Combinators for
Bi-Directional Tree Transformations:

A Linguistic Approach to the
View Update Problem

J. Nathan Foster (Penn)
Michael B. Greenwald (Lucent)
Jon Moore (Penn)
Benjamin C. Pierce (Penn)
Alan Schmitt (INRIA)




View Update

An old problem from the database community:

Concrete @\ Abstract

Structure View

Updated Updated
Concrete pre= PutBack Abstract
Structure View
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View Update

Our approach: a domain specific language for writing get
and putback at once. A lens is a bi-directional map between
concrete structures and abstract views.

Concrete Abstract
Structure View

Updated Updated
concrete PutBack = Abstract

Structure View
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Lenses and Synchronization

Harmony project goal: a generic synchronization framework
for heterogeneous data:

@ Combinators for Bi-Directional Tree Transformations - 3 POPL '05



Example

e Our data model is unordered, edge-labelled trees of finite
width where every node has at most one child for every
name n.

e Equivalently a trees is a finite map from names to trees.
e (We draw trees sideways to save space.)

Suppose that we have an address book represented as a
tree:

( (

Pat —

.
Phone {333—4444 — {}} }

URL — {http://pat-com — {}}

Phone {888—9999 - {}} }
/

URL +— {http://chris-Ilet — {}}

\
)

Chris — <

\ \
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Example

... and we only want to synchronize phone numbers and add
or drop complete entries. Using the get component of a lens,
we transform

(

333-4444 +— {}}
Pat — <

http://pat-ComF—>{}}

888-9999 — {}}
Chris > <

http://chris.net+—>{}}

\ /

Pat +— {333-4444 — {}

{ |
Chris — {888—9999 — {}}
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Example

Now we synchronize the abstract view, yielding a tree:

{Pat — {333-4321 > {}}}

Jo - { 555-6666 — {} |

and putback the updated abstract view into the original tree:

{333—4321 — {}} \
{http://pat.com+—>{}}

{
{

Phone — { 555-6666 +— {}} }
J

http://google.com+—>{}}
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Contributions

1. A natural semantic space of well-behaved lenses.

2. A domain specific language where
e reasoning about well-behavedness is compositional
e every well-typed program denotes a well-behaved

lens.

3. A concrete application: a synchronizer built using lenses.
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Semantic Foundations




[ .enses

Let C be a set of concrete structures and A a set of abstract

Views.

A (total) lens [ between C and A is a pair of functions

o [ /from(CtoA [Get]

o [N, fromAxCtoC [PutBack]

But we don’t want any pair of functions with these types...
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Well-Behaved Lenses

.. We need guarantees on round-trip behavior

l/ C [GetPut]

Get

Concrete Abstract
Structure View
PutBack

@ Combinators for Bi-Directional Tree Transformations - 9 POPL '05



Well-Behaved Lenses

.. we need guarantees on round-trip behavior:

IN.(l"¢c,c)=c [GetPut]

Concrete Abstract
Structure View

PutBack 1T
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Well-Behaved Lenses

... In both directions:

[N\ (a, ¢) =a [PutGet]

Updated

Concrete
Structure

Concrete
Structure
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Well-Behaved Lenses

... In both directions:

L1\, (a, c)=a [PutGet]

Updated

Concrete
Structure

Concrete
Structure

Write | € C < A for a well-behaved lens between C' and A.
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Recursive Lenses

We want to define lenses by recursion.

We can refine lenses to a partial setting and take fixed points
using standard techniques.

See paper for details; in this talk, we’ll only look at total
lenses.
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A Lens Language




Identity

ide (' «<— C

id "¢
id\(a, ¢)

The get function yields c;

the putback function ignores ¢ and yields a.
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Hoist & Plunge

hoistnE{nHC}@C

hoist n "¢ t ifc:{n|—>t}
hoist n\(a, ¢) {n — a}

plunge n € C <— {’nl—>C}

plunge n "¢ {n — c}

plunge n "\ (a, c) t if a = {n — t}
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Composition
Iflce C <= Bandk € B<= Athen (l;k) € C < A.
(k) "c=k,/ (17 c) [Get]

Concrete Abstract
Structure View
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Composition
Iflce C <= Bandk € B<= Athen (l;k) € C < A.
(L E) N\ (a, ¢) =1\ (kN (a, 7 ¢), ¢) [PutBack]

Updated
Concrete PutBack

A k
Concrete Abstract
Structure —Gut View
' !PutBack '
Structure v
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XFork

xfork pc pa [y I splits the tree and applies a different lens to
each part:

pra

(ll/)T
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Map

Map applies a lens one level deeper in the tree.

The get function is easy:

((nlr—wfl\\ (n1+—>l/t1
(map )/ [ ¢ ¢ ¢ '
\\nk’—)tk}) Wind?ay
When a and ¢ have the same children the putback function
IS also easy:

( ) ( ) ( )
( ny— t ny — t \ ny — I\ (t1, 1)
map )N ¢ ¢+ .4 1 ¢ :
\ |7 =t / (ke = DN (s, T)

)

In general, a and ¢ might have different children...
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Map

A natural choice for the putback of (map /) is to keep the
children in a, and discard children that only appear in c. (In
fact PutGet requires it.)

e Children appearing only in ¢ are dropped,;
e Children in both a and ¢ are putback as in simple case;

e Children appearing only in a are putback with what?

— Use special tree, Q2 (“missing”) to mark where a
default is needed.

\

"IN (a(n), ¢(n)) | n € dom(a) N dom(c)
\n|—>l\ (a(n), Q) | n € dom(a) \ dom(c)

(map 1)\ (a, ¢) =<

/
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Constant

Lenses whose get functions are projections need to handle
handle €2 (by providing defaults).

const t d € C <= {t}

consttd, c t
const t d\,(a, ¢) c ifc£Qanda=t1
d fc=Qanda =1

The get function discards the entire concrete tree