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Abstract

We propose a novel approach to the well-knownview update problemfor the case of tree-structured data: a domain-
specific programming language in which all expressions denote bi-directional transformations on trees. In one di-
rection, these transformations—dubbedlenses—map a “concrete” tree into a simplified “abstract view”; in the other,
they map a modified abstract view, together with the originalconcrete tree, to a correspondingly modified concrete
tree. Our design emphasizes both robustness and ease of use,guaranteeing strong well-behavedness and totality
properties for well-typed lenses.

We identify a natural mathematical space of well-behaved bi-directional transformations over arbitrary structures,
study definedness and continuity in this setting, and state aprecise connection with the classical theory of “update
translation under a constant complement” from databases. We then instantiate this semantic framework in the form
of a collection oflens combinatorsthat can be assembled to describe transformations on trees.These combinators
include familiar constructs from functional programming (composition, mapping, projection, conditionals, recursion)
together with some novel primitives for manipulating trees(splitting, pruning, copying, merging, etc.). We illustrate
the expressiveness of these combinators by developing a number of bi-directional list-processing transformations as
derived forms. An extended example shows how our combinators can be used to define a lens that translates between
a native HTML representation of browser bookmarks and a generic abstract bookmark format.
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1 Introduction

Computing is full of situations where one wants to transformsome structure into a different form—aview—in such a
way that changes made to the view can be reflected back as updates to the original structure. Thisview update problem
is a classical topic in the database literature, but has so far been little studied by programming language researchers.

This paper addresses a specific instance of the view update problem that arises in a larger project called Har-
mony [38]. Harmony is a generic framework for synchronizingtree-structured data—a tool for propagating updates
between different copies of tree-shaped data structures, possibly stored in different formats. For example, Harmony
can be used to synchronize the bookmark files of several different web browsers, allowing bookmarks and bookmark
folders to be added, deleted, edited, and reorganized in anybrowser and propagated to the others. The ultimate aim
of the project is to provide a platform on which a Harmony programmer can quickly assemble a high-quality synchro-
nizer for a new type of tree-structured data that is stored ina standard low-level format such as XML. Other Harmony
instances currently in daily use or under development include synchronizers for calendars (Palm DateBook, ical, and
iCalendar formats), address books, slide presentations, structured documents, and generic XML and HTML.

Views play a key role in Harmony: to synchronize disparate data formats, we define one common abstract view and
a collection oflensesthat transform each concrete format into this abstract view. For example, we can synchronize
a Mozilla bookmark file with an Internet Explorer bookmark file by transforming each into anabstract bookmark
structureand synchronizing the results. Having done so, we need to take the updated abstract structures and perform
the corresponding updates to the concrete structures. Thus, each lens must include not one buttwo functions—one
for extracting an abstract view from a concrete one and another for pushing an updated abstract view back into the
original concrete view to yield an updated concrete view. Wecall these thegetandputbackcomponents, respectively.
The intuition is that the mapping from concrete to abstract is commonly some sort of projection, so thegetdirection
involves getting the abstract part out of a larger concrete structure, while theputbackdirection amounts to putting a
new abstract part into an old concrete structure. We presenta concrete example of this process in Section 2.

The difficulty of the view update problem springs from a fundamental tension betweenexpressivenessandrobust-
ness. The richer we make the set of possible transformations in thegetdirection, the more difficult it becomes to define
corresponding functions in theputbackdirection so that each lens is bothwell behaved—its getandputbackbehaviors
fit together in a sensible way—andtotal—its getandputbackfunctions are defined on all the inputs to which they may
be applied.

To reconcile this tension, any approach to the view update problem must be carefully designed with a particular
application domain in mind. The approach described here is tuned to the kinds of projection-and-rearrangement
transformations on trees and lists that we have found usefulfor implementing Harmony instances. It does not directly
address some well-known difficulties with view update in theclassical setting of relational databases—such as the
difficulty of “inverting” queries involving joins—though we hope that our work may suggest new attacks on these
problems.

A second difficulty concernsease of use. In general, there are many ways to equip a givenget function with a
putbackfunction to form a well-behaved and total lens; we need some means of specifying whichputbackis intended
that is natural for the application domain and that does not involve onerous proof obligations or checking of side
conditions. We adopt a linguistic approach to this issue, proposing a set of lenscombinators—a small domain-specific
language—in which every expression simultaneously specifies both aget function and the correspondingputback.
Moreover, each combinator is accompanied by atype declaration, designed so that the well-behavedness and—for
non-recursive lenses—totality of composite lens expressions can be verified by straightforward, compositional checks.
(Proving totality of recursive lenses, like ordinary recursive programs, requires global reasoning that goes beyond
types.)

The first step in our formal development, in Section 3, is identifying a natural mathematical space of well-behaved
lenses over arbitrary data structures. There is a good deal of territory to be explored at this semantic level, before we
fix the domain of structures being transformed or the syntax for writing down transformations. First, we must phrase
our basic definitions to allow the underlying functions in lenses to be partial, since there will in general be structures
to which a given lens cannot sensibly be applied. The sets of structures to which wedo intend to apply a given lens
are specified by associating it with a type of the formC 
 A, whereC is a set of concrete “source structures” and
A is a set of abstract “target structures.” Second, we define a notion of well-behavedness that captures our intuitions
about how thegetandputbackparts of a lens should behave in concert. (For example, if we use thegetpart of a lens
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to extract an abstract viewa from a concrete viewc and then use theputbackpart to push the very samea back into
c, we should getc back.) Third, we use standard tools from domain theory to define monotonicity and continuity for
lens combinators parameterized on other lenses, establishing a foundation for defining lenses by recursion(which we
need because the trees that our lenses manipulate may in general have arbitrarily deep nested structure—e.g., when
they represent directory hierarchies, bookmark folders, etc.). Finally, to allow lenses to be used to create new concrete
structures rather than just updating existing ones (which can happen, for example, when new records are added to a
database in the abstract view), we show how to adjoin a special “missing” element to the structures manipulated by
lenses and establish suitable conventions for how it is treated.

With these semantic foundations in place, we proceed to syntax. We first (Section 4) present a group of generic
lens combinators (identities, composition, and constants), which can work with any kind of data. Next (Section 5),
we focus attention on tree-structured data and present several more combinators that perform various manipulations
on trees (hoisting, splitting, mapping, etc.) and show how to assemble these primitives, along with the generic com-
binators from before, to yield some useful derived forms. Section 6 introduces another set of generic combinators
implementing various sorts of bi-directional conditionals (we defer these to a separate section for the sake of getting
to concrete examples early, and because they are among our trickier primitives). Section 7 gives a more ambitious
illustration of the expressiveness of these combinators byimplementing a number of bi-directional list-processing
transformationsas derived forms; our main example is a bi-directionallist filter lens whoseputbackdirection
performs a rather intricate “weaving” operation to recombine apotentially updated abstract list with the concrete list
elements that were filtered away by theget. Section 8 further illustrates the use of our combinators inreal-world lens
programming by walking through a substantial example derived from the Harmony bookmark synchronizer.

Section 9 presents some first steps into a somewhat differentregion of the lens design space: lenses for dealing
with relational data encoded as trees. We define three more primitives—a “flattening” combinator that transforms a
list of (keyed) records into a bush, a “pivoting” combinatorthat can be used to promote a key field to a higher position
in the tree, and a “transposing” combinator related to the outer join operation on databases. The first two combinators
play an important role in Harmony instances for relational data such as address books encoded as XML trees.

Section 10 surveys a variety of related work and states a precise correspondence (amplified in [37]) between our
well-behaved lenses and the closely related idea of “updatetranslation under a constant complement” from databases.
Section 11 sketches directions for future research.

2 A Small Example

Suppose our concrete treec is a small address book:

c =
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(We draw trees sideways to save space. Each set of hollow curly braces corresponds to a tree node, and each “X 7→ ...”
inside denotes a child labeled with the stringX. The children of a node are unordered. To avoid clutter, whenan edge
leads to an empty tree, we usually omit the braces, the7→ symbol, and the final childless node—e.g., “333-4444”
above actually stands for “

{∣

∣333-4444 7→ {||}
∣

∣

}

.” When trees are linearized in running text, we separate children with
commas for easier reading.)

Now, suppose that we want to edit the data from this concrete tree in a simplified format where each name is
associated directly with a phone number.

a =

{∣

∣

∣

∣

Pat 7→ 333-4444
Chris 7→ 888-9999

∣

∣

∣

∣

}

Why would we want this? Perhaps because the edits are going tobe performed by synchronizing this abstract tree
with another replica of the same address book in which no URL information is recorded. Or perhaps there is no
synchronizer involved, but the edits are going to be performed by a human who is only interested in phone information
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and whose screen should not be cluttered with URLs. Whateverthe reason, we are going to make our changes to the
abstract treea, yielding a new abstract treea′ of the same form but with modified content.1 For example, let us change
Pat’s phone number, dropChris, and add a new friend,Jo.

a′ =

{∣

∣

∣

∣

Pat 7→ 333-4321
Jo 7→ 555-6666

∣

∣

∣

∣

}

Lastly, we want to compute a new concrete treec′ reflecting the new abstract treea′. That is, we want the parts of
c′ that were kept when calculatinga (e.g.,Pat’s phone number) to be overwritten with the corresponding information
from a′, while the parts ofc that were filtered out (e.g.,Pat’s URL) have their values carried over fromc.

c′ =
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We also need to “fill in” appropriate values for the parts ofc′ (in particular,Jo’s URL) that were created ina′ and for
whichc therefore contains no information. Here, we simply set theURL to a constant default, but in general we might
want to compute it from other information.

Together, the transformations fromc toa and froma′ andc to c′ form a lens. Our goal is to find a set of combinators
that can be assembled to describe a wide variety of lenses in aconcise, natural, and mathematically coherent manner.
(Just to whet the reader’s appetite, the lens expression that implements the transformation sketched above is written
map (focus Phone

{∣

∣URL 7→ http://google.com
∣

∣

}

).)

3 Semantic Foundations

Although many of our combinators work on trees, their semantic underpinnings can be presented in an abstract setting
parameterized by the data structures (“views”) manipulated by lenses.2 In this section—and in Section 4, where we
discuss generic combinators—we simply assume some fixed setU of views; from Section 5 on, we will chooseU to
be the set of trees.

Basic Structures

Whenf is a partial function, we writef(a) ↓ if f is defined on argumenta andf(a) = ⊥ otherwise. We write
f(a) v b for f(a) = ⊥ ∨ f(a) = b. We writedom(f) for the set of arguments on whichf is defined. WhenS ⊆ U ,
we writef(S) for {r | s ∈ S ∧ f(s) ↓ ∧ f(s) = r}. We take function application to be strict, i.e.,f(g(x)) ↓ implies
g(x) ↓.

3.1 Definition [Lenses]: A lens l comprises a partial functionl↗ from U to U , called theget functionof l, and a
partial functionl↘ fromU × U to U , called theputback function.

The intuition behind the notationsl↗ andl↘ is that thegetpart of a lens “lifts” an abstract view out of a concrete
one, while theputbackpart “pushes down” a new abstract view into an existing concrete view. We often say “puta
into c [usingl]” instead of “apply theputbackfunction [of l] to (a, c).”

1Note that we are interested here in the final treea′, not the particular sequence of edit operations that was used to transforma into a′. This
is important in the context of Harmony, which is designed to support synchronization of off-the-shelf applications, where in general we only have
access to the current states of the replicas, rather than a trace of modifications; the tradeoffs between state-based andtrace-based synchronizers are
discussed in [39].

2We use the word “view” here in a slightly different sense thansome of the database papers that we cite, where a view is aquery that maps
concrete to abstract states—i.e., it is a function that, foreach concrete database state, picks out a view in our sense.

4



3.2 Definition [Well-behaved lenses]:Let l be a lens and letC andA be subsets ofU . We say thatl is awell behaved
lens from C to A, writtenl ∈ C 
 A, iff it maps arguments inC to results inA and vice versa

l↗(C) ⊆ A (GET)
l↘(A × C) ⊆ C (PUT)

and itsgetandputbackfunctions obey the following laws:

l↘ (l↗ c, c) v c for all c ∈ C (GETPUT)
l↗ (l↘ (a, c)) v a for all (a, c) ∈ A × C (PUTGET)

We call C thesourceand A thetarget in C 
 A. Note that a givenl may be a well-behaved lens fromC to A
for many differentCs andAs; in particular, everyl is trivially a well-behaved lens from∅ to ∅. Conversely, the
everywhere-undefined lens belongs toC 
 A for everyC andA.

Intuitively, the GETPUT law states that, if wegetsome abstract viewa from a concrete viewc and immediatelyputback
a (with no modifications) intoc, we must get back exactlyc (if both operations are defined). PUTGET, on the other
hand, demands that theputbackfunction must capture all of the information contained in the abstract view: if putting
a viewa into a concrete viewc yields a viewc′, then the abstract view obtained fromc′ is exactlya.

An example of a lens satisfying PUTGET but not GETPUT is the following. SupposeC = string × int and
A = string, and definel by:

l↗ (s, n) = s

l↘ (s′, (s, n)) = (s′, 0)

Thenl↘ (l↗ (s, 1), (s, 1)) = (s, 0) 6= (s, 1). Intuitively, the law fails because theputbackfunction has “side effects”:
it modifies information from the concrete view that is not reflected in the abstract view.

An example of a lens satisfying GETPUT but not PUTGET is the following. LetC = string andA = string×
int, and definel by :

l↗ s = (s, 0)

l↘ ((s′, n), s) = s′

PUTGET fails here because some information contained in the abstract view does not get propagated to the new
concrete view. For example,l↗ (l↘ ((s′, 1), s)) = l↗ s′ = (s′, 0) 6= (s′, 1).

The GETPUT and PUTGET laws reflect fundamental expectations about the behavior oflenses; removing either
law significantly weakens the semantic foundation. We may also consider an optional third law, called PUTPUT:

l↘ (a′, l↘ (a, c)) v l↘ (a′, c) for all a, a′ ∈ A andc ∈ C.

This law states that the effect of a sequence of twoputbacks is (modulo undefinedness) just the effect of the second:
the first gets completely overwritten. Alternatively, a series of changes to an abstract view may be applied either
incrementally or all at once, resulting in the same final concrete view. We say that a well-behaved lens that also
satisfies PUTPUT is very well behaved. Both well-behaved and very well behaved lenses correspondto well-known
classes of “update translators” from the classical database literature (see Section 10).

The foundational development in this section is valid for both well-behaved and very well behaved variants of
lenses. However, when we come to defining our lens combinators for tree transformations in Section 5, we will not
require PUTPUT because one of our most important lens combinators,map, fails to satisfy it for reasons that seem to
us pragmatically unavoidable(see Section 5).

For now, a very simple example of a lens that is well behaved but not very well behaved can be constructed as
follows. Consider the following lens, whereC = string × int andA = string. The second component of each
concrete view intuitively represents a version number.

l↗ (s, n) = s

l↘ (s, (s′, n)) =
(s, n) if s = s′

(s, n+1) if s 6= s′
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Thegetfunction ofl projects away the version number and yields just the “data part.” Theputbackfunction overwrites
the data part, checks whether the new data part is the same as the old one, and, if not, increments the version number.
This lens satisfies both GETPUT and PUTGET but not PUTPUT, as we havel↘ (s, l↘ (s′, (c, n))) = (s, n + 2) 6=
(s, n + 1) = l↘ (s, (c, n)).

A final important property of lenses istotality(with respect to a given source and target).

3.3 Definition [Totality]: A lens l ∈ C 
 A is said to betotal, written l ∈ C ⇐⇒ A, if C ⊆ dom(l↗) and
A × C ⊆ dom(l↘).

The reasons for considering both partial and total lenses instead of building totality into the definition of well-
behavedness are much the same as in conventional functionallanguages. In practice, we always want lenses to be
total:3 to make Harmony synchronizers work predictably, lenses must be defined on the whole of the domains where
they are used; theget direction should be defined for any structure in the concreteset, and theputbackdirection
should be capable of putting back any possible updated version from the abstract set.4 All of our primitive lenses
are designed to be total, and all of our lens combinators map total lenses to total lenses—with the sole, but important,
exception of lenses defined by recursion (to which we will turn in a moment); as usual, recursive lenses must be
constructed in the semantics as limits of chains of increasingly defined partial lenses. At the level of types, the type
annotations we give for our lens combinators can be used to prove thatanywell-typed lens expression is well-behaved,
but only recursion-free expressions can be shown total by completely compositional reasoning; for recursive lenses,
more global arguments are required.

Basic Properties

We now explore some simple but useful consequences of the lens laws.

3.4 Definition: Let f be a partial function fromA × C to C andP ⊆ A × C. We say thatf is injective onP if it is
injective (in the standard sense) in the first component of arguments drawn fromP—i.e., if, for all viewsa, a′, andc
with (a, c) ∈ P and(a′, c) ∈ P , if f(a, c) ↓ andf(a′, c) ↓, thena 6= a′ impliesf(a, c) 6= f(a′, c).

3.5 Lemma: If l ∈ C 
 A, thenl↘ is injective on{(a, c) | (a, c) ∈ A × C ∧ l↗ (l↘ (a, c)) ↓}.

Proof: Let P = {(a, c) | (a, c) ∈ A × C ∧ l↗ (l↘ (a, c)) ↓}, and choose(a, c) ∈ P and(a′, c) ∈ P with
a′ 6= a. Suppose, for a contradiction, thatl↘ (a, c) = l↘ (a′, c). Then, by the definition ofP and rule PUTGET, we
havea = l↗ l↘ (a, c) = l↗ l↘ (a′, c) = a′; hencea = a′, a contradiction. �

The main application of this lemma is the following corollary, which provides an easy way to show that a total lens
is notwell behaved. We used it many times, while designing our combinators, to quickly generate and test candidates.

3.6 Corollary: If l ∈ C ⇐⇒ A, thenl↘ is injective onA × C.

An important special case arises when theputbackfunction of a lens is completely insensitive to its concrete
argument.

3.7 Definition: A lensl is said to beobliviousif l↘ (a, c) = l↘ (a, c′) for all a, c, c′ ∈ U .

Oblivious lenses have some special properties that make them simpler to reason about than lenses in general. For
example:

3Indeed, well-behavedness is somewhat trivial in the absence of totality: forany function l↗ from C to A, we can obtain a well-behaved lens
by takingl↘ to be undefined on all inputs—or, very slightly less trivially, to be defined only on inputs of the form(l↗ c, c).

4Since we intend to use lenses to build synchronizers, the updated structures here will be the results of synchronization. But a fundamental
property of the core synchronization algorithm in Harmony is that, if all of the updates between synchronizations occurin just one of the replicas,
then the effect of synchronization will be to propagate all these changes to the other replica. This implies that theputbackfunction in the lens
associated with the other replica must be prepared to acceptany value from the abstract domain. In other settings, different notions of totality may
be appropriate. For example, Hu, Mu, and Takeichi [21] have argued that, in the context of interactive editors, a reasonable definition of totality is
that l↘ (a, c) should be defined whenevera differs by at most one edit operation froml↗c.
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3.8 Lemma: If l is oblivious andl ∈ C1 
 A1 andl ∈ C2 
 A2, thenl ∈ (C1 ∪ C2) 
 (A1 ∪ A2).

Proof: Straightforward. �

3.9 Lemma: If l is oblivious andl ∈ C ⇐⇒ A, thenl↗ is a bijection fromC to A.

Proof: If C = ∅, then, becausel is total, A is also empty andl↗ is trivially bijective. If C is non-empty, then
we can choose an arbitraryc ∈ C and define the inverse ofl↗ asf = λa. l↘ (a, c). The fact that(l↗) ◦ f =
id follows directly from PUTGET. The fact thatf ◦ (l↗) = id follows becausef(l↗ c′) = l↘ (↗ c′, c) =
l↘ (↗ c′, c′) (by obliviousness)= c′ (by GETPUT). �

Conversely, every bijection between C and A induces a well-behaved oblivious lens fromC to A—that is, the set
of bijections between subsets ofU forms a subcategory of the category of lenses. Many of the combinators defined
below actually live in this simpler subcategory, as does much of the related work surveyed in Section 10.

Recursion

Since we will be interested in lenses over trees, and since trees in many interesting application domains may have
unbounded depth (e.g., a bookmark item can be either a link ora folder containing a list of bookmark items), we
will often want to define lenses by recursion. Our next task isto set up the necessary structure for interpreting such
definitions.

The development follows familiar lines. We introduce an information ordering on lenses and show that the set of
lenses equipped with this ordering is a complete partial order (cpo). We then apply standard tools from domain theory
to interpret a variety of common syntactic forms from programming languages—in particular, functional abstraction
and application (“higher-order lenses”) and lenses definedby single or mutual recursion.

We say that a lensl′ is more informativethan a lensl, written l ≺ l′, if both thegetandputbackfunctions ofl′

have domains that are at least as large as those ofl and if their results agree on their common domains:

3.10 Definition: l ≺ l′ iff dom(l↗) ⊆ dom(l′↗), dom(l↘) ⊆ dom(l′↘), l↗ c = l′↗ c for all c ∈ dom(l↗), and
l↘ (a, c) = l′↘ (a, c) for all (a, c) ∈ dom(l↘).

3.11 Lemma: ≺ is a partial order on lenses.

Proof: Straightforward from the definitions. �

A cpo is a partially ordered set in which every increasing chain ofelements has a least upper bound in the set. If
l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain, we write

⊔

n∈ω ln (often shortened as
⊔

n ln) for its least upper
bound. Acpo with bottomis a cpo with an element⊥ that is smaller than every other element. In our setting,⊥ is the
lens whosegetandputbackfunctions are everywhere undefined.

3.12 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. The lensl defined by

l↘ (a, c) = li ↘ (a, c) if li ↘ (a, c) ↓ for somei

l↗ c = li↗ c if li↗ c ↓ for somei

and undefined elsewhere is a least upper bound for the chain.

Proof: We first check thatl is a lens, i.e., that bothl↘ andl↗ are functions. This is easy since, by definition of
the ordering on lenses, we haveli ↘ (a, c) = v =⇒ ∀j ≥ i. lj ↘ (a, c) = v, and the same forl↗. Moreover,
dom(l↗) =

⋃

i dom(li↗) anddom(l↘) =
⋃

i dom(li↘).
We now show thatl is a least upper bound. First, it is clearly an upper bound. Toshow it is least, letl′ be another

upper bound. Then, for alli, we havedom(li↗) ⊆ dom(l′↗) anddom(li↘) ⊆ dom(l′↘); hencedom(l↗) ⊆
dom(l′↗) anddom(l↘) ⊆ dom(l′↘). Moreover, if c ∈ dom(l↗), then there is somei such thatli↗c ↓ and
l↗c = li↗c; thus (asl′ is an upper bound), we havel′↗c = li↗c = l↗c. The same property holds for theputback
function, sol ≺ l′ andl is indeed a least upper bound. �
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3.13 Corollary: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses. For everya, c ∈ U , we have:

1. (
⊔

n ln)↗ c = v ⇐⇒ ∃i. li↗ c = v.

2. (
⊔

n ln)↘ (a, c) = v ⇐⇒ ∃i. li ↘ (a, c) = v.

3.14 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and letC0 ⊆ C1 ⊆ . . . andA0 ⊆ A1 ⊆
. . . be increasing chains of subsets ofU . Then:

1. Well-behavedness commutes with limits:(∀i ∈ ω. li ∈ Ci 
 Ai) =⇒ (
⊔

n ln) ∈ (
⋃

i Ci) 
 (
⋃

i Ai).

2. Totality commutes with limits:(∀i ∈ ω. li ∈ Ci ⇐⇒ Ai) =⇒ (
⊔

n ln) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof: Let l =
⊔

n ln, let C =
⋃

i Ci, and letA =
⋃

i Ai.
We rely on the following property (which we call?g): if l↗ c is defined for somec ∈ C, then there is somei such

thatc ∈ Ci andl↗ c = li↗ c. To see this, letc ∈ C; then there is somej such that∀k ≥ j. c ∈ Ck. Moreover, by
Corollary 3.13, there exist somej′ such thatl↗ c = lj′↗ c. Let i be the max ofj andj′; then we have (by definition
of ≺) li↗ c = lj′↗ c = l↗ c andc ∈ Ci.

Similarly, we have the property?p: if l↘ (a, c) is defined for somea ∈ A andc ∈ C, then there is somei
such thata ∈ Ai, c ∈ Ci, andl↘ (a, c) = li ↘ (a, c). To see this, leta ∈ A andc ∈ C; then there are somej
andj′ such that∀k ≥ j. a ∈ Ak and∀k ≥ j′. c ∈ Ck. Moreover, by Corollary 3.13, there exists somej′′ such
that l↘ (a, c) = lj′′ ↘ (a, c). Let i be the max ofj, j′, andj′′; then we have (by definition of≺) li ↘ (a, c) =
lj′′ ↘ (a, c) = l↘ (a, c), with a ∈ Ai andc ∈ Ci.

We can now show thatl satisfies the typing conditions (GET and PUT) of well-behaved lenses. Choosec ∈ C.
If l↗ c is defined, then by?g there is somei such thatc ∈ Ci and l↗ c = li↗ c. As li is in Ai 
 Ci, we have
li↗ c ∈ Ai ⊆ A. Conversely, let(a, c) ∈ A × C; then if l↘ (a, c) is defined, then by?p there is somei such that
(a, c) ∈ Ai × Ci andl↘ (a, c) = li ↘ (a, c). As li ∈ Ai 
 Ci, we haveli ↘ (a, c) ∈ Ci ⊆ C.

We next show thatl satisfies GETPUT and PUTGET. Using?g and?p, we calculate as follows:

GETPUT: Supposec ∈ C. If l↘ (l↗ c, c) = ⊥, then we are done. Otherwise there is somei such thatc ∈ Ci and
li↗ c = l↗ c = a ∈ Ai ⊆ A. Hence there is somej such thata ∈ Aj andlj ↘ (a, c) = c′. Let k be the max
of i andj, so we havea ∈ Ak andc ∈ Ck. By definition of≺, we havelk↗ c = a andlk ↘ (a, c) = c′. As
GETPUT holds forlk, we havec′ = c, hence GETPUT holds forl.

PUTGET: Supposea ∈ A andc ∈ C. If l↗ l↘ (a, c) = ⊥, then we are done. Otherwise there is somei such
thata ∈ Ai, c ∈ Ci, andli ↘ (a, c) = l↘ (a, c) = c′ ∈ Ci ⊆ C. Hence there is somej such thatc′ ∈ Cj

andlj↗ c′ = a′. Let k be the max ofi andj, so we havea ∈ Ak andc ∈ Ck. By definition of≺, we have
lk ↘ (a, c) = c′ andlk↗ c′ = a′. As PUTGET holds forlk, we havea′ = a, hence PUTGET holds forl.

Finally, we show thatl is total if all the li are. If c ∈ C, then there is somei such thatc ∈ Ci, henceli↗ c
is defined, hencel↗ c is defined. Ifa ∈ A andc ∈ C, then there is somei such thata ∈ Ai andc ∈ Ci, hence
li ↘ (a, c) is defined, thusl↘ (a, c) is defined. �

3.15 Theorem: Let L be the set of well-behaved lenses fromC to A. Then(L, ≺) is a cpo with bottom.

Proof: First, the lens that is undefined everywhere is well behaved (it trivially satisfies all equations) and is obviously
the smallest lens. We write this lens⊥l. Second, ifl0 ≺ l1 ≺ . . . ≺ ln ≺ . . . is an increasing chain of well-behaved
lenses, then by Lemma 3.14, it has a least upper bound that is well behaved. �

When defining lenses, we will make heavy use of the following standard theorem from domain theory (e.g.,
[45]). Recall that a functionf between two cpos iscontinuousif it is monotonic and if, for all increasing chains
l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . , we havef(

⊔

n ln) =
⊔

n f(ln). A fixed point of f is a functionfix(f) satisfying
fix(f) = f(fix(f)).
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3.16 Theorem [Fixed-Point Theorem]: Let f be a continuous function fromD to D, whereD is a cpo with bottom.
Define

fix(f) =
⊔

n

fn(⊥)

Thenfix (f) is a fixed point off .

Theorem 3.15 tells us that we can apply Theorem 3.16 to continuous functions from lenses to lenses—i.e., it
justifies defining lenses by recursion. The following corollary packages up this argument in a convenient form; we
will appeal to it many times in later sections to show that recursive derived forms are well behaved and total.

3.17 Corollary: Supposef is a continuous function from lenses to lenses.

1. If l ∈ C 
 A impliesf(l) ∈ C 
 A for all l, thenfix(f) ∈ C 
 A.

2. Suppose∅ = C0 ⊆ C1 ⊆ . . . and∅ = A0 ⊆ A1 ⊆ . . . are increasing chains of subsets ofU . If l ∈ Ci ⇐⇒ Ai

impliesf(l) ∈ Ci+1 ⇐⇒ Ai+1 for all i andl, thenfix(f) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai).

Proof:

1. First recall thatf0(⊥l) = ⊥l ∈ C 
 A for any C andA. From this, a simple induction oni (using the
given implication at each step) yieldsf i(⊥l) ∈ C 
 A. By 3.14(1),(

⊔

i f i(⊥l)) ∈ C 
 A. By 3.16,
fix(f) ∈ C 
 A.

2. First note that, sinceC0 = A0 = ∅, we havef0(⊥l) = ⊥l ∈ C0 ⇐⇒ A0. From this, a simple induction oni
(using the given implication at each step) yieldsf i(⊥l) ∈ Ci ⇐⇒ Ai. By 3.14(2),(

⊔

i f i(⊥l)) ∈ (
⋃

i Ci) ⇐⇒
(
⋃

i Ai). By 3.16,fix(f) ∈ (
⋃

i Ci) ⇐⇒ (
⋃

i Ai). �

We can now apply standard domain theory to interpret a variety of constructs for defining continuous lens com-
binators. We say that an expressione is continuous in the variablex if the functionλx.e is continuous. An ex-
pression is said to be continuous in its variables, or simplycontinuous, if it is continuous in every variable sepa-
rately. Examples of continuous expressions are variables,constants, tuples (of continuous expressions), projections
(from continuous expressions), applications of continuous functions to continuous arguments, lambda abstractions
(whose bodies are continuous), let bindings (of continuousexpressions in continuous bodies), case constructions (of
continuous expressions), and the fixed point operator itself. Tupling and projection let us define mutually recur-
sive functions: if we want to definef asF (f, g) andg asG(f, g), where bothF andG are continuous, we define
(f, g) = fix(λ(x, y).(F (x, y), G(x, y))).

When proving the totality of recursive lenses, we sometimesneed to use a more powerful induction scheme in
which a lens is proved, simultaneously, to be total on a wholecollection of different types (any of which can be used
in the induction step). This is supported by a generalization of the proof technique in 3.17(2).

