens is@aond combinator.
We must show that each branch has the correct type.

([ D] &[ F] ) (B ([ D] &[ B])) & [ D"+]
(B:([ D**] & E])) & [ D"*]

(tl anyg; inner filter DE) €
ie., (tl anyg; inner filter DE) €
wmap {*h—id*t —listfilter DE} € ([DV““&[E])\(E:(D"*]&[E]))=[D"“]

i.e.,, wmap {*h—id*t —listfilter DE} € D:=:(D]&[E])=[D"¥]

The first fact follows from the type dfl with any; € E, the composition operator, and the hypothesis about the
type ofi nner _fil t er. The second follows from the type afrap, the observation thatom(D:: ([ D] &[ E])) =
dom([ D*+*]), our hypothesis about the type lof st fi | t er, and Lemma 7.2, which states that cons cell types
are shuffle closed. Using the typeofond, we conclude thatnner filter € [ DV*] &[ E] & [ D] as
required. O

The totality proof forl i st filter, onthe other hand, is somewhat challenging, involvingitketaeasoning
about the behavior of particular subterms under particdaditions. This is not too surprising, given the well-kmow
difficulties of reasoning about totality of ordinary recuesfunctional programs. We do not imagine that, in pragtice
detailed proofs of totality will be undertaken for very mdagses—most lens programmers will probably be satisfied
with the assurance of (easier) proofs of well-behavednlesspformal reasoning about totality, just as most working
functional programmers are reasonably happy with typddhgglus informal totality arguments for their functions.
Still, it is interesting to work through a few non-trivialtadity proofs in detail, to see what sorts of reasoning témgines
are required.

7.12 Lemma [Totality]: VD,ECT. with DN E = 0 and D # 0 and E # 0. listfilter DE €
[D]&[ E] <% [ D] and inner filter DE €[ D] &[ E] <= [ D"*].

Proof: To start, note that the pair nner filter DE, list filter D E) is the fixed point of the following
function from pairs of lenses to pairs of lenses:

f = XLU).(ccond E:: ([ D] &[ E])
(t1 angg; 1
(wmap {*h—id*t —1'}),
cond [ E] [] [ D] fitrg (Ae. cQ[ anyp] )
l(;:onst [(101)

Note that the order afnner filter andlist_filter is swapped here with respect to the original definition.
We need to take them in this order because the totalityiait fi |l t er at each stage of the induction is going to
depend on the totality afnner fi | t er atthesamestage (plus the totality dfi st _fi | t er atthe previous stage),
while the totality ofi nner fi | t er will depend only on the totality afnner filter andlist filter atthe
previous stage.

In outline, the proof goes as follows. We start by choosingegugnce of pairs of total type sets
(To, TG), (T1,T),... . (Note that eacl; andT; here is a set of total types and a total type is itself a fidjrd).)
Next, we prove a key property ¢f that, when we apply it to a pair of lenses possessing alihestin soméT;, T),
the resultis a pair of lenses possessing all the typ€Bin,, T, ;). To match the form of Corollary 3.23, we do this in
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two steps: first, we assume thidias every total type iff; and!’ has every total type iff; and prove thatr (f(1,1’))

has every total type iﬁThLl, second, we assume thahas every total type iff;; and!’ has every total type ifi’;

and prove thatry (f(1,1)) has every total type iff; , ;. Next we choose an increasing instance of the sequence—i.e.
achain(ry, 7)) C (11, 74) C (12, 75) C ... where each; € T; andr] € T,. We argue that the limit of this increasing
instance(lJ, 7, U, /), is the pair of total types we want—i.e.,

([ D**1 & E],[D**1), ([ D1 &[ E],[ D])).

We conclude by 3.23 that the fixed point fi.e., the pairi nner filter D Eli st filter D E)—has this
type, finishing the proof. We now proceed to the detalils.
We first define the sequence of pairs of total type sets:

To = {(0,0)}
Ty = {(©.0)}
Tiy1 = {([ DM & E*¥] [ DY]) |2 +y =i}
Tiyy = {[D**1& E*],[ D) |z +y=i}
To make the construction of this sequence clear, let us leaeits first few elements explicitly:
T, = {(©,0)}
T, = {(1.[1)}
T, = {([D™1.[D"1])
Ty = {{D*,[D%1), ([ E>',[1)}
Ty = {([(D"?,[D*]),([ D] &[ E°'],[ D''])}
Ty = {([D**,[D%?), ([ D™ & E*1,[ D), ([ E*?,[1)}

In the proof, we use some abbreviations to lighten the ptaen. We abbreviate the type argument todc®nd
lens appearing in the first component of the body'dcds follows:

C,=E:([ D] &[ E])

Similarly, we abbreviate the type arguments toc¢load in the second component:

¢ = [£]
A =11
A/2 _ [Dl..w]

In each case of the inductive proof below, we will defifi@nd A to be the source and target of the type we are trying
to establish for the given lens.

We now prove, by induction ofy the facts abouf needed to apply Corollary 3.23: first, that ihas every total
type inT; and!’ has every total type ifi;, thenm (f(I,1")) has every total type ifi;, 1 ; and second, that ifhas every
total type inT;; and!’ has every total type ifi;, thenm,(f(1,1")) has every total type iffi; , ;.

For the base case £ 0), we must first show that; (f(I,1")) has every total type in the singleton Sgt= {((,0)}.
This is immediate, since every lens is total at this type o8dcwe must show that;(f(Z,1’)) has every total type in
the singleton set} = {([]1,[])}. We letC =[] andA =[] and show that(f(I,1')) € C <= A. Recall that
the second component ¢fl, I’) is defined as

cond [ E] [] [ D] fitrgy (Ac. c@Q[ anyp] )

l(const [1rn

Observe that, a8 N C7) = ([] N[ E]) =[] isnotempty bu{C'\ C{) = ([1 \ [ E]) = 0, by Theorem 6.6 we
can use thalways-truerule forcond. Thus, to show that the whole conditional has type== A’ (which is what
we want, sinced; = A =[] ) it suffices to show that the first branagnst [] [] hastypeC N C| <= A,

const [][] € cCNep, <& A
ie, const [][] € [1N[E] <= ]
ie., const[][] € [1 < 11,
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which follows from the type o€onst .

For the induction stepi (> 0), we first prove thatr; (f(,1)) has every total type iff;+1, assuming that has
every total type ifT; andl’ has every total type ifi’;. Pick an arbitrary total type from T, ;. We break the argument
into three sub-cases.

Caser > 0 andy > 0: Herer has the forn{C, A) with C' = ([ D'-*] &[ E*¥] ) andA = [ D**] . Recall that
the first component of (1,’) is

ccond (E: ([ D¥“] &[ E]))

(tl anyg; 1)
(wrap {*h—id,*t —'}).

The typing rule forccond requires that we prove that the branches have the followipest

(t1 anyg; 1) € cCnC, <= A
ie, (tl anyg; ) € ([D*® & E>Y])n(E=([D"“]1&[ F])) <= [D-
ie,asy >0, (tl anyg; ) € E:([ DY*] &[ E*v~1) <& [D™

which follows from type oft | and the induction hypothesis;

wrap {*h —id,*t —1'} € C\C; <= A

ie, wmap{*h—id*t =0} e ([D“*]& E*¥])\(E=(D"*]&[E])) <= [D-
ie,asz >0, wrmap {*h—id*t —1'} € D:([ DY = 1] &[ E*Y]) <= [D!'

which follows from type ofwmap—by Lemma 7.2, bothD :: ([ D%*~1] &[ E°-¥] ) and
[ D=1, i.e., D:[ DY*~1, are shuffle closed; alstom(D :: ([ D%-*~1] &[ E*¥])) =
dom([ D'*] )—and the induction hypothesis.

Using the type ot cond, we conclude that (f(1,1')) € C <= A, finishing the case.
Casezr = 0: Recall that the sef;,; is {([ D**] &[ E*¥],[ D'*]) | # + y = i}. The only element in this
set withz = 0 is the empty total type:

([ Dl..O] &[ EO..y] ,[Dl..()])
= (0&[ B>] ,0)
= (0,0).

Immediately, the lens; (f(1,1')) has typd) <= (), finishing the case.