We specify atotal typeby a pair(C, A) of subsets ofU , and say that a lensl has this type, writtenl ∈ (C, A) iff
l ∈ C ⇐⇒ A. We use the variableτ for total types andT for sets of total types. We write(C, A) ⊆ (C′, A′) iff
C ⊆ C′ andA ⊆ A′ and write(C, A) ∪ (C′, A′) for (C ∪ C′, A ∪ A′).

3.18 Definition: The increasing chainτ0 ⊆ τ1 ⊆ . . . is anincreasing instanceof the sequenceT0, T1, . . . iff for all i
we haveτi ∈ Ti.

Note thatT0, T1, . . . is an arbitrary sequence of total types, here—there is no requirement that the sequence be
increasing. This is the trick that makes this proof technique work: we start with a sequence of sets of total types
T0, T1, . . . that, a priori, have nothing to do with each other; we then show that some continuous functionf on lenses
gets us from eachTi to Ti+1, in the sense thatf takes any lensl that belongs toall of the total types inTi to a lens
f(l) that belongs to all of the total types inTi+1. Finally, we identify an increasingchainof particular total types
τ0 ⊆ τ1 ⊆ . . . whose limit is the total type that we desire to show for the fixed point off and such that eachτi belongs
to Ti, and hence is a type forf i(⊥l).

Here is the generalization of Lemma 3.14(2) to the case wherelenses may be given multiple types.
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3.19 Lemma: Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses, and letT0, T1, . . . be a sequence of sets
of total types, such that for allτi ∈ Ti we haveli ∈ τi. Then for any increasing instanceτ0 ⊆ τ1 ⊆ . . . of T0, T1, . . .,
we have

⊔

n ln ∈
⋃

i τi.

Proof: Let τ =
⋃

i τi; then, by definition,τ0 ⊆ τ1 ⊆ . . . andτ =
⋃

i τi. By hypothesis, we haveli ∈ τi for all τi,
hence by Lemma 3.14 we have

⊔

n ln ∈ τ . �

Similarly, we generalize Corollary 3.17(2) to increasing instances of sequences of sets of total types.

3.20 Corollary: Supposef is a continuous function from lenses to lenses andT0, T1, . . . is a sequence of sets of total
types withT0 = {(∅, ∅)}. If the following property is satisfied for alll andi,

(∀τ ∈ Ti. l ∈ τ) =⇒ (∀τ ∈ Ti+1. f(l) ∈ τ),

thenfix(f) ∈
⋃

i τi for all increasing instancesτ0, τ1, . . . of T0, T1, . . ..

Proof: First note that, sinceT0 = {(∅, ∅)}, we havef0(⊥l) = ⊥l ∈ τ for all τ ∈ T0. From this, a simple induction
on i (using the given implication at each step) yieldsf i(⊥l) ∈ τ for all τ ∈ Ti. By 3.19, for any increasing instance
τ0, τ1, . . . of T0, T1, . . ., we have

⊔

n fn(⊥) ∈
⋃

i τi. By 3.16,fix(f) ∈
⋃

i τi. �

To support totality proofs formutuallyrecursive lens definitions (e.g., ourlist filter example in Section 7),
we need to generalize the above argument yet one step further, to tuplesof total types (and, accordingly, tuples of sets
of total types, etc.). To avoid too much notation, we show just the special case where the tuples are pairs.

3.21 Definition: The increasing chain(τ0, τ
′
0) ⊆ (τ1, τ

′
1) ⊆ . . . of pairs of total types is anincreasing instanceof the

sequence(T0, T
′
0), (T1, T

′
1), . . . iff for all i we haveτi ∈ Ti andτ ′

i ∈ T
′
i.

3.22 Lemma: Let (l0, l
′
0) ≺ (l1, l

′
1) ≺ . . . be an increasing chain of pairs of lenses, and let(T0, T

′
0), (T1, T

′
1), . . .

be a sequence of pairs of sets of total types, such that for allτi ∈ Ti we haveli ∈ τi and for allτ ′
i ∈ T

′
i we have

l′i ∈ τ ′
i . Then for any increasing instance(τ0, τ

′
0) ⊆ (τ1, τ

′
1) ⊆ . . . of (T0, T

′
0), (T1, T

′
1), . . ., we have

⊔

n ln ∈
⋃

i τi

and
⊔

n l′n ∈
⋃

i τ ′
i .

Proof: Immediate consequence of Lemma 3.19 (just apply 3.19 to the first components of all the pairs and then again
to the second components). �

3.23 Corollary: Suppose f is a continuous function from pairs of lenses to pairs of lenses and that
(T0, T

′
0), (T1, T

′
1), . . . is a sequence of pairs of sets of total types withT0 = T

′
0 = {(∅, ∅)}. If the following

two implications hold for alll, l′, andi:

1. from(∀τ ∈ Ti. l ∈ τ) and(∀τ ′ ∈ T
′
i. l′ ∈ τ ′) it follows that(∀τ ∈ Ti+1. π1(f(l, l′)) ∈ τ)

2. from(∀τ ∈ Ti+1. l ∈ τ) and(∀τ ′ ∈ T
′
i. l′ ∈ τ ′) it follows that(∀τ ′ ∈ T

′
i+1. π2(f(l, l′)) ∈ τ ′)

thenfix(f) ∈ (
⋃

i τi,
⋃

i τ ′
i) for all increasing instances(τ0, τ

′
0) ⊆ (τ1, τ

′
1) ⊆ . . . of (T0, T

′
0), (T1, T

′
1), . . ..

Proof: We first define an auxiliary continuous functiong from pairs of lenses to pairs of lenses such thatfix (f) =
fix(g), then show thatgi(⊥l,⊥l) has every pair of total types(τi, τ

′
i) in Ti × T

′
i, and conclude by Lemma 3.22.

Let f1 = π1 ◦ f andf2 = π2 ◦ f . As f is continuous, bothf1 andf2 are continuous. Letg be the function from
pairs of lenses to pairs of lenses defined asg = λ (l1, l2).(f1(l1, l2), f2(f1(l1, l2), l2)). The functiong is continuous
from pairs of lenses to pairs of lenses.

We first show thatfix(f) = fix(g). Let (l1, l2) be a fixed point off , then we havel1 = f1(l1, l2) and l2 =
f2(l1, l2). We calculate as follows:

g(l1, l2) = (f1(l1, l2), f2(f1(l1, l2), l2))

= (l1, f2(l1, l2))

= (l1, l2)
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Hence(l1, l2) is a fixed point ofg. Conversely, let(l1, l2) be a fixed point ofg. Then we haveg(l1, l2) = (l1, l2); that
is, f1(l1, l2) = l1 andf2(f1(l1, l2), l2) = l2, hencef2(l1, l2) = l2. Thus(l1, l2) is a fixed point off . As a pair of
lenses is a fixed point off iff it is a fixed point ofg, the smallest fixed point off is the smallest fixed point ofg, hence
fix(f) = fix(g).

We show thatgi(⊥l,⊥l) has every pair of total types(τi, τ
′
i) in Ti ×T

′
i for all i, by induction oni. The case where

i = 0 is immediate:g0(⊥l,⊥l) = ⊥l ∈ (τ0, τ
′
0) sinceτ0 = τ ′

0 = (∅, ∅). We now prove the induction case, showing
thatgi+1(⊥l,⊥l) ∈ (τi+1, τ

′
i+1) for all (τi+1, τ

′
i+1) ∈ Ti+1 × Ti+1.

Let τi+1 ∈ Ti+1. By the induction hypothesis, we havegi(⊥l,⊥l) ∈ (τi, τ
′
i) for all (τi, τ

′
i) ∈ Ti × Ti. Hence, by

definition ofg and by the first implication hypothesis, it follows that

π1(g
i+1(⊥l,⊥l)) = f1(g

i(⊥l,⊥l)) = π1(f(gi(⊥l,⊥l))) ∈ τi+1.

Let τ ′
i+1 ∈ T

′
i+1. By the previous argument, we havef1(g

i(⊥l,⊥l)) ∈ τi+1 for all τi+1 ∈ Ti+1. By the induction
hypothesis we haveπ2(g

i(⊥l,⊥l)) ∈ τ ′
i for all τ ′

i ∈ T
′
i. Hence, by definition ofg and by the second implication

hypothesis, it follows that

π2(g
i+1(⊥l,⊥l)) = f2(f1(g

i(⊥l,⊥l)), π2(g
i(⊥l,⊥l))) = π2(f(f1(g

i(⊥l,⊥l)), π2(g
i(⊥l,⊥l)))) ∈ τ ′

i+1.

Combining these two arguments, we thus havegi+1(⊥l,⊥l) ∈ (τi+1, τ
′
i+1) for all (τi+1, τ

′
i+1) ∈ Ti+1 × T

′
i+1.

Let (τ0, τ
′
0) ⊆ (τ1, τ

′
1) ⊆ . . . be an increasing instance of(T0, T

′
0), (T1, T

′
1), . . .. In what follows, we writeli for

π1(g
i(⊥l,⊥l)) andl′i for π2(g

i(⊥l,⊥l)).
By Lemma 3.22, we have

⊔

i li ∈
⋃

i τi and
⊔

i l′i ∈
⋃

i τ ′
i .

By continuity of pairing, we conclude that(
⊔

i li,
⊔

i l′i) = fix(g) = fix(f) ∈ (
⋃

i τi,
⋃

i′ τ ′
i). �

Dealing with Creation

In practice, there will be cases where we need to apply aputbackfunction, but where no old concrete view is available,
as we saw withJo’s URL in Section 2. We deal with these cases by enriching the universeU of views with a special
placeholderΩ, pronounced “missing,” which we assume is not already inU . WhenS ⊆ U , we writeSΩ for S ∪ {Ω}.

Intuitively, l↘ (a, Ω) means “create anewconcrete view from the information in the abstract viewa.” By conven-
tion, Ω is only used in an interesting way when it is the second argument to theputbackfunction: in all of the lenses
defined below, we maintain the invariants that (1)l↗Ω = Ω, (2) l↘ (Ω, c) = Ω for any c, (3) l↗ c 6= Ω for any
c 6= Ω, and (4)l↘ (a, c) 6= Ω for anya 6= Ω and anyc (includingΩ). We writeC 


Ω A for the set of well-behaved
lenses fromCΩ to AΩ obeying these conventions andC ⇐⇒Ω A for the set of total lenses obeying these conventions.
For brevity in the lens definitions below, we always assume that c 6= Ω when definingl↗ c and thata 6= Ω when
definingl↘ (a, c), since the results in these cases are uniquely determined bythese conventions. (There are other,
formally equivalent, ways of handling missing concrete views. The advantages of this one are discussed in Section 5.)

A useful consequence of these conventions is that a lensl ∈ C 

Ω

A also has typeC 
 A.

3.24 Lemma: For any lensl and sets of viewsC andA:

1. l ∈ C 

Ω A =⇒ l ∈ C 
 A.

2. l ∈ C ⇐⇒Ω A =⇒ l ∈ C ⇐⇒ A.

Proof: Let l ∈ C 

Ω

A.

1. We must prove that for allc ∈ C, l↗ c ∈ A. As l↗ c ∈ AΩ, and sincec 6= Ω, by convention we havel↗ c 6= Ω.
Similarly, leta, c in A × C, thenl↘ (a, c) ∈ C.

2. By convention,CΩ ⊆ dom(l↗) impliesC ⊆ dom(l↗), andA×CΩ ⊆ dom(l↘) impliesA×C ⊆ dom(l↘),
as required. �
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4 Generic Lenses

With these semantic foundations in hand, we are ready to moveon to syntax. We begin in this section with several
generic lens combinators (we will usually say justlensesfrom now on), whose definitions are independent of the
particular choice of universeU . Each definition is accompanied by a type declaration asserting its well-behavedness
under certain conditions (e.g., “the identity lens belongsto C 


Ω C for anyC”).
Most of the lens definitions in this and following sections are parameterized on one or more arguments. These may

be of various types: views (e.g.,const), other lenses (e.g., composition), predicates on views (e.g., the conditional
lenses in Section 6), or—in some of the lenses for trees in Section 5—edge labels, predicates on labels, etc.

We prove that every lens we define is well behaved (i.e., that the type declaration accompanying its definition is
a theorem) and total, and that every lens that takes other lenses as parameters is continuous in these parameters and
maps total lenses to total lenses. Indeed, nearly all of the lenses areverywell behaved (if their lens arguments are),
the only exceptions beingmap andflatten; we do not prove very well behavedness, however, since we aremainly
interested just in the well-behaved case.

Identity

The simplest lens is the identity. It copies the concrete view in thegetdirection and the abstract view in theputback
direction.

id↗ c = c
id↘ (a, c) = a

∀C⊆U . id ∈ C ⇐⇒Ω C

Having definedid, we must now prove that it is well behaved and total—i.e., that its type declaration is a theorem.
Since we will need similar arguments for every lens we define,some shorthand is useful. By our conventions on
the treatment ofΩ, the GET condition in Definition 3.2 need only be checked forC (not CΩ) and PUT need only be
checked forA × CΩ. Similarly, GETPUT need only be checked forc ∈ C, and PUTGET for a ∈ A andc ∈ CΩ.

4.1 Lemma [Well-behavedness]:∀C⊆U . id ∈ C 

Ω

C.

Proof:
GET: id↗ c = c ∈ C.

PUT: id↘ (a, c) = a ∈ C.

GETPUT: id↘ (id↗ c, c) = id↘ (c, c) = c.

PUTGET: id↗id↘ (a, c) = id↗ a = a. �

4.2 Lemma [Totality]: ∀C⊆U . id ∈ C ⇐⇒Ω C.

Proof: Immediate: both thegetandputbackdirections ofid are total functions. �

For each lens definition, the totality lemma will be almost identical to the well-behavedness lemma, just replacing


Ω by ⇐⇒Ω . In the case ofid, we could just as well combine the two into a single lemma, since well-behavedness
is part of the definition of totality. However, when we come tolens definitions that are parameterized on other lenses
(like composition, just below), the totality of the compound lens will depend on the totality (not just well-behavedness)
of its argument lenses; if all we know is that the arguments are well behaved, then we cannot use the combined lemma
to establish the well-behavedness of the compound lens. Since we expect this situation will be common in practice—
programmers will always want to check that their lenses are well-behaved, since the reasoning involved is simple and
local, but may not want to go to the trouble of setting up the more intricate global reasoning needed to prove that their
recursive lens definitions are total—we prefer to state the two lemmas separately.
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Composition

The lens composition combinatorl; k places two lensesl andk in sequence.

(l; k)↗ c = k↗ (l↗ c)
(l; k)↘ (a, c) = l↘ (k↘ (a, l↗ c), c)

∀A, B, C⊆U . ∀l ∈ C 

Ω B. ∀k ∈ B 


Ω A. l; k ∈ C 

Ω A

∀A, B, C⊆U . ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A

Thegetdirection applies thegetfunction ofl to yield a first abstract view, on which thegetfunction ofk is applied. In
the other direction, the twoputbackfunctions are applied in turn: first, theputbackfunction ofk is used to puta into
the concrete view that thegetof k was applied to, i.e.,l↗ c; the result is then put intoc using theputbackfunction
of l. (If the concrete viewc is Ω, then,l↗ c will also beΩ by our conventions on the treatment ofΩ, so the effect of
(l; k)↘ (a, Ω) is to usek to puta into Ω and thenl to put the result intoΩ.) Note that we record two different type
declarations for composition: one for the case where the parameter lensesl andk are only known to be well behaved,
and another for the case where they are also known to be total.

To aid in checking well-behavedness, we will sometimes annotate uses of the composition operator with a suitable
“cut type,” writing l ;B k instead of justl; k. We will maintain the invariant that, whenever we are interested in
checking the well-behavedness of a composite lensl ;B k, the source and target typesC andA will be determined
by the context; the annotationB allows us to propagate this invariant tol andk. We sometimes annotateC andA
explicitly by writing∈ C l 


Ω

A. (This infix notation—wherel is written between its source and target types, instead
of the more conventionall ∈ C 


Ω A—looks strange in-line, but it works well for multi-line displays. In particular,
we use it heavily in the bookmark lenses in Section 8.)

4.3 Lemma [Well-behavedness]:∀A, B, C⊆U . ∀l ∈ C 

Ω

B. ∀k ∈ B 

Ω

A. l; k ∈ C 

Ω

A.

Proof:
GET: If k↗ l↗ c = (l; k)↗ c is defined, thenl↗ c ∈ B by GET for l, so (l; k)↗ c ∈ A by GET for k.

PUT: If l↘ (k↘ (a, l↗ c), c) = (l; k)↘ (a, c) is defined, thenl↗ c ∈ BΩ by GET for l and our convention on
treatment ofΩ by getfunctions, sok↘ (a, l↗ c) ∈ B by PUT for k, sol↘ (k↘ (a, l↗ c), c) ∈ C by PUT for l.

GETPUT: Assume that (l; k)↗ c is defined. Then:

(l; k)↘
(

(l; k)↗ c, c
)

= (l; k)↘ (k↗ l↗ c, c) by definition (of the underlined expression)

= l↘
(

k↘ (k↗ l↗ c, l↗ c), c
)

by definition

v l↘ (l↗ c, c) GETPUT for k

v c GETPUT for l

PUTGET: Assume that (l; k)↘ (a, c) is defined. Then:

(l; k)↗ (l; k)↘ (a, c)

= (l; k)↗ l↘ (k↘ (a, l↗ c), c) by definition
= k↗ l↗ l↘ (k↘ (a, l↗ c), c) by definition
v k↗ k↘ (a, l↗ c) PUTGET for l

v a PUTGET for k �

4.4 Lemma [Totality]: ∀A, B, C⊆U . ∀l ∈ C ⇐⇒Ω B. ∀k ∈ B ⇐⇒Ω A. l; k ∈ C ⇐⇒Ω A.

Proof: Let c ∈ C; then l↗ c is defined (by totality ofl) and is inB, hencek↗ l↗ c = (l; k)↗ c is defined (by
totality of k). Conversely, leta ∈ A andc ∈ CΩ; thenl↗ c is defined and is inBΩ. Thus,k↘ (a, l↗ c) is defined
and is inB, and sol↘ (k↘ (a, l↗ c), c) = (l; k)↘ (a, c) is defined. �
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Besides well-behavedness and totality, we must also show that lens composition is continuous in its arguments.
This will justify using composition in recursive lens definitions: in order for a recursive lens defined asfix(λl. l1; l2)
(wherel1 and l2 may both mentionl) to be well formed, we need to apply Theorem 3.16, which requires that the
functionλl. l1; l2 be continuous inl. According to the following lemma, this will be the case wheneverl1 and l2
are continuous inl. We will prove an analogous lemma for each of our lens combinators that takes other lenses as
parameters, so that the continuity of every lens expressionwill follow from the continuity of its immediate constituents.

4.5 Lemma [Continuity]: Let F and G be continuous functions from lenses to lenses. Then the function
λl. (F (l); G(l)) is continuous.

Proof: We first argue thatλl. (F (l); G(l)) is monotone. Letl andl′ be two lenses withl ≺ l′. We must show that
F (l); G(l) ≺ F (l′); G(l′). For thegetdirection, letc ∈ U , and assume that(F (l); G(l))↗ c is defined. We have:

(F (l); G(l))↗ c
= G(l)↗F (l)↗ c
= G(l)↗F (l′)↗ c by F (l) ≺ F (l′), sinceF (l)↗ c is defined
= G(l′)↗F (l′)↗ c by G(l) ≺ G(l′)
= (F (l′); G(l′))↗ c.

For theputbackdirection, let(a, c) ∈ U × UΩ, assume that(F (l); G(l))↘ (a, c) is defined, and calculate as follows:

(F (l); G(l))↘ (a, c)
= F (l)↘ (G(l)↘ (a, F (l)↗ c), c)
= F (l)↘ (G(l)↘ (a, F (l′)↗ c), c) by F (l) ≺ F (l′)
= F (l)↘ (G(l′)↘ (a, F (l′)↗ c), c) by G(l) ≺ G(l′)
= F (l′)↘ (G(l′)↘ (a, F (l′)↗ c), c) by F (l) ≺ F (l′)
= (F (l′); G(l′))↘ (a, c).

Thusλl. (F (l); G(l)) is monotone. We must now prove that it is continuous.
Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of well-behaved lenses. Letl =

⊔

i li. We have, forc ∈ U ,

(F (l); G(l))↗ c = v
⇐⇒ G(l)↗F (l)↗ c = v by definition of ;
⇐⇒ G(l)↗F (

⊔

i li)↗ c = v by definition ofl
⇐⇒ G(l)↗ (

⊔

i F (li))↗ c = v by continuity ofF
⇐⇒ ∃i1.G(l)↗F (li1)↗ c = v by Corollary 3.13 (GET)
⇐⇒ ∃i1.G(

⊔

i li)↗F (li1)↗ c = v by definition ofl
⇐⇒ ∃i1.(

⊔

i G(li))↗F (li1)↗ c = v by continuity ofG
⇐⇒ ∃i2, i1.G(li2 )↗F (li1)↗ c = v by Corollary 3.13 (GET)

⇐⇒ ∃i.G(li)↗F (li)↗ c = v by

{

letting i = max(i1, i2)
monotonicity ofF andG

⇐⇒ ∃i.(F (li); G(li))↗ c = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))↗ c = v by Corollary 3.13 (GET)

14



and

(F (l); G(l))↘ (a, c) = v
⇐⇒ F (l)↘ (G(l)↘ (a, F (l)↗ c), c) = v by definition of ;
⇐⇒ F (l)↘ (G(l)↘ (a, F (

⊔

i li)↗ c), c) = v by definition ofl
⇐⇒ F (l)↘ (G(l)↘ (a, (

⊔

i F (li))↗ c), c) = v by continuity ofF
⇐⇒ ∃i1.F (l)↘ (G(l)↘ (a, F (li1)↗ c), c) = v by Corollary 3.13 (GET)
⇐⇒ ∃i1.F (l)↘ (G(

⊔

i li)↘ (a, F (li1)↗ c), c) = v by definition ofl
⇐⇒ ∃i1.F (l)↘ ((

⊔

i G(li))↘ (a, F (li1)↗ c), c) = v by continuity ofG
⇐⇒ ∃i2, i1.F (l)↘ (G(li2)↘ (a, F (li1)↗ c), c) = v by Corollary 3.13 (PUT)
⇐⇒ ∃i2, i1.F (

⊔

i li)↘ (G(li2 )↘ (a, F (li1)↗ c), c) = v by definition ofl
⇐⇒ ∃i2, i1.(

⊔

i F (li))↘ (G(li2 )↘ (a, F (li1)↗ c), c) = v by continuity ofF
⇐⇒ ∃i3, i2, i1.F (li3)↘ (G(li2 )↘ (a, F (li1 )↗ c), c) = v by Corollary 3.13 (PUT)

⇐⇒ ∃i.F (li)↘ (G(li)↘ (a, F (li)↗ c), c) = v by

{

letting i = max(i1, i2, i3)
monotonicity ofF andG

⇐⇒ ∃i.(F (li); G(li))↘ (a, c) = v by definition of ;
⇐⇒ (

⊔

i(F (li); G(li)))↘ (a, c) = v by Corollary 3.13 (PUT).

Hence the lenses
⊔

i(F (li); G(li)) andF (l); G(l) are equal. �

Constant

Another simple combinator isconst v d, which transforms any view into the constant viewv in thegetdirection. In
theputbackdirection,const simply restores the old concrete view if one is available; ifthe concrete view isΩ, it
returns a default viewd.

(const v d)↗ c = v
(const v d)↘ (a, c) = c if c 6= Ω

d if c = Ω

∀C⊆U . ∀v∈U . ∀d∈C. const v d ∈ C ⇐⇒Ω {v}

Note that the type declaration demands that theputbackdirection only be applied to the abstract argumentv.
We can define a similar lens,const v, that is identical to the standard version except that theputbackfunction is

undefined when the concrete view isΩ. This lens has typeC ⇐⇒ {v} (note that this type does not mentionΩ). Later
(in Section 6) we will see how to use conditional combinatorsto wrap lenses likeconst v to produce a lens whose
putbackfunction is extended to handle missing concrete views.

4.6 Lemma [Well-behavedness]:∀C⊆U . ∀v∈U . ∀d∈C. const v d ∈ C 

Ω {v}.

Proof:
GET: (const v d)↗ c = v ∈ {v}.

PUT: (const v d)↘ (v, c) ∈ {c, d} ⊆ C.

GETPUT: (const v d)↘ ((const v d)↗ c, c) = (const v d)↘ (v, c) = c.

PUTGET: If c 6= Ω, then (const v d)↗ ((const v d)↘ (v, c)) = (const v d)↗ c = v. Otherwise,
(const v d)↗ ((const v d)↘ (v, Ω)) = (const v d)↗ d = v. �

4.7 Lemma [Totality]: ∀C⊆U . ∀v∈U . ∀d∈C. const v d ∈ C ⇐⇒Ω {v}.

Proof: Immediate: both thegetandputbackdirections of (const v d) are total functions for everyv andd. �

We will define a few more generic lenses in Section 6; for now, though, let us turn to some lens combinators that
work on tree-structured data, so that we can ground our definitions in specific examples.
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5 Lenses for Trees

To keep our lens definitions as straightforward as possible,we work with an extremely simple form of trees: unordered,
edge-labeled trees with no repeated labels. This does not give us—primitively—all the structure we need for some
applications; in particular, we will need to deal with ordered data such as lists and XML documents via an encoding
(shown in Section 8) instead of primitively. Experience hasshown that the reduction in the complexity of the lens
definitionsobtained in this way far outweighs the increase in complexity of lensprogramsdue to manipulating ordered
data in encoded form.

Notation

From this point on, we choose the universeU to be the setT of finite, unordered, edge-labeled trees with labels drawn
from some infinite setN of names—e.g., character strings—and with the children of a given node all labeled with
distinct names. Trees of this form are sometimes calledfeature trees(e.g., [34]). The variablesa, c, d, andt range
overT ; by convention, we usea for trees that are thought of as abstract andc or d for concrete trees.

A tree is essentially a finite partial function from names to other trees. It will be more convenient, though, to adopt
a slightly different perspective: we will consider a treet ∈ T to be atotal function fromN to TΩ that yieldsΩ on
all but a finite number of names. We writedom(t) for the domain oft—i.e., the set of the names for which it returns
something other thanΩ—andt(n) for the subtree associated to namen in t, or Ω if n 6∈ dom(t).

Tree values are written using hollow curly braces. The emptytree is written{||}. (Note that{||}, a node with no
children, is different fromΩ.) We often describe trees by comprehension, writing

{∣

∣n 7→ F (n) | n ∈ N
∣

∣

}

, whereF
is some function fromN to TΩ andN ⊆ N is some set of names. Whent andt′ have disjoint domains, we write
t · t′ or

{∣

∣t t′
∣

∣

}

(the latter especially in multi-line displays) for the treemappingn to t(n) for n ∈ dom(t), to t′(n) for
n ∈ dom(t′), and toΩ otherwise.

Whenp ⊆ N is a set of names, we writep for N\p, the complement ofp. We writet|p for the restriction oft to
children with names fromp—i.e., the tree

{∣

∣n 7→ t(n) | n ∈ p ∩ dom(t)
∣

∣

}

—andt\p for
{∣

∣n 7→ t(n) | n ∈ dom(t)\p
∣

∣

}

.
Whenp is just a singleton set{n}, we drop the set braces and write justt|n andt\n instead oft|{n} andt\{n}.

To shorten some of the lens definitions, we adopt the conventions thatdom(Ω) = ∅, and thatΩ|p = Ω for anyp.
For writing down types,5 we extend these tree notations to sets of trees. IfT ⊆ T andn ∈ N , then

{∣

∣n 7→ T
∣

∣

}

denotes the set of singleton trees{
{∣

∣n 7→ t
∣

∣

}

| t ∈ T }. If T ⊆ T andN ⊆ N , then
{∣

∣N 7→ T
∣

∣

}

denotes the set of

trees{t | dom(t) = N and∀n ∈ N. t(n) ∈ T } and
{∣

∣

∣N
?
7→ T

∣

∣

∣

}

denotes the set of trees{t | dom(t) ⊆ N and∀n ∈

N. t(n) ∈ TΩ}. We writeT1 · T2 for {t1 · t2 | t1 ∈ T1, t2 ∈ T2} andT (n) for {t(n) | t ∈ T } \ {Ω}. If T ⊆ T , then
dom(T ) = {dom(t) | t ∈ T }. Note thatdom(T ) is a set of sets of names, whiledom(t) is a set of names.

A value is a tree of the special form
{∣

∣k 7→ {||}
∣

∣

}

, often written justk. For instance, the phone number
{∣

∣333-4444 7→ {||}
∣

∣

}

in the example of Section 2 is a value.

Hoisting and Plunging

Let’s warm up with some combinators that perform simple structural transformations on trees of very simple shapes.
We will see in Section 5 how to combine these with a powerful “forking” operator to perform related operations on
more general sorts of trees.

Hoist

The lenshoist n is used to shorten a tree by removing an edge at the top. In thegetdirection, it expects a tree that
has exactly one child, namedn. It returns this child, removing the edgen. In theputbackdirection, the value of the
old concrete tree is ignored and a new one is created, with a single edgen pointing to the given abstract tree. (In
Section 5, we will meet a derived form,hoist nonunique, that works on bushier trees.)

5Note that, although we are defining a syntax for lens expressions, the types used to classify these expressions are semantic—they are just sets
of lenses or views. We are not (yet!—see Section 11) proposing an algebra of types or an algorithm for mechanically checking membership of lens
expressions in type expressions.
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(hoist n)↗ c = t if c =
{∣

∣n 7→ t
∣

∣

}

(hoist n)↘ (a, c) =
{∣

∣n 7→ a
∣

∣

}

∀C⊆T . ∀n∈N . hoist n ∈
{∣

∣n 7→ C
∣

∣

}

⇐⇒Ω C

5.1 Lemma [Well-behavedness]:∀C⊆T . ∀n∈N . hoist n ∈
{∣

∣n 7→ C
∣

∣

}



Ω

C.

Proof:
GET: (hoist n)↗

{∣

∣n 7→ c
∣

∣

}

= c ∈ C

PUT: (hoist n)↘ (a, c) =
{∣

∣n 7→ a
∣

∣

}

∈
{∣

∣n 7→ C
∣

∣

}

GETPUT: (hoist n)↘
(

((hoist n)↗
{∣

∣n 7→ t
∣

∣

}

),
{∣

∣n 7→ t
∣

∣

})

= (hoist n)↘
(

t,
{∣

∣n 7→ t
∣

∣

})

=
{∣

∣n 7→ t
∣

∣

}

.

PUTGET: (hoist n)↗ ((hoist n)↘ (a, c)) = (hoist n)↗
{∣

∣n 7→ a
∣

∣

}

= a. �

5.2 Lemma [Totality]: ∀C⊆T . ∀n∈N . hoist n ∈
{∣

∣n 7→ C
∣

∣

}

⇐⇒Ω C.

Proof: Straightforward: theputbackdirection is a total function, and thegetdirection is clearly defined for every tree
in the source type

{∣

∣n 7→ C
∣

∣

}

. �

Plunge

Conversely, theplunge lens is used to deepen a tree by adding an edge at the top. In thegetdirection, a new tree is
created, with a single edgen pointing to the given concrete tree. In theputbackdirection, the value of the old concrete
tree is ignored and the abstract tree is required to have exactly one subtree, labeledn, which becomes the result of the
plunge.

(plunge n)↗ c =
{∣

∣n 7→ c
∣

∣

}

(plunge n)↘ (a, c) = t if a =
{∣

∣n 7→ t
∣

∣

}

∀C⊆T . ∀n∈N . plunge n ∈ C ⇐⇒Ω
{∣

∣n 7→ C
∣

∣

}

5.3 Lemma [Well-behavedness]:∀C⊆T . ∀n∈N . plunge n ∈ C 

Ω

{∣

∣n 7→ C
∣

∣

}

.

Proof:
GET: (plunge n)↗ c =

{∣

∣n 7→ c
∣

∣

}

∈
{∣

∣n 7→ C
∣

∣

}

.

PUT: (plunge n)↘
({∣

∣n 7→ t
∣

∣

}

, c
)

= t ∈ C.

GETPUT: (plunge n)↘ ((plunge n)↗ c, c) = (plunge n)↘
({∣

∣n 7→ c
∣

∣

}

, c
)

= c.

PUTGET: (plunge n)↗ ((plunge n)↘
({∣

∣n 7→ t
∣

∣

}

, c
)

) = (plunge n)↗ t =
{∣

∣n 7→ t
∣

∣

}

. �

5.4 Lemma [Totality]: ∀C⊆T . ∀n∈N . plunge n ∈ C ⇐⇒Ω
{∣

∣n 7→ C
∣

∣

}

.

Proof: Straightforward: theget direction is a total function, and theputbackdirection is defined for every pair
consisting of a tree in the target type

{∣

∣n 7→ C
∣

∣

}

and any concrete tree whatsoever (orΩ). �

Forking

The lens combinatorxfork applies different lenses to different parts of a tree: it splits the tree into two parts ac-
cording to the names of its immediate children, applies a different lens to each, and concatenates the results. Formally,
xfork takes as arguments two sets of names and two lenses. Thegetdirection ofxfork pc pa l1 l2 can be visualized
as in Figure 1 (the concrete tree is at the bottom). The triangles labeledpc denote trees whose immediate child edges
have labels inpc; dotted arrows represent splitting or concatenating trees. The result of applyingl1↗ to c|pc (the tree
formed by dropping the immediate children ofc whose names are not inpc) must be a tree whose top-level labels are
in the setpa; similarly, the result of applyingl2↗ to c\pc must be inpa. That is, the lensesl1 andl2 are allowed to
change the sets of names in the trees they are given, but each must map from its own part ofpc to its own part ofpa.
Conversely, in theputbackdirection,l1 must map frompa to pc andl2 from pa to pc. Here is the full definition:
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Figure 1: Thegetdirection ofxfork

(xfork pc pa l1 l2)↗ c = (l1↗ c|pc) · (l2↗ c\pc)
(xfork pc pa l1 l2)↘ (a, c) = (l1 ↘ (a|pa, c|pc)) · (l2 ↘ (a\pa, c\pc))

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa.
∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 


Ω

A1. ∀l2 ∈ C2 

Ω

A2.
xfork pc pa l1 l2 ∈ (C1 · C2) 


Ω (A1 · A2)

∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa.
∀C2⊆T \pc. ∀A2⊆T \pa.
∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.
xfork pc pa l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)

We rely here on our convention thatΩ|p = Ω to avoid explicitly splitting out theΩ case in theputbackdirection.

5.5 Lemma [Well-behavedness]:∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa. ∀l1 ∈ C1 

Ω

A1. ∀l2 ∈ C2 

Ω

A2. xfork pc pa l1 l2 ∈ (C1 · C2) 

Ω

(A1 · A2).

Proof:
GET: If c ∈ C1 · C2, thenc|pc ∈ C1 andc\pc ∈ C2. Hencel1↗ c|pc ∈ A1 andl2↗ c\pc ∈ A2, and so we have
(xfork pc pa l1 l2)↗ c ∈ A1 · A2.

PUT: Similarly, l1 ↘ (a|pa, c|pc) ∈ C1 and l2 ↘ (a\pa, c\pc) ∈ C2, hence(xfork pc pa l1 l2)↘ (a, c) ∈ C1 ·
C2.

GETPUT: Suppose that (xfork pc pa l1 l2)↗ c is defined. Thenl1↗ c|pc · l2↗ c\pc is defined and

(l1↗ c|pc · l2↗ c\pc)|pa = l1↗ c|pc

(l1↗ c|pc · l2↗ c\pc)\pa = l2↗ c\pc.

Thus,

l1 ↘ ((l1↗ c|pc · l2↗ c\pc)|pa, c|pc) = l1 ↘ (l1↗ c|pc, c|pc) v c|pc

by GETPUT for l1. Similarly,

l2 ↘ ((l1↗ c|pc · l2↗ c\pc)\pa, c\pc) v c\pc
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by GETPUT for l2. Assembling these pieces, we have

(xfork pc pa l1 l2)↘ ((xfork pc pa l1 l2)↗ c, c)

= (xfork pc pa l1 l2)↘ (l1↗ c|pc · l2↗ c\pc, c)

=
(

l1 ↘ ((l1↗ c|pc · l2↗ c\pc)|pa, c|pc)
)

·
(

l2 ↘ ((l1↗ c|pc · l2↗ c\pc)\pa, c\pc)
)

v c|pc · c\pc

= c.

PUTGET: Suppose that (xfork pc pa l1 l2)↘ (a, c) is defined. Thenl1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc) is de-
fined, with

(

l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc)
)

|pc = l1 ↘ (a|pa, c|pc)

and
(

l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc)
)

\pc = l2 ↘ (a\pa, c\pc).

By PUTGET for l1,

l1↗ ((l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc))|pc) = l1↗(l1 ↘ (a|pa, c|pc)) v a|pa

and by PUTGET for l2,

l2↗ ((l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc))\pc) = l2↗(l2 ↘ (a\pa, c\pc)) v a\pa

Assembling these pieces, we have

(xfork pc pa l1 l2)↗((xfork pc pa l1 l2)↘ (a, c))
= (xfork pc pa l1 l2)↗ (l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc))
=

(

l1↗ (l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc))|pc

)

·
(

l2↗ (l1 ↘ (a|pa, c|pc) · l2 ↘ (a\pa, c\pc))\pc

)

v a|pa · a\pa

= a. �

5.6 Lemma [Totality]: ∀pc, pa⊆N . ∀C1⊆T |pc. ∀A1⊆T |pa. ∀C2⊆T \pc. ∀A2⊆T \pa. ∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈
C2 ⇐⇒Ω A2. xfork pc pa l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2).

Proof: Supposec ∈ C1 · C2. Then we havec|pc ∈ C1 andc\pc ∈ C2. By the totality ofl1 andl2, we know that
l1↗ c|pc is defined and is inA1 and l2↗ c\pc is defined and is inA2. As these two views have disjoint domains,
l1↗ c|pc · l2↗ c\pc = (xfork pc pa l1 l2)↗ c is defined.

Let a ∈ A1 · A2 andC ∈ (C1 · C2)Ω. We have:

• a|pa ∈ A1;

• c|pc ∈ C1 ∪ {Ω};

• a\pa ∈ A2;

• c\pc ∈ C2 ∪ {Ω}.

Hence:

• l1 ↘ (a|pa, c|pc) = c1 is defined and inC1, and

• l2 ↘ (a\pa, c\pc) = c2 is defined and inC2.

As c1 andc2 have disjoint domains,c1 · c2 = (xfork pc pa l1 l2)↘ (a, c) is defined. �

5.7 Lemma [Continuity]: Let F and G be continuous functions from lenses to lenses. Then the function
λl. xfork pc pa F (l) G(l) is continuous.
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Proof: Begin with monotonicity. Letl andl′ be two lenses withl ≺ l′. We must show thatxfork pc pa F (l) G(l) ≺
xfork pc pa F (l′) G(l′). Choosec ∈ T such thatxfork pc pa F (l) G(l)↗ c is defined. Then

(xfork pc pa F (l) G(l))↗ c
= (F (l)↗ c|pc) · (G(l)↗ c\pc)
= (F (l′)↗ c|pc) · (G(l′)↗ c\pc) sinceF (l) ≺ F (l′) andG(l) ≺ G(l′)
= (xfork pc pa F (l′) G(l′))↗ c.

Now choose(a, c) ∈ T × TΩ with xfork pc pa F (l) G(l)↘ (a, c) is defined. We have:

(xfork pc pa F (l) G(l))↘ (a, c)
= (F (l)↘ (a|pa, c|pc)) · (G(l)↘ (a\pa, c\pc))
= (F (l′)↘ (a|pa, c|pc)) · (G(l′)↘ (a\pa, c\pc)) sinceF (l) ≺ F (l′) andG(l) ≺ G(l′)
= (xfork pc pa F (l′) G(l′))↘ (a, c).

Thusλl. xfork pc pa F (l) G(l) is monotone. We next prove it is continuous.
Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of well-behaved lenses, and letl =

⊔

i li. We have:

(xfork pc pa F (l) G(l))↗ c = t
⇐⇒ (F (l)↗ c|pc) · (G(l)↗ c\pc) = t by definition
⇐⇒ (F (

⊔

i li)↗ c|pc) · (G(
⊔

i li)↗ c\pc) = t by definition
⇐⇒ ((

⊔

i F (li))↗ c|pc) · ((
⊔

i G(li))↗ c\pc) = t by continuity ofF andG
⇐⇒ ∃i1, i2.(F (li1 )↗ c|pc) · (G(li2 )↗ c\pc) = t by Corollary 3.13 (GET) twice

⇐⇒ ∃i.(F (li)↗ c|pc) · (G(li)↗ c\pc) = t by

{

i = max(i1, i2)
monotonicity ofF andG

⇐⇒ ∃i.(xfork pc pa F (li) G(li))↗ c = t by definition
⇐⇒ (

⊔

i xfork pc pa F (li) G(li))↗ c = t by corollary 3.13 (GET)

and

(xfork pc pa F (l) G(l))↘ (a, c) = t
⇐⇒ (F (l)↘ (a|pa, c|pc)) · (G(l)↘ (a\pa, c\pc)) = t by definition
⇐⇒ (F (

⊔

i li)↘ (a|pa, c|pc)) · (G(
⊔

i li)↘ (a\pa, c\pc)) = t by definition
⇐⇒ ((

⊔

i F (li))↘ (a|pa, c|pc)) · ((
⊔

i G(li))↘ (a\pa, c\pc)) = t by continuity ofF andG
⇐⇒ ∃i1, i2.(F (li1 )↘ (a|pa, c|pc)) · (G(li2)↘ (a\pa, c\pc)) = t by Corollary 3.13 (PUT) twice

⇐⇒ ∃i.(F (li)↘ (a|pa, c|pc)) · (G(li)↘ (a\pa, c\pc)) = t by

{

i = max(i1, i2)
monotonicity ofF andG

⇐⇒ ∃i.(xfork pc pa F (li) G(li))↘ (a, c) = t by definition
⇐⇒ (

⊔

i xfork pc pa F (li) G(li))↘ (a, c) = t by corollary 3.13 (PUT). �

We have now defined enough basic lenses to implement several useful derived forms for manipulating trees.
In many uses ofxfork, the sets of names specifying where to split the concrete tree and where to split the abstract

tree are identical. We can define a simplerfork as:

fork p l1 l2 = xfork p p l1 l2

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p.
∀l1 ∈ C1 


Ω

A1. ∀l2 ∈ C2 

Ω

A2.
fork p l1 l2 ∈ (C1 · C2) 


Ω

(A1 · A2)

∀p⊆N . ∀C1, A1⊆T |p. ∀C2, A2⊆T \p.
∀l1 ∈ C1 ⇐⇒Ω A1. ∀l2 ∈ C2 ⇐⇒Ω A2.
fork p l1 l2 ∈ (C1 · C2) ⇐⇒Ω (A1 · A2)

We can usefork to define a lens that discards all of the children of a tree whose names do not belong to some
setp:
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filter p d = fork p id (const {||} d)

∀C⊆T . ∀p⊆N . ∀d ∈ C\p.
filter p d ∈ (C|p · C\p) ⇐⇒Ω C|p

In thegetdirection, this lens takes a concrete tree, keeps the children with names inp (usingid), and throws away
the rest (usingconst {||} d). The treed is used when putting an abstract tree into a missing concretetree, providing
a default for information that does not appear in the abstract tree but is required in the concrete tree. The type of
filter follows directly from the types of the three primitive lenses: const {||} d, with typeC\p ⇐⇒Ω {{||}}, the
lensid, with typeC|p ⇐⇒Ω C|p, andfork (with the observation thatC|p = C|p · {||}). Using the version ofconst
that does not require a default tree, we can build a variant offilter that does not require a default (and whose
putbackfunction is undefined if the concrete tree isΩ). Let filter p = fork p id (const {||}). Then we have
filter p ∈ (C|p · C\p) ⇐⇒ C|p.

Another way to thin a tree is to explicitly specify a child that should be removed if it exists:

prune n d = fork {n}
(

const {||}
{∣

∣n 7→ d
∣

∣

})

id

∀C⊆T . ∀n∈N . ∀d∈C(n).
prune n d ∈ (C|n · C\n) ⇐⇒Ω C\n

This lens is similar tofilter, except that (1) the name given is the child to be removed, and(2) the default tree is
the one to go undern if the concrete tree isΩ. Just likefilter, we can define a variant ofprune that does not
require a default view asprune n = fork {n} (const {||}) id, with type(C|n · C\n) ⇐⇒ C\n.

Conversely, we can grow a tree in theget direction by explicitly adding a child. The type annotationdisallows
changes in the newly added tree, so it can be dropped in theputback.

add n t = xfork {} {n} (const t {||}; plunge n) id

∀n∈N . ∀C⊆T \n. ∀t ∈ T .
add n t ∈ C ⇐⇒Ω

{∣

∣n 7→ {t}
∣

∣

}

· C

Another lens focuses attention on a single childn:

focus n d = (filter {n} d); (hoist n)

∀n∈N . ∀C⊆T \n.∀d∈C. ∀D⊆T . focus n d ∈ (C ·
{∣

∣n 7→ D
∣

∣

}

) ⇐⇒Ω D

In thegetdirection,focus filters away all other children, then removes the edgen and yieldsn’s subtree. As usual, the
default tree is only used in the case of creation, where it is the default for children that have been filtered away. Again
the type offocus follows from the types of the lenses from which it is defined, observing thatfilter {n} d ∈ (C ·
{|n 7→ D|}) ⇐⇒Ω {|n 7→ D|} and thathoist n ∈ {|n 7→ D|} ⇐⇒Ω D. We can also define a version offocus that does
not require a default tree asfocus n = filter {n}; (hoist n), with typefocus n ∈ (C ·

{∣

∣n 7→ D
∣

∣

}

) ⇐⇒ D.
Thehoist primitive defined in Section 5 requires that the name being hoisted be theuniquechild of the concrete

tree. It is often useful to relax this requirement, hoistingone child out of many. This generalized version ofhoist is
annotated with the setp of possible names of the grandchildren that will become children after the hoist, which must
be disjoint from the names of the existing children.

hoist nonunique n p = xfork {n} p (hoist n) id

∀n∈N . ∀p⊆N . ∀D⊆T \{n}∪p. ∀C⊆T |p.
hoist nonunique n p ∈ (

{∣

∣n 7→ C
∣

∣

}

· D) ⇐⇒Ω (C · D)

A last derived lens renames a single child.
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renamem n = xfork {m} {n} (hoist m; plunge n) id

∀m, n∈N . ∀C⊆T . ∀D⊆T \{m,n}.
rename m n ∈ (

{∣

∣m 7→ C
∣

∣

}

· D) ⇐⇒Ω (
{∣

∣n 7→ C
∣

∣

}

· D)

In thegetdirection,rename splits the concrete tree in two. The first tree has a single child m (which is guaranteed
to exist by the type annotation) and is hoisted up, removing the edge namedm, and then plunged undern. The rest
of the original tree is passed through theid lens. Similarly, theputbackdirection splits the abstract view into a tree
with a single childn, and the rest of the tree. The tree undern is put back using the lens(hoist m; plunge n),
which first removes the edge namedn and then plunges the resulting tree underm. Note that the type annotation on
rename demands that the concrete view have a child namedm and that the abstract view have a child namedn. In
Section 6 we will see how to wrap this lens in a conditional to obtain a lens with a more flexible type.

Mapping

So far, all of our lens combinators do things near the root of the trees they are given. Of course, we also want to be
able to perform transformations in the interior of trees. Themap combinator is our fundamental means of doing this.
When combined with recursion, it also allows us to iterate over structures of arbitrary depth.

Themap combinator is parameterized on a single lensl. In thegetdirection,map appliesl↗ to each subtree of the
root and combines the results together into a new tree. (Laterin the section, we will define a more general combinator,
calledwmap, that can apply a different lens to each subtree. Definingmap first lightens the notational burden in the
explanations of several fine points about the behavior and typing of both combinators.) For example, the lensmap l
has the following behavior in thegetdirection when applied to a tree with three children:







∣

∣

∣

∣

∣

∣

n1 7→ t1
n2 7→ t2
n3 7→ t3

∣

∣

∣

∣

∣

∣







becomes







∣

∣

∣

∣

∣

∣

n1 7→ l↗ t1
n2 7→ l↗ t2
n3 7→ l↗ t3

∣

∣

∣

∣

∣

∣







The putbackdirection ofmap is more interesting. In the simple case wherea and c have equal domains, its
behavior is straightforward: it usesl↘ to combine concrete and abstract subtrees with identical names and assembles
the results into a new concrete tree,c′:

(map l)↘











∣

∣

∣

∣

∣

∣

n1 7→ t1
n2 7→ t2
n3 7→ t3

∣

∣

∣

∣

∣

∣







,







∣

∣

∣

∣

∣

∣

n1 7→ t′1
n2 7→ t′2
n3 7→ t′3

∣

∣

∣

∣

∣

∣









 =







∣

∣

∣

∣

∣

∣

n1 7→ l↘ (t1, t′1)
n2 7→ l↘ (t2, t′2)
n3 7→ l↘ (t3, t′3)

∣

∣

∣

∣

∣

∣







In general, however, the abstract treea in theputbackdirection need not have the same domain asc (i.e., the edits that
produced the new abstract view may have involved adding and deleting children); the behavior ofmap in this case
is a little more involved. Observe, first, that the domain ofc′ is determined by the domain of the abstract argument
to putback. Since we aim at building total lenses, we may suppose that(map l)↗ ((map l)↘ (a, c)) is defined,
in which case it must be equal toa by rule PUTGET. Thusdom((map l)↗ ((map l)↘ (a, c))) = dom(a), hence
dom((map l)↘ (a, c)) = dom(a) as theget of map does not change the domain of the tree. This means we can
simply drop children that occur indom(c) but not indom(a). Children bearing names that occur both indom(a)
anddom(c) are dealt with as described above. This leaves the children that only appear indom(a), which need to
be passed throughl so that they can be included inc′; to do this, we need some concrete argument to pass tol↘.
There is no corresponding child inc, so instead these abstract trees are put into the missing tree Ω—indeed, this case
is precisely why we introducedΩ. Formally, the behavior ofmap is defined as follows. (It relies on the convention
thatc(n) = Ω if n 6∈ dom(c); the type declaration also involves some new notation, explained below.)
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(map l)↗ c =
{∣

∣n 7→ l↗ c(n) | n ∈ dom(c)
∣

∣

}

(map l) ↘ (a, c) =
{∣

∣n 7→ l↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A).
∀l ∈ (

⋂

n∈N . C(n) 

Ω A(n)). map l ∈ C 


Ω A

∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A).
∀l ∈ (

⋂

n∈N . C(n) ⇐⇒Ω A(n)). map l ∈ C ⇐⇒Ω A

Because of the way that it takes tree apart, transforms the pieces, and reassembles them, the typing ofmap is a little
subtle. For example, in thegetdirection,map does not modify the names of the immediate children of the concrete
tree and in theputbackdirection, the names of the abstract tree are left unchanged; we might therefore expect a simple
typing rule stating that, ifl ∈ (

⋂

n∈N C(n) 

Ω A(n))—i.e., if l is a well-behaved lens from the concrete subtree type

C(n) to the abstract subtree typeA(n) for each childn—thenmap l ∈ C 

Ω

A. Unfortunately, for arbitraryC and
A, themap lens is not guaranteed to be well-behaved at this type. In particular, if dom(C), the set of domains of trees
in C, is not equal todom(A), then theputbackfunction can produce a tree that is not inC, as the following example
shows. Consider the sets of trees

C =
{{∣

∣x 7→ m
∣

∣

}

,
{∣

∣y 7→ n
∣

∣

}}

A = C ∪
{{∣

∣x 7→ m, y 7→ n
∣

∣

}}

and observe that with trees

a =
{∣

∣x 7→ m, y 7→ n
∣

∣

}

c =
{∣

∣x 7→ m
∣

∣

}

we havemap id↘ (a, c) = a, a tree that is not inC. This shows that the type ofmap must include the requirement
thatdom(C) = dom(A). (Recall that for any typeT the setdom(T ) is a set of sets of names.)

A related problem arises when the sets of treesA andC have dependencies between the names of children and the
trees that may appear under those names. Again, one might naively expect that, ifl has typeC(n) 


Ω

A(m) for each
namem, thenmap l would have typeC 


Ω A. Consider, however, the set

A = {{|x 7→ m, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,

in which the valuem only appears underx whenp appears undery, and the set

C = {{|x 7→ m, y 7→ p|}, {|x 7→ m, y 7→ q|}, {|x 7→ n, y 7→ p|}, {|x 7→ n, y 7→ q|}} ,

where bothm andn appear with bothp andq. When we consider just the projections ofC andA at specific names,
we obtain the same sets of subtrees:C(x) = A(x) = {{|m|}, {|n|}} andC(y) = A(y) = {{|p|}, {|q|}}. The lensid
has typeC(x) 


Ω A(x) andC(y) 

Ω A(y) (andC(z) = ∅ 


Ω ∅ = A(z) for all other namesz). But it is clearly not
the case thatmap id ∈ C 


Ω A. To avoid this error (but still give a type formap that is precise enough to derive
interesting types for lenses defined in terms ofmap), we require that the source and target sets in the type ofmap be
closed under the “shuffling” of their children. Formally, ifT is a set of trees, then the set ofshufflingsof T , denoted
T 	, is

T 	 =
⋃

D∈dom(T )

{|n 7→ T (n) | n ∈ D|}

where{|n 7→ T (n) | n ∈ D|} is the set of trees with domainD whose children undern are taken from the setT (n).
We say thatT is shuffle closediff T = T 	. For instance, in the example above,A	 = C	 = C—i.e.,C is shuffle
closed, butA is not.

In the situations wheremap is used, shuffle closure is typically easy to check. For example, any set of trees
whose elements each have singleton domains is shuffle closed. Also, for every set of treesT , the encoding introduced
in Section 7 of lists with elements inT is shuffle closed, which justifies usingmap (with recursion) to implement
operations on lists. Furthermore, types of the form{|n 7→ T | n ∈ N|} with infinite domain but with the same
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structure under each edge, which are heavily used in database examples (where the top-level names are keys and the
structures under them are records) are shuffle closed.

Another point to note aboutmap is that it does not obey the PUTPUT law. Consider a lensl and(a, c) ∈ dom(l↘)
such thatl↘ (a, c) 6= l↘ (a, Ω). We have

(map l)↘
({∣

∣n 7→ a
∣

∣

}

, ((map l)↘
(

{||},
{∣

∣n 7→ c
∣

∣

})

)
)

= (map l)↘
({∣

∣n 7→ a
∣

∣

}

, {||}
)

=
{∣

∣n 7→ l↘ (a, Ω)
∣

∣

}

whereas
{∣

∣n 7→ l↘ (a, c)
∣

∣

}

= (map l)↘
({∣

∣n 7→ a
∣

∣

}

,
{∣

∣n 7→ c
∣

∣

})

.

Intuitively, there is a difference between, on the one hand,modifying a childn and, on the other, removing it and then
adding it back: in the first case, any information in the concrete view that is “projected away” in the abstract view will
be carried along to the new concrete view; in the second, suchinformation will be replaced with default values. This
difference seems pragmatically reasonable, so we prefer tokeepmap and lose PUTPUT.6

A final point of interest is the relation betweenmap and the missing treeΩ. Theputbackfunction of every other
lens combinator only results in aputbackinto the missing tree if the combinator itself is called onΩ. In the case of
map l, calling itsputbackfunction on somea andc wherec is not the missing tree may result in the application of the
putbackof l to Ω if a has some children that are not inc. In an earlier variant ofmap, we dealt with missing children
by providing a default concrete child tree, which would be used when no actual concrete tree was available. However,
we discovered that, in practice, it is often difficult to find asingle default concrete tree that fits all possible abstract
trees, particularly because ofxfork (where different lenses are applied to different parts of the tree) and recursion
(where the depth of a tree is unknown). We tried parameterizing this default concrete tree by the abstract tree and the
lens, but noticed that most primitive lenses ignore the concrete tree when defining theputbackfunction, as enough
information is available in the abstract tree. The natural choice for a concrete tree parameterized bya andl was thus
l↘ (a, Ω), for some special treeΩ. The only lens for which theputbackfunction needs to be defined onΩ is const,
as it is the only lens that discards information. This led us to the present design, where only theconst lens (and other
lenses defined from it, such asfocus) expects a default treed. This approach is much more local than the others we
tried, since one only needs to provide a default tree at the exact point where information is discarded.

We now define a more general form ofmap that is parameterized on a total function from names to lenses rather
than on a single lens.

(wmap m)↗ c =
{∣

∣n 7→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

(wmap m)↘ (a, c) =
{∣

∣n 7→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A).
∀m ∈ (Πn∈N . C(n) 


Ω A(n)). wmap m ∈ C 

Ω A

∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A).
∀m ∈ (Πn∈N . C(n) ⇐⇒Ω A(n)). wmap m ∈ C ⇐⇒Ω A

In the type annotation, we use the dependent type notationm ∈ Πn. C(n) 

Ω

A(n) to mean thatm is a total function
mapping each namen to a well-behaved lens fromC(n) to A(n). Althoughm is a total function, we will often
describe it by giving its behavior on a finite set of names and adopting the convention that it maps every other name to
id. For example, the lenswmap {x 7→ plunge a} mapsplunge a over trees underx andid over the subtrees of
every other child.

6Alternatively, we could use a refinement of the type system totrack when PUTPUT does hold, annotating some of the lens combinators with
extra type information recording the fact that they are oblivious, and then givemap two types: the one we gave here plus another saying “whenmap
is applied to an oblivious lens, the result is very well behaved.”
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5.8 Lemma [Well-behavedness]:∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A). ∀m ∈
(Πn∈N . C(n) 


Ω

A(n)). wmap m ∈ C 

Ω

A.

Proof:
GET: Supposec ∈ C andm(n)↗ c(n) is defined for eachn ∈ dom(c). Then, by the (dependent) type ofm,
we havem(n)↗ c(n) ∈ A(n) for eachn. Sincedom(A) = dom(C), there exists a non-empty subset ofA whose
elements all have domainD = dom(c). Also, the tree

{∣

∣n 7→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

is an element of the set
{∣

∣n 7→ A(n) | n ∈ D
∣

∣

}

, which is itself a subset ofA sinceA is shuffle closed. Hence, (wmap m)↗ c ∈ A.

PUT: Leta ∈ A andc ∈ C. For alln ∈ dom(a), we havem(n)↘ (a(n), c(n)) ∈ C(n) (with c(n) possibly beingΩ).
Hence, by a similar argument as above, sincedom(A) = dom(C) andC = C	, we have (wmap m)↘ (a, c) ∈ C.

GETPUT: Assume that (wmapm)↗ c is defined. Then

(wmapm)↘ ((wmap m)↗ c, c)
= (wmapm)↘

({∣

∣n 7→ m(n)↗ c(n) | n ∈ dom(c)
∣

∣

}

, c
)

=
{∣

∣n 7→ m(n)↘ (m(n)↗ c(n), c(n)) | n ∈ dom(c)
∣

∣

}

v
{∣

∣n 7→ c(n) | n ∈ dom(c)
∣

∣

}

by GETPUT for eachm(n)
= c.

PUTGET: Assume that (wmapm)↘ (a, c) is defined. Then

(wmapm)↗((wmap m)↘ (a, c))
= (wmapm)↗

{∣

∣n 7→ m(n)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

=
{∣

∣n 7→ m(n)↗(l↘ (a(n), c(n))) | n ∈ dom(a)
∣

∣

}

v
{∣

∣n 7→ a(n) | n ∈ dom(a)
∣

∣

}

by PUTGET for m(n) on each child
= a. �

5.9 Lemma [Totality]: ∀C, A⊆T with C = C	, A = A	, dom(C) = dom(A). ∀m ∈ (Πn∈N . C(n) ⇐⇒Ω

A(n)). wmap m ∈ C ⇐⇒Ω A.

Proof: Supposec ∈ C and m(n) is a total function for eachn. Then for anyn ∈ dom(c), we havec(n) ∈
C(n); hence,m(n)↗ c(n) is defined for eachn, i.e., (wmap m)↗ c is defined. Conversely, supposea ∈ A and
c ∈ CΩ. For anyn in dom(a), we havea(n) ∈ A(n) andc(n) ∈ C(n)Ω; hencel↘ (a(n), c(n)) is defined. Thus,
(wmap m)↘ (a, c) is defined. �

5.10 Lemma [Continuity]: For each namen, letFn be a continuous function from lenses to lenses. Then the function
λl. wmap (λn. Fn(l)) is continuous.

Proof: To show monotonicity, letl and l′ be lenses withl ≺ l′. We must show thatwmap (λn. Fn(l)) ≺
wmap (λn. Fn(l′)). Let c ∈ T , and suppose that(wmap (λn. Fn(l)))↗ c is defined. We have

(wmap (λn. Fn(l)))↗ c

=
{∣

∣n 7→ Fn(l)↗ c(n) | n ∈ dom(c)
∣

∣

}

=
{∣

∣n 7→ Fn(l′)↗ c(n) | n ∈ dom(c)
∣

∣

}

sincel ≺ l′ and eachFn is monotone
= (wmap (λn. Fn(l′)))↗ c.