Casey = 0 andz > 0: By constructiony is (C, A) with C = [ D'*] andA = [ D'--*] . To verify the type of
theccond, we first observe that N C; = [ D**] N (E:: ([ D] &[ E])) = 0, so theccond always selects the
second branch in both tlgetandputbackdirections. By Theorem 6.5, it suffices to show that the sddanch has
typeC \ C; <= A (orjustC <= AsinceC \ C; = C):

wrep {*h—id*t -1} € C < A
ie, wrap {*h—id*t -1} € [D¥*] <& [D“7]
ie,asz >0, wmap {*h—id*t —1'} € Du=([D**1]) <= [D!"7]
which follows from type ofwrap (with the observation thab ::[ D*-*—1] =[ D'*] and
Lemma 7.2, which states that cons cell types are shuffled)@sel the induction hypothesis.

Using thealways-falsetlype ofccond, we conclude that, (f(1,1')) € C <= A, finishing the case.

We now turn to the second half of the induction step. We mustethatr(f(Z,1')) has every total type ifi;_ |,
assuming thathas every total type ifi;, ; andl’ has every total type ifi;. Pick an arbitrary type’ from T, ;. This
time we break the argument into two sub-cases.

Casezr > 0: Here7’ has the form(C, A) with C = [ D*] &[ E*-¥] andA = [ D°*] . The outer lens in
m2(f(1,1")) is acond. By Theorem 6.4, to show that this lens has the desired typenust show that the branches
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have the following types:

const [] [] € CNO; < ANnA,
ie, const [][] € ([D*®1&[E*Y])N[E] <= [D>?] Nn[]
ie., const [][] € [EOY] <[]

which follows from the type oEonst , as the default tre¢,] , isin[ £°-¥] , for anyy;
I C\C| <& AnA,
ie., | ([D* ") &[ E*Y])\[E] <= [D"*] n[D"¥]
ie., | [ DY &[ E*Y] <= [D'7]
which follows by the induction hypothesis, §sD'*] &[ E®¥] ,[ D**] ) € T;41.

M M M

Next, we must verify that the conversion functions have threect types:

ﬂtTE S C \ Ci — (O n O{)Q
ie., flirg € [DY®1&[ E*Y] — ([E%Y])a
Ac. cQ[ anyp] € cncCi — (C\Cha
ie, Ac. cQ[ anyp] € [E®Y] — ([ D] &[ E*¥])q

Both of these facts are immediate. Finally, we calculatddhget type:

AN (AU AY)
= [D%7 (] u[D"])
= [D%7]
= A

By Theorem 6.4, we conclude that(f(1,1')) € C <= A, finishing the case.

Casexr = 0: Herer’ must be(C, A) with C = [ E®¥] andA =[] . AsC N C} is not empty andC \ C}) is
empty, by Theorem 6.6, we may use tideays-truerule forcond. Using this rule, to show that the instancecaind
has typeC' <% A} (which is what we want sincd] = A = []) it suffices to show thatonst [] [] has type
CNC) <= Al;ie. thatithastypg E%¥] <= [], as we verified above. We conclude thatf(I,1")) € C <=
A, which finishes the case.

To apply Corollary 3.20 and finish the totality proof, we msisbw that

([ D™*1&[ E],[ D**1), ([ D] &[ E],[ D1))

is the limit of an increasing instance of element$BfT’). Let (79, 7)) C (11,71) C ... be defined as

n = (0,0 € To
= (0.0) e Tq
Ti;rl = ([Dl»»((iﬂ)/?)] &[EO»»(i/2)],[Dl»»((i+1)/2)]) € T
e = ([ DO-(D/D] & BO-G/D] [ DO-(HD/D]) e Ty,

wherei/n is integer division of by n. To show that the limit is the pair of total types we want, wevarthat each set
is contained in the other. First, observe that, for any ([ D*] &[ E] ) anda € [ D!*], we can find an such
that(c,a) € = (lifting € to pairs of sets in the obvious way) by choosingp thati/2 is greater than the maximum
number of elements d in ¢, the number of elements @f in ¢, and the number of elementsdn Similarly, for every

c €[ D] &[ E] anda € [ D] , we can find &/ such thatc, a) € 7/ by choosing a large enoughThe other inclusion
is immediate: every; is a subset of[ D*] &[ E] ,[ D**]) (liting C to pairs of pairs of sets twice, pointwise),
and everyr! is a subset off D] &[ E],[ D] ). O
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ALink, = {name — Val url — Val}

ALink = {link — ALink;}

AFolder; = {nane — Val contents — AContents}
AFolder = {fol der — AFolder;}

AContents = [ Altem]

Altem = ALink U AFolder

Figure 2: Abstract Bookmark Types

8 Extended Example: A Bookmark Lens

In this section, we develop an larger and more realistic gtaraf programming with our lens combinators. The
example comes from a demo application of our data synchatinizframework, Harmony, in which bookmark infor-
mation from diverse browsers, including Internet Explphozilla, Safari, Camino, and OmniWeb, is synchronized
by transforming each format from its concrete native regméstion into a common abstract form. We show here a
slightly simplified form of the Mozilla lens, which handldst HTML-based bookmark format used by Netscape and
its descendants.

The overall path taken by the bookmark data through the Hayragstem can be pictured as follows.

html concrete
HTML
abstract
view

other
abstract
view

[ synci

html ggnwcrete bookmark( new
writer put abstract
VIEW VI ew

We first use a generic HTML reader to transform the HTML bookaofée into an isomorphic concrete tree. This
concrete tree is then transformed, usinggdlédirection of thebooknmar k lens, into an abstract “generic bookmark
tree.” The abstract tree is synchronized with the abstraokimark tree obtained from some other bookmark file,
yielding a new abstract tree, which is transformed into a nencrete tree by passing it back through theback
direction of thebooknar k lens (supplying the original concrete tree as the secondnaggt). Finally, the new
concrete tree is written back out to the filesystem as an HTML ¥i/le now discuss these transformations in detail.

Abstractly, the type of bookmark data ismane pointing to a value and aont ent s, which is a list of items.
An itemis either alink, with aname and aur | , or afolder, which has the same type as bookmark data. Figure 2
formalizes these types.

Concretely, in HTML (see Figure 3), a bookmark item is repréed by a<dt > element containing arka>
element whosar ef attribute gives the link’s url and whose content defines trae The<a> element also includes
anadd_dat e attribute, which we have chosen not to reflect in the absfoant because it is not supported by all
browsers. A bookmark folder is represented bydal > element containing akh3> header (giving the folder’'s name)
followed by a<dl > list containing the sequence of items in the folder. The whdT ML bookmark file follows the
standarckhead>/<body> form, where the contents of thdbody> have the format of a bookmark folder, without
the enclosingcdd> tag. (HTML experts will note that the use of thel >, <dt >, and<dd> tags here is not actually
legal HTML. This is unfortunate, but the conventions eddigd by early versions of Netscape have become a de-facto
standard.)

The generic HTML reader and writer know nothing about thecdjps of the bookmark format; they simply
transform between HTML syntax and trees in a mechanical wepping an HTML element namddag, with
attributesat t r 1 toat t r mand sub-elementsubel t 1 tosubel t n,
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<htm >
<head> <titl e>Bookmarks</title> </ head>
<body>
<h3>Booknar ks Fol der </ h3>
<dl >
<dt > <a href="www googl e. cont’ add_dat e="1032458036" >Googl e</ a> </ dt >
<dd>
<h3>Conf er ences Fol der </ h3>
<dl >
<dt> <a href="www. cs.luc. edu/icfp" add_dat e="1032528670">| CFP</ a> </ dt >
</dl >
</ dd>
</dl >
</ body>
</ htm >

Figure 3: Sample Bookmarks (HTML)

{htr -> {* ->
[{head -> {* -> [{title -> {* ->
[ { PCDATA -> Booknmarks}]}}1}}
{body -> {* ->
[{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}
{dIl ->{* ->
[{dt -> {* ->
[{a -> {* -> [{PCDATA -> Googl e}]
add_date -> 1032458036
href -> ww. googl e.cont}]}}
{dd -> {* ->
[{h3 -> {* -> [{PCDATA ->
Conf erences Fol der}]}}
{di -> {* ->
[{dt ->{* ->
[{a ->
{* -> [{PCDATA -> | CFP}]
add_date -> 1032528670
href -> www cs.luc.edu/icfp

1333208003303 RS R0

Figure 4: Sample Bookmarks (concrete tree)

54



Val
PCDATA

CLink

CFolder

CContents
CContents;
CContentss

Cltem
CBookmarks

CBookmarks; =
CBookmarkss, =

{N)
{PCDATA — Val}

<dt > CLink; ::[] </ dt>
<aadd._dat e href> PCDATA :: [] </ a>

<dd> CContents </ dd>

CContentsy :: CContentsg :: [ ]
<h3> PCDATA :: [] </ h3>
<dl >[ Cltem] </dl >

CLink U CFolder

<ht m > CBookmarks; :: CBookmarkss ::[] </ htm >
<head> (<title> PCDATA</title>:[]) </ head>
<body> CContents </ body>

Figure 5: Concrete Bookmark Types

{nanme -> Bookmar ks Fol der
contents ->
[{link -> {nane -> Googl e

url -> www. googl e. cont}

{fol der

->

{nane -> Conferences Fol der
contents ->
[{link ->
{name -> | CFP

ur |

-> www. cs. luc.edu/icfp}}]}}l}

Figure 6: Sample Bookmarks (abstract tree)
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<tag attr1="val 1" ... attrne"val ni'>
subeltl ... subeltn
</tag>

into a tree of this form:
attrl—vall

attrm— val m
tag — subel t 1

*

subel tn

Note that the sub-elements are placed liseunder a distinguished child namé&d This preserves their ordering
from the original HTML file. (The ordering of sub-elementss@metimes important—e.q., in the present example,
it is important to maintain the ordering of the items withilaokmark folder. Since the HTML reader and writer
are generic, theglwaysrecord the ordering from the the original HTML in the treeing it up to whatever lens is
applied to the tree to throw away ordering information whieienot needed.) A leaf of the HTML document—i.e., a
“parsed character data” element containing a text sging—is converted to a tree of the foffPCDATA -> str}.
Passing the HTML bookmark file shown in Figure 3 through theegie reader yields the tree in Figure 4.

Figure 5 shows the typedBookmarks) of concrete bookmark structures. For readability, theetyp-
lies on a notational shorthand that reflects the structurehef encoding of HTML as trees. We write
<tagattrl...attrn> C </tag>for {tag — {attrl — Val ...attrn — Val* — C}}, whereVal
is the set of all values (trees with a single childless chikr elements with no attributes, this degenerates to gimpl
<tag>C</tag>={tag— {* — C}}.

The transformation between this concrete tree and theaab&tookmark tree shown in Figure 6 is implemented
by means of the collection of lenses shown in Figure 7. Mosthefwork of these lenses (in thyget direction)
involves stripping out various extraneous structure argh ttenaming certain branches to have the desired “field
names.” Conversely, theutbackdirection restores the original names and rebuilds thessaceg structure.

It is straightforward to check, using the type annotationppdied, thatbookmar ks € CBookmarks =
AFolder;. (We omit the proof of totality, since we have already seemneniatricate totality arguments in Section 7).

In practice, composite lenses are developed incrementaliglually massaging the trees into the correct shape.
Figure 8 shows the process of developing thenk lens by transforming the representation of the HTML under
a <dt > element containing a link into the desired abstract form.eath level, tree branches are relabeled with
r ename, undesired structure is removed wghune, hoi st , and/orhd, and then work is continued deeper in the
tree viamap.

The putbackdirection of thel i nk lens restores original names and structure automatidatlgomposing the
putbackdirections of the constituent lenseslafnk in turn. For example, Figure 9 shows an update to the abstract
tree of the link in Figure 8. The concrete tree beneath theitgoshows the result of applyimpyitbackto the updated
abstract tree. Thputbackdirection of thehoi st PCDATA lens, corresponding to moving from stejfii to stepvii
in Figure 8, puts the updated string in the abstract tree Iveigla more concrete tree by replacigar ch- Engi ne
with { PCDATA - > Sear ch- Engi ne|}. In the transition from stepi to stepv, the putbackdirection ofpr une
add_dat e { $t oday|} utilizes the concrete tree to restore the valuéd dat e -> 1032458036, projected
away in the abstract tree. If the concrete tree had §&esi.e., in the case of a new bookmark added in the new
abstract tree—then the default arguméréit oday|} would have been used to fill in today’s date. (Formally, the
whole set of lenses is parameterized on the vari@bleday, which ranges over names.)

The get direction of thef ol der lens separates out the folder name and its contents, stgppit undesired
structure where necessary. Note the useafst _hd to extract thech3> and<dl| > tags containing the folder name
and contents respectively; although the order of theseag® does not matter to us, it matters to Mozilla, so we want
to ensure that thputbackdirection of the lens puts them to their proper position isecaf creation, whichoi st _hd
will ensure. Finally, we useap to iterate over the contents.
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link = € {* — Clink; =[]}
hoi st *; . CLink; [ ]
hd []; . CLink;
hoi st _nonuni que a {* add_date href}; {* — PCDATA ::[], add_date — Val,
href — Val}
rename * nane; {name +— PCDATA:[], add_date
Val,
hr ef — Val}
renane href url; {name +— PCDATA:[], add_date
Val,
url — Val}
prune add_date {$today}; {name — PCDATA :: [], url — Val}
map {nane -> (hd []; . PCDATA
hoi st PCDATA) } 2 {name — Val, url — Val} = ALink,
fol der = € {* — CContents}
hoi st *; CContents
hoi st _hd {h3}; {h3 — {* —
PCDATA ::[]}, CContentsg =[]}
fork {h3} (id) (hoist_hd {dl}); {h3 — {* — PCDATA :: [1},
dl — {* — [ Cltem] }}
renane h3 naneg; {name — {* — PCDATA ::[]},
dl — {* — [ Cltem] }}
renane dl contents; {name — {* — PCDATA ::[]},
contents — {* — [ Cltem] }}
map {nane -> (hoist *; PCDATA :: ]
hd []; PCDATA
hoi st PCDATA)
contents -> (hoist *; [ Cltem]
list_nmap item}
= {nane — Val, contents —
[ Altem]} = AFolder,
item= € Cltem

mp { dd -> folder, dt -> link };
renane_i f_present dd fol der;
renane_i f_present dt l|ink

bookmar ks
hoi st htm ;
hoi st *;
tl

[ { PCDATA -> Bookmar ks|}] |}}] 1}};

hd [1;
hoi st body;
fol der

{dd — AFolder;}} U {dt — ALink;}
{f ol der — APFolder;} U {dt — ALink;}
2 AFolder U ALink Altem

€ CBookmarks
{* — CBookmarks; :: CBookmarksg ::
CBookmarks; :: CBookmarkss :: [ ]

[11

{head -> {* -> [{title -> {* ->

CBookmarksg :: [ ]

CBookmarkss

{* — CContents]
£ AFolder,

Figure 7: Bookmark lenses
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Step Lens expression Resulting abstract tree (from 'get’)
ii id {* ->
[{a -> {* -> [{PCDATA -> Googl e}]
add_date -> 1032458036
href -> ww. google.cont}]}}
i hoist * [{a -> {* -> [{PCDATA -> Googl e}]
add_date -> 1032458036
href -> wwv. googl e. cont}]
iii: hoist *; hd {} {a -> {* -> [{PCDATA -> Googl e}]
add_date -> 1032458036
href -> ww. googl e. cont}
iv: hoist *; hd {}; {* -> [{PCDATA -> Coogl e}]
hoi st _nonuni que a {* add_date href}add _date -> 1032458036
href -> www. googl e. cont

v: hoist *; hd {}; {nane -> [{PCDATA -> Googl e}]
hoi st _nonuni que a {* add_date href}add date -> 1032458036
renane * nane; url -> www. googl e. con}
renane href url

vi: hoist *; hd {}; {nane -> [{PCDATA -> Googl e}]

hoi st _nonuni que a {* add_date href}url -> www. google. coni
renane * nane;

renane href url;

prune add date {$today}

vii: hoist *; hd {}; {nane -> {PCDATA -> Googl e}
hoi st _nonuni que a {* add_date href}url -> ww. google.coni
renane * nane;
renanme href url;
prune add_date {$today};
map { nane -> (hd {}) }

vii:  hoist *; hd {}; {nane -> Googl e
hoi st _nonuni que a {* add_date href}uyrl -> ww. google.cont
renane *=nane;
renanme href url;
prune add_date {$today};
map { name -> (hd {}; hoist PCDATA) }

Figure 8: Building up a link lens incrementally.