Conversely, suppose that(a, c) ∈ T × TΩ and that(wmap (λn. Fn(l)))↘ (a, c) is defined. Then

(wmap (λn. Fn(l)))↘ (a, c)

=
{∣

∣n 7→ Fn(l)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

=
{∣

∣n 7→ Fn(l′)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

sincel ≺ l′ and eachFn is monotone
= (wmap (λn. Fn(l′)))↘ (a, c).

Thusλl. wmap (λn. Fn(l)) is monotone. We now show that it is continuous.
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Let l0 ≺ l1 ≺ . . . ≺ ln ≺ . . . be an increasing chain of lenses andl =
⊔

i li. Let c ∈ T . For notational
convenience, we assume some total ordering on the names of the children ofc and writef(c) andl(c) for the first and
last names ofc, respectively. We have

t = (wmap (λn. Fn(l)))↗ c

⇐⇒ t =
{∣

∣n 7→ Fn(l)↗ c(n) | n ∈ dom(c)
∣

∣

}

⇐⇒ t =
{∣

∣n 7→ Fn(
⊔

i li)↗ c(n) | n ∈ dom(c)
∣

∣

}

⇐⇒ t =
{∣

∣n 7→ (
⊔

i Fn(li))↗ c(n) | n ∈ dom(c)
∣

∣

}

by continuity of eachFn

⇐⇒ ∃if(c), . . . , il(c).

t =
{∣

∣n 7→ (Fn(lin
))↗ c(n) | n ∈ dom(c)

∣

∣

}

by 3.13 for GET, |dom(c)| times
⇐⇒ ∃i. t =

{∣

∣n 7→ (Fn(li))↗ c(n) | n ∈ dom(c)
∣

∣

}

by monotonicity of eachFn

with i = max(if(c), . . . , il(c))

⇐⇒ ∃i. t = (wmap (λn. Fn(li)))↗ c

⇐⇒ t = (
⊔

i(wmap (λn. Fn(li))))↗ c by 3.13 for GET.

Conversely, let(a, c) ∈ T × TΩ. We assume an ordering on the names of the children ofa, and writef(a) andl(a)
for the first and last names ofa, respectively. We have

t = (wmap (λn. Fn(l)))↘ (a, c)

⇐⇒ t =
{∣

∣n 7→ Fn(l)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

⇐⇒ t =
{∣

∣n 7→ Fn(
⊔

i li)↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

⇐⇒ t =
{∣

∣n 7→ (
⊔

i Fn(li))↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

}

by continuity of eachFn

⇐⇒ ∃if(a), . . . , il(a).

t =
{∣

∣n 7→ (Fn(lin
))↘ (a(n), c(n)) | n ∈ dom(a)

∣

∣

} by 3.13 for PUT,
|dom(a)| times

⇐⇒ ∃i. t =
{∣

∣n 7→ (Fn(li))↘ (a(n), c(n)) | n ∈ dom(a)
∣

∣

} by monotonicity of eachFn

with i = max(if(a), . . . , il(a))

⇐⇒ ∃i. t = (wmap (λn. Fn(li)))↘ (a, c)

⇐⇒ t = (
⊔

i(wmap (λn. Fn(li))))↘ (a, c) by 3.13 for PUT.

Note the use here of the fact that all trees have finite domain.This is not just a technicality: if trees are allowed to have
infinitely many children, continuity fails in general. �

Having definedwmap, we can easily definemap as a derived form:

map l = wmap (λx∈N . l)

∀C, A⊆T with C = C	, A = A	, anddom(C) = dom(A).
∀l ∈ (

⋂

n∈N . C(n) 

Ω

A(n)).
map l ∈ C 


Ω

A

∀C, A⊆T with C = C	, A = A	, anddom(C) = dom(A).
∀l ∈ (

⋂

n∈N . C(n) ⇐⇒Ω A(n)).
map l ∈ C ⇐⇒Ω A

Copying and Merging

We next consider two lenses that duplicate information in one direction and re-integrate (by performing equality
checks) in the other.
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Copy

A view of some underlying data structure may sometimes require that two distinct subtrees maintain a relationship,
such as equality. For example, under the subtree representing a manager, Alice, an employee-manager database may
list the name and ID number of every employee in Alice’s group. If Bob is managed by Alice, then Bob’s employee
record will also list his name and ID number (as well as other information including a pointer to Alice, as his manager).
If Bob’s name changes at a later date, then we expect that it will be updated (identically) under both his record and
under Alice’s record. If the concrete representation contains his name in only a single location, we need to duplicate
the information in thegetdirection. To do this we need a lens that copies a subtree, andthen allows us to transform
the copy into the shape that we want.

In the get direction,(copy m n) takes a tree,c, that has no child labeledn. If c(m) exists, then(copy m n)
duplicatesc(m) by setting botha(m) anda(n) equal toc(m). In theputbackdirection,copy simply discardsa(n).
The type ofcopy ensures that no information is lost, becausea(m) = a(n).

(copy m n)↗ c = c ·
{∣

∣n 7→ c(m)
∣

∣

}

(copy m n)↘ (a, c) = a\n

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
copy m n ∈

(C ·
{∣

∣m 7→ DΩ

∣

∣

}

) ⇐⇒Ω (C · {
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ})

5.11 Lemma [Well-behavedness]:∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T . copy m n ∈ (C ·
{∣

∣m 7→ DΩ

∣

∣

}

) 

Ω

(C ·

{
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ}).

Proof:
GET: Immediate. (copy m n)↗ c unconditionally copiesc(m) to a(n) (even whenc(m) = Ω), guaranteeing
that a(m) = a(n). Becausec(m) ∈ DΩ, and botha(m) anda(n) = c(m), we have (copy m n)↗ c ∈ (C ·
{
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ}).

PUT: Immediate: restrictingn from the target set yields the source set.

GETPUT: Suppose (copym n)↘ ((copy m n)↗ c, c) is defined. Then (copy m n)↘ ((copym n)↗ c, c) =
(c ·

{∣

∣n 7→ c(m)
∣

∣

}

)\n = c.

PUTGET: Suppose (copy m n)↗ ((copy m n)↘ (a, c)) is defined. Then, sincea ∈ C ·
{
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ}, we can write a as c′ ·
{∣

∣m 7→ d, n 7→ d
∣

∣

}

for some d ∈ DΩ.
Then (copym n)↗ ((copy m n)↘ (a, c)) = (copy m n)↗ ((copy m n)↘

(

(c′ ·
{∣

∣m 7→ d, n 7→ d
∣

∣

}

), c
)

) =

(copy m n)↗ (c′ ·
{∣

∣m 7→ d
∣

∣

}

) = c′ ·
{∣

∣m 7→ d, n 7→ d
∣

∣

}

= a. �

5.12 Lemma [Totality]: ∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T . copy m n ∈ (C ·
{∣

∣m 7→ DΩ

∣

∣

}

) ⇐⇒Ω (C ·

{
{∣

∣m 7→ d, n 7→ d
∣

∣

}

| d ∈ DΩ}).

Proof: Thegetdirection ofcopy will be defined as long as the inputc lacks the namen; this is guaranteed by its
type. Theputbackdirection is a total function. �

Readers may note thatcopy with the type given here is not very useful. The PUTGET law imposes strict con-
straints on the lenses that subsequently operate ona(m) anda(n). In particular, leta1 anda2 denote the results of
applying l1↗ and l2↗ to a(m) anda(n), respectively. Suppose we guarantee that all updates made to a1 anda2

are “consistent” with each other — that any information maintained in common bya1 anda2 will be updated in an
identical manner. Behaviorally, this is all we desire. However, in theputbackdirection our type annotations require
us to ensurel1 ↘ (a′

1, a(m)) = l2 ↘ (a′
2, a(n)). But this is impossible to ensure unlessl1 andl2 preserve exactly the

same information. For example, consider a case wherec is a record in an address book. Applyingl1↗ transformsc
to an abstract view in which only names and phone numbers are recorded, andl2 transforms a copy ofc to an abstract
view that includes, in one form or another, the entire contents of c. Now suppose we edit the address ina2. The
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putbackdirection ofl2 will push the new address back in toa(n). However, theputbackdirection ofl1 can only try to
restore the address from the old value stored inc(m). So unlessl1 andl2 preserve exactly the same set of information,
there is no way to satisfy the type requirement thata(m) = a(n). However, if l1 andl2 preserve exactly the same
information, no more, no less, then there are very few usefulor interesting lens that can be applied after thecopy.

An alternative is to remove the constraint thata(m) = a(n). However, a more permissive type forcopy raises
problems with respect to totality and well-behavedness. Ifwe remove the equality constraint, then theputbackdirection
of copy must be defined even whena(m) anda(n) are unequal. Ifcopy removesa(n) in theputbackdirection, then
there is no way to restore the information ina(n) in thegetdirection, and consequently PUTGET will not hold.

In our use of lenses to synchronize tree-structured data we have not experienced a need forcopy. This is not
surprising, because if a concrete representation demands that some invariant hold within the data structure, we assume
that (a) each application will locally maintain the invariants in its own representation, and (b) the function of Harmony
is simply to propagate changes from one well-formed replicato another. We can assume that the synchronizer will
always be presented with abstract views in which the duplicated information is consistent, and so will only ever create
such views. Moreover, if one field in a concrete representation is derivable from another (or a set of other fields), then
we need not exposebothfields in the abstract view. Instead, we canmergethe fields (see below). Any change to the
merged field is thus guaranteed to preserve the invariants ofthe concrete representation when the change to the single
field in the abstract view is pushed back down to all the derived fields in the concrete view. In our setting,merge,
the inverse ofcopy, makes far more sense thancopy. Fortunately, because of the asymmetry ofgetandputback, the
problematic interaction with PUTGET does not arise when merging two equal subtrees in a concrete view, as we show
in the next subsection.

By contrast, some have argued for the need formore powerfulforms ofcopy in settings such as editing a user-
friendly view of a structured document [21, 32]. For example, consider editing a WYSIWYG view of a document in
which the table of contents is automatically generated fromthe section headings in the text. One might feel that adding
a new section should add an entry to the table of contents, andsimilarly that adding an entry to the table of contents
should create an empty section in the text with an appropriate section title. Such functionality is not consistent with
our PUTGET law: both adding a section heading and adding an entry in the table of contents will result in the same
concrete document after aputback; such aputbackfunction is not injective and cannot participate in a lens inour
sense. In contexts where such functionality is a primary goal, system designers may be willing to weaken the promises
they make to programmers by guaranteeing weaker propertiesthan PUTGET. For example, Mu et al [32] only require
their bidirectional transformations to obey a PUTGETPUT law. PUTGETPUT is weaker than PUTGET in two ways.
First, they do not requirel↗(l↘(a, c)) to equala. Rather, they require that ifc′ = l↘(a, c), anda′ = l↗(c′), thena′

should “contain the same information asa,” in the sense thatl↘(a′, c′) = c′. Second, they allowget to be undefined
over parts of the range ofputback— PUTGETPUT is only required to hold when it is defined, but no requirements
are made on how broadlygetmust be defined. (Given that their setting is interactive, itis reasonable to say, as they
do, that ifgetof a putbackis undefined, then the system can signal the user that the modification toa was illegal and
must be withdrawn). Hu et al [21] supportcopy functionality in a different way. They weakenboth PUTGET and
GETPUT by only requiring PUTGET to hold whena is alreadyl↗(c), and by only requiring GETPUT to hold whenc
is l↘(a, c′) for somea andc′.

Merge

It sometimes happens that a concrete representation requires equality between two distinct subtrees within a view. A
merge lens is one way to preserve this invariant when the abstract view is updated. In thegetdirection,merge takes
a tree with two (equal) branches and deletes one of them. In the putbackdirection,merge copies the updated value
of the remaining branch tobothbranches in the concrete view.
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(merge m n)↗ c = c\n

(merge m n)↘ (a, c) =

{

a ·
{∣

∣n 7→ a(m)
∣

∣

}

if c(m) = c(n)
a ·

{∣

∣n 7→ c(n)
∣

∣

}

if c(m) 6= c(n)

∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T .
merge m n ∈

(C ·
{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

) ⇐⇒Ω (C ·
{∣

∣m 7→ DΩ

∣

∣

}

)

There is some freedom in the type ofmerge. On one hand, we can give it a precise type that expresses the intended
equality constraint in the concrete view; the lens is well-behaved and total at that type. Alternatively, we can give it a
more permissive type (as we do) by ignoring the equality constraint—even if the two original branches are unequal,
merge is still defined and well-behavedness is preserved. This is possible because the old concrete view is an argu-
ment to theputbackfunction, and can be tested to see whether the two branches were equal or not inc. If not, then the
value ina does not overwrite the value in the deleted branch, allowingmerge to obey PUTGET.

Note thatmerge, unlikecopy, can be usefully given a more permissive type that removes the equality constraint
on the type ofmerge’s concrete view. We can define the behavior(merge m n)↗ c even when the subtrees under
m andn are unequal, so thatmerge is still total. Even thoughgetmay discard the subtree undern, we can restore it
in theputbackdirection, even if it were unequal toc(m). We can preserve well-behavedness in this case, because the
old value ofc is passed back in theputbackdirection.

5.13 Lemma [Well-behavedness]:∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T . merge m n ∈ (C ·
{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

) 

Ω

(C ·
{∣

∣m 7→ DΩ

∣

∣

}

).

Proof:
GET: Immediate:(C ·

{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

)\n = C ·
{∣

∣m 7→ DΩ

∣

∣

}

.

PUT: By the form of the definition of theputbackdirection ofmerge, there are two cases to consider: First, if
c(m) = c(n) (i.e., either bothm and n are missing or both are present and their subtrees are equal,or c itself
is Ω), then (merge m n)↘ (a, c) = a ·

{∣

∣n 7→ a(m)
∣

∣

}

. But this belongs toC ·
{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

, since
a ∈ C ·

{∣

∣m 7→ DΩ

∣

∣

}

anda(m) ∈ DΩ. Second, ifc(m) 6= c(n) (i.e., either one ofm andn is missing and the other
is not, or both are present but they lead to different subtrees), then (mergem n)↘ (a, c) = a ·

{∣

∣m 7→ c(n)
∣

∣

}

. But
this again belongs toC ·

{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

, sincea ∈ C ·
{∣

∣m 7→ DΩ

∣

∣

}

andc(n) ∈ DΩ.

GETPUT: Suppose (mergem n)↘ ((merge m n)↗ c, c) is defined. There are again two cases to consider. If
c(m) = c(n), then (merge m n)↘ ((mergem n)↗ c, c) = (c\n) ·

{∣

∣n 7→ (c\n)(m)
∣

∣

}

= (c\n) ·
{∣

∣n 7→ c(n)
∣

∣

}

=

c. On the other hand, ifc(m) 6= c(n), then (merge m n)↘ ((mergem n)↗ c, c) = (c\n) ·
{∣

∣n 7→ c(n)
∣

∣

}

= c.

PUTGET: Suppose (mergem n)↗ ((merge m n)↘ (a, c)) is defined. There are again two cases to consider. If
c(m) = c(n), then (mergem n)↗ ((merge m n)↘ (a, c)) = (a ·

{∣

∣n 7→ a(m)
∣

∣

}

)\n = a, sincen 6∈ dom(a). On
the other hand, ifc(m) 6= c(n), then (mergem n)↗ ((merge m n)↘ (a, c)) = (a ·

{∣

∣n 7→ c(n)
∣

∣

}

)\n = a. �

5.14 Lemma [Totality]: ∀m, n∈N . ∀C⊆T \{m,n}. ∀D⊆T . merge m n ∈ (C ·
{∣

∣m 7→ DΩ, n 7→ DΩ

∣

∣

}

) ⇐⇒Ω

(C ·
{∣

∣m 7→ DΩ

∣

∣

}

).

Proof: Thegetdirection ofmerge is a total function. In theputbackdirection, the definedness of the· operation is
guaranteed by the fact thata ∈ (C ·

{∣

∣m 7→ DΩ

∣

∣

}

) ⊆ T \{n}. �

6 Conditionals

Conditional lens combinators, which can be used to selectively apply one lens or another to a view, are necessary for
writing many interesting derived lenses. Whereasxfork and its variants split their input trees into two parts, send
each part through a separate lens, and recombine the results, a conditional lens performs some test and sends thewhole
trees through one or the other of its sub-lenses.
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The requirement that makes conditionals tricky is totality: we want to be able to take a concrete view, put it
through a conditional lens to obtain some abstract view, andthen takeany other abstract view of suitable type and
push it back down. But this will only work if either (1) we somehow ensure that the abstract view is guaranteed to be
sent to the same sub-lens on the way down as we took on the way up, or else (2) the two sub-lenses are constrained to
behave coherently. Since we want reasoning about well-behavedness and totality to be compositional in the absence of
recursion (i.e., we want the well-behavedness and totalityof composite lenses to follow just from the well-behavedness
and totality of their sub-lenses, not from special facts about the behavior of the sub-lenses), the second is unacceptable.

Interestingly, once we adopt the first approach, we can give acompletecharacterization of all possible conditional
lenses: we argue that every binary conditional operator that yields well-behaved and total lenses is an instance of
the generalcond combinator presented below. Since this generalcond is a little complex, however, we start by
discussing two particularly useful special cases.

Concrete Conditional

Our first conditional,ccond, is parameterized on a predicateC1 on views and two lenses,l1 and l2. In the get
direction, it tests the concrete viewc and applies theget of l1 if c satisfies the predicate andl2 otherwise. In the
putbackdirection,ccond again examines the concrete view, and applies theputbackof l1 if it satisfies the predicate
andl2 otherwise. This is arguably the simplest possible way to define a conditional: it fixes all of its decisions in the
getdirection, so the only constraint onl1 andl2 is that they have the same target. (However, if we are interested in
usingccond to define total lenses, this is actually a rather strong condition.)

(ccond C1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(ccond C1 l1 l2)↘ (a, c) =

{

l1 ↘ (a, c) if c ∈ C1

l2 ↘ (a, c) if c 6∈ C1

∀C, C1, A⊆U . ∀l1 ∈ C∩C1 

Ω

A. ∀l2 ∈ C\C1 

Ω

A. ccond C1 l1 l2 ∈ C 

Ω

A

∀C, C1, A⊆U . ∀l1 ∈ C∩C1 ⇐⇒Ω A. ∀l2 ∈ C\C1 ⇐⇒Ω A. ccond C1 l1 l2 ∈ C ⇐⇒Ω A

One subtlety in the definition is worth noting: we arbitrarily choose toputbackΩ usingl2 (becauseΩ 6∈ C1 for any
C1 ⊆ U). We could equally well arrange the definition so as to sendΩ throughl1. In fact,l1 need not be well-behaved
(or even defined) onΩ; we can construct a well-behaved, total lens usingccond when l1 ∈ C ∩ C1 ⇐⇒ A and
l2 ∈ C \ C1 ⇐⇒Ω A.

Abstract Conditional

A quite different way of defining a conditional lens is to makeit ignore itsconcreteargument in theputbackdirection,
basing its decision whether to usel1↘ or l2↘ entirely on its abstract argument. This obliviousness to the concrete
argument removes the need for any side conditions relating the behavior ofl1 and l2—everything works fine if we
putbackusing the opposite lens from the one that we used toget—as long as, when weimmediatelyput the result
of get, we use the same lens that we used for theget. Requiring that the sources and targets ofl1 andl2 be disjoint
guarantees this.
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(acond C1 A1 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(acond C1 A1 l1 l2)↘ (a, c) =















l1 ↘ (a, c) if a ∈ A1 ∧ c ∈ C1

l1 ↘ (a, Ω) if a ∈ A1 ∧ c 6∈ C1

l2 ↘ (a, c) if a 6∈ A1 ∧ c 6∈ C1

l2 ↘ (a, Ω) if a 6∈ A1 ∧ c ∈ C1

∀C, A, C1, A1⊆U .
∀l1 ∈ C∩C1 


Ω

A∩A1. ∀l2 ∈ (C\C1) 

Ω

(A\A1).
acond C1 A1 l1 l2 ∈ C 


Ω A

∀C, A, C1, A1⊆U .
∀l1 ∈ C∩C1 ⇐⇒Ω A∩A1. ∀l2 ∈ (C\C1) ⇐⇒Ω (A\A1).
acond C1 A1 l1 l2 ∈ C ⇐⇒Ω A

In Section 5, we defined the lensrename m n, whose type demands that each concrete tree have a child named
m and that every abstract tree have a child namedn. Using this conditional, we can write a more permissive lensthat
renames a child if it is present and otherwise behaves like the identity.

rename if present m n = acond (
{∣

∣m 7→ T
∣

∣

}

· T \{m,n}) (
{∣

∣n 7→ T
∣

∣

}

· T \{m,n}) (rename m n) id

∀n, m ∈ N . ∀C⊆T . ∀D, E⊆(T \{m,n}).
rename if presentm n ∈

(
{∣

∣m 7→ C
∣

∣

}

· D)∪E ⇐⇒Ω (
{∣

∣n 7→ C
∣

∣

}

· D)∪E

General Conditional

The general conditional,cond, is essentially obtained by combining the behaviors ofccond andacond. The
concrete conditional requires that the targets of the two lenses be identical, while the abstract conditional requiresthat
they be disjoint. More generally, we can let them overlap arbitrarily, behaving likeccond in the region where they
do overlap (i.e., for arguments(a, c) to putbackwherea is in the intersection of the targets) and likeacond in the
regions where the abstract argument toputbackbelongs to just one of the targets. To this we can add one additional
observation: that the use ofΩ in the definition ofacond is actually arbitrary. All that is required is that, when we use
theputbackof l1, the concrete argument should come from(C1)Ω, so thatl1 is guaranteed to do something good with
it. These considerations lead us to the following definition.
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(cond C1 A1 A2 f21 f12 l1 l2)↗ c =

{

l1↗ c if c ∈ C1

l2↗ c if c 6∈ C1

(cond C1 A1 A2 f21 f12 l1 l2)↘ (a, c) =































l1 ↘ (a, c) if a ∈ A1∩A2 ∧ c ∈ C1

l2 ↘ (a, c) if a ∈ A1∩A2 ∧ c 6∈ C1

l1 ↘ (a, c) if a ∈ A1\A2 ∧ c ∈ (C1)Ω
l1↘(a, f21(c)) if a ∈ A1\A2 ∧ c 6∈ (C1)Ω
l2 ↘ (a, c) if a ∈ A2\A1 ∧ c 6∈ C1

l2↘(a, f12(c)) if a ∈ A2\A1 ∧ c ∈ C1

∀C, C1, A1, A2 ⊆ U .
∀l1 ∈ (C∩C1) 


Ω

A1.
∀l2 ∈ (C\C1) 


Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω.
∀f12 ∈ (C∩C1) → (C\C1)Ω.
cond C1 A1 A2 f21 f12 l1 l2 ∈ C 


Ω (A1∪A2)

∀C, C1, A1, A2 ⊆ U .
∀l1 ∈ (C∩C1) ⇐⇒Ω A1.
∀l2 ∈ (C\C1) ⇐⇒Ω A2.
∀f21 ∈ (C\C1) → (C∩C1)Ω.
∀f12 ∈ (C∩C1) → (C\C1)Ω.
cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A1∪A2)

Whena is in the targets of bothl1 andl2, cond↘ chooses between them based solely onc (as doesccond, whose
targets always overlap). Ifa lies in the range of onlyl1 or l2, thencond’s choice of lens forputbackis predetermined
(as withacond, whose targets are disjoint). Oncel↘ is chosen to be eitherl1↘ or l2↘, if the old value ofc is not in
ran(l↘)Ω, then we apply a “fixup function,”f21 or f12, to c to choose a new value fromran(l↘)Ω. Ω is one possible
result of the fixup functions, but it is sometimes useful to compute a more interesting one, as we will see in Section 7.

Somewhat surprisingly, all this generality can actually bequite useful in practice! We will see an example depend-
ing on the full power ofcond in the next section.

6.1 Lemma [Well-behavedness]:∀C, C1, A1, A2 ⊆ U . ∀l1 ∈ (C∩C1) 

Ω

A1. ∀l2 ∈ (C\C1) 

Ω

A2. ∀f21 ∈
(C\C1) → (C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω. cond C1 A1 A2 f21 f12 l1 l2 ∈ C 


Ω (A1∪A2).

Proof:
GET: Supposec ∈ C and l↗ c is defined, where, for brevity here and in the other proofs forcond, we write l
for (cond C1 A1 A2 f21 f12 l1 l2). If c ∈ C1, thenl↗ c = l1↗ c ∈ A1 ⊆ A1∪A2 by the type ofl1. Otherwise,
l↗ c = l2↗ c ∈ A2 ⊆ A1 ∪ A2 by the type ofl2.

PUT: Suppose(a, c) ∈ (A1∪A2)×CΩ andl↘ (a, c) is defined. There are six cases to consider, one for each clause
in the definition, and the result in each case is immediate from the typing ofl1 or l2, as the case may be. Note, in
particular, that the range off21 falls within the source ofl1 in the fourth clause, and similarly forf12 andl2 in the
sixth clause.

GETPUT: Supposec ∈ C and l↘ (l↗ c, c) is defined. Ifc ∈ C1, thenl↗ c = l1↗ c, which, by the type ofl1,
belongs toA1. Sol↘ (l1↗ c, c) = l1 ↘ (l1↗ c, c) by either the first or the third clause in the definition ofl↘. This,
in turn, is equal toc by GETPUT for l1. On the other hand, ifc 6∈ C1, thenl↗ c = l2↗ c, which, by the type ofl2,
belongs toA2. Sol↘ (l2↗ c, c) = l2 ↘ (l2↗ c, c) by either the second or the fourth clause in the definition ofl↘.
This is equal toc by GETPUT for l2.

PUTGET: Suppose(a, c) ∈ (A1∪A2) × CΩ andl↗ (l↘ (a, c)) is defined. There are again six cases to consider:

1. If a ∈ A1∩A2 andc ∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But l1 ↘ (a, c) ∈ C1 by the type ofl1, so
l↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a by PUTGET for l1.
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2. If a ∈ A1∩A2 andc 6∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But l2 ↘ (a, c) ∈ C2 by the type ofl2, so
l↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a by PUTGET for l2.

3. If a ∈ A1\A2 andc ∈ (C1)Ω, thenl↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But l1 ↘ (a, c) ∈ C1 by the type ofl1,
sol↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a by PUTGET for l1.

4. If a ∈ A1\A2 andc 6∈ (C1)Ω, thenl↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, f21(c))). But l1 ↘ (a, f21(c)) ∈ C1 by the
types off21 andl1, sol↗ (l1 ↘ (a, f21(c))) = l1↗ (l1 ↘ (a, f21(c))) = a by PUTGET for l1.

5. If a ∈ A2\A1 andc 6∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But l2 ↘ (a, c) ∈ C2 by the type ofl2, so
l↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a by PUTGET for l2.

6. If a ∈ A2\A1 andc ∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, f12(c))). But l2 ↘ (a, f12(c)) ∈ C2 by the
types off12 andl2, sol↗ (l2 ↘ (a, f12(c))) = l2↗ (l2 ↘ (a, f12(c))) = a by PUTGET for l2. �

6.2 Lemma [Totality]: ∀C, C1, A1, A2 ⊆ U . ∀l1 ∈ (C∩C1) ⇐⇒Ω A1. ∀l2 ∈ (C\C1) ⇐⇒Ω A2. ∀f21 ∈ (C\C1) →
(C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω. cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A1∪A2).

Proof: Straightforward: each clause in the definitions ofl↗ andl↘ directly invokes the corresponding part of either
l1 or l2, from whose type the definedness of the result then follows. �

6.3 Lemma [Continuity]: Let F1 and F2 be continuous functions from lenses to lenses. Then the function
λl. cond C1 A1 A2 f21 f12 F1(l) F2(l) is continuous.

Proof: Details omitted—the argument is similar to other continuity proofs above. �

Before we introducedcond, we argued that it captured all the power ofccond andacond, and (because of the
fixup functionsf12 andf21), more besides. We now argue that this is the maximum generality possible—i.e., that
any well-behaved and total lens combinator that behaves like a binary conditional can be obtained as a special case of
cond.

Of course, the argument hinges on what we mean when we say “l behaves like a conditional.” We would like to
capture the intuition thatl should, in each direction, “test its input(s) and decide whether to behave likel1 or l2.” In the
getdirection, there is little choice about how to say this: since there is just one argument, the test just amounts to testing
membership in a set (predicate)C1. In theputbackdirection, there is some apparent flexibility, since the test might
investigate both arguments. However, the requirements of well-behavedness (and the feeling that a conditional lens
should be “parametric” inl1 andl2, in the sense that the choice betweenl1 andl2 should not be made by investigating
their behavior) actually eliminate most of this flexibility. If, for example, the abstract inputa falls in if a ∈ A1∩A2,
then the choice of whether to applyl1↘ or l2↘ is fully determined byc: if c ∈ C1, then it may be thata = l1↗ c; in
this case, usingl1↘ guarantees thatl↘ (a, c) = c, as required by GETPUT, whereasl2↘ gives us no such guarantee;
conversely, ifc ∈ C\C1, we must usel2.

Similarly if a ∈ A1\A2, then we have no choice but to usel1, sincel2’s type does not promise that applying it
to an argument of this type will yield a result inC1. Similarly, if a ∈ A2\A1, then we must usel2. However, here
we do have a little genuine freedom: ifa ∈ A1\A2 while c ∈ C\C1, then, by the type ofl2, there is no danger that
a = l2↗ c. In order to applyl1, we needsomeelement of(C1)Ω to use as the concrete argument, but it does not matter
which one we pick; and conversely forl2. The fixup functionsf21 andf12 cover all possible (deterministic) ways of
making this choice based on the givenc. (It is possible to be slightly more general by makingf21 andf12 take both
a andc as arguments, but pragmatically there seems little point indoing this, since eitherl1↘ or l2↘ is going to be
called on their result, and these functions can just as well takea into account.)

Special Types for Conditional Lenses

In this section, we record some additional types that our conditional lenses inhabit, which we need for our proof that
list filter, defined in Section 7, is total. This material can be skimmed on a first reading.
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The first theorem presents an alternate total type forcond where the target sets in the types ofl1, l2 and the entire
cond lens are intersected with an arbitrary set,A. Recall that the standard type forccond takes two lenses with type
C ∩ C1 ⇐⇒Ω A1 andC \ C1 ⇐⇒Ω A2 (as well as conversion functionsf21 andf12) and produces a lens with type
C ⇐⇒Ω A1 ∪ A2. This type is usually the type that we want. However, in some situations (when reasoning about
totality), we need to show afixed instance ofcond has many different types. The abstract components of some of
these types may be smaller than(A1∪A2), whereA1 andA2 appear literally in thesyntaxof theccond instance. The
new type presented here allows us to simplify some of these cases by only considering the lens type that is intersected
with the abstract type we want, reducing the proof burden.