{link -> {nane -> Googl e
url -> www. googl e. con}}

{link -> {nane -> Sear ch- Engi ne

updatedto... url -> www. googl e. con}}

yields (afterputbach...
{dt -> {* ->
[{a -> {* -> [{PCDATA -> Search- Engi ne}]

add_date -> 1032458036
href -> ww. google.cont}]}}

Figure 9: Update of abstract tree, and resulting concreee tr
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Thei t emlens processes one element of a folder’s contents; thissgiemight be a link or another folder, so we
want to either apply théi nk lens or thef ol der lens. Fortunately, we can distinguish them by whether they a
contained within a<dd> element or a<dt > element; we therap operator to wrap the call to the correct sublens.
Finally, we renameld to f ol der anddt tol i nk.

The main lens idookmar ks, which (in thegetdirection) takes a whole concrete bookmark tree, stripsheff
boilerplate header information using a combinatiohof st , hd, andt | , and then invoketol der to deal with the
rest. The huge default tree supplied to thelens corresponds to the head tag of the html document, wiifiered
away in the abstract bookmark format. This default tree @dnd used to recreate a well-formed head tag if it was
missing in the original concrete tree.

9 Lenses for Relational Data

We close our technical development by presenting a few iadditlenses that we use in Harmony to deal with prepar-
ing relational data—trees (or portions of trees) congistifi“lists of records"—for synchronization. These lenses d
not constitute a full treatment of view update for relatiba@ta, but may be regarded as a small step in that direction.
In particular, thg oi n lens performs a transformation related to theer joinoperation in database query languages.

Flatten
The most critical (and complex) of these lensekligt t en, which takes an ordered list of “keyed records” like
Phone — 333- 4444 ﬂﬂ ]

Pat —
{URLHhttp://pat.com

: Phone — 888- 9999
chris — .
URL — http://chris.org

and flattens it into a bush like
Phone — 333- 4444
Pat —
URL — http://pat.com

hris s lﬂPhone — 888- 9999 G ]

URL — http://chris.org

The importance of this transformation is that it makes thégthded alignment” of the data structurally obvious, fngei
the synchronization algorithm from having to understarat,thlthough the data is presented in an ordered fashion,
order is actually not significant here. Synchronization@inproceeds child-wise—i.e., the record undat is
synchronized with the corresponding record urfér from the other replica, and similarly f@hr i s. If one of the
replicas happens to pla€#r i s beforePat in its concrete, ordered form, exactly the same thing happen

More generallyf | at t en handles concrete lists in which the same key appears maretiee—e.q.,

Pat —
URL — http://pat.com

Phone — 888- 9999
URL — http://chris.org
Phone — 123- 4321

URL — http://pattoo.com

Phone — 333- 4444 HB 1

Chris

I ——
—

Pat —

T
——
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—by placing all the records with the same key (in the samerasd¢hey appear in the concrete view) in the list under
that key in the abstract view:

Phone — 333- 4444
URL — http://pat.com
Pat —
Phone — 123- 4321
URL — http://pattoo.com
. Phone — 888- 9999
Chris — .
URL — http://chris.org

In the putbackdirection, f | at t en distributes elements of each list from the abstract bush tine¢ concrete list,
maintaining their original concrete positions. If there anore abstract elements than concrete ones, the extras are
simply appended at the end of the resulting concrete lisbinesarbitrary order, using the auxiliary functiGstify:

listify({}) []
listify(t) {]k — tkl[} moeeen {]k — tkn[} :x listify (t\k)
wherek = anyyom) andt(k) = [tki, ..., thy]

In the type off | att en, we write ALi st (D) for the set of lists of “singleton views” of the forr{}k — d[},
wherek € K is a key andl € D is the value of that key—i.eALi st x (D) is the smallest set of trees satisfying
AList x(D) =[] U ({ﬂk — D[} | k € K}::ALi st x(D)).

{ ife=[]
a'+{]kl—>d::[][} ifc:{]kHdﬂ::c’
flatten "¢ = andfl atten, ¢ = a with k & dom(a’)

a'+{]kb—>d::s[} ifc:{]kHdﬂ::c’
andf | atten ¢ =a + {k — s|}

listify(a) ifc=[] orc=9Q
ﬂkHd’l}::r ifc:ﬂkHd[} !

anda(k) =d' =[]

andr =flatten (a\k, ¢)
ﬂk»—>d’|}::7’ ifc:ﬂkHdl} !

anda(k) = d’ :: swith s £ [ ]

andr =flatten\, (a\x + {k+— s}, ¢)
r ifc:ﬂkHd[}::c’

andk ¢ dom(a)

andr =flatten\ (a, ¢)

flatten\ (a, ¢

VKCN.VDCT. flatteneAList (D)<= ﬂK - [ D] G

This definition can be simplified if we assume that all #&in the concrete list are pairwise different—i.e., that
they are truly keys. In this case, the abstract view need eat bush of lists: each can simply point directly to
its associated subtree from the concrete list. In practige,assumption is often reasonable: the concrete view is a
(linearized) database and the are taken from a key field in each record. Howevertype of this “disjoint flatten”
becomes more complicated to write down, since it must esgghesconstraint that, in the concrete list, e&abccurs
at most once. Since we eventually intend to implement a nechltypechecker for our combinators, we prefer to
use the more complex definition with the more elementary.type

An obvious question is whether either varianf défat t en can be expressed in terms of more primitive combina-
tors plus recursion, as we did for the list mapping, revexsamd filtering derived forms in Section 7. We feel that this
ought to be possible, but we have not yet succeeded in doing it

9.1 Lemma [Well-behavedness]VK CAN.VDCT. fl atten € ALi st (D) & ﬂK R [ D] I}

60



Proof:
GET: Suppose € ALi st x(D)andf | att en ~cis defined. Proceed by induction on the number of list celts If

c =[], then the result is immediate. df= {]k — d[} :: ¢/, then, by inductionf | atten ¢’ e ﬂK o [ D'+] ﬂ
Butthena’ + {k—d =[] |} (ffl atten /¢ = a withk & dom(a’)) anda’ + {{k — d :: sf} (if fl atten ¢’ =
a' + {k — s|) are also inﬂK 5[ DY ﬂ as required.

PuT: First, observe thatistify(a) € ALi st x(D). To see this, reason by induction on the sizedofi(a). If
dom(a) = 0, thenlistify(a) = [1 € ALi st (D). Otherwise listify(a) = {k— thil} == -+ = {k — tho|} =
listify(t\) Wherek = angyyom(,) € K and and(k) = [tki,. .., tk,], from which the result follows by the induction
hypothesis and the definition 8Li st x (D).

Now, suppose € (ALi st x(D))q, a € ﬂK s [ DY«] I} andf l atten ™\ (a, ) is defined. Ifc = , then

flatten\ (qa, ¢) = listify(a) € ALi st k(D) by the observation above abdidtify. Otherwise, we proceed by
induction on the number of list cells in If ¢ =[], then the result again follows by the observation alituify. If
¢ = {{k — d|} :: ¢, then there are three cases to consider:

e lfa(k) =d =[], thenflatten\ (a,c) = {k—d[} = r, withr = flatten\ (a\x, ¢). By the
induction hypothesis; € ALi st x (D), and the result follows immediately, sinkec K andd’ € D by the
type ofec.

elf a(k) = d = s with s # [], thenflattenN\,(a,c¢) = {k—d| = r, withr =
flatten (a\x + {k — s}, ¢). Again, the induction hypothesis applies (observing that+ {% — s|}
belongs toj| K [ D'«] | becausea is assumed to be non-empty), givingus ALi st x (D), from which
the result follows directly.

o If £ ¢ dom(a), thenflatten\, (a,c) = flatten\ (q, ¢). The induction hypothesis yields €
ALi st k(D) and the result follows directly.

GETPUT: Suppose: € ALi st x(D) andflatten™\ (fl atten, "¢, ¢) is defined. Proceed by induction on the
number of list cells inc. If ¢ =[], thenflatten\ (flatten "¢, ¢) = lstify({}) = []. as required. If
¢ = {k — d|} :: ¢, then there are two cases to consider:

o ifflatten, /¢ =a withk & dom(a’), thenflatten " c=da + {k—d:[] | and

flatten\ (flatten ¢, c)={k—d} = flatten\ (d, )
={k—d} :flatten\ (flatten ¢, ¢)
={k—d}=c by the induction hypothesis

=c
eifflatten/c =da + {k+ sl thenflatten "c=a + {k— d: s} and

flattenN\ (flatten "¢, c)={k—d} = flatten\ (o’ + {k— s}, )
={k—d} zflatten\ (flatten ¢, ¢)
= {]k — d[} ol by the induction hypothesis

=cC

PUTGET: Observe, first, that | att en ” (listify(a)) = a for any a. To see this, reason by induction on the
size ofdom(a). If dom(a) = 0, thenfl atten ~(lstify(a)) = flatten,/[] = {} = a. Otherwise,

flatten,  (listify(a)) =flatten,” ({k — thi]} - = {k — tha]} = listify(a\r)), wherek = aNYgom(q) AN
t(k) = [tki,...,tkn]. The result then follows by the induction hypothesis anthvocations of the definition of
flatten 7.
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Now, suppose € (ALi st x(D))q,a € ﬂK L[ D] ﬂ andflatten 7 (fl atten™ (a, ¢)) is defined. If

c=Q,thenflatten " (flatten\ (a, ¢c)) =fl atten 7" (listify(a)) = a by the observation above. Otherwise,
we proceed by induction on the number of list cells:inf ¢ = [ ], then the result again follows by the observation
above. Ifc = {]k — d[} :: ¢, then there are three cases to consider:

olIf a(k) = d =[], then, by the definition, flatten "(flatten\ (a,c)) =
flatten,/ ({k— d| :flatten\ (a\r, ¢)). Now, sinceflatten 7 (flatten\ (a\i, ¢')) = a\x
by the induction hypothesis, and since ¢ dom(a\y), the definition of flatten,~ gives
flatten/ ({k—d =flatten\ (a\r,¢)) = (@\x)+ {k—d =[]} =a

o lIf a(k) = d = s with s # [], then, by the definitionfl atten,  (flatten\ (a,c)) =
flatten/ ({k— d'f} = (flatten\ (a\r + {k— sf}, ¢))). Now, since
flatten/(flatten (a\r + {k — s}, c)) = a\r + {k— s} by the induction hypothesis, the
definiion of flatten, gives flatten / ({k— d'}:: (flatten (a\x + {k— s}, )) =
a\r + {k— d = s} =a.

o If k& ¢ dom(a), then, by the definition, flatten 7(flatten\ (qa,c)) =
flatten (fl atten\ (a, ¢')) = a by the induction hypotheses. O

9.2 Lemma [Totality]: VKCN.VDCT. flatten € ALi st (D) <= ﬂK R [ D] ﬂ

Proof: For thegetdirection, suppose € ALi st (D). We must show thétl att en 7 cis defined. Proceed by
induction on the numberofcellsin If c =[] ,thenflatten "c={}. If ¢ = {]k — d[} :: ¢/, then, by induction,
flatten 7 is defined and the definednesd dfat t en ¢ follows directly.

For the putbackdirection, suppose € (ALi st k(D))o anda € ﬂK o [ D] ﬂ We must show that
flatten\ (a, ¢) is defined. Ifc = Q, thenfl atten™ (a, ¢) = listify(a), which is defined becaudestify
is defined on all arguments Iﬂ'K R [ DY] I} (as is easily verified by induction ddom(a)|). Otherwise, proceed

by induction on the number of list cells in If ¢ =[], then the result again follows by the definednesswify. If
¢ = {k — d|} :: ¢, then there are three cases to consider:

e lfa(k) =d =[], thenflatten\ (a,c) = {k—d[} = r, withr = flatten\ (a\r, ¢). By the
induction hypothesis; is defined, and the definednesd dfat t en\ (a, c) is immediate.

o If alk) = d = s with s # [], thenflatten\,(a,¢) = ﬂk»—»d’[} wor, with =
flatten™, (a\;C + {]k — s[}, c’). Again, the induction hypothesis tells us thats defined, and the de-
finedness of | att en\ (a, ¢) is immediate.

o If k & dom(a), thenfl atten\ (a, c) =flatten (a, ¢), and the result is immediate by the induction
hypothesis. O

Pivot

The lenspi vot n rearranges the structure at the top of a tree, transforrﬂiﬁg'_) k[} to {]k — t|} . Intuitively, the

valuek (i.e., {]k — {[]}[}) undern represents keyk for the rest of the treé Thegetfunction ofpi vot returns a tree

wherek points directly tof. Theputbackfunction performs the reverse transformation, ignorirgdld concrete tree.
We usepi vot heavily in Harmony instances where the data being synchednis relational (sets of records)

but its concrete format is ordered (e.g., XML). We first appiyw ot within each record to bring the key field to the
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outside. Then we applyl at t en to smash the list of keyed records into a bush indexed by the keor example, if
the concrete presentation of the data looks like this,

Nane — Pat

Phone — 333- 4444

URL — http://pat.com
Nane — Chri s

Phone — 888- 9999
URL — http://chris.org
Nanme — Pat

Phone — 123- 4321

URL — http://pattoo.com

then applyingmap_l i st (pi vot Nane)), yields

[ Phone — 333- 4444 |
Pat —
URL — http://pat.com
. Phone +— 888- 9999
chris— .
URL — http://chris.org
Phone — 123-4321
Pat —
URL — http://pattoo.com

which, as we saw above, can thenfdeat t ened into:

Phone — 333- 4444
URL — http://pat.com
Pat —
Phone — 123- 4321
URL — http://pattoo.com
. Phone — 888-9999
Chris — .
URL — http://chris.org

In the type ofpi vot , we extend our conventions about values (i.e., the facttiatrite k£ instead of{]k — {} [})
to types. IfK C N is a set of names, thefn — K|} means{{n — k[} | k € K}—ie ,{{n— {k— {}}[} |k €
K}.

(pi vot n) ¢

fk — t] ifCZH”H’“B
(pi vot )\ (¢, ) — H?Hkﬂ ifa_:]kHt[}

VneN.VKCN.VCC(T\,). pivot ne ({n— K| -C) <= {{k—C|} | ke K}

9.3 Lemma [Well-behavedness]:vneN. YKCN.VCC(T\,). pivot ne ({n— K|} -C) & {{k—C| |k e
K).

Proof:
n—k

GET: (pivotn)/ﬂt I}:{]kHt[}e{{]kHC[ﬂkeK}

PuT: (pi vot n)\(ﬂkHt[},c)_ﬂ?Hkﬂe({]nHKI}.C’)

—
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n —
t

(pi vot n)\, ((pl vot n) {]n H kﬂ, {]? H k[})

(pi vot n)\, ({]k —t], ﬂn i kl})

)

PUTGET: Assume thatigi vot n)\ (a, c) is defined, thus, = {k — t[}. We have:

GETPUT: Assume thatgi vot n) " cis defined, thug = ﬂ k[} We have:

(pi vot n),/ ((pi vot n)\, ({{k — t|}, ¢)) = (pi vot n) ~ ﬂnHkl}:{]kHtl}. O

9.4 Lemma [Totality]: VneN.VKCN.VCC(T\,). pivot ne ({n— K[} -C) <= {{k—C| | ke K}.

Proof: Straightforward from the definition. O
Join

Our final lens combinator, based on an idea by Daniel Spooahj@&], is inspired by théull outer joinoperator from
databases. For example, applyiji@i n addr phone) 7 to atree

addr —
Pat — Phi | adel phi a

Chris—111-1111
phone —

Pat +— 222-2222

Lou — 333- 3333

containing a collection of addresses and a collection ohphwmbers (both keyed by names) yields a tree
addr — Pari s I}

Chris—Paris
Ki m— Palo Al to

phone — 111- 2222

Ki m— {addr — Palo Altof

Pat ﬂaddr — Phi | adel phi al}
phone +— 222-2222

Lou — {phone — 333- 3333

ChI'iS|—>{]

where the address and phone information is collected uralgr pame. Note that no information is lost in this
transformation: names that are missing from eitheratidr or phone collection are mapped to views with just a
phone oraddr child. In theputbackdirection,j oi n performs the reverse transformation, splitting #ur and
phone information associated with each name into separate tioiiec (The transformation is bijective—since no
information is lost byget the putbackfunction can ignore its concrete argument.)