6.4 Theorem: Thecond lens has the following types:

1. ∀C, C1, A, A1, A2 ⊆ U . ∀l1 ∈ (C∩C1) 

Ω (A∩A1). ∀l2 ∈ (C\C1) 


Ω (A∩A2). ∀f21 ∈ (C\C1) →
(C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω. cond C1 A1 A2 f21 f12 l1 l2 ∈ C 


Ω

(A∩(A1∪A2)).

2. ∀C, C1, A, A1, A2 ⊆ U . ∀l1 ∈ (C∩C1) ⇐⇒Ω (A∩A1). ∀l2 ∈ (C\C1) ⇐⇒Ω (A∩A2). ∀f21 ∈ (C\C1) →
(C∩C1)Ω. ∀f12 ∈ (C∩C1) → (C\C1)Ω. cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω (A∩(A1∪A2)).

Proof: We prove (1) by showing that thecond lens is well-behaved atC 

Ω (A∩ (A1 ∪A2)), and then prove (2) by

showing that that the lens is also total if bothl1 andl2 are total.
GET: Supposec ∈ C and l↗ c is defined. (Again, for brevity, we writel for (cond C1 A1 A2 f21 f12 l1 l2)). If
c ∈ C1, thenl↗ c = l1↗ c ∈ (A∩A1) ⊆ (A∩ (A1∪A2)) by the type ofl1. Otherwise,l↗ c = l2↗ c ∈ (A∩A2) ⊆
(A ∩ (A1 ∪ A2)) by the type ofl2.

PUT: Suppose(a, c) ∈ (A ∩ (A1∪A2)) × CΩ andl↘ (a, c) is defined. There are six cases to consider, one for each
clause in the definition, and the result in each case is immediate from the typing ofl1 or l2, as the case may be. Note,
in particular, that the range off21 falls within the source ofl1 in the fourth clause, and similarly forf12 andl2 in the
sixth clause.

GETPUT: Supposec ∈ C and l↘ (l↗ c, c) is defined. Ifc ∈ C1, thenl↗ c = l1↗ c, which, by the type ofl1,
belongs to(A ∩ A1). So l↘ (l1↗ c, c) = l1 ↘ (l1↗ c, c) by either the first or the third clause in the definition of
l↘. This, in turn, is equal toc by GETPUT for l1. On the other hand, ifc 6∈ C1, thenl↗ c = l2↗ c, which, by the
type ofl2, belongs to(A ∩ A2). Sol↘ (l2↗ c, c) = l2 ↘ (l2↗ c, c) by either the second or the fourth clause in the
definition ofl↘. This is equal toc by GETPUT for l2.

PUTGET Suppose(a, c) ∈ (A∩(A1∪A2))×CΩ andl↗ (l↘ (a, c)) is defined. There are again six cases to consider:

1. If a ∈ (A ∩ (A1∩A2)) andc ∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But l1 ↘ (a, c) ∈ C1 by the type
of l1, sol↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a by PUTGET for l1.

2. If a ∈ (A ∩ (A1∩A2)) andc 6∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But l2 ↘ (a, c) ∈ C2 by the type
of l2, sol↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a by PUTGET for l2.

3. If a ∈ (A ∩ (A1\A2)) andc ∈ (C1)Ω, thenl↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, c)). But l1 ↘ (a, c) ∈ C1 by the
type ofl1, sol↗ (l1 ↘ (a, c)) = l1↗ (l1 ↘ (a, c)) = a by PUTGET for l1.

4. If a ∈ (A ∩ (A1\A2)) and c 6∈ (C1)Ω, then l↗ (l↘ (a, c)) = l↗ (l1 ↘ (a, f21(a, c))). But
l1 ↘ (a, f21(a, c)) ∈ C1 by the types off21 andl1, sol↗ (l1 ↘ (a, f21(a, c))) = l1↗ (l1 ↘ (a, f21(a, c))) =
a by PUTGET for l1.

5. If a ∈ (A ∩ (A2\A1)) andc 6∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, c)). But l2 ↘ (a, c) ∈ C2 by the type
of l2, sol↗ (l2 ↘ (a, c)) = l2↗ (l2 ↘ (a, c)) = a by PUTGET for l2.

6. If a ∈ (A ∩ (A2\A1)) andc ∈ C1, thenl↗ (l↘ (a, c)) = l↗ (l2 ↘ (a, f12(a, c))). But l2 ↘ (a, f12(a, c)) ∈
C2 by the types off12 andl2, sol↗ (l2 ↘ (a, f12(a, c))) = l2↗ (l2 ↘ (a, f12(a, c))) = a by PUTGET for l2.
�
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Hence,l ∈ C 

Ω A ∩ (A1 ∪ A2). Next we prove thatl is total at that type ifl1 andl2 are total, by showing that itsget

andputbackfunctions are totally defined on their domains.
We first show that theget function is totally defined onC. Pick c ∈ C. If c ∈ C1 then l↗ c = l1↗ c. As

l1 ∈ C ∩ C1 ⇐⇒Ω A ∩ A1, it follows that l1↗ c is defined. Similarly, ifc ∈ (C \ C1), thenl↗ c = l2↗ c. As
l2 ∈ C \ C1 ⇐⇒Ω A ∩ A2, it follows thatl2↗ c is defined. Hence,l↗ is a total function.

Second, we prove that theputbackfunction is totally defined on(A ∩ (A1 ∪ A2)) × CΩ. There are six cases,
corresponding to the six cases in the definition of theputbackfunction:

1. If a ∈ (A∩ (A1∩A2)) andc ∈ C1, thenl↘ (a, c) = l1 ↘ (a, c) is defined asl1↘ is total on(A∩A1)× (C ∩
C1)Ω.

2. If a ∈ (A ∩ (A1∩A2)) andc 6∈ C1, thenl↘ (a, c) = l2 ↘ (a, c) is defined asl2↘ is total on(A ∩A2)× (C \
C1)Ω.

3. If a ∈ (A ∩ (A1\A2)) andc ∈ (C1)Ω, thenl↘ (a, c) = l1 ↘ (a, c) is defined asl1↘ is total on(A ∩ A1) ×
(C ∩ C1)Ω.

4. If a ∈ (A ∩ (A1\A2)) andc 6∈ (C1)Ω, thenl↘ (a, c) = l1 ↘ (a, f21(c)) is defined asf21 is a totally defined
function with type:(C \ C1) → (C ∩ C1)Ω andl1↘ is total on(A ∩ A1) × (C ∩ C1)Ω.

5. If a ∈ (A ∩ (A2\A1)) andc 6∈ C1, then thenl↘ (a, c) = l2 ↘ (a, c) is defined asl2↘ is total on(A ∩ A2) ×
(C \ C1)Ω.

6. If a ∈ (A ∩ (A2\A1)) andc ∈ C1, thenl↘ (a, c) = l2 ↘ (a, f12(c)) is defined asf12 is a totally defined
function with type:(C ∩ C1) → (C \ C1)Ω andl2↘ is total on(A ∩ A2) × (C \ C1)Ω.

Hence,l↘ is a total function.
We conclude that (cond C1 A1 A2 f21 f12 l1 l2) ∈ C ⇐⇒Ω (A ∩ (A1 ∪ A2)).

The next two theorems record types for conditional lenses inspecial cases where the conditionalalwaysselects
one lens or the other (in both directions). In these situations, we can use a more flexible typing rule that makes no
assumptions about the branch that is never used. The first describesccond instances where the second branch is
always taken.

6.5 Theorem [Always-Falseccond]: ∀C, C1, A⊆U . with C ∩ C1 = ∅. ∀l2 ∈ C\C1 ⇐⇒Ω A. ccond C1 l1 l2 ∈
C ⇐⇒Ω A.

Proof: First we argue that(ccond C1 l1 l2) = l2 by showing that their respectiveget and putbackfunctions
are identical. For anyc ∈ C, we must havec 6∈ (C1 ∩ C) (because it is empty) and soc ∈ (C \ C1). Hence,
(ccond C1 l1 l2)↗ c = l2↗ c. Similarly, for any(a, c) in A × CΩ, we must havec 6∈ (C ∩ C1). By definition,
(ccond C1 l1 l2)↘ (a, c) = l2 ↘ (a, c).

Since (ccond C1 l1 l2) = l2, the well-behavedness and totality of theccond lens follow from the well-
behavedness and totality ofl2. In particular, sincel1 is never used, we do not need any assumptions about it. �

Note that there is no correspondingalways-truerule forccond. Even ifC \C1 = ∅, in theputbackdirection, the
Ω tree still gets sent throughl2. However, for the generic conditional,cond, we can prove analways-truerule.

6.6 Theorem [Always-Truecond]: ∀C, C1, A1, A2 ⊆ U . with C∩C1 6= ∅ and C\C1 = ∅. ∀l1 ∈ C∩C1 ⇐⇒Ω

A1. cond C1 A1 A2 f21 f12 l1 l2 ∈ C ⇐⇒Ω A1.

Proof: First we argue that(cond C1 A1 A2 f21 f12 l1 l2) = l1 by showing that their respectiveget andputback
functions are identical. For anyc ∈ C since(C∩C1) 6= ∅ and (C\C1) = ∅ we must havec ∈ (C∩C1). Thus,
by definition,(cond C1 A1 A2 f21 f12 l1 l2)↗ c = l1↗ c. Similarly, for any(a, c) in A1 × CΩ, eitherc = Ω or
c ∈ (C∩C1); hence, by definition,(cond C1 A1 A2 f21 f12 l1 l2)↘ (a, c) = l1 ↘ (a, c).

Since(cond C1 A1 A2 f21 f12 l1 l2) = l1, the well-behavedness and totality of thecond lens follow from the
well-behavedness and totality ofl1. In particular, sincel2 and the conversion functionsf21 andf12 are never used, we
do not need any assumptions about them. �
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7 Derived Lenses for Lists

XML and many other concrete data formats make heavy use of ordered lists. We describe in this section how we can
represent lists as trees, using a standard cons cell encoding, and introduce some derived lenses to manipulate them. We
begin with very simple lenses for projecting the head and tail of a list encoded as a cons cell. We then define recursive
lenses implementing some more complex operations on lists:mapping, reversal, and filtering.

Other list-processing derived forms that we have implemented (but do not show here) include a “grouping” lens
that, in thegetdirection, takes a list whose elements alternate between elements ofD and elements ofE and returns a
list of pairs ofDs andEs—e.g., it maps[d1 e1 d2 e2 d3 e3] to [[d1 e1] [d2 e2] [d3 e3]].

Encoding

7.1 Definition: A tree t is said to be alist iff either it is empty or it has exactly two children, one named *h and
another named*t, andt(*t) is also a list. In the following, we use the lighter notation[t1 . . . tn] for the tree:
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In types, we write[] for the set{{||}} containing only the empty list,C :: D for the set
{∣

∣*h 7→ C, *t 7→ D
∣

∣

}

of
“cons cell trees” whose head belongs toC and whose tail belongs toD, and[C] for the set of lists with elements in
C—i.e., the smallest set of trees satisfying[C] = [] ∪ (C :: [C]). We sometimes refine this notation to describe
lists of specific lengths, writing[Di..j] for lists of Ds whose length is at leasti and at mostj. The interleaving of a
list of type[Bi..j] and a list of type[Cm..n], taking elements from the first list and elements from the second in an
arbitrary fashion but maintaining the relative order of each, is written[Bi..j]&[Cm..n].

Head and Tail Projections

Our first list lenses extract the head or tail of a cons cell.

hd d = focus *h
{∣

∣*t 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈D. hd d ∈ (C ::D) ⇐⇒Ω C

tl d = focus *t
{∣

∣*h 7→ d
∣

∣

}

∀C, D⊆T . ∀d∈C. tl d ∈ (C ::D) ⇐⇒Ω D

The lenshd expects a default tree, which it uses in theputbackdirection as the tail of the created tree when the concrete
tree is missing; in thegetdirection, it returns the tree under*h. The lenstl works analogously. Note that the types
of these lenses apply to both homogeneous lists (the type ofhd implies∀C⊆T . ∀d∈[C]. hd d ∈ [C] ⇐⇒Ω C) as
well as cons cells whose head and tail have unrelated types; both possibilities are used in the type of thebookmark
lens in Section 8. The types ofhd andtl follow from the type offocus.

Our next lens,hoist hd, takes a list and “flattens” its first cell usinghoist nonunique. It is annotated with
a set of namesp specifying the possible domain of the tree at the head of the list. We will need this operation for one
step of the HTML processing in the example in Section 8.

hoist hd p = hoist nonunique *h p; hoist nonunique *t p

∀p⊆(N\{*t}). ∀C⊆(T |p). ∀D⊆(T \p). hoist hd p ∈ (C ::D) ⇐⇒Ω (C · D)
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Observe that, by assumption, the concrete view has typeC ::D whereC ∈ T |p andD ∈ T \p. Then

hoist nonunique *h p ∈ C ::D 

Ω C ·

{∣

∣*t 7→ D
∣

∣

}

and also

hoist nonunique *t p ∈ C ·
{∣

∣*t 7→ D
∣

∣

}



Ω C · D

yielding the desired result for the composition.

List Map

Thelist map lens applies a lensl to each element of a list:

list map l = wmap {*h 7→ l, *t 7→ list map l}

∀C, A⊆T . ∀l ∈ C 

Ω

A. list map l ∈ [C] 

Ω [A]

∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A]

Thegetdirection appliesl to the subtree under*h and recurses on the subtree under*t. Theputbackdirection uses
l↘ on corresponding pairs of elements from the abstract and concrete lists. The result has the same length as the
abstract list; if the concrete list is longer, the extra tailis thrown away. If it is shorter, each extra element of the abstract
list is putbackinto Ω.

Sincelist map is our first recursive lens, it is worth making a few observations about the way recursive calls
are made in each direction. Thegetfunction of thewmap lens simply appliesl to the head andlist map l to the tail
until it reaches a tree with no children. Similarly, in theputbackdirection,wmap appliesl to the head of the abstract
tree and either the head of the concrete tree (if it is present) or Ω, and it applieslist map l to the tail of the abstract
tree and the tail of the concrete tree (if it is present) orΩ. In both directions, the recursive calls continue until theentire
tree—concrete (for theget) or abstract (for theputback)—has been traversed.

Becauselist map is defined recursively, proving it is well behaved requires (just) a little more work than has
been needed for the derived lenses we have seen above: we needto show that it has a particular typeassumingthat the
recursive use oflist map has the same type. This is nothing very surprising: exactly the same reasoning process
is used in typing recursive functional programs. But, sincethis is the first time we meet a recursive lens, we give the
argument in some detail.

Recall that the type ofwmap requires that both sets of trees in its type be shuffle closed.Before proving that
list map is well-behaved and total, we prove a lemma stating that conscell and list types are shuffle closed.

7.2 Lemma: ∀S, T⊆T .(S ::T ) = (S ::T )	.

Proof: We calculate(S ::T )	 directly. From the definition of cons cells, the setdom(S ::T ) of possible domains of
trees in(S ::T ) is {{*h, *t}}. We then calculate(S ::T )	 as:

(S ::T )	 =
⋃

D∈dom(S::T )

{∣

∣n 7→ (S ::T )(n) | n ∈ D
∣

∣

}

=
{∣

∣*h 7→ S, *t 7→ T
∣

∣

}

= S ::T. �

7.3 Lemma: ∀T⊆T .[T] = [T]	.

Proof: We calculate[T]	 directly. From the definition of lists, the setdom([T]) of domains of trees in[T] is
{∅, {*h, *t}}. We then calculate[T]	 as:

[T]	 =
⋃

D∈dom([T])

{∣

∣n 7→ [T](n) | n ∈ D
∣

∣

}

= {||} ∪
{∣

∣*h 7→ T, *t 7→ [T]
∣

∣

}

= [T]. �
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7.4 Lemma [Well-behavedness]:∀C, A⊆T . ∀l ∈ C 

Ω A. list map l ∈ [C] 


Ω [A].

Proof: Note thatlist map l is the fixed point of the function:f = λk. wmap {*h 7→ l, *t 7→ k}. We use
Corollary 3.17 (1), which states that if, assuming thatk ∈ [C] 


Ω [A], we can provef(k) ∈ [C] 

Ω [A], then

fix(f) ∈ [C] 

Ω [A].

We assume thatk ∈ [C] 

Ω [A] and show thatf(k) has type[C] 


Ω [A] directly, using the type ofwmap.
We writem for the total function from names to lenses described by{*h 7→ l, *h 7→ k}; i.e.,m maps*h to l, *t to
k, and every other name toid. We first show thatm ∈ (Πn∈N . C(n) 


Ω

A(n)):

m(*h) = l ∈ [C](*h) 

Ω [A](*h)

i.e., m(*h) = l ∈ C 

Ω

A
by the type ofl;

m(*t) = k ∈ [C](*t) 

Ω [A](*t)

i.e., m(*t) = k ∈ [C] 

Ω [A]

by assumption;

m(n) = id ∈ [C](n) 

Ω [A](n) ∀n 6∈ {*h, *t}

i.e., m(n) = id ∈ ∅ 

Ω ∅

vacuously.

Hence,m has the correct type. The type ofwmap also requires that both[C] and[A] be shuffle closed and that
dom([C]) = dom([A]). The first condition follows from Lemma 7.3; the second condition is immediate as both
dom([C]) anddom([A]) are the set{{*h, *t}, ∅}.

Using the type ofwmap, we conclude thatf(k) ∈ [C] 

Ω [A] and by Corollary 3.17, thatfix(f) =

list map l ∈ [C] 

Ω [A]. �

The proof of totality forlist map is more interesting. We use Corollary 3.17 (2), noting againthatlist map l
is the fixed point of the functionf defined above. The corollary requires that we: (1) identify two chains of types,
∅ = C0 ⊆ C1 ⊆ . . . and∅ = A0 ⊆ A1 ⊆ . . . , and (2) fromk ∈ Ci ⇐⇒Ω Ai, prove thatf(k) ∈ Ci+1 ⇐⇒Ω Ai+1 for
all i. We can then conclude thatfix(f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.

7.5 Lemma [Totality]: ∀C, A⊆T . ∀l ∈ C ⇐⇒Ω A. list map l ∈ [C] ⇐⇒Ω [A].

Proof: We pick these two chains of types:

C0 = A0 = ∅
Ci+1 = [C0..i]
Ai+1 = [A0..i]

Next, we show thatf(l) ∈ Ci+1 ⇐⇒Ω Ai+1. The casei = 0 is immediate becauseC1 = A1 = [] andlist map l ∈
[] ⇐⇒Ω []. For the casei > 0, we calculate the type off(l) directly from the type ofwmap. As above, we writem
for the function that maps*h to l, *t to k and every othern to id. From the assumption thatk ∈ Ci ⇐⇒Ω Ai, we
have

m(*h) = l ∈ [C0..i+1](*h) ⇐⇒Ω [A0..i+1](*h)
i.e., m(*h) = l ∈ C ⇐⇒Ω A

by i > 0 and the type ofl;

m(*t) = k ∈ [C0..i+1](*t) ⇐⇒Ω [A0..i+1](*t)
i.e., m(*t) = k ∈ [C0..i] ⇐⇒Ω [A0..i]

by assumption; and

m(n) = id ∈ [C0..i+1](n) ⇐⇒Ω [A0..i+1](n) ∀n 6∈ {*h, *t}
i.e., m(n) = id ∈ ∅ ⇐⇒Ω ∅

vacuously.
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As above, both[C0..i+1] and[A0..i+1] are shuffle closed and they have equal domains. Using the typeof wmap,
we conclude thatf(k) ∈ [C0..i+1] ⇐⇒Ω [A0..i+1], and hence

list map l ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., list map l ∈ (∅ ∪
⋃

i [C0..i]) ⇐⇒Ω (∅ ∪
⋃

i [A0..i])
i.e., list map l ∈ [C] ⇐⇒Ω [A],

which finishes the proof. �

Reverse

Our next lens reverses the elements of a list.7

The algorithm we use to implement list reversal is a quadratic-time algorithm—we reverse the tail of the list and
then use an auxiliary lens to append the old head to the end of the reversed tail. Before presenting thelist reverse
lens, we describe this auxiliary lens, calledsnoc. Theget direction ofsnoc m transforms a bush consisting of a
child m adjoined to a list (either the empty view or children*h and*t) into a non-empty list where the tree underm
is the last element.

snoc m = acond
{∣

∣m 7→ D
∣

∣

}

(D ::[])
(add *t {||}; rename m *h)
(xfork {m *t} {*t}

(hoist nonunique *t {*h *t};
snoc m;
plunge *t)
(id))

∀D⊆T . snoc m ∈ (
{∣

∣m 7→ D
∣

∣

}

· [D]) ⇐⇒Ω [D1..ω]

In the get direction,snoc has two cases. If the tree has a single childm thensnoc m builds a singleton list by
renaming them to *h and adding an empty tail. Otherwise, it moves the childm under the tail tag,*t, and recurses,
leaving the head in place.

Theputbackdirection tests whether the abstract view is a singleton list. If it is a singleton, then the lens renames
the head of the list tom and uses theputbackof theadd lens to strip away the empty tail. Otherwise, it uses the
putbackof xfork to split the abstract and concrete views into children under*t and*h. The head is then put back
usingid; the tail is passed through the composition in reverse: (1)plunge *t, which hoists up the tail and yields
a list, (2) a recursive call, which removes the last element of the list from the first step and places it under the child
namedm, and finally (3)hoist nonunique *t *h *t, which plunges*h and*t under*t, leavingm at the top
level of the tree.

7.6 Lemma [Well-behavedness]:∀D⊆T . snoc m ∈ (
{∣

∣m 7→ D
∣

∣

}

· [D]) 

Ω [D1..ω].

Proof: First, note thatsnoc m is the fixed point of the function:

f = λl. acond
{∣

∣m 7→ D
∣

∣

}

(D ::[])
(add *t {||}; renamem *h)
(xfork {m *t} {*t}

(hoist nonunique *t {*h *t};
l;
plunge *t)
(id))

7Malo Denielou has recently suggested a different way of implementingreverse that is arguably somewhat more intuitive, but we have not
yet pushed through the full proof that it is total (though it appears to be).
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In the rest of the proof, we use the following abbreviations:

C =
{∣

∣m 7→ D
∣

∣

}

· [D]
A = [D1..ω]

C1 =
{∣

∣m 7→ D
∣

∣

}

A1 = D ::[]

The structure of the proof is the same as for the well-behavedness proof forlist map. We assume thatl ∈ C 

Ω

A
and prove thatf(l) ∈ C 


Ω A. Using Corollary 3.17 (1), we conclude thatfix(f) = snoc m ∈ C 

Ω A.

We calculate the type off(l), working top down. The outermost lens is anacond instance; we must prove that
the first branch has this type:

(add *t {||};
renamem *h) ∈ C ∩ C1 


Ω

A ∩ A1

i.e., (add *t {||};
renamem *h) ∈

{∣

∣m 7→ D
∣

∣

}



Ω

D ::[]
which follows from the types ofadd andrename.

Similarly, we must show that the second branch has this type:

xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈ C \ C1 


Ω A \ A1

i.e., xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈

{∣

∣m 7→ D
∣

∣

}

· [D1..ω] 

Ω [D2..ω].

To prove this type for the second branch we show that the two arms of thexfork have these types,

k1 = (hoist nonunique *t {*h *t};
l;
plunge *t) ∈

{∣

∣m 7→ D, *t 7→ [D]
∣

∣

}



Ω

{∣

∣*t 7→ [D1..ω]
∣

∣

}

i.e., k1 = ∈
{∣

∣m 7→ D, *t 7→ [D]
∣

∣

}

hoist nonunique *t {*h *t}; :
{∣

∣m 7→ D
∣

∣

}

· [D]
l : [D1..ω]
plunge *t 


Ω
{∣

∣*t 7→ [D1..ω]
∣

∣

}

which follows from the types ofhoist nonunique, l, plunge and the composition operator;

and k2 = id ∈
{∣

∣*h 7→ D
∣

∣

}



Ω

{∣

∣*h 7→ D
∣

∣

}

immediately, by the type ofid,

and note that
{∣

∣m 7→ D, *t 7→ [D]
∣

∣

}

⊆ T |{m, *t}
{∣

∣*t 7→ [D1..ω]
∣

∣

}

⊆ T |*t

{∣

∣*h 7→ D
∣

∣

}

⊆ T \{m, *t}
{∣

∣*h 7→ D
∣

∣

}

⊆ T \*t

{∣

∣m 7→ D
∣

∣

}

· [D1..ω] = (
{∣

∣m 7→ D, *t 7→ [D]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

)
[D2..ω] = (

{∣

∣*t 7→ [D1..ω]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

).

We use all of these facts, and the type ofxfork, to prove:

xfork {m *t} {*t} k1 k2 ∈
{∣

∣m 7→ D
∣

∣

}

· [D1..ω] 

Ω [D2..ω].

We conclude that theacond instance (i.e.,f(l)) has typeC 

Ω A, and so, by Corollary 3.17 (1), thatfix(f) =

snoc m has the same type. �
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7.7 Lemma [Totality]: ∀D⊆T . snoc m ∈ (
{∣

∣m 7→ D
∣

∣

}

· [D]) ⇐⇒Ω [D1..ω].

Proof: To prove thatsnoc m is total, we use Corollary 3.17 (2). Let

C0 = A0 = ∅
Ci+1 =

{∣

∣m 7→ D
∣

∣

}

· [D0..i]
Ai+1 = [D1..i+1]

be two chains of types. Again, we note thatsnoc m is the fixed point of the same functionf described in the
well-behavedness proof. In the rest of this proof, we use thefollowing abbreviations:

C1 =
{∣

∣m 7→ D
∣

∣

}

A1 = D ::[]

We prove, by induction oni, that if l ∈ Ci ⇐⇒Ω Ai thenf(l) ∈ Ci+1 ⇐⇒Ω Ai+1. Let C = Ci+1 = (
{∣

∣m 7→ D
∣

∣

}

·
[D0..i]) andA = Ai+1 = [D1..i+1]. To show thatf(l) ∈ C ⇐⇒Ω A, we must show that theacond instance also
has that type.

We first prove that the each branch has the correct type. The first branch is straightforward:

(add *t {||}; rename m *h) ∈ C ∩ C1 ⇐⇒Ω A ∩ A1

i.e., (add *t {||}; rename m *h) ∈
{∣

∣m 7→ D
∣

∣

}

⇐⇒Ω (D ::[])
which follows from the type ofadd, rename and composition;

The second branch must have type:

xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈ C \ C1 ⇐⇒Ω A \ A1

i.e., xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈ (

{∣

∣m 7→ D
∣

∣

}

· [D0..i]) \
{∣

∣m 7→ D
∣

∣

}

⇐⇒Ω [D1..i+1] \ (D ::[])

There are two cases.
Casei = 0 We calculate that the second branch must have concrete and abstract type components:

(
{∣

∣m 7→ D
∣

∣

}

· [D0..0]) \
{∣

∣m 7→ D
∣

∣

}

= ∅
[D1..1] \ (D ::[]) = ∅,

which vacuously holds.
Casei > 0: We calculate that the second branch must have concrete and abstract type components:

(
{∣

∣m 7→ D
∣

∣

}

· [D0..i]) \
{∣

∣m 7→ D
∣

∣

}

=
{∣

∣m 7→ D
∣

∣

}

· [D1..i]
[D1..i+1] \ (D ::[]) = [D2..i+1]

To show that the second branch has this type, we must prove that each arm of thexfork lens has the correct type:

k1 = (hoist nonunique *t {*h *t};
l;
plunge *t) ∈

{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [D1..i]
∣

∣

}

i.e., k1 = ∈
{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

hoist nonunique *t {*h *t}; :
{∣

∣m 7→ D
∣

∣

}

· [D0..i−1]
l : [D1..i]
plunge *t ⇐⇒Ω

{∣

∣*t 7→ [D1..i]
∣

∣

}

which follows from the types ofhoist nonunique, l (using the induction hypothesis),
plunge, and the composition operator;

k2 = id ∈
{∣

∣*h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D
∣

∣

}

immediately, by the type ofid,
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and observe that
{∣

∣m 7→ D, *t 7→ [D0..i]
∣

∣

}

⊆ T |{m, *t}
{∣

∣*t 7→ [D1..i]
∣

∣

}

⊆ T |*t

{∣

∣*h 7→ D
∣

∣

}

⊆ T \{m, *t}
{∣

∣*h 7→ D
∣

∣

}

⊆ T \*t

{∣

∣m 7→ D
∣

∣

}

· [D1..i] = (
{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

)
[D2..i+1] = (

{∣

∣*t 7→ [D1..i]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

).

We use all of these facts to prove thatxfork has the following type:

xfork {m *t} {*t} k1 k2 ∈
{∣

∣m 7→ D
∣

∣

}

· [D1..i] ⇐⇒Ω [D2..i+1]

Then by the type ofacond, we havef(l) ∈ C ⇐⇒Ω A, which finishes the case and the inductive proof. Using
Corollary 3.17 (2), we conclude that

fix(f) = snoc m ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., snoc m ∈ ∅ ∪
⋃

i

{∣

∣m 7→ D
∣

∣

}

· [D0..i] ⇐⇒Ω ∅ ∪
⋃

i [D1..i+1]
i.e., snoc m ∈

{∣

∣m 7→ D
∣

∣

}

· [D] ⇐⇒Ω [D1..ω]

as required. �

7.8 Lemma: To prove thatlist reverse is total, we will use the following precise total type forsnoc m:
∀i. snoc m ∈ (

{∣

∣m 7→ D
∣

∣

}

· [D0..i]) ⇐⇒Ω [D1..i+1].

Proof: The proof is by induction oni. As above, we use the following abbreviations in the proof:

C1 =
{∣

∣m 7→ D
∣

∣

}

A1 = D ::[]

For the base case,i = 0, we must show thatsnocm ∈ C ⇐⇒Ω A whereC =
{∣

∣m 7→ D
∣

∣

}

· [] andA = [D1..1].
The outermost lens is anacond instance so we must first prove that the each branch has the correct type. The type of
the first branch is straightforward:

(add *t {||}; rename m *h) ∈ C ∩ C1 ⇐⇒Ω A ∩ A1

i.e., (add *t {||}; rename m *h) ∈
{∣

∣m 7→ D
∣

∣

}

⇐⇒Ω (D ::[])
by the type ofadd, rename and composition.