Jiem {7 sl 1 dometmy L domtetoy |

joinmn) ¢ n o o

o _|m — {k — a(k)(m) | k € dom(a)
Goinmn)\ (a,c) = {]nl—){]{]kP—?a( )(n) kedo; [}[}I}

VKCN.VTCT.joinmn € {




9.5 Lemma [Well-behavedness]VKCN. VI'CT. join mn € ﬂmHﬂK.l}Tﬂ,nHﬂK;’,Tl}ﬂ 2
ﬂK’LﬂmHT,n»LTﬂUﬂm»AT,nHTl}[}-

Proof:

GET: Suppose: € ﬂm — ﬂK s Tﬂ ﬂK — THH Suppose thaj (0i n m n),” ¢ is defined, and write’ for

(j oi nmn),c. For eachk € K, we must show that’(k) € (ﬂm — T, n N TI} U ﬂm — T, n— T[})Q' There
are three possibilities to consider: Firstkite dom(c(m)), thenc(m)(k) € T by the type ofe. Also, ¢(n)(k) € Tq,

sod (k) € ﬂm — T, n o Tl}. Second, ifk € dom(c(n)), then similarlya’ (k) € ﬂm o T, n— Tl}. Finally, if

k & dom(c(m)) Udom(c(n)), thenk ¢ dom(a’), which is permitted by the target type.

PuT: Suppose thata has type ﬂK R ﬂm —T,n o Tﬂ U ﬂm o T,n— TI}I} and that ¢ has type
ﬂm s ﬂK N Tﬂ n ﬂK N TI}[} Suppose that ji nmn)\,(a, ¢) is defined, and writec’ for

( oi nmn)\,(a, c). For eachk € dom(a), note thata(k)(m) € Ta, so {k— a(k)(m) | k € dom(a)} €

{IK R Tl}' and similarly forn.

GETPUT: Suppose: € {]m — ﬂK N Tﬂ n ﬂK N Tﬂﬂ and { oi nmn)\, ((j oi nmn) "¢, ¢) defined.
Now calculate as follows, writing as § oi n mn),” ¢, and using the fact thabm(a) = dom(c(m)) U dom(c(n)):

Goinmn)\, (G oinmn) ¢ c)
—( oinmn)\(ﬂkHﬂch( >§“|} | k € dom(c(m ))Udom(c(n))l},c)

n— c(n)(k
_m = {k — a(k')(m) | k" € dom(a)|}
_ﬂn»—> {¥ — a(k)(n) | k" € dom(a)]} I}

m i i Uk Z”‘:Ccé)()g)} | & € dom(c(m)) U dom(c(n ))I}(k’)( )| ¥ € dom(a )ﬂ
N — TN — ml—>c( )(k) om om ! om
e i o 7 S} L€ dom(etm) udom(ctnn | )0y |1 € dom(a) |
m— k' =k — ?:Cimf)} | k € dom(a) |} (K')(m) | ¥ € dom(a )ﬂ
- N N N m — c(m)(k) om ’ om
ne W = k= e eime) | € ()ﬂ n) | K €d ()ﬂ
s N m — c(m)(k") m / m(a
_ m K n»—»cgn))((k];}) (m) | k" € dom( )I}
n s k" — n o c(n)(K') I}(n) | k' € dom(a)l}
_fim = {K = c(m)(K') | K € dom(a) |}
_{InHﬂk’»—»c( )(K') | K € dom(a )[}I}
:{Im»—> {]k — c(m)(k") | k' € dom(c(m ))Udom( (n ))[}l}
n— {k' — c(n)(k') | k" € dom(c(m)) U dom(c(n))[}
PUTGET: Suppose a € ﬂKi»ﬂmHT,n.lTﬂuﬂm.lT,nHTl}ﬂ and ¢ c

ﬂm — ﬂK R Tﬂ JN ﬂK R Tﬂﬂ Suppose thatji nmn),”((j oi nmn)\(a, ¢)) is defined, and
write o’ for (j oi nmn), 7 ((j oi n mn)\,(a, ¢)). Consider an arbitrary € K. If k¥ ¢ dom(a), then, by the

65



definition of theputbackfunction, & ¢ dom((j oi n mn)\ (a, ¢)(m)) andk ¢ dom((j oi n mn)\ (a, c)(n));
hence,k ¢ dom(a’). On the other hand, ik € dom(a), then, by the type of and the definition of thgutback
function, eitherk € dom((j oi n m n)\ (a, ¢))(m)) ork € dom((j oi n mn)\, (a, ¢))(n)), so, by the definition of
thegetfunction,k € dom(a’), with a’(k)(m) = a(k)(m) andd’(k)(n) = a(k)(n). O

9.6 Lemma [Totality]: VKCN. VI'CT. join m n € {]mH{]K»l)Tﬂ,TLl—){]K»AT[}G <2
ﬂK’LﬂmHT,n»LT&Uﬂm»;T,nHTﬂ[}-

Proof: Thegetandputbackcomponents are both total functions. O

10 Related Work

Our lens combinators evolved in the setting of the Harmorig dgnchronizer. The overall architecture of Harmony
and the role of lenses in building synchronizers for varifmums of data are described in [38], along with a detailed
discussion of related work on synchronization.

Our foundational structures—lenses and their laws—ar@eat closely related structures have been studied for
decades in the database community. However, our treatriim@se structures is arguably simpler (transforming state
rather than “update functions”) and somewhat more refine@ting well-behavedness as a form of type assertion).
Our formulation is also novel in considering the issue oftguirity, thus supporting a rich variety of surface language
structures including definition by recursion.

The idea of defining programming languages for construdtirgdjrectional transformations of various sorts has
also been explored previously in diverse communities. Vgeapto be the first to take totality as a primary goal (while
connecting the language with a formal semantic foundatibapsing primitives that can be combined into composite
lenses whose totality is guaranteed by construction), laa€irst to emphasize types (i.e., compositional reaso@isg)
an organizing design principle.

Foundations of View Update

The foundations of view update translation were studieghisitvely by database researchers in the late '70s and '80s.
This thread of work is closely related to our semantics o$é=nn Section 3.

Dayal and Bernstein [16] gave a seminal formal account oftteery of “correct update translation.” Their notion
of “exactly performing an update” corresponds to oUTBET law. Their “absence of side effects” corresponds to our
GETPUT and RUTPUT laws. Their requirement of preservation of semantic cé@sty corresponds to the partiality
of our putbackfunctions.

Bancilhon and Spyratos [9] developed an elegant semardi@cterization of update translation, introducing the
notion ofcomplemendf a view, which must include at least all information migsfnom the view. When a comple-
ment is fixed, there exists at most one update of the databasesflects a given update on the view while leaving the
complement unmodified—i.e., that “translates updates uad®nstant complement.” In general, a view may have
many complements, each corresponding to a possible stridegranslating view updates to database updates. The
problem of translating view updates then becomes a probfdimding, for a given view, a suitable complement.

Gottlob, Paolini, and Zicari [19] offered a more refined thebased on a syntactic translation of view updates.
They identified a hierarchy of restricted cases of their rauork, the most permissive form being their “dynamic
views” and the most restrictive, called “cyclic views witbristant complement,” being formally equivalent to Bancil-
hon and Spyratos’s update translators.

In a companion report [37], we state a precise correspordeeveen our lenses and the structures studied by
Bancilhon and Spyratos and by Gottlob, Paolini, and Zidawiefly, our set of very well behaved lenses is isomorphic
to the set oftranslators under constant complemeéntthe sense of Bacilhon and Spyratos, while our set of well-
behaved lenses is isomorphic to the setlgiamic viewsn the sense of Gottlob, Paolini, and Zicari. To be precise,
both of these results must be qualified by an additional ¢mmdiegarding partiality. The frameworks of Bacilhon
and Spyratos and of Gottlob, Paolini, and Zicari are botmfdated in terms of translatingpdate functionsn A into
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update functions od, i.e., theirputbackfunctions have typ¢A — A) — (C — (), while our lenses translate
abstracttatesinto update functions of, i.e., ourputbackfunctions have type (isomorphic te) — (C — C).
Moreover, in both of these frameworks, “update transléttile analog of ouputbackfunctions) are defined only
over some particular chosen détof abstract update functions, not over all functions frdnto A. These update
translators returtotal functions fromC' to C. Ourputbackfunctions, on the other hand, are slightly more general as
they are defined over all abstract states and ratartial functions fromC to C. Finally, thegetfunctions of lenses
are allowed to be partial, whereas the corresponding fonsficalledsiewg in the other two frameworks are assumed
to be total. In order to make the correspondences tight,etaraf well-behaved and very well behaved lenses need to
be restricted to subsets that are also total in a suitabkesen

Arelated observation is that, if we restrict bagstandputbacko be total functions (i.eputbackmust be total with
respect tall abstract update functions), then our lens laws (includingfRT) characterize the sét as isomorphic
to A x B for someB.

Recent work by Lechtenbdrger [25] establishes that tediasls of view updates under constant complements are
possible precisely if view update effects may be undonegusirther view updates.

In the literature on programming languages, laws similautolens laws (but somewhat simpler, dealing only with
total getandputbackfunctions) appear in Oles’ category of “state shapes” [3@] i@ Hofmann and Pierce’s work on
“positive subtyping” [20].

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directionalqggramming have been explored across a surprisingly diverse
range of communities, including programming languagetlseses, program transformation, constraint-based user
interfaces, and quantum computing. One useful way of dlasgithese languages is by the “shape” of the semantic
space in which their transformations live. We identify #araajor classes:

e Bi-directional languagesincluding ours, form lenses by pairinggetfunction of typeC — A with a putback
function of typeA x C — C. In general, thgetfunction can project away some information from the coreret
view, which must then be restored by thgtbackfunction.

¢ In bijective languagesthe putbackfunction has the simpler typd — C—it is given no concrete argument
to refer to. To avoid loss of information, tlget and putbackfunctions must form a (perhaps partial) bijection
between”' and A.

¢ Reversible languagezo a step further, demanding only that the work performedrgyfanction to produce
a given output can be undone by applying the function “in reetworking backwards from this output to
produce the original input. Here, there is no sepapatibackfunction at all: instead, thgetfunction itself is
constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most sintibaours is Meertens’s formal treatmentadnstraint
maintainersfor constraint-based user interfaces [30]. Meertens’sasgin setting is actually even more general: he
takesget and putbackto berelations not just functions, and his constraint maintainers arersgiric: getrelates
pairs fromC' x A to elements ofA andputbackrelates pairs ird x C to elements o’; the idea is that a constraint
maintainer forms a connection between two graphical objeatthe screen so that, whenever one of the objects
is changed by the user, the change can be propagated by th&aimer to the other object such that some desired
relationship between the objects is always maintained.infathe special case where tigetrelation is actually a
function (which is important for Meertens because this ésthse where composition [in the sense of our ; combinator]
is guaranteed to preserve well-behavedness), yieldstedbenur very well behaved lenses. Meertens proposes a
variety of combinators for building constraint maintaisiemost of which have analogs among our lenses, but does
not directly deal with definition by recursion; also, somehef combinators do not support compositional reasoning
about well-behavedness. He considers constraint ma@rtafor structured data such as lists, as we do for trees, but
here adopts a rather different point of view from ours, famg®n constraint maintainers that work with structures not
directly but in terms of the “edit scripts” that might haveoduced them. In the terminology of synchronization, he
switches from a state-based to an operation-based trebatidns point.
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Recent work of Mu, Hu, and Takeichi on “injective languagfes'view-update-based structure editors [32] adopts
a similar perspective. Although their transformationsyobaer GETPUT law, their notion of well-behaved transfor-
mations is informed by different goals than ours, leading teeaker form of the BTGET law. A primary concern is
using the view-to-view transformations to simultaneousistore invariantgvithin the source view as well as update
the concrete view. For example, an abstract view may maimi&o lists where the name field of each element in one
list must match the name field in the corresponding elemehemther list. If an element is added to the first list, then
not only must the change be propagated to the concrete \tiewst also add a new element to the second list in the
abstract view. It is easy to see thal FGET cannot hold if the abstract view, itself, is—in this senseedlified by the
putback Similarly, they assume that edits to the abstract view rafinkodified fields as “updated.” These marks are
removed when thputbackens computes the modifications to the concrete view—amnoti@nge to the abstract view
that must violate BTGET. Consequently, to support invariant preservation withia abstract view, and to support
edit lists, their transformations only obey a much weakeiava of PUTGET (described above in Section 5).

Another paper by Hu, Mu, and Takeichi [21] applies a bi-dii@tal programming language quite closely related to
ours to the design of “programmable editors” for structudeduments. As in [32], they support preservation of local
invariants in theputbackdirection. Here, instead of annotating the abstract vieth wiodification marks, they assume
that aputbackor agetoccurs aftereverymodification to either view. They use this “only one update$wamption
to choose the correct inverse for the lens that copied dataeiget direction — because only one branch can have
been modified at any given time. Consequently, theypabackthe data from the modified branch and overwrite the
unmodified branch. Here, too, the notion of well-behavednegds to be weakened, as described in Section 5.

The TRIP2 system (e.g., [27]) uses bidirectional transtdioms specified as collections of Prolog rules as a means
of implementing direct-manipulation interfaces for apption data structures. Thyetand putbackcomponents of
these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation comityu concernsprogram inversionand inverse
computatior—see, for example, [4, 5] and many other papers cited theagr&m inversion [18] derives the inverse
program from the forward program. Inverse computation 28hputes a possible input of a program from a particu-
lar output. One approach to inverse computation is to ddaigguages that produce easily invertible expressions—for
example, languages that can only express injective fumgtiwhere every program is trivially invertible. These lan-
guages bear some intriguing similarities to ours, but diff@ number of ways, primarily in their focus on the bijeetiv
case.

In the database community, Abiteboul, Cluet, and Milo [1fined a declarative language obrrespondences
between parts of trees in a data forest. In turn, these q@neence rules can be used to translate one tree format into
another through non-deterministic Prolog-like compuwtatiThis process assumes an isomorphism between the two
data formats. The same authors [2] later defined a systeni-tbrdztional transformations based around the concept
of structuring schemagparse grammars annotated with semantic information). sThair get functions involved
parsing, whereas theputbacls consisted of unparsing. Again, to avoid ambiguous alistdates, they restricted
themselves téosslesgirammars that define an isomorphism between concrete atrdethsews.

Ohori and Tajima [35] developed a statically-typed polypioc record calculus for defining views on object-
oriented databases. They specifically restricted whicldielf a view are updatable, allowing only those with a
ground (simple) type to be updated, whereas our lenses camacodate structural updates as well.

A related idea from the functional programming communiafledviews[44], extends algebraic pattern matching
to abstract data types using programmer-supptiechdout operators.

Languages for Reversible Transformations

Our work is the first (of which we are aware) in which totalitydecompositional reasoning about totality are taken as
primary design goals. Nevertheless, in all of the languaigsissed above there is an expectation that programmers
will want their transformations to be “total enough”—i.that the sets of inputs for which tigetandputbackfunctions

are defined should be large enough for some given purposearticydar, we expect thagiutbackfunctions should
accept a suitably large set of abstract inputs for each gieeerete input, since the whole point of these languages
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is to allow editing through a view. A quite different classlahguages have been designed to suppmuersible
computation, in which th@utbackfunctions are only ever applied to the results of the cowadmggetfunctions.
While the goals of these languages are quite different frans-e-they have nothing to do with view update—there
are intriguing similarities in the basic approach.

Landauer [24] observed that non-injective functions weggdally irreversible, and that this irreversibility reiges
the generation and dissipation of some heat per machine.cgeinnet [11] demonstrated that this irreversibility was
not inevitable by constructing eeversible Turing machineshowing that thermodynamically reversible computers
were plausible. Baker [8] argued that irreversible priveisi were only part of the problem; irreversibility at the
“highest levels” of computer usage cause the most difficdilty to information loss. Consequently, he advocated the
design of programs that “conserve information.” Becausgdiieg reversibility of large programs is unsolvable, he
proposed designing languages that guaranteed that alfeveled programs are reversible, i.e. designing languages
whose primitives were reversible, and whose combinatarsgived reversibility. A considerable body of work has
developed around these ideas (e.g. [33]).

Update Translation for Tree Views

There have been many proposals for query languages for(epsXQuery [46] and its forerunners, UnQL, StruQL,
and Lorel), but these either do not consider the view updadblem at all or else handle update only in situations
where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [17], and Brdwlo, Davidson, and Heuser [12] studied the prob-
lem of updating relational databases “presented as XMLé&iTéplution requires a 1:1 mapping between XML view
elements and objects in the database, to make updates unaubi

Tatarinov, Ives, Halevy, and Weld [43] described a mecharfir translating updates on XML structures that
are stored in an underlying relational database. In thiingethere is again an isomorphism between the concrete
relational database and the abstract XML view, so updasasraambiguous—rather, the problem is choosing the most
efficient way of translating a given XML update into a sequeeatrelational operations.

The view update problem has also been studied in the contettject-oriented databases. School, Laasch, and
Tresch [41] restrict the notion of views to queries that pres object identity. The view update problem is greatly
simplified in this setting, as the objects contained in tlesware the objects of the database, and an update on the view
is directly an update on objects of the database.