The second branch must have type:

xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈ C \ C1 ⇐⇒Ω A \ A1

i.e., xfork {m *t} {*t}
(hoist nonunique *t {*h *t}; l; plunge *t)
(id) ∈ ∅ ⇐⇒Ω ∅ ,

which it does, vacuously.
Otherwise,i > 0 and we must show thatsnoc m ∈ C ⇐⇒Ω A whereC =

{∣

∣m 7→ D
∣

∣

}

· [D0..i] andA =
[D1..i+1]. As above, we must show that theacond instance has this type by showing that each of its branches has
the correct type. The proof that the first branch has the correct type is identical to the case above. We calculate that
the second branch must have concrete and abstract type components:

(
{∣

∣m 7→ D
∣

∣

}

· [D0..i]) \
{∣

∣m 7→ D
∣

∣

}

=
{∣

∣m 7→ D
∣

∣

}

· [D1..i]
[D1..i+1] \ (D ::[]) = [D2..i+1]
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To show that the second branch has this type, we must prove that each arm of thexfork lens has the correct type:

k1 = (hoist nonunique *t {*h *t};
l;
plunge *t) ∈

{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

⇐⇒Ω
{∣

∣*t 7→ [D1..i]
∣

∣

}

i.e., k1 = ∈
{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

hoist nonunique *t {*h *t}; :
{∣

∣m 7→ D
∣

∣

}

· [D0..i−1]
snoc m : [D1..i]
plunge *t ⇐⇒Ω

{∣

∣*t 7→ [D1..i]
∣

∣

}

which follows from the types ofhoist nonunique, snoc m (using the induction hy-
pothesis to show it has type

{∣

∣m 7→ D
∣

∣

}

· [D0..i−1] ⇐⇒Ω [D1..i]), plunge, and the
composition operator;

k2 = id ∈
{∣

∣*h 7→ D
∣

∣

}

⇐⇒Ω
{∣

∣*h 7→ D
∣

∣

}

immediately, by the type ofid,

and observe that
{∣

∣m 7→ D, *t 7→ [D0..i]
∣

∣

}

⊆ T |{m, *t}
{∣

∣*t 7→ [D1..i]
∣

∣

}

⊆ T |*t

{∣

∣*h 7→ D
∣

∣

}

⊆ T \{m, *t}
{∣

∣*h 7→ D
∣

∣

}

⊆ T \*t

{∣

∣m 7→ D
∣

∣

}

· [D1..i] = (
{∣

∣m 7→ D, *t 7→ [D0..i−1]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

)
[D2..i+1] = (

{∣

∣*t 7→ [D1..i]
∣

∣

}

) · (
{∣

∣*h 7→ D
∣

∣

}

).

We use all of these facts to prove thatxfork has the following type:

xfork {m *t} {*t} k1 k2 ∈
{∣

∣m 7→ D
∣

∣

}

· [D1..i] ⇐⇒Ω [D2..i+1]

Then by the type ofacond, we havesnoc m ∈ C ⇐⇒Ω A, which finishes the case and the inductive proof. �

Usingsnoc, we can writelist reverse as follows:

list reverse = acond [] []
(id)
(rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} (list reverse) id;
snoc x)

∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D]

Thegetdirection has two cases, corresponding to the two arms of theconditional. The first arm maps the empty list
to the empty list viaid. The second lens, selected when the concrete tree is not empty, is the composition of the
following sequence: (1) a lens that renames the head of the list tox, (2) one that hoists the tail up one level yielding a
list, (3) a recursive call, and (4)snoc x, which moves the child underx to the end of the (now reversed) tail.

Theputbackdirection also has two cases. Again, the first arm of the conditional maps the empty list to the empty
list. The other composite lens runs the sequence described above in reverse, to obtain a concrete tree equivalent to
the reversed abstract tree as follows. First, theputbackof snoc x takes the (non-empty) abstract list and produces a
tree where the last element of the list is removed and placed underx. Next, this abstract view, consisting of a childx
and a list isputbackback through thefork lens, which reverses the list part of the tree and leaves the child named
x unchanged. Third, theputbackof hoist nonunique *t {*h, *t} plunges the head and tail under*t. Finally,
the child namedx is renamed to*h, yielding a well-formed list.
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The algorithm for computing the reversal of a list used here runs in quadratic time. Interestingly, we have not been
able to code the familiar, linear-time algorithm as a derived lens (of course, we could introduce a primitive lens for
reversing lists that uses the efficient implementation internally, but it is more interesting to try to write the efficient
version using our lens combinators plus recursion). One difficulty arises if we use an accumulator to store the result:
theputbackfunction of such a transformation would be non-injective and so could not satisfy PUTGET. To see this,
consider putting the tree containing[c] under the accumulator child and[b a] as the rest of the list. This will yield
the same result,[a b c], as putting back a tree containing[] under the accumulator child and[a b c] as the rest of
the list.

7.9 Lemma [Well-behavedness]:∀D⊆T . list reverse ∈ [D] 

Ω [D].

Proof: First, note thatlist reverse is the fixed point of the function:

f = λl. acond [] []
(id)

(rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} l id;
snoc x)

In the rest of the proof, we use the following type abbreviations:

C = A = [D]
C1 = A1 = []

In outline, the proof proceeds as follows. We assume thatl ∈ C 

Ω

A and prove thatf(l) ∈ C 

Ω

A. Using
Corollary 3.17 (1), we conclude thatfix(f) = list reverse ∈ C 


Ω

A.
We calculate the type off(l), working top down. The outermost lens is anacond instance; we must prove that

the first branch has the correct type:

id ∈ C ∩ C1 

Ω A ∩ A1

i.e., id ∈ [] 

Ω []

which follows from the type ofid;

and that the second branch has the correct type:

rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} l id;
snoc x ∈ C \ C1 


Ω

A \ A1

i.e., rename *h x;
hoist nonunique *t {*h *t};
fork {*h *t} l id;
snoc x ∈ [D1..ω] 


Ω [D1..ω]

To prove this type for the second branch we show:

k1 = ∈ [D1..ω]
rename *h x; :

{∣

∣x 7→ D, *t 7→ [D]
∣

∣

}

hoist nonunique *t {*h, *t}; :
{∣

∣x 7→ D
∣

∣

}

· [D]
fork {*h *t} l id; :

{∣

∣x 7→ D
∣

∣

}

· [D]
snoc x 


Ω [D1..ω].

(Note that the second to last step follows from the hypothesis about the type ofl.) We conclude thatf(l) ∈ C 

Ω A

and by Corollary 3.17 (1), thatlist reverse has the same type,[D] 

Ω [D]. �
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7.10 Lemma [Totality]: ∀D⊆T . list reverse ∈ [D] ⇐⇒Ω [D].

Proof: The proof, in outline, is as follows. We first note thatlist reverse is the fixed point of the functionf ,
defined in the well-behavedness proof above. We then prove for all i, thatf(l) ∈ Ci+1 ⇐⇒Ω Ai+1 assuming that
l ∈ Ci ⇐⇒Ω Ai. By Corollary 3.17 (2), we conclude thatfix(f) ∈

⋃

i Ci ⇐⇒Ω
⋃

i Ai.
Define two chains of types:

C0 = A0 = ∅
Ci+1 = Ai+1 = [D0..i].

also used as abbreviations for the types in theacond lens:

C1 = A1 = [].

We will show thatl ∈ Ci ⇐⇒Ω Ai impliesf(l) ∈ Ci+1 ⇐⇒Ω Ai+1 by induction oni. Let C = Ci+1 = [D0..i]
andA = Ai+1 = [D0..i]. To show thatf(l) ∈ C ⇐⇒Ω A, we must show that the outermostacond lens has that
type.

By the type ofacond, we must prove that both branches have the correct type. The type of the first branch is easy
to calculate and verify:

id ∈ C ∩ C1 ⇐⇒Ω A ∩ A1

i.e., id ∈ [] ⇐⇒Ω []
by the type ofid.

Showing that the second branch has the correct type, calculated as:

rename *h x;
hoist nonunique *t {*h, *t};
fork {*h, *t} l id;
snoc x ∈ C \ C1 ⇐⇒Ω A \ A1,

requires a little more work. There are two cases. Ifi = 0 then

C \ C1 = [] \ [] = ∅
A \ A1 = [] \ [] = ∅

and the second branch has type∅ ⇐⇒Ω ∅ vacuously. Otherwisei > 0 and

C \ C1 = [D0..i] \ [] = [D1..i]
A \ A1 = [D0..i] \ [] = [D1..i]

Thus, we must show that the second branch has this type.

rename *h x;
hoist nonunique *t {*h, *t};
fork {*h, *t}lid;
snoc x ∈ [D1..i] ⇐⇒Ω [D1..i]

i.e., k = ∈ [D1..i]
rename *h x; :

{∣

∣x 7→ D, *t 7→ [D0..i−1]
∣

∣

}

hoist nonunique *t {*h, *t}; :
{∣

∣x 7→ D
∣

∣

}

· [D0..i−1]
fork {*h, *t} l id; :

{∣

∣x 7→ D
∣

∣

}

· [D0..i−1]
snoc x ⇐⇒Ω [D1..i]

(The last step follows from Lemma 7.8.) This finishes the caseand the inductive proof. Using Corollary 3.17 (2), we
conclude that

fix(f) = list reverse ∈
⋃

i Ci ⇐⇒Ω
⋃

i Ai

i.e., list reverse ∈ ∅ ∪
⋃

i [D0..i] ⇐⇒Ω ∅ ∪
⋃

i [D0..i]
i.e., list reverse ∈ [D] ⇐⇒Ω [D]

as required. �
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Filter

Our most interesting derived lens,list filter, is parameterized on two sets of views,D andE, which we assume
to be disjoint and non-empty. In thegetdirection, it takes a list whose elements belong to eitherD or E and projects
away those that belong toE, leaving an abstract list containing onlyDs; in theputbackdirection, it restores the
projected-awayEs from the concrete list. Its definition utilizes our most complex lens combinators—wmap and two
forms of conditionals—and mutual recursion, yielding a lens that is well-behaved and total on lists of arbitrary length.

In thegetdirection, the desired behavior oflist filterD E (for brevity, let us call itl) is clear. In theputback
direction, things are more interesting because there are many ways that we could restore projected elements from the
concrete list. The lens laws impose some constraints on the behavior ofl↘. The GETPUT law forces theputback
function to restore each of the filtered elements when the abstract list is put into the original concrete list. For example
(letting d ande be elements ofD andE) we must havel↘ ([d], [e d]) = [e d]. The PUTGET law forces the
putbackfunction to include every element of the abstract list in theresulting concrete list, and these elements must be
the onlyDs in the result (there is however no restriction on theEs).

In the general case, where the abstract lista is different from the filtered concrete listl↗ c, there is some freedom
in how l↘ behaves. First, it may selectively restore only some of the elements ofE from the concrete list (or indeed,
even less intuitively, it might add some new elements ofE that it somehow makes up). Second, it may interleave the
restoredEs with theDs from the abstract list in any order, as long as the order of the Ds is preserved froma. From
these possibilities, the behavior that seems most natural to us is to overwrite elements ofD in c with elements ofD
from a, element-wise, until eitherc or a runs out of elements ofD. If c runs out first, thenl↘ appends the rest of the
elements ofa at the end ofc. If a runs out first, thenl↘ restores the remainingEs from the end ofc and discards any
remainingDs in c (as it must to satisfy PUTGET).

These choices lead us to the following specification for a single step of theputbackpart of a recursively defined
lens implementingl. If the abstract lista is empty, then we restore all theEs fromc. If c is empty anda is not empty,
then we returna. If a andc are both cons cells whose heads are inD, then we return a cons cell whose head is the
head ofa and whose tail is the result obtained by recursing on the tails of botha andc. Otherwise (i.e.,c has type
E :: ([D]&[E])) we restore the head ofc and recurse ona and the tail ofc. Translating this into lens combinators
leads to the definition below oflist filter and a helper lens,inner filter, by mutual recursion.8 The
definitions involve a little new notation and a few additional technicalities, explained below.

list filterD E =
cond [E] [] [D1..ω] fltrE (λc. c@[anyD])

(const [] [])
(inner filter D E)

inner filterD E =
ccond (E :: ([D1..ω]&[E]))

(tl anyE ; inner filter D E)
(wmap {*h 7→ id,*t 7→ list filter D E})

∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅.
list filterD E ∈ [D]&[E] ⇐⇒Ω [D] and

inner filterD E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω]

The “choice operator”anyD denotes an arbitrary element of the (non-empty) setD.9 The functionfltrE is the usual
list-filtering function, which for present purposes we simply assume has been definedas a primitive. (In our imple-
mentation, we actually uselist filter↗; but for expository purposes we avoid this extra bit of recursiveness.)

8The singly recursive variant whereinner filter is inlined has the same dynamic behavior as the version presented here. We split out
inner filter so that we can give it a more precise type, facilitating reasoning about well-behavedness and totality: in thegetdirection it maps
lists containing at least oneD to (D ::[D]); the corresponding types forlist filter include empty lists.

9We are dealing with countable sets of finite trees here, so this construct poses no metaphysical conundrums; alternatively, but less readably, we
can passlist filter an extra argumentd ∈ D.
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Finally, the functionλc. c@[anyD] appends some arbitrary element ofD to the right-hand end of a listc. These
“fixup functions” are applied in theputbackdirection by thecond lens.

The behavior of theget function oflist filter can be described as follows. Ifc ∈ [E], then the outermost
cond selects theconst [] [] lens, which produces[]. Otherwise thecond selectsinner filter, which uses
a ccond instance to test if the head of the list is inE. If this test succeeds, it strips away the head usingtl and
recurses; if not, it retains the head and filters the tail using wmap.

In the putbackdirection, if a = [] then the outermostcond lens selects theconst[] [] lens, withc as the
concrete argument ifc ∈ [E] and(fltrE c) otherwise. This has the effect of restoring all of theEs fromc. Otherwise,
if a 6= [] then thecond instance selects theputbackof theinner filter lens, usingc as the concrete argument
if c contains at least oneD, and(λc. c@[anyD]) c, which appends a dummy value of typeD to the tail ofc, if not.
The dummy value,anyD, is required becauseinner filter expects a concrete argument that contains at least one
D. Intuitively, the dummy value marks the point where the headof a should be placed.

To illustrate how all this works, let us step through some examples in detail. In each example, the concrete type
is [D]&[E] and the abstract type is[D]. We will write di andej to stand for elements ofD andE respectively.
To shorten the presentation, we will writel for list filter D E and i for inner filter D E. In the first
example, the abstract treea is [d1], and the concrete treec is [e1 d2 e2]. At each step, we underline the term that
is simplified in the next step.

l↘ (a, c) = i↘ (a, c)

by the definition ofcond, asa ∈ [D1..ω] andc ∈ ([D]&[E]) \ [E]
= (tl anyE ; i)↘ (a, c)

by the definition ofccond, asc ∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

i↘
(

a, (tl anyE)↗ c
)

, c
)

by the definition of composition

= (tl anyE)↘
(

i↘ (a, [d2 e2]), c
)

reducing(tl anyE)↗ c

= (tl anyE)↘
(

wmap {*h 7→ id,*t 7→ l}↘ (a, [d2 e2]), c
)

by the definition ofccond, as[d2 e2] 6∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

d1 :: (l↘ ([], [e2])), c
)

by the definition ofwmap with id↘ (d1, d2) = d1

= (tl anyE)↘
(

d1 :: ((const [] [])↘ ([], [e2])), c
)

by the definition ofcond, as[] ∈ [] and[e2] ∈ [E]

= (tl anyE)↘ (d1 ::[e2], c)

by the definition ofconst
= [e1 d1 e2] by the definition oftl.

The final two examples illustrate how the “fixup functions” supplied to thecond lens are used. The first function,
fltrE , is used when the abstract list is empty and the concrete listis not in[E]. Let a = [] andc = [d1 e1].

l↘ (a, c) = (const [] [])↘
(

[], fltrE[d1 e1]
)

by the definition ofcond, asa = [] butc 6∈ [E]
= (const [] [])↘ ([], [e1])

by the definition offltrE
= [e1] by definition ofconst.

The other fixup function,(λc. c@[anyD]), inserts a dummyD element whenlist filter is called with a non-
empty abstract list and a concrete list whose elements are all in E. Let a = [d1] andc = [e1] and assume that
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anyD = d0.

l↘ (a, c) = i↘
(

a, (λc. c@[anyD]) c
)

by the definition ofcond, asa ∈ [D1..ω] andc ∈ [E]

= i↘ (a, [e1 d0])

by the definition of(λc. c@[anyD])

= (tl anyE ; i)↘ (a, [e1 d0])

by the definition ofccond, as[e1 d0] ∈ E :: ([D1..ω]D&[E])

= (tl anyE)↘
(

i↘
(

a, (tl anyE)↗[e1 d0]
)

, [e1 d0]
)

by the definition of composition

= (tl anyE)↘
(

i↘ (a, [d0]), [d0 e1]
)

reducing(tl anyE)↗[d0 e1]
= (tl anyE)

↘
(

wmap {*h 7→ id,*t 7→ l}↘ (a, [d0]), [e1 d0]
)

by the definition ofccond, as[d0] 6∈ E :: ([D1..ω]&[E])

= (tl anyE)↘
(

d1 :: (l↘ ([], [])), [e1 d0]
)

by the definition ofwmap with id↘ (d1, d0) = d1

= (tl anyE)↘
(

d1 :: ((const [] [])↘ ([], [])), [e1 d0]
)

by the definition ofcond, as[] ∈ [] and[] ∈ [E]

= (tl anyE)↘ (d1 ::[], [e1 d0])

by the definition ofconst
= [e1 d1] by the definition oftl.

We now argue thatlist filter is well behaved and total. As before, the well-behavedness proof is straight-
forward: we simply decide on types for recursive uses of bothlist filter andinner filter and then show
that, under this assumption, the bodies of both lenses have these same types.

7.11 Lemma [Well-behavedness]:∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅. list filter D E ∈
[D]&[E] 


Ω [D] and inner filterD E ∈ [D1..ω]&[E] 

Ω [D1..ω].

Proof: We use corollary 3.17 (1), assuming

list filter D E ∈ [D]&[E] 

Ω [D]

inner filter D E ∈ [D1..ω]&[E] 

Ω [D1..ω]

and deriving the expected types forlist filter andinner filter from their recursive definitions.
We first derive the type forlist filterD E. The outermost combinator is acond lens with concrete predicate

C1 = [E] and abstract predicatesA1 = [] andA2 = [D1..ω]. We must show that

const [] [] ∈ C ∩ C1 

Ω

A1

const [] [] ∈ ([D]&[E]) ∩ [E] 

Ω []

i.e., const [] [] ∈ [E] 

Ω []

and

inner filter D E ∈ C \ C1 

Ω

A2

inner filter D E ∈ ([D]&[E]) \ [E] 

Ω [D1..ω]

i.e., inner filter D E ∈ [D1..ω]&[E] 

Ω [D1..ω].
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The first fact follows from the type ofconst; the second is immediate by hypothesis. Next we prove that the functions
fltrE and(λc. c@[anyD]) have the correct types:

fltrE ∈ ([D1..ω]&[E]) → ([E])Ω
λc. c@[anyD] ∈ ([E]) → ([D1..ω]&[E])Ω

Both are immediate. Hence, using the type ofcond, we conclude thatlist filter D E ∈ ([D]&[E]) 

Ω

([] ∪ [D1..ω])—i.e.,list filterD E ∈ ([D]&[E]) 

Ω [D]—as required.

Next we derive the type forinner filterD E, working top down. The outermost lens is accond combinator.
We must show that each branch has the correct type.

(tl anyE ; inner filter D E) ∈ ([D1..ω]&[E]) ∩ (E :: ([D1..ω]&[E])) 

Ω [D1..ω]

i.e., (tl anyE ; inner filter D E) ∈ (E :: ([D1..ω]&[E])) 

Ω [D1..ω]

wmap {*h 7→ id,*t 7→ list filter D E} ∈ ([D1..ω]&[E]) \ (E :: ([D1..ω]&[E])) 

Ω [D1..ω]

i.e., wmap {*h 7→ id,*t 7→ list filter D E} ∈ D :: ([D]&[E]) 

Ω [D1..ω]

The first fact follows from the type oftl with anyE ∈ E, the composition operator, and the hypothesis about the
type ofinner filter. The second follows from the type ofwmap, the observation thatdom(D :: ([D]&[E])) =
dom([D1..ω]), our hypothesis about the type oflist filter, and Lemma 7.2, which states that cons cell types
are shuffle closed. Using the type ofccond, we conclude thatinner filter ∈ [D1..ω]&[E] 


Ω [D1..ω] as
required. �

The totality proof forlist filter, on the other hand, is somewhat challenging, involving detailed reasoning
about the behavior of particular subterms under particularconditions. This is not too surprising, given the well-known
difficulties of reasoning about totality of ordinary recursive functional programs. We do not imagine that, in practice,
detailed proofs of totality will be undertaken for very manylenses—most lens programmers will probably be satisfied
with the assurance of (easier) proofs of well-behavedness plus informal reasoning about totality, just as most working
functional programmers are reasonably happy with typechecking plus informal totality arguments for their functions.
Still, it is interesting to work through a few non-trivial totality proofs in detail, to see what sorts of reasoning techniques
are required.

7.12 Lemma [Totality]: ∀D, E⊆T . with D ∩ E = ∅ and D 6= ∅ and E 6= ∅. list filter D E ∈
[D]&[E] ⇐⇒Ω [D] and inner filter D E ∈ [D1..ω]&[E] ⇐⇒Ω [D1..ω].

Proof: To start, note that the pair(inner filter D E, list filter D E) is the fixed point of the following
function from pairs of lenses to pairs of lenses:

f = λ(l, l′). (ccond E :: ([D1..ω]&[E])
(tl anyE ; l)
(wmap {*h 7→ id,*t 7→ l′}),

cond [E] [] [D1..ω] fltrE (λc. c@[anyD])
(const [] [])
l)

Note that the order ofinner filter andlist filter is swapped here with respect to the original definition.
We need to take them in this order because the totality oflist filter at each stage of the induction is going to
depend on the totality ofinner filter at thesamestage (plus the totality oflist filter at the previous stage),
while the totality ofinner filter will depend only on the totality ofinner filter andlist filter at the
previous stage.

In outline, the proof goes as follows. We start by choosing a sequence of pairs of total type sets
(T0, T

′
0), (T1, T

′
1), . . . . (Note that eachTi andT

′
i here is a set of total types and a total type is itself a pair(C, A).)

Next, we prove a key property off : that, when we apply it to a pair of lenses possessing all the types in some(Ti, T
′
i),

the result is a pair of lenses possessing all the types in(Ti+1, T
′
i+1). To match the form of Corollary 3.23, we do this in
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two steps: first, we assume thatl has every total type inTi andl′ has every total type inT′
i and prove thatπ1(f(l, l′))

has every total type inTi+1; second, we assume thatl has every total type inTi+1 andl′ has every total type inT′
i

and prove thatπ2(f(l, l′)) has every total type inT′
i+1. Next we choose an increasing instance of the sequence—i.e.,

a chain(τ0, τ
′
0) ⊆ (τ1, τ

′
1) ⊆ (τ2, τ

′
2) ⊆ . . . where eachτi ∈ Ti andτ ′

i ∈ T
′
i. We argue that the limit of this increasing

instance,(
⋃

i τi,
⋃

i τ ′
i), is the pair of total types we want—i.e.,

(([D1..ω]&[E],[D1..ω]), ([D]&[E],[D])).

We conclude by 3.23 that the fixed point off—i.e., the pair(inner filter D E,list filter D E)—has this
type, finishing the proof. We now proceed to the details.

We first define the sequence of pairs of total type sets:

T0 = {(∅, ∅)}
T
′
0 = {(∅, ∅)}

Ti+1 = {([D1..x]&[E0..y],[D1..x]) | x + y = i}
T
′
i+1 = {([D0..x]&[E0..y],[D0..x]) | x + y = i}

To make the construction of this sequence clear, let us calculate its first few elements explicitly:

T1 = {(∅, ∅)}
T
′
1 = {([],[])}

T2 = {([D1..1],[D1..1])}
T
′
2 = {([D0..1],[D0..1]), ([E0..1],[])}

T3 = {([D1..2],[D1..2]), ([D1..1]&[E0..1],[D1..1])}
T
′
3 = {([D0..2],[D0..2]), ([D0..1]&[E0..1],[D0..1]), ([E0..2],[])}

In the proof, we use some abbreviations to lighten the presentation. We abbreviate the type argument to theccond
lens appearing in the first component of the body ofF as follows:

C1 = E :: ([D1..ω]&[E])

Similarly, we abbreviate the type arguments to thecond in the second component:

C′
1 = [E]

A′
1 = []

A′
2 = [D1..ω]

In each case of the inductive proof below, we will defineC andA to be the source and target of the type we are trying
to establish for the given lens.

We now prove, by induction oni, the facts aboutf needed to apply Corollary 3.23: first, that ifl has every total
type inTi andl′ has every total type inT′

i, thenπ1(f(l, l′)) has every total type inTi+1; and second, that ifl has every
total type inTi+1 andl′ has every total type inT′

i, thenπ2(f(l, l′)) has every total type inT′
i+1.

For the base case (i = 0), we must first show thatπ1(f(l, l′)) has every total type in the singleton setT1 = {(∅, ∅)}.
This is immediate, since every lens is total at this type. Second, we must show thatπ2(f(l, l′)) has every total type in
the singleton setT′

1 = {([],[])}. We letC = [] andA = [] and show thatπ2(f(l, l′)) ∈ C ⇐⇒Ω A. Recall that
the second component off(l, l′) is defined as

cond [E] [] [D1..ω] fltrE (λc. c@[anyD])
(const [] [])
l.

Observe that, as(C ∩ C′
1) = ([] ∩ [E]) = [] is not empty but(C \ C′

1) = ([] \ [E]) = ∅, by Theorem 6.6 we
can use thealways-truerule forcond. Thus, to show that the whole conditional has typeC ⇐⇒Ω A′

1 (which is what
we want, sinceA′

1 = A = []) it suffices to show that the first branch,const [] [] has typeC ∩ C′
1 ⇐⇒Ω A′

1,

const [] [] ∈ C ∩ C′
1 ⇐⇒Ω A′

1

i.e., const [] [] ∈ [] ∩ [E] ⇐⇒Ω []
i.e., const [] [] ∈ [] ⇐⇒Ω [],
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which follows from the type ofconst.
For the induction step (i > 0), we first prove thatπ1(f(l, l′)) has every total type inTi+1, assuming thatl has

every total type inTi andl′ has every total type inT′
i. Pick an arbitrary total typeτ from Ti+1. We break the argument

into three sub-cases.
Casex > 0 andy > 0: Hereτ has the form(C, A) with C = ([D1..x]&[E0..y]) andA = [D1..x]. Recall that

the first component off(l, l′) is

ccond (E :: ([D1..ω]&[E]))
(tl anyE ; l)
(wmap {*h 7→ id,*t 7→ l′}).

The typing rule forccond requires that we prove that the branches have the following types:

(tl anyE ; l) ∈ C ∩ C1 ⇐⇒Ω A
i.e., (tl anyE ; l) ∈ ([D1..x]&[E0..y]) ∩ (E :: ([D1..ω]&[E])) ⇐⇒Ω [D1..x]

i.e., asy > 0, (tl anyE ; l) ∈ E :: ([D1..x]&[E0..y−1]) ⇐⇒Ω [D1..x]
which follows from type oftl and the induction hypothesis;

wmap {*h 7→ id,*t 7→ l′} ∈ C \ C1 ⇐⇒Ω A
i.e., wmap {*h 7→ id,*t 7→ l′} ∈ ([D1..x]&[E0..y]) \ (E :: ([D1..ω]&[E])) ⇐⇒Ω [D1..x]

i.e., asx > 0, wmap {*h 7→ id,*t 7→ l′} ∈ D :: ([D0..x−1]&[E0..y]) ⇐⇒Ω [D1..x]
which follows from type ofwmap—by Lemma 7.2, bothD :: ([D0..x−1]&[E0..y]) and
[D1..x], i.e.,D :: [D0..x−1], are shuffle closed; alsodom(D :: ([D0..x−1]&[E0..y])) =
dom([D1..x])—and the induction hypothesis.

Using the type ofccond, we conclude thatπ1(f(l, l′)) ∈ C ⇐⇒Ω A, finishing the case.
Casex = 0: Recall that the setTi+1 is {([D1..x]&[E0..y],[D1..x]) | x + y = i}. The only elementτ in this

set withx = 0 is the empty total type:

([D1..0]&[E0..y],[D1..0])
= (∅&[E0..y], ∅)
= (∅, ∅).

Immediately, the lensπ1(f(l, l′)) has type∅ ⇐⇒Ω ∅, finishing the case.
Casey = 0 andx > 0: By construction,τ is (C, A) with C = [D1..x] andA = [D1..x]. To verify the type of

theccond, we first observe thatC ∩ C1 = [D1..x] ∩ (E :: ([D1..ω]&[E])) = ∅, so theccond always selects the
second branch in both thegetandputbackdirections. By Theorem 6.5, it suffices to show that the second branch has
typeC \ C1 ⇐⇒Ω A (or justC ⇐⇒Ω A sinceC \ C1 = C):

wmap {*h 7→ id,*t 7→ l′} ∈ C ⇐⇒Ω A
i.e., wmap {*h 7→ id,*t 7→ l′} ∈ [D1..x] ⇐⇒Ω [D1..x]

i.e., asx > 0, wmap {*h 7→ id,*t 7→ l′} ∈ D :: ([D0..x−1]) ⇐⇒Ω [D1..x]
which follows from type ofwmap (with the observation thatD ::[D0..x−1] = [D1..x] and
Lemma 7.2, which states that cons cell types are shuffle closed) and the induction hypothesis.

Using thealways-falsetype ofccond, we conclude thatπ1(f(l, l′)) ∈ C ⇐⇒Ω A, finishing the case.
We now turn to the second half of the induction step. We must prove thatπ2(f(l, l′)) has every total type inT′

i+1,
assuming thatl has every total type inTi+1 andl′ has every total type inT′

i. Pick an arbitrary typeτ ′ from T
′
i+1. This

time we break the argument into two sub-cases.
Casex > 0: Hereτ ′ has the form(C, A) with C = [D0..x]&[E0..y] andA = [D0..x]. The outer lens in

π2(f(l, l′)) is acond. By Theorem 6.4, to show that this lens has the desired type, we must show that the branches
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have the following types:

const [] [] ∈ C ∩ C′
1 ⇐⇒Ω A ∩ A′

1

i.e., const [] [] ∈ ([D0..x]&[E0..y]) ∩ [E] ⇐⇒Ω [D0..x] ∩ []
i.e., const [] [] ∈ [E0..y] ⇐⇒Ω []

which follows from the type ofconst, as the default tree,[], is in[E0..y], for anyy;

l ∈ C \ C′
1 ⇐⇒Ω A ∩ A′

2

i.e., l ∈ ([D0..x]&[E0..y]) \ [E] ⇐⇒Ω [D0..x] ∩ [D1..ω]
i.e., l ∈ [D1..x]&[E0..y] ⇐⇒Ω [D1..x]

which follows by the induction hypothesis, as([D1..x]&[E0..y],[D1..x]) ∈ Ti+1.

Next, we must verify that the conversion functions have the correct types:

fltrE ∈ C \ C′
1 → (C ∩ C′

1)Ω
i.e., fltrE ∈ [D1..x]&[E0..y] → ([E0..y])Ω

λc. c@[anyD] ∈ C ∩ C′
1 → (C \ C′

1)Ω
i.e., λc. c@[anyD] ∈ [E0..y] → ([D1..x]&[E0..y])Ω

Both of these facts are immediate. Finally, we calculate thetarget type:

A ∩ (A′
1 ∪ A′

2)
= [D0..x] ∩ ([] ∪ [D1..ω])
= [D0..x]
= A.

By Theorem 6.4, we conclude thatπ2(f(l, l′)) ∈ C ⇐⇒Ω A, finishing the case.
Casex = 0: Hereτ ′ must be(C, A) with C = [E0..y] andA = []. As C ∩ C′

1 is not empty and(C \ C′
1) is

empty, by Theorem 6.6, we may use thealways-truerule forcond. Using this rule, to show that the instance ofcond
has typeC ⇐⇒Ω A′

1 (which is what we want sinceA′
1 = A = []) it suffices to show thatconst [] [] has type

C ∩C′
1 ⇐⇒Ω A′

1; i.e., that it has type[E0..y] ⇐⇒Ω [], as we verified above. We conclude thatπ2(f(l, l′)) ∈ C ⇐⇒Ω

A, which finishes the case.
To apply Corollary 3.20 and finish the totality proof, we mustshow that

(([D1..ω]&[E],[D1..ω]), ([D]&[E],[D]))

is the limit of an increasing instance of elements of(T, T′). Let (τ0, τ
′
0) ⊆ (τ1, τ

′
1) ⊆ . . . be defined as

τ0 = (∅, ∅) ∈ T0

τ ′
0 = (∅, ∅) ∈ T

′
0

...
τi+1 = ([D1..((i+1)/2)]&[E0..(i/2)],[D1..((i+1)/2)]) ∈ Ti+1

τ ′
i+1 = ([D0..((i+1)/2)]&[E0..(i/2)],[D0..((i+1)/2)]) ∈ T

′
i+1,

wherei/n is integer division ofi by n. To show that the limit is the pair of total types we want, we prove that each set
is contained in the other. First, observe that, for anyc ∈ ([D1..ω]&[E]) anda ∈ [D1..ω], we can find ani such
that (c, a) ∈ τi (lifting ∈ to pairs of sets in the obvious way) by choosingi so thati/2 is greater than the maximum
number of elements ofD in c, the number of elements ofE in c, and the number of elements ina. Similarly, for every
c ∈ [D]&[E] anda ∈ [D], we can find aτ ′

i such that(c, a) ∈ τ ′
i by choosing a large enoughi. The other inclusion

is immediate: everyτi is a subset of([D1..ω]&[E],[D1..ω]) (lifting ⊆ to pairs of pairs of sets twice, pointwise),
and everyτ ′

i is a subset of([D]&[E],[D]). �
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ALink1 = {|name 7→ Val url 7→ Val |}
ALink = {|link 7→ ALink1 |}
AFolder1 = {|name 7→ Val contents 7→ AContents|}
AFolder = {|folder 7→ AFolder1 |}
AContents = [AItem]
AItem = ALink ∪AFolder

Figure 2: Abstract Bookmark Types

8 Extended Example: A Bookmark Lens

In this section, we develop an larger and more realistic example of programming with our lens combinators. The
example comes from a demo application of our data synchronization framework, Harmony, in which bookmark infor-
mation from diverse browsers, including Internet Explorer, Mozilla, Safari, Camino, and OmniWeb, is synchronized
by transforming each format from its concrete native representation into a common abstract form. We show here a
slightly simplified form of the Mozilla lens, which handles the HTML-based bookmark format used by Netscape and
its descendants.

The overall path taken by the bookmark data through the Harmony system can be pictured as follows.

HTML html
reader

concrete

view
HTML

put
bookmarkhtml

writer
viewview abstractconcrete newnew

HTML
new

view
abstract

abstract
view

other

bookmark
get

sync

We first use a generic HTML reader to transform the HTML bookmark file into an isomorphic concrete tree. This
concrete tree is then transformed, using thegetdirection of thebookmark lens, into an abstract “generic bookmark
tree.” The abstract tree is synchronized with the abstract bookmark tree obtained from some other bookmark file,
yielding a new abstract tree, which is transformed into a newconcrete tree by passing it back through theputback
direction of thebookmark lens (supplying the original concrete tree as the second argument). Finally, the new
concrete tree is written back out to the filesystem as an HTML file. We now discuss these transformations in detail.

Abstractly, the type of bookmark data is aname pointing to a value and acontents, which is a list of items.
An item is either alink, with aname and aurl, or a folder, which has the same type as bookmark data. Figure 2
formalizes these types.

Concretely, in HTML (see Figure 3), a bookmark item is represented by a<dt> element containing an<a>
element whosehref attribute gives the link’s url and whose content defines the name. The<a> element also includes
anadd_date attribute, which we have chosen not to reflect in the abstractform because it is not supported by all
browsers. A bookmark folder is represented by a<dd> element containing an<h3> header (giving the folder’s name)
followed by a<dl> list containing the sequence of items in the folder. The whole HTML bookmark file follows the
standard<head>/<body> form, where the contents of the<body> have the format of a bookmark folder, without
the enclosing<dd> tag. (HTML experts will note that the use of the<dl>, <dt>, and<dd> tags here is not actually
legal HTML. This is unfortunate, but the conventions established by early versions of Netscape have become a de-facto
standard.)

The generic HTML reader and writer know nothing about the specifics of the bookmark format; they simply
transform between HTML syntax and trees in a mechanical way,mapping an HTML element namedtag, with
attributesattr1 to attrm and sub-elementssubelt1 to subeltn,
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<html>
<head> <title>Bookmarks</title> </head>
<body>
<h3>Bookmarks Folder</h3>
<dl>
<dt> <a href="www.google.com" add_date="1032458036">Google</a> </dt>
<dd>
<h3>Conferences Folder</h3>
<dl>
<dt> <a href="www.cs.luc.edu/icfp" add_date="1032528670">ICFP</a> </dt>

</dl>
</dd>
</dl>

</body>
</html>

Figure 3: Sample Bookmarks (HTML)

{html -> {* ->
[{head -> {* -> [{title -> {* ->

[{PCDATA -> Bookmarks}]}}]}}
{body -> {* ->
[{h3 -> {* -> [{PCDATA -> Bookmarks Folder}]}}
{dl -> {* ->
[{dt -> {* ->

[{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}

{dd -> {* ->
[{h3 -> {* -> [{PCDATA ->

Conferences Folder}]}}
{dl -> {* ->
[{dt -> {* ->

[{a ->
{* -> [{PCDATA -> ICFP}]
add_date -> 1032528670
href -> www.cs.luc.edu/icfp

}}]}}]}}]}}]}}]}}]}}

Figure 4: Sample Bookmarks (concrete tree)
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Val = {|N |}
PCDATA = {|PCDATA 7→ Val |}

CLink = <dt> CLink1 :: [] </dt>
CLink1 = <a add date href> PCDATA :: [] </a>

CFolder = <dd> CContents </dd>

CContents = CContents1 ::CContents2 :: []
CContents1 = <h3> PCDATA :: [] </h3>
CContents2 = <dl> [CItem] </dl>

CItem = CLink ∪ CFolder

CBookmarks = <html> CBookmarks1 ::CBookmarks2 :: [] </html>
CBookmarks1 = <head> (<title> PCDATA </title> :: []) </head>
CBookmarks2 = <body> CContents </body>

Figure 5: Concrete Bookmark Types

{name -> Bookmarks Folder
contents ->
[{link -> {name -> Google

url -> www.google.com}}
{folder ->

{name -> Conferences Folder
contents ->
[{link ->
{name -> ICFP
url -> www.cs.luc.edu/icfp}}]}}]}

Figure 6: Sample Bookmarks (abstract tree)
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<tag attr1="val1" ... attrm="valm">
subelt1 ... subeltn

</tag>

into a tree of this form:
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Note that the sub-elements are placed in alist under a distinguished child named*. This preserves their ordering
from the original HTML file. (The ordering of sub-elements issometimes important—e.g., in the present example,
it is important to maintain the ordering of the items within abookmark folder. Since the HTML reader and writer
are generic, theyalwaysrecord the ordering from the the original HTML in the tree, leaving it up to whatever lens is
applied to the tree to throw away ordering information whereit is not needed.) A leaf of the HTML document—i.e., a
“parsed character data” element containing a text stringstr—is converted to a tree of the form{PCDATA -> str}.
Passing the HTML bookmark file shown in Figure 3 through the generic reader yields the tree in Figure 4.

Figure 5 shows the type (CBookmarks) of concrete bookmark structures. For readability, the type re-
lies on a notational shorthand that reflects the structure ofthe encoding of HTML as trees. We write
<tag attr1 . . .attrn> C </tag> for {tag 7→ {attr1 7→ Val . . .attrn 7→ Val * 7→ C}}, whereVal

is the set of all values (trees with a single childless child). For elements with no attributes, this degenerates to simply
<tag> C </tag> = {tag 7→ {* 7→ C}}.

The transformation between this concrete tree and the abstract bookmark tree shown in Figure 6 is implemented
by means of the collection of lenses shown in Figure 7. Most ofthe work of these lenses (in theget direction)
involves stripping out various extraneous structure and then renaming certain branches to have the desired “field
names.” Conversely, theputbackdirection restores the original names and rebuilds the necessary structure.

It is straightforward to check, using the type annotations supplied, thatbookmarks ∈ CBookmarks 

Ω

AFolder1. (We omit the proof of totality, since we have already seen more intricate totality arguments in Section 7).
In practice, composite lenses are developed incrementally, gradually massaging the trees into the correct shape.

Figure 8 shows the process of developing thelink lens by transforming the representation of the HTML under
a <dt> element containing a link into the desired abstract form. Ateach level, tree branches are relabeled with
rename, undesired structure is removed withprune, hoist, and/orhd, and then work is continued deeper in the
tree viamap.

The putbackdirection of thelink lens restores original names and structure automatically,by composing the
putbackdirections of the constituent lenses oflink in turn. For example, Figure 9 shows an update to the abstract
tree of the link in Figure 8. The concrete tree beneath the update shows the result of applyingputbackto the updated
abstract tree. Theputbackdirection of thehoist PCDATA lens, corresponding to moving from stepviii to stepvii
in Figure 8, puts the updated string in the abstract tree backinto a more concrete tree by replacingSearch-Engine
with {|PCDATA -> Search-Engine|}. In the transition from stepvi to stepv, theputbackdirection ofprune
add date {|$today|} utilizes the concrete tree to restore the value,add date -> 1032458036, projected
away in the abstract tree. If the concrete tree had beenΩ—i.e., in the case of a new bookmark added in the new
abstract tree—then the default argument{|$today|} would have been used to fill in today’s date. (Formally, the
whole set of lenses is parameterized on the variable$today, which ranges over names.)

The get direction of thefolder lens separates out the folder name and its contents, stripping out undesired
structure where necessary. Note the use ofhoist hd to extract the<h3> and<dl> tags containing the folder name
and contents respectively; although the order of these two tags does not matter to us, it matters to Mozilla, so we want
to ensure that theputbackdirection of the lens puts them to their proper position in case of creation, whichhoist hd
will ensure. Finally, we usemap to iterate over the contents.
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link = ∈ {|* 7→ Clink1 :: []|}
hoist *; : CLink1 :: []
hd []; : CLink1
hoist_nonunique a {* add_date href}; : {|* 7→ PCDATA :: [], add_date 7→ Val ,

href 7→ Val |}
rename * name; : {|name 7→ PCDATA :: [], add_date 7→

Val ,
href 7→ Val |}

rename href url; : {|name 7→ PCDATA :: [], add_date 7→
Val ,

url 7→ Val |}
prune add_date {$today}; : {|name 7→ PCDATA :: [], url 7→ Val |}
map {name -> (hd []; : PCDATA

hoist PCDATA)} 

Ω {|name 7→ Val , url 7→ Val |} = ALink1

folder = ∈ {|* 7→ CContents|}
hoist *; : CContents

hoist_hd {h3}; : {|h3 7→ {|* 7→
PCDATA :: []|}, CContents2 :: []|}

fork {h3} (id) (hoist_hd {dl}); : {|h3 7→ {|* 7→ PCDATA :: []|},
dl 7→ {|* 7→ [CItem]|}|}

rename h3 name; : {|name 7→ {|* 7→ PCDATA :: []|},
dl 7→ {|* 7→ [CItem]|}|}

rename dl contents; : {|name 7→ {|* 7→ PCDATA :: []|},
contents 7→ {|* 7→ [CItem]|}|}

map {name -> (hoist *; : PCDATA :: []
hd []; : PCDATA

hoist PCDATA)
contents -> (hoist *; : [CItem]

list_map item)}


Ω {|name 7→ Val , contents 7→

[AItem]|} = AFolder1

item = ∈ CItem

map { dd -> folder, dt -> link }; : {|dd 7→ AFolder1 |} ∪ {|dt 7→ ALink1 |}
rename_if_present dd folder; : {|folder 7→ AFolder1 |} ∪ {|dt 7→ ALink1 |}
rename_if_present dt link : 


Ω

AFolder ∪ ALink = AItem

bookmarks = ∈ CBookmarks

hoist html; : {|* 7→ CBookmarks1 ::CBookmarks2 :: []|}
hoist *; : CBookmarks1 ::CBookmarks2 :: []
tl {|head -> {|* -> [{|title -> {|* ->

[{|PCDATA -> Bookmarks|}]|}|}]|}|}; : CBookmarks2 :: []
hd []; : CBookmarks2
hoist body; : {|* 7→ CContents|}
folder 


Ω

AFolder1

Figure 7: Bookmark lenses
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Step Lens expression Resulting abstract tree (from ’get’)
i: id {* ->

[{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}

ii : hoist * [{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]

iii : hoist *; hd {} {a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}

iv: hoist *; hd {};
hoist_nonunique a {* add_date href}

{* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}

v: hoist *; hd {};
hoist_nonunique a {* add_date href};
rename * name;
rename href url

{name -> [{PCDATA -> Google}]
add_date -> 1032458036
url -> www.google.com}

vi: hoist *; hd {};
hoist_nonunique a {* add_date href};
rename * name;
rename href url;
prune add_date {$today}

{name -> [{PCDATA -> Google}]
url -> www.google.com}

vii: hoist *; hd {};
hoist_nonunique a {* add_date href};
rename * name;
rename href url;
prune add_date {$today};
map { name -> (hd {}) }

{name -> {PCDATA -> Google}
url -> www.google.com}

viii : hoist *; hd {};
hoist_nonunique a {* add_date href};
rename *=name;
rename href url;
prune add_date {$today};
map { name -> (hd {}; hoist PCDATA) }

{name -> Google
url -> www.google.com}

Figure 8: Building up a link lens incrementally.

{link -> {name -> Google
url -> www.google.com}}

updated to...
{link -> {name -> Search-Engine

url -> www.google.com}}

yields (afterputback)...

{dt -> {* ->
[{a -> {* -> [{PCDATA -> Search-Engine}]

add_date -> 1032458036
href -> www.google.com}}]}}

Figure 9: Update of abstract tree, and resulting concrete tree
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Theitem lens processes one element of a folder’s contents; this element might be a link or another folder, so we
want to either apply thelink lens or thefolder lens. Fortunately, we can distinguish them by whether they are
contained within a<dd> element or a<dt> element; we themap operator to wrap the call to the correct sublens.
Finally, we renamedd to folder anddt to link.

The main lens isbookmarks, which (in thegetdirection) takes a whole concrete bookmark tree, strips offthe
boilerplate header information using a combination ofhoist,hd, andtl, and then invokesfolder to deal with the
rest. The huge default tree supplied to thetl lens corresponds to the head tag of the html document, which is filtered
away in the abstract bookmark format. This default tree would be used to recreate a well-formed head tag if it was
missing in the original concrete tree.

9 Lenses for Relational Data

We close our technical development by presenting a few additional lenses that we use in Harmony to deal with prepar-
ing relational data—trees (or portions of trees) consisting of “lists of records”—for synchronization. These lenses do
not constitute a full treatment of view update for relational data, but may be regarded as a small step in that direction.
In particular, thejoin lens performs a transformation related to theouter joinoperation in database query languages.

Flatten

The most critical (and complex) of these lenses isflatten, which takes an ordered list of “keyed records” like
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and flattens it into a bush like
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} ]

Chris 7→

[{∣

∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

} ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣























.

The importance of this transformation is that it makes the “intended alignment” of the data structurally obvious, freeing
the synchronization algorithm from having to understand that, although the data is presented in an ordered fashion,
order is actually not significant here. Synchronization simply proceeds child-wise—i.e., the record underPat is
synchronized with the corresponding record underPat from the other replica, and similarly forChris. If one of the
replicas happens to placeChris beforePat in its concrete, ordered form, exactly the same thing happens.

More generally,flatten handles concrete lists in which the same key appears more than once—e.g.,






















{∣

∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

∣

Phone 7→ 123-4321

URL 7→ http://pattoo.com

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}






















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—by placing all the records with the same key (in the same order as they appear in the concrete view) in the list under
that key in the abstract view:











































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat 7→













{∣

∣

∣

∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Phone 7→ 123-4321

URL 7→ http://pattoo.com

∣

∣

∣

∣

∣

}













Chris 7→

[{∣

∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

} ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











































.

In the putbackdirection,flatten distributes elements of each list from the abstract bush into the concrete list,
maintaining their original concrete positions. If there are more abstract elements than concrete ones, the extras are
simply appended at the end of the resulting concrete list in some arbitrary order, using the auxiliary functionlistify :

listify({||}) = []
listify(t) =

{∣

∣k 7→ tk1

∣

∣

}

:: · · · ::
{∣

∣k 7→ tkn

∣

∣

}

:: listify(t\k)
wherek = anydom(t) andt(k) = [tk1, . . . , tkn]

In the type offlatten, we write AListK(D) for the set of lists of “singleton views” of the form
{∣

∣k 7→ d
∣

∣

}

,
wherek ∈ K is a key andd ∈ D is the value of that key—i.e.,AListK(D) is the smallest set of trees satisfying
AListK(D) = [] ∪ ({

{∣

∣k 7→ D
∣

∣

}

| k ∈ K} ::AListK(D)).

flatten↗ c =























{||} if c = []
a′ +

{∣

∣k 7→ d :: []
∣

∣

}

if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

andflatten↗ c′ = a′ with k 6∈ dom(a′)
a′ +

{∣

∣k 7→ d :: s
∣

∣

}

if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

andflatten↗ c′ = a′ +
{∣

∣k 7→ s
∣

∣

}

flatten↘ (a, c) =































































listify(a) if c = [] or c = Ω
{∣

∣k 7→ d′
∣

∣

}

:: r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

anda(k) = d′ :: []
andr = flatten↘ (a\k, c′)

{∣

∣k 7→ d′
∣

∣

}

:: r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

anda(k) = d′ :: s with s 6= []
andr = flatten↘

(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

r if c =
{∣

∣k 7→ d
∣

∣

}

:: c′

andk 6∈ dom(a)
andr = flatten↘ (a, c′)

∀K⊆N . ∀D⊆T . flatten ∈ AListK(D) ⇐⇒Ω
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

This definition can be simplified if we assume that all theks in the concrete list are pairwise different—i.e., that
they are truly keys. In this case, the abstract view need not be a bush of lists: eachk can simply point directly to
its associated subtree from the concrete list. In practice,this assumption is often reasonable: the concrete view is a
(linearized) database and theks are taken from a key field in each record. However, thetypeof this “disjoint flatten”
becomes more complicated to write down, since it must express the constraint that, in the concrete list, eachk occurs
at most once. Since we eventually intend to implement a mechanical typechecker for our combinators, we prefer to
use the more complex definition with the more elementary type.

An obvious question is whether either variant offlatten can be expressed in terms of more primitive combina-
tors plus recursion, as we did for the list mapping, reversing, and filtering derived forms in Section 7. We feel that this
ought to be possible, but we have not yet succeeded in doing it.

9.1 Lemma [Well-behavedness]:∀K⊆N . ∀D⊆T . flatten ∈ AListK(D) 

Ω

{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

.
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Proof:
GET: Supposec ∈ AListK(D) andflatten↗ c is defined. Proceed by induction on the number of list cells inc. If

c = [], then the result is immediate. Ifc =
{∣

∣k 7→ d
∣

∣

}

:: c′, then, by induction,flatten↗ c′ ∈
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

.

But thena′ +
{∣

∣k 7→ d :: []
∣

∣

}

(if flatten↗ c′ = a′ with k 6∈ dom(a′)) anda′ +
{∣

∣k 7→ d :: s
∣

∣

}

(if flatten↗ c′ =

a′ +
{∣

∣k 7→ s
∣

∣

}

) are also in
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

, as required.

PUT: First, observe thatlistify(a) ∈ AListK(D). To see this, reason by induction on the size ofdom(a). If
dom(a) = ∅, then listify(a) = [] ∈ AListK(D). Otherwise,listify(a) =

{∣

∣k 7→ tk1

∣

∣

}

:: · · · ::
{∣

∣k 7→ tkn

∣

∣

}

::
listify(t\k) wherek = anydom(a) ∈ K and andt(k) = [tk1, . . . , tkn], from which the result follows by the induction
hypothesis and the definition ofAListK(D).

Now, supposec ∈ (AListK(D))Ω, a ∈
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

, andflatten↘ (a, c) is defined. Ifc = Ω, then

flatten↘ (a, c) = listify(a) ∈ AListK(D) by the observation above aboutlistify . Otherwise, we proceed by
induction on the number of list cells inc. If c = [], then the result again follows by the observation aboutlistify . If
c =

{∣

∣k 7→ d
∣

∣

}

:: c′, then there are three cases to consider:

• If a(k) = d′ :: [], thenflatten↘ (a, c) =
{∣

∣k 7→ d′
∣

∣

}

:: r, with r = flatten↘ (a\k, c′). By the
induction hypothesis,r ∈ AListK(D), and the result follows immediately, sincek ∈ K andd′ ∈ D by the
type ofc.

• If a(k) = d′ :: s with s 6= [], then flatten↘ (a, c) =
{∣

∣k 7→ d′
∣

∣

}

:: r, with r =

flatten↘
(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

. Again, the induction hypothesis applies (observing thata\k +
{∣

∣k 7→ s
∣

∣

}

belongs to
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

becauses is assumed to be non-empty), giving usr ∈ AListK(D), from which

the result follows directly.

• If k 6∈ dom(a), then flatten↘ (a, c) = flatten↘ (a, c′). The induction hypothesis yieldsr ∈
AListK(D) and the result follows directly.

GETPUT: Supposec ∈ AListK(D) andflatten↘ (flatten↗ c, c) is defined. Proceed by induction on the
number of list cells inc. If c = [], thenflatten↘ (flatten↗ c, c) = listify({||}) = [], as required. If
c =

{∣

∣k 7→ d
∣

∣

}

:: c′, then there are two cases to consider:

• if flatten↗ c′ = a′ with k 6∈ dom(a′), thenflatten↗ c = a′ +
{∣

∣k 7→ d :: []
∣

∣

}

and

flatten↘ (flatten↗ c, c) =
{∣

∣k 7→ d
∣

∣

}

:: flatten↘ (a′, c′)

=
{∣

∣k 7→ d
∣

∣

}

:: flatten↘ (flatten↗ c′, c′)

=
{∣

∣k 7→ d
∣

∣

}

:: c′ by the induction hypothesis

= c

• if flatten↗ c′ = a′ +
{∣

∣k 7→ s
∣

∣

}

, thenflatten↗ c = a′ +
{∣

∣k 7→ d :: s
∣

∣

}

and

flatten↘ (flatten↗ c, c) =
{∣

∣k 7→ d
∣

∣

}

:: flatten↘
(

a′ +
{∣

∣k 7→ s
∣

∣

}

, c′
)

=
{∣

∣k 7→ d
∣

∣

}

:: flatten↘ (flatten↗ c′, c′)

=
{∣

∣k 7→ d
∣

∣

}

:: c′ by the induction hypothesis

= c

PUTGET: Observe, first, thatflatten↗ (listify(a)) = a for any a. To see this, reason by induction on the
size of dom(a). If dom(a) = ∅, then flatten↗ (listify(a)) = flatten↗[] = {||} = a. Otherwise,
flatten↗ (listify(a)) = flatten↗ (

{∣

∣k 7→ tk1

∣

∣

}

:: · · · ::
{∣

∣k 7→ tkn

∣

∣

}

:: listify(a\k)), wherek = anydom(a) and
t(k) = [tk1, . . . , tkn]. The result then follows by the induction hypothesis andn invocations of the definition of
flatten↗.
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Now, supposec ∈ (AListK(D))Ω, a ∈
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

, andflatten↗ (flatten↘ (a, c)) is defined. If

c = Ω, thenflatten↗ (flatten↘ (a, c)) = flatten↗ (listify(a)) = a by the observation above. Otherwise,
we proceed by induction on the number of list cells inc. If c = [], then the result again follows by the observation
above. Ifc =

{∣

∣k 7→ d
∣

∣

}

:: c′, then there are three cases to consider:

• If a(k) = d′ :: [], then, by the definition, flatten↗ (flatten↘ (a, c)) =
flatten↗ (

{∣

∣k 7→ d′
∣

∣

}

:: flatten↘ (a\k, c′)). Now, sinceflatten↗ (flatten↘ (a\k, c′)) = a\k

by the induction hypothesis, and sincek 6∈ dom(a\k), the definition of flatten↗ gives
flatten↗ (

{∣

∣k 7→ d′
∣

∣

}

:: flatten↘ (a\k, c′)) = (a\k) +
{∣

∣k 7→ d′ :: []
∣

∣

}

= a.

• If a(k) = d′ :: s with s 6= [], then, by the definition,flatten↗ (flatten↘ (a, c)) =
flatten↗ (

{∣

∣k 7→ d′
∣

∣

}

:: (flatten↘
(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

)). Now, since
flatten↗ (flatten↘

(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

) = a\k +
{∣

∣k 7→ s
∣

∣

}

by the induction hypothesis, the
definition of flatten↗ gives flatten↗ (

{∣

∣k 7→ d′
∣

∣

}

:: (flatten↘
(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

)) =

a\k +
{∣

∣k 7→ d′ :: s
∣

∣

}

= a.

• If k 6∈ dom(a), then, by the definition, flatten↗ (flatten↘ (a, c)) =
flatten↗ (flatten↘ (a, c′)) = a by the induction hypotheses. �

9.2 Lemma [Totality]: ∀K⊆N . ∀D⊆T . flatten ∈ AListK(D) ⇐⇒Ω
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

.

Proof: For thegetdirection, supposec ∈ AListK(D). We must show thatflatten↗ c is defined. Proceed by
induction on the number of cells inc. If c = [], thenflatten↗ c = {||}. If c =

{∣

∣k 7→ d
∣

∣

}

:: c′, then, by induction,
flatten↗ c′ is defined and the definedness offlatten↗ c follows directly.

For the putbackdirection, supposec ∈ (AListK(D))Ω and a ∈
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

. We must show that

flatten↘ (a, c) is defined. Ifc = Ω, thenflatten↘ (a, c) = listify(a), which is defined becauselistify

is defined on all arguments in
{∣

∣

∣K
?
7→ [D1..ω]

∣

∣

∣

}

(as is easily verified by induction on|dom(a)|). Otherwise, proceed

by induction on the number of list cells inc. If c = [], then the result again follows by the definedness oflistify . If
c =

{∣

∣k 7→ d
∣

∣

}

:: c′, then there are three cases to consider:

• If a(k) = d′ :: [], thenflatten↘ (a, c) =
{∣

∣k 7→ d′
∣

∣

}

:: r, with r = flatten↘ (a\k, c′). By the
induction hypothesis,r is defined, and the definedness offlatten↘ (a, c) is immediate.

• If a(k) = d′ :: s with s 6= [], then flatten↘ (a, c) =
{∣

∣k 7→ d′
∣

∣

}

:: r, with r =

flatten↘
(

a\k +
{∣

∣k 7→ s
∣

∣

}

, c′
)

. Again, the induction hypothesis tells us thatr is defined, and the de-
finedness offlatten↘ (a, c) is immediate.

• If k 6∈ dom(a), thenflatten↘ (a, c) = flatten↘ (a, c′), and the result is immediate by the induction
hypothesis. �

Pivot

The lenspivot n rearranges the structure at the top of a tree, transforming

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

to
{∣

∣k 7→ t
∣

∣

}

. Intuitively, the

valuek (i.e.,
{∣

∣k 7→ {||}
∣

∣

}

) undern represents akeyk for the rest of the treet. Thegetfunction ofpivot returns a tree
wherek points directly tot. Theputbackfunction performs the reverse transformation, ignoring the old concrete tree.

We usepivot heavily in Harmony instances where the data being synchronized is relational (sets of records)
but its concrete format is ordered (e.g., XML). We first applypivot within each record to bring the key field to the
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outside. Then we applyflatten to smash the list of keyed records into a bush indexed by the keys. For example, if
the concrete presentation of the data looks like this,













































∣

∣

∣

∣

∣

∣

∣

Name 7→ Pat

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

∣

∣

∣





















∣

∣

∣

∣

∣

∣

∣

Name 7→ Chris

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

∣

∣





















∣

∣

∣

∣

∣

∣

∣

Name 7→ Pat

Phone 7→ 123-4321

URL 7→ http://pattoo.com

∣

∣

∣

∣

∣

∣

∣













































then applying(map list (pivot Name))↗ yields






















{∣

∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Pat 7→

{∣

∣

∣

∣

∣

Phone 7→ 123-4321

URL 7→ http://pattoo.com

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}























which, as we saw above, can then beflattened into:










































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pat 7→













{∣

∣

∣

∣

∣

Phone 7→ 333-4444

URL 7→ http://pat.com

∣

∣

∣

∣

∣

}

{∣

∣

∣

∣

∣

Phone 7→ 123-4321

URL 7→ http://pattoo.com

∣

∣

∣

∣

∣

}













Chris 7→

[{∣

∣

∣

∣

∣

Phone 7→ 888-9999

URL 7→ http://chris.org

∣

∣

∣

∣

∣

} ]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣











































.

In the type ofpivot, we extend our conventions about values (i.e., the fact thatwe writek instead of
{∣

∣k 7→ {||}
∣

∣

}

)
to types. IfK ⊆ N is a set of names, then

{∣

∣n 7→ K
∣

∣

}

means{
{∣

∣n 7→ k
∣

∣

}

| k ∈ K}—i.e.,{
{∣

∣n 7→
{∣

∣k 7→ {||}
∣

∣

}∣

∣

}

| k ∈
K}.