Update Translation for Relational Views

Research on view update translation in the database literatis tended to focus on taking an existing language for
defininggetfunctions (e.g., relational algebra) and then considehiog to infer correspondingutbackfunctions,
either automatically or with some user assistance. By ashtwe have designed a new language in which the defini-
tions of getandputbackgo hand-in-hand. Our approach also goes beyond classicklimthe relational setting by
directly transforming and updating tree-structured dattner than flat relations. (Of course, trees can be encaled a
relations, but it is not clear how our tree-manipulatiomptives could be expressed using the recursion-free oglati
languages considered in previous work in this area.) Wdlprieview the most relevant research from the relational
setting.

Masunaga [26] described an automated algorithm for tréinglapdates on views defined by relational algebra.
The core idea was to annotate where the “semantic ambiguéiése, indicating they must be resolved either with
knowledge of underlying database semantic constraintg orteractions with the user.

Keller [22] catalogued all possible strategies for hargllipdates to a select-project-join view and showed that
these are exactly the set of translations that satisfy al seiabf intuitive criteria. These criteria are:

1. No database side effects: only update tuples in the widgriatabase that appear somehow in the view.
2. Only one-step changes: each underlying tuple is updai@odst once.

3. No unnecessary changes: there is no operationally dgoiv@anslation that performs a proper subset of the
translated actions.
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4. Replacements cannot be simplified (e.g., to avoid chartbimkey, or to avoid changing as many attributes).
5. No delete-insert pairs: for any relation, you have defetior insertions, but not both (use replacements instead).

These criteria apply tapdatetranslations on relational databases, whereas our statedtapproach means only crite-
ria (1), (3), and (4) might apply to us. Keller later [23] poged allowing users to choose an update translator at view
definition time by engaging in an interactive dialog with #ystem and answering questions about potential sources
of ambiguity in update translation. Building on this foutida, Barsalou, Siambela, Keller, and Wiederhold [10]
described a scheme for interactively constructing updatestators for object-based views of relational databases

Medeiros and Tompa [29] presented a design tool for expddtie effects of choosing a view update policy. This
tool shows the update translation for update requests imaplpy the user; by considering all possible valid concrete
states, the tool predicts whether the desired update waudct be reflected back into the view after applying the
translated update to the concrete database. Mlled. [31] describe Clio, a system for managing heterogeneous
transformation and integration. Clio provides a tool f@ualizing two schemas, specifying correspondences batwee
fields, defining a mapping between the schemas, and viewmglsaguery results. They only consider thet di-
rection of our lenses, but their system is somewhat mapagrpstic, so it might eventually be possible to use a
framework like Clio as a user interface supporting incretadens programming like that in Figure 8.

Atzeni and Torlone [7, 6] described a tool for translatingws and observed that if one can translate any concrete
view to and from aneta-mode{shared abstract view), one then gets bi-directional foaingtions between any pair
of concrete views. They limited themselves to mappings @/tee concrete and abstract views are isomorphic.

Complexity bounds have also been studied for various vesgibthe view update inference problem. In one of the
earliest, Cosmadakis and Papadimitriou [14, 15] consitidre view update problem for a single relation, where the
view is a projection of the underlying relation, and showreat there are polynomial time algorithms for determining
whether insertions, deletions, and tuple replacementptojaction view are translatable into concrete updateseMo
recently, Buneman, Khanna, and Tan [13] established atyasfantractability results for the problem of inferring
“minimal” view updates in the relational setting for queanfuages that include both join and either project or union.

The designers of the RIGEL language [40] argued that progrars should specify the translations of abstract
updates. However, they did not provide a way to ensure cemsig between thgetandputbackdirections of their
translations.

Another problem that is sometimes mentioned in connectiilim wew update translation is that afcremental
view maintenancge.g., [3])—efficiently recalculating an abstract vieweaif small update to the underlying concrete
view. Although the phrase “view update problem” is somesrfenfusingly) used for work in this domain, there is
little technical connection with the problem of translatiriew updates to updates on an underlying concrete steictur

11 Conclusions and Future Work

We have worked to design a collection of combinators thatfjether in a sensible way and that are easy to program
with. Starting with lens laws that define “reasonable bebivadding type annotations, and proving that each of our
lenses is total, has imposed strong constraints on ourme$igew lenses—constraints that, paradoxically, make the
design process easier. In the early stages of the Harmoigcpraorking in an under-constrained design space, we
found it extremely difficult to converge on a useful set ofitive lenses. Later, when we understood how to impose
the framework of type declarations and the demand for coitippal reasoning, we experiencedageincrease in
manageability. The types helped not just in finding programgnerrors in derived lenses, but in exposing design
mistakes in the primitives at an early stage.

Naturally, the progress we have made on lens combinatassai host of further challenges.

Static Analysis

The most urgent of these is automated typechecking. At ptases the lens programmers’ responsibility to check the
well-behavedness of the lenses that they write. But thestgpéhe primitive combinators have been designed so that
these checks are both local and essentially mechanicalofvieus next step is to reformulate the type declarations
as a typeaalgebraand find a mechanical procedure for checking (or, more aomsly, inferring) types.
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A number of other interesting questions are related tocstatalysis of lenses. For instance, can we characterize
the complexity of programs built from these combinatorsthése an algebraic theory of lens combinators that would
underpin optimization of lens expressions in the same walyttte relational algebra and its algebraic theory are used
to optimize relational database queries? (For examplesdh#inators we have described here have the property that
map l1; map lo = map (I1; 1) for all I; andls, but the latter should run substantially faster.)

Implementation

This algebraic theory will play a crucial role in a more ses@mplementation effort. Our current prototype performs a
straightforward translation from a concrete syntax sintilethe one used in this paper to a combinator library written
in OCaml. This is fast enough for experimenting with lensgueanming (Malo Denielou has built an interactive
programming environmentthat recompiles and re-appliesge on every keystroke) and for small demos (our calendar
lenses can process a few thousands of appointments in urdeute), but we would like to apply the Harmony system
to applications such as synchronization of biological dases that will require much higher throughput.

Applications

Our interest in bi-directional tree transformations arogbe context of the Harmony data synchronization framéwor
Besides the bookmark synchronizer described in Sectiom&revcurrently developing a number of synchronizers (for
calendars, address books, structured text, etc.) as aestafi Harmony. This exercise provides valuable stresgyes
for both our combinators and their formal foundations.

Additional Combinators

Another area for further investigation is the design of #ddal combinators. While we have found the ones we have
described here to be expressive enough to code a large nafdeimples—both intricate structural manipulations
such as the list transformations in Section 7 and more pragalication transformations such as the ones needed
by the bookmark synchronizer in Section 8 —there are somasambiere we would like more general forms of the
lenses we have (e.g., a more flexible fornxéfor k, where the splitting and recombining of trees is not basepn
level names, but involves deeper structure), lenses esipgemore global transformations on trees (including agelo

of database operations suchjas n), or lenses addressing completely different sorts of frangations (e.g., hone

of our combinators do any significant processing on edgddatdich might include string processing, arithmetic,
etc.). Higher-level combinators embodying more globai¢farmations on trees—perhaps modeled on a familiar tree
transformation notation such as XSLT—are another intenggtossibility.

Expressiveness

More generally, what are the limits of bi-directional pragmming? How expressive are the combinators we have
defined here? Do they cover any known or succinctly charizetgle classes of computations (in the sense that the
set ofget parts of the total lenses built from these combinators ddewith this class)? We have put considerable
energy into these questions, but at the moment we can ortytréyat they are challenging! One reason for this is that
guestions about expressiveness tend to have trivial ansmieen phrased semantically. For example, it is not hard to
show thatany surjectiveget function can be equipped withfautbackfunction—indeed, typically many—to form a
total lens. Indeed, if the concrete domaéiris recursively enumerable, then tipistbackfunction is even computable.
The real problems are thus syntactic—how to convenientl put aputbackfunction that does what is wanted for a
given situation.

Lens Inference

In restricted cases, it may be possible to build lenses ipleinways than by explicit programming—e.g., by gener-
ating them automatically from schemas for concrete andadistiews, or by inference from a set of pairs of inputs
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and desired outputs (“programming by example”). Such difiaonight be used to do part of the work for a program-
mer wanting to add synchronization support for a new apgtingwhere the abstract schema is already known, for
example), leaving just a few spots to fill in.

Beyond Trees

Finally, we intend to experiment with instantiating our setic framework with other structures besides trees—in
particular, with relations, to establish closer links watkisting research on the view update problem in databases.
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