(pivot n)↗ c =
{∣

∣k 7→ t
∣

∣

}

if c =

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

(pivot n)↘ (a, c) =

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

if a =
{∣

∣k 7→ t
∣

∣

}

∀n∈N . ∀K⊆N . ∀C⊆(T \n). pivot n ∈ (
{∣

∣n 7→ K
∣

∣

}

· C) ⇐⇒Ω {
{∣

∣k 7→ C
∣

∣

}

| k ∈ K}

9.3 Lemma [Well-behavedness]:∀n∈N . ∀K⊆N . ∀C⊆(T \n). pivot n ∈ (
{∣

∣n 7→ K
∣

∣

}

· C) 

Ω {

{∣

∣k 7→ C
∣

∣

}

| k ∈
K}.

Proof:

GET: (pivot n)↗

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

=
{∣

∣k 7→ t
∣

∣

}

∈ {
{∣

∣k 7→ C
∣

∣

}

| k ∈ K}

PUT: (pivot n)↘
({∣

∣k 7→ t
∣

∣

}

, c
)

=

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

∈ (
{∣

∣n 7→ K
∣

∣

}

· C)
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GETPUT: Assume that (pivot n)↗ c is defined, thusc =

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

. We have:

(pivot n)↘

(

(pivot n)↗

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

,

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

})

= (pivot n)↘

(

{∣

∣k 7→ t
∣

∣

}

,

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

})

=

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

PUTGET: Assume that (pivot n)↘ (a, c) is defined, thusa =
{∣

∣k 7→ t
∣

∣

}

. We have:

(pivot n)↗ ((pivot n)↘
({∣

∣k 7→ t
∣

∣

}

, c
)

) = (pivot n)↗

{∣

∣

∣

∣

n 7→ k
t

∣

∣

∣

∣

}

=
{∣

∣k 7→ t
∣

∣

}

. �

9.4 Lemma [Totality]: ∀n∈N . ∀K⊆N . ∀C⊆(T \n). pivot n ∈ (
{∣

∣n 7→ K
∣

∣

}

· C) ⇐⇒Ω {
{∣

∣k 7→ C
∣

∣

}

| k ∈ K}.

Proof: Straightforward from the definition. �

Join

Our final lens combinator, based on an idea by Daniel Spoonhower [42], is inspired by thefull outer joinoperator from
databases. For example, applying(join addr phone)↗ to a tree































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

addr 7→







∣

∣

∣

∣

∣

∣

Chris 7→ Paris
Kim 7→ Palo Alto
Pat 7→ Philadelphia

∣

∣

∣

∣

∣

∣







phone 7→







∣

∣

∣

∣

∣

∣

Chris 7→ 111-1111
Pat 7→ 222-2222
Lou 7→ 333-3333

∣

∣

∣

∣

∣

∣







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































containing a collection of addresses and a collection of phone numbers (both keyed by names) yields a tree


































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Chris 7→

{∣

∣

∣

∣

addr 7→ Paris
phone 7→ 111-2222

∣

∣

∣

∣

}

Kim 7→
{∣

∣addr 7→ Palo Alto
∣

∣

}

Pat 7→

{∣

∣

∣

∣

addr 7→ Philadelphia
phone 7→ 222-2222

∣

∣

∣

∣

}

Lou 7→
{∣

∣phone 7→ 333-3333
∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣



































.

where the address and phone information is collected under each name. Note that no information is lost in this
transformation: names that are missing from either theaddr or phone collection are mapped to views with just a
phone or addr child. In theputbackdirection,join performs the reverse transformation, splitting theaddr and
phone information associated with each name into separate collections. (The transformation is bijective—since no
information is lost byget, theputbackfunction can ignore its concrete argument.)

(join m n)↗ c =

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

(join m n)↘ (a, c) =

{∣

∣

∣

∣

m 7→
{∣

∣k 7→ a(k)(m) | k ∈ dom(a)
∣

∣

}

n 7→
{∣

∣k 7→ a(k)(n) | k ∈ dom(a)
∣

∣

}

∣

∣

∣

∣

}

∀K⊆N . ∀T⊆T . join m n ∈







∣

∣

∣

∣

∣

∣

m 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

∣

∣

∣

∣

∣

∣







⇐⇒Ω
{∣

∣

∣

∣

∣

K
?
7→

{∣

∣

∣

∣

∣

m 7→ T

n
?
7→ T

∣

∣

∣

∣

∣

}

∪

{∣

∣

∣

∣

∣

m
?
7→ T

n 7→ T

∣

∣

∣

∣

∣

}∣

∣

∣

∣

∣

}
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9.5 Lemma [Well-behavedness]:∀K⊆N . ∀T⊆T . join m n ∈
{∣

∣

∣
m 7→

{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}



Ω

{∣

∣

∣K
?
7→

{∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

∪
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

}∣

∣

∣

}

.

Proof:
GET: Supposec ∈

{∣

∣

∣m 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}

. Suppose that (join m n)↗ c is defined, and writea′ for

(join m n)↗ c. For eachk ∈ K, we must show thata′(k) ∈
({∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

∪
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

})

Ω
. There

are three possibilities to consider: First, ifk ∈ dom(c(m)), thenc(m)(k) ∈ T by the type ofc. Also, c(n)(k) ∈ TΩ,

soa′(k) ∈
{∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

. Second, ifk ∈ dom(c(n)), then similarlya′(k) ∈
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

}

. Finally, if

k 6∈ dom(c(m)) ∪ dom(c(n)), thenk 6∈ dom(a′), which is permitted by the target type.

PUT: Suppose thata has type
{∣

∣

∣K
?
7→

{∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

∪
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

}∣

∣

∣

}

and that c has type
{∣

∣

∣m 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}

. Suppose that (join m n)↘ (a, c) is defined, and writec′ for

(join m n)↘ (a, c). For eachk ∈ dom(a), note thata(k)(m) ∈ TΩ, so
{∣

∣k 7→ a(k)(m) | k ∈ dom(a)
∣

∣

}

∈
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, and similarly forn.

GETPUT: Supposec ∈
{∣

∣

∣m 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}

and (join m n)↘ ((join m n)↗ c, c) defined.

Now calculate as follows, writinga as (join m n)↗ c, and using the fact thatdom(a) = dom(c(m)) ∪ dom(c(n)):

(join m n)↘ ((join m n)↗ c, c)

=(join m n)↘

({∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

, c

)

=

{∣

∣

∣

∣

m 7→
{∣

∣k′ 7→ a(k′)(m) | k′ ∈ dom(a)
∣

∣

}

n 7→
{∣

∣k′ 7→ a(k′)(n) | k′ ∈ dom(a)
∣

∣

}

∣

∣

∣

∣

}

=















∣

∣

∣

∣

∣

∣

∣

∣

m 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

(k′)(m) | k′ ∈ dom(a)

∣

∣

∣

∣

}

n 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(c(m)) ∪ dom(c(n))

∣

∣

∣

∣

}

(k′)(n) | k′ ∈ dom(a)

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣















=















∣

∣

∣

∣

∣

∣

∣

∣

m 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(a)

∣

∣

∣

∣

}

(k′)(m) | k′ ∈ dom(a)

∣

∣

∣

∣

}

n 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

k 7→

{∣

∣

∣

∣

m 7→ c(m)(k)
n 7→ c(n)(k)

∣

∣

∣

∣

}

| k ∈ dom(a)

∣

∣

∣

∣

}

(k′)(n) | k′ ∈ dom(a)

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣















=















∣

∣

∣

∣

∣

∣

∣

∣

m 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

m 7→ c(m)(k′)
n 7→ c(n)(k′)

∣

∣

∣

∣

}

(m) | k′ ∈ dom(a)

∣

∣

∣

∣

}

n 7→

{∣

∣

∣

∣

k′ 7→

{∣

∣

∣

∣

m 7→ c(m)(k′)
n 7→ c(n)(k′)

∣

∣

∣

∣

}

(n) | k′ ∈ dom(a)

∣

∣

∣

∣

}

∣

∣

∣

∣

∣

∣

∣

∣















=

{∣

∣

∣

∣

m 7→
{∣

∣k′ 7→ c(m)(k′) | k′ ∈ dom(a)
∣

∣

}

n 7→
{∣

∣k′ 7→ c(n)(k′) | k′ ∈ dom(a)
∣

∣

}

∣

∣

∣

∣

}

=

{∣

∣

∣

∣

m 7→
{∣

∣k′ 7→ c(m)(k′) | k′ ∈ dom(c(m)) ∪ dom(c(n))
∣

∣

}

n 7→
{∣

∣k′ 7→ c(n)(k′) | k′ ∈ dom(c(m)) ∪ dom(c(n))
∣

∣

}

∣

∣

∣

∣

}

=c

PUTGET: Suppose a ∈
{∣

∣

∣K
?
7→

{∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

∪
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

}∣

∣

∣

}

and c ∈
{∣

∣

∣
m 7→

{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}

. Suppose that (join m n)↗ ((join m n)↘ (a, c)) is defined, and

write a′ for (join m n)↗ ((join m n)↘ (a, c)). Consider an arbitraryk ∈ K. If k 6∈ dom(a), then, by the
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definition of theputbackfunction, k 6∈ dom((join m n)↘ (a, c)(m)) and k 6∈ dom((join m n)↘ (a, c)(n));
hence,k 6∈ dom(a′). On the other hand, ifk ∈ dom(a), then, by the type ofa and the definition of theputback
function, eitherk ∈ dom((join m n)↘ (a, c))(m)) or k ∈ dom((join m n)↘ (a, c))(n)), so, by the definition of
theget function,k ∈ dom(a′), with a′(k)(m) = a(k)(m) anda′(k)(n) = a(k)(n). �

9.6 Lemma [Totality]: ∀K⊆N . ∀T⊆T . join m n ∈
{∣

∣

∣
m 7→

{∣

∣

∣K
?
7→ T

∣

∣

∣

}

, n 7→
{∣

∣

∣K
?
7→ T

∣

∣

∣

}∣

∣

∣

}

⇐⇒Ω

{∣

∣

∣K
?
7→

{∣

∣

∣m 7→ T, n
?
7→ T

∣

∣

∣

}

∪
{∣

∣

∣m
?
7→ T, n 7→ T

∣

∣

∣

}∣

∣

∣

}

.

Proof: Thegetandputbackcomponents are both total functions. �

10 Related Work

Our lens combinators evolved in the setting of the Harmony data synchronizer. The overall architecture of Harmony
and the role of lenses in building synchronizers for variousforms of data are described in [38], along with a detailed
discussion of related work on synchronization.

Our foundational structures—lenses and their laws—are notnew: closely related structures have been studied for
decades in the database community. However, our treatment of these structures is arguably simpler (transforming states
rather than “update functions”) and somewhat more refined (treating well-behavedness as a form of type assertion).
Our formulation is also novel in considering the issue of continuity, thus supporting a rich variety of surface language
structures including definition by recursion.

The idea of defining programming languages for constructingbi-directional transformations of various sorts has
also been explored previously in diverse communities. We appear to be the first to take totality as a primary goal (while
connecting the language with a formal semantic foundation,choosing primitives that can be combined into composite
lenses whose totality is guaranteed by construction), and the first to emphasize types (i.e., compositional reasoning)as
an organizing design principle.

Foundations of View Update

The foundations of view update translation were studied intensively by database researchers in the late ’70s and ’80s.
This thread of work is closely related to our semantics of lenses in Section 3.

Dayal and Bernstein [16] gave a seminal formal account of thetheory of “correct update translation.” Their notion
of “exactly performing an update” corresponds to our PUTGET law. Their “absence of side effects” corresponds to our
GETPUT and PUTPUT laws. Their requirement of preservation of semantic consistency corresponds to the partiality
of ourputbackfunctions.

Bancilhon and Spyratos [9] developed an elegant semantic characterization of update translation, introducing the
notion ofcomplementof a view, which must include at least all information missing from the view. When a comple-
ment is fixed, there exists at most one update of the database that reflects a given update on the view while leaving the
complement unmodified—i.e., that “translates updates under a constant complement.” In general, a view may have
many complements, each corresponding to a possible strategy for translating view updates to database updates. The
problem of translating view updates then becomes a problem of finding, for a given view, a suitable complement.

Gottlob, Paolini, and Zicari [19] offered a more refined theory based on a syntactic translation of view updates.
They identified a hierarchy of restricted cases of their framework, the most permissive form being their “dynamic
views” and the most restrictive, called “cyclic views with constant complement,” being formally equivalent to Bancil-
hon and Spyratos’s update translators.

In a companion report [37], we state a precise correspondence between our lenses and the structures studied by
Bancilhon and Spyratos and by Gottlob, Paolini, and Zicari.Briefly, our set of very well behaved lenses is isomorphic
to the set oftranslators under constant complementin the sense of Bacilhon and Spyratos, while our set of well-
behaved lenses is isomorphic to the set ofdynamic viewsin the sense of Gottlob, Paolini, and Zicari. To be precise,
both of these results must be qualified by an additional condition regarding partiality. The frameworks of Bacilhon
and Spyratos and of Gottlob, Paolini, and Zicari are both formulated in terms of translatingupdate functionsonA into
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update functions onC, i.e., theirputbackfunctions have type(A −→ A) −→ (C −→ C), while our lenses translate
abstractstatesinto update functions onC, i.e., ourputbackfunctions have type (isomorphic to)A −→ (C −→ C).
Moreover, in both of these frameworks, “update translators” (the analog of ourputbackfunctions) are defined only
over some particular chosen setU of abstract update functions, not over all functions fromA to A. These update
translators returntotal functions fromC to C. Ourputbackfunctions, on the other hand, are slightly more general as
they are defined over all abstract states and returnpartial functions fromC to C. Finally, theget functions of lenses
are allowed to be partial, whereas the corresponding functions (calledviews) in the other two frameworks are assumed
to be total. In order to make the correspondences tight, our sets of well-behaved and very well behaved lenses need to
be restricted to subsets that are also total in a suitable sense.

A related observation is that, if we restrict bothgetandputbackto be total functions (i.e.,putbackmust be total with
respect toall abstract update functions), then our lens laws (including PUTPUT) characterize the setC as isomorphic
to A × B for someB.

Recent work by Lechtenbörger [25] establishes that translations of view updates under constant complements are
possible precisely if view update effects may be undone using further view updates.

In the literature on programming languages, laws similar toour lens laws (but somewhat simpler, dealing only with
totalgetandputbackfunctions) appear in Oles’ category of “state shapes” [36] and in Hofmann and Pierce’s work on
“positive subtyping” [20].

Languages for Bi-Directional Transformations

At the level of syntax, different forms of bi-directional programming have been explored across a surprisingly diverse
range of communities, including programming languages, databases, program transformation, constraint-based user
interfaces, and quantum computing. One useful way of classifying these languages is by the “shape” of the semantic
space in which their transformations live. We identify three major classes:

• Bi-directional languages, including ours, form lenses by pairing aget function of typeC → A with a putback
function of typeA×C → C. In general, thegetfunction can project away some information from the concrete
view, which must then be restored by theputbackfunction.

• In bijective languages, theputbackfunction has the simpler typeA → C—it is given no concrete argument
to refer to. To avoid loss of information, thegetandputbackfunctions must form a (perhaps partial) bijection
betweenC andA.

• Reversible languagesgo a step further, demanding only that the work performed by any function to produce
a given output can be undone by applying the function “in reverse” working backwards from this output to
produce the original input. Here, there is no separateputbackfunction at all: instead, theget function itself is
constructed so that each step can be run in reverse.

In the first class, the work that is fundamentally most similar to ours is Meertens’s formal treatment ofconstraint
maintainersfor constraint-based user interfaces [30]. Meertens’s semantic setting is actually even more general: he
takesget andputbackto be relations, not just functions, and his constraint maintainers are symmetric: get relates
pairs fromC × A to elements ofA andputbackrelates pairs inA × C to elements ofC; the idea is that a constraint
maintainer forms a connection between two graphical objects on the screen so that, whenever one of the objects
is changed by the user, the change can be propagated by the maintainer to the other object such that some desired
relationship between the objects is always maintained. Taking the special case where theget relation is actually a
function (which is important for Meertens because this is the case where composition [in the sense of our ; combinator]
is guaranteed to preserve well-behavedness), yields essentially our very well behaved lenses. Meertens proposes a
variety of combinators for building constraint maintainers, most of which have analogs among our lenses, but does
not directly deal with definition by recursion; also, some ofhis combinators do not support compositional reasoning
about well-behavedness. He considers constraint maintainers for structured data such as lists, as we do for trees, but
here adopts a rather different point of view from ours, focusing on constraint maintainers that work with structures not
directly but in terms of the “edit scripts” that might have produced them. In the terminology of synchronization, he
switches from a state-based to an operation-based treatment at this point.
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Recent work of Mu, Hu, and Takeichi on “injective languages”for view-update-based structure editors [32] adopts
a similar perspective. Although their transformations obey our GETPUT law, their notion of well-behaved transfor-
mations is informed by different goals than ours, leading toa weaker form of the PUTGET law. A primary concern is
using the view-to-view transformations to simultaneouslyrestore invariantswithin the source view as well as update
the concrete view. For example, an abstract view may maintain two lists where the name field of each element in one
list must match the name field in the corresponding element inthe other list. If an element is added to the first list, then
not only must the change be propagated to the concrete view, it must also add a new element to the second list in the
abstract view. It is easy to see that PUTGET cannot hold if the abstract view, itself, is—in this sense—modified by the
putback. Similarly, they assume that edits to the abstract view markall modified fields as “updated.” These marks are
removed when theputbacklens computes the modifications to the concrete view—another change to the abstract view
that must violate PUTGET. Consequently, to support invariant preservation within the abstract view, and to support
edit lists, their transformations only obey a much weaker variant of PUTGET (described above in Section 5).

Another paper by Hu, Mu, and Takeichi [21] applies a bi-directional programming language quite closely related to
ours to the design of “programmable editors” for structureddocuments. As in [32], they support preservation of local
invariants in theputbackdirection. Here, instead of annotating the abstract view with modification marks, they assume
that aputbackor a get occurs aftereverymodification to either view. They use this “only one update” assumption
to choose the correct inverse for the lens that copied data inthe get direction — because only one branch can have
been modified at any given time. Consequently, they canputbackthe data from the modified branch and overwrite the
unmodified branch. Here, too, the notion of well-behavedness needs to be weakened, as described in Section 5.

The TRIP2 system (e.g., [27]) uses bidirectional transformations specified as collections of Prolog rules as a means
of implementing direct-manipulation interfaces for application data structures. Theget andputbackcomponents of
these mappings are written separately by the user.

Languages for Bijective Transformations

An active thread of work in the program transformation community concernsprogram inversionand inverse
computation—see, for example, [4, 5] and many other papers cited there. Program inversion [18] derives the inverse
program from the forward program. Inverse computation [28]computes a possible input of a program from a particu-
lar output. One approach to inverse computation is to designlanguages that produce easily invertible expressions—for
example, languages that can only express injective functions, where every program is trivially invertible. These lan-
guages bear some intriguing similarities to ours, but differ in a number of ways, primarily in their focus on the bijective
case.

In the database community, Abiteboul, Cluet, and Milo [1] defined a declarative language ofcorrespondences
between parts of trees in a data forest. In turn, these correspondence rules can be used to translate one tree format into
another through non-deterministic Prolog-like computation. This process assumes an isomorphism between the two
data formats. The same authors [2] later defined a system for bi-directional transformations based around the concept
of structuring schemas(parse grammars annotated with semantic information). Thus their get functions involved
parsing, whereas theirputbacks consisted of unparsing. Again, to avoid ambiguous abstract updates, they restricted
themselves tolosslessgrammars that define an isomorphism between concrete and abstract views.

Ohori and Tajima [35] developed a statically-typed polymorphic record calculus for defining views on object-
oriented databases. They specifically restricted which fields of a view are updatable, allowing only those with a
ground (simple) type to be updated, whereas our lenses can accommodate structural updates as well.

A related idea from the functional programming community, calledviews[44], extends algebraic pattern matching
to abstract data types using programmer-suppliedin andoutoperators.

Languages for Reversible Transformations

Our work is the first (of which we are aware) in which totality and compositional reasoning about totality are taken as
primary design goals. Nevertheless, in all of the languagesdiscussed above there is an expectation that programmers
will want their transformations to be “total enough”—i.e.,that the sets of inputs for which thegetandputbackfunctions
are defined should be large enough for some given purpose. In particular, we expect thatputbackfunctions should
accept a suitably large set of abstract inputs for each givenconcrete input, since the whole point of these languages
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is to allow editing through a view. A quite different class oflanguages have been designed to supportreversible
computation, in which theputbackfunctions are only ever applied to the results of the correspondingget functions.
While the goals of these languages are quite different from ours—they have nothing to do with view update—there
are intriguing similarities in the basic approach.

Landauer [24] observed that non-injective functions were logically irreversible, and that this irreversibility requires
the generation and dissipation of some heat per machine cycle. Bennet [11] demonstrated that this irreversibility was
not inevitable by constructing areversible Turing machine, showing that thermodynamically reversible computers
were plausible. Baker [8] argued that irreversible primitives were only part of the problem; irreversibility at the
“highest levels” of computer usage cause the most difficultydue to information loss. Consequently, he advocated the
design of programs that “conserve information.” Because deciding reversibility of large programs is unsolvable, he
proposed designing languages that guaranteed that all well-formed programs are reversible, i.e. designing languages
whose primitives were reversible, and whose combinators preserved reversibility. A considerable body of work has
developed around these ideas (e.g. [33]).

Update Translation for Tree Views

There have been many proposals for query languages for trees(e.g., XQuery [46] and its forerunners, UnQL, StruQL,
and Lorel), but these either do not consider the view update problem at all or else handle update only in situations
where the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [17], and Braganholo, Davidson, and Heuser [12] studied the prob-
lem of updating relational databases “presented as XML.” Their solution requires a 1:1 mapping between XML view
elements and objects in the database, to make updates unambiguous.

Tatarinov, Ives, Halevy, and Weld [43] described a mechanism for translating updates on XML structures that
are stored in an underlying relational database. In this setting there is again an isomorphism between the concrete
relational database and the abstract XML view, so updates are unambiguous—rather, the problem is choosing the most
efficient way of translating a given XML update into a sequence of relational operations.

The view update problem has also been studied in the context of object-oriented databases. School, Laasch, and
Tresch [41] restrict the notion of views to queries that preserve object identity. The view update problem is greatly
simplified in this setting, as the objects contained in the view are the objects of the database, and an update on the view
is directly an update on objects of the database.

Update Translation for Relational Views

Research on view update translation in the database literature has tended to focus on taking an existing language for
definingget functions (e.g., relational algebra) and then consideringhow to infer correspondingputbackfunctions,
either automatically or with some user assistance. By contrast, we have designed a new language in which the defini-
tions ofgetandputbackgo hand-in-hand. Our approach also goes beyond classical work in the relational setting by
directly transforming and updating tree-structured data,rather than flat relations. (Of course, trees can be encoded as
relations, but it is not clear how our tree-manipulation primitives could be expressed using the recursion-free relational
languages considered in previous work in this area.) We briefly review the most relevant research from the relational
setting.

Masunaga [26] described an automated algorithm for translating updates on views defined by relational algebra.
The core idea was to annotate where the “semantic ambiguities” arise, indicating they must be resolved either with
knowledge of underlying database semantic constraints or by interactions with the user.

Keller [22] catalogued all possible strategies for handling updates to a select-project-join view and showed that
these are exactly the set of translations that satisfy a small set of intuitive criteria. These criteria are:

1. No database side effects: only update tuples in the underlying database that appear somehow in the view.

2. Only one-step changes: each underlying tuple is updated at most once.

3. No unnecessary changes: there is no operationally equivalent translation that performs a proper subset of the
translated actions.
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4. Replacements cannot be simplified (e.g., to avoid changing the key, or to avoid changing as many attributes).

5. No delete-insert pairs: for any relation, you have deletions or insertions, but not both (use replacements instead).

These criteria apply toupdatetranslations on relational databases, whereas our state-based approach means only crite-
ria (1), (3), and (4) might apply to us. Keller later [23] proposed allowing users to choose an update translator at view
definition time by engaging in an interactive dialog with thesystem and answering questions about potential sources
of ambiguity in update translation. Building on this foundation, Barsalou, Siambela, Keller, and Wiederhold [10]
described a scheme for interactively constructing update translators for object-based views of relational databases.

Medeiros and Tompa [29] presented a design tool for exploring the effects of choosing a view update policy. This
tool shows the update translation for update requests supplied by the user; by considering all possible valid concrete
states, the tool predicts whether the desired update would in fact be reflected back into the view after applying the
translated update to the concrete database. Milleret al. [31] describe Clio, a system for managing heterogeneous
transformation and integration. Clio provides a tool for visualizing two schemas, specifying correspondences between
fields, defining a mapping between the schemas, and viewing sample query results. They only consider theget di-
rection of our lenses, but their system is somewhat mapping-agnostic, so it might eventually be possible to use a
framework like Clio as a user interface supporting incremental lens programming like that in Figure 8.

Atzeni and Torlone [7, 6] described a tool for translating views and observed that if one can translate any concrete
view to and from ameta-model(shared abstract view), one then gets bi-directional transformations between any pair
of concrete views. They limited themselves to mappings where the concrete and abstract views are isomorphic.

Complexity bounds have also been studied for various versions of the view update inference problem. In one of the
earliest, Cosmadakis and Papadimitriou [14, 15] considered the view update problem for a single relation, where the
view is a projection of the underlying relation, and showed that there are polynomial time algorithms for determining
whether insertions, deletions, and tuple replacements to aprojection view are translatable into concrete updates. More
recently, Buneman, Khanna, and Tan [13] established a variety of intractability results for the problem of inferring
“minimal” view updates in the relational setting for query languages that include both join and either project or union.

The designers of the RIGEL language [40] argued that programmers should specify the translations of abstract
updates. However, they did not provide a way to ensure consistency between thegetandputbackdirections of their
translations.

Another problem that is sometimes mentioned in connection with view update translation is that ofincremental
view maintenance(e.g., [3])—efficiently recalculating an abstract view after a small update to the underlying concrete
view. Although the phrase “view update problem” is sometimes (confusingly) used for work in this domain, there is
little technical connection with the problem of translating view updates to updates on an underlying concrete structure.

11 Conclusions and Future Work

We have worked to design a collection of combinators that fit together in a sensible way and that are easy to program
with. Starting with lens laws that define “reasonable behavior,” adding type annotations, and proving that each of our
lenses is total, has imposed strong constraints on our design of new lenses—constraints that, paradoxically, make the
design process easier. In the early stages of the Harmony project, working in an under-constrained design space, we
found it extremely difficult to converge on a useful set of primitive lenses. Later, when we understood how to impose
the framework of type declarations and the demand for compositional reasoning, we experienced ahugeincrease in
manageability. The types helped not just in finding programming errors in derived lenses, but in exposing design
mistakes in the primitives at an early stage.

Naturally, the progress we have made on lens combinators raises a host of further challenges.

Static Analysis

The most urgent of these is automated typechecking. At present, it is the lens programmers’ responsibility to check the
well-behavedness of the lenses that they write. But the types of the primitive combinators have been designed so that
these checks are both local and essentially mechanical. Theobvious next step is to reformulate the type declarations
as a typealgebraand find a mechanical procedure for checking (or, more ambitiously, inferring) types.
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A number of other interesting questions are related to static analysis of lenses. For instance, can we characterize
the complexity of programs built from these combinators? Isthere an algebraic theory of lens combinators that would
underpin optimization of lens expressions in the same way that the relational algebra and its algebraic theory are used
to optimize relational database queries? (For example, thecombinators we have described here have the property that
map l1; map l2 = map (l1; l2) for all l1 andl2, but the latter should run substantially faster.)

Implementation

This algebraic theory will play a crucial role in a more serious implementation effort. Our current prototype performs a
straightforward translation from a concrete syntax similar to the one used in this paper to a combinator library written
in OCaml. This is fast enough for experimenting with lens programming (Malo Denielou has built an interactive
programming environment that recompiles and re-applies lenses on every keystroke) and for small demos (our calendar
lenses can process a few thousands of appointments in under aminute), but we would like to apply the Harmony system
to applications such as synchronization of biological databases that will require much higher throughput.

Applications

Our interest in bi-directional tree transformations arosein the context of the Harmony data synchronization framework.
Besides the bookmark synchronizer described in Section 8, we are currently developing a number of synchronizers (for
calendars, address books, structured text, etc.) as instances of Harmony. This exercise provides valuable stress-testing
for both our combinators and their formal foundations.

Additional Combinators

Another area for further investigation is the design of additional combinators. While we have found the ones we have
described here to be expressive enough to code a large numberof examples—both intricate structural manipulations
such as the list transformations in Section 7 and more prosaic application transformations such as the ones needed
by the bookmark synchronizer in Section 8 —there are some areas where we would like more general forms of the
lenses we have (e.g., a more flexible form ofxfork, where the splitting and recombining of trees is not based ontop-
level names, but involves deeper structure), lenses expressing more global transformations on trees (including analogs
of database operations such asjoin), or lenses addressing completely different sorts of transformations (e.g., none
of our combinators do any significant processing on edge labels, which might include string processing, arithmetic,
etc.). Higher-level combinators embodying more global transformations on trees—perhaps modeled on a familiar tree
transformation notation such as XSLT—are another interesting possibility.

Expressiveness

More generally, what are the limits of bi-directional programming? How expressive are the combinators we have
defined here? Do they cover any known or succinctly characterizable classes of computations (in the sense that the
set ofget parts of the total lenses built from these combinators coincide with this class)? We have put considerable
energy into these questions, but at the moment we can only report that they are challenging! One reason for this is that
questions about expressiveness tend to have trivial answers when phrased semantically. For example, it is not hard to
show thatanysurjectiveget function can be equipped with aputbackfunction—indeed, typically many—to form a
total lens. Indeed, if the concrete domainC is recursively enumerable, then thisputbackfunction is even computable.
The real problems are thus syntactic—how to conveniently pick out aputbackfunction that does what is wanted for a
given situation.

Lens Inference

In restricted cases, it may be possible to build lenses in simpler ways than by explicit programming—e.g., by gener-
ating them automatically from schemas for concrete and abstract views, or by inference from a set of pairs of inputs
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and desired outputs (“programming by example”). Such a facility might be used to do part of the work for a program-
mer wanting to add synchronization support for a new application (where the abstract schema is already known, for
example), leaving just a few spots to fill in.

Beyond Trees

Finally, we intend to experiment with instantiating our semantic framework with other structures besides trees—in
particular, with relations, to establish closer links withexisting research on the view update problem in databases.
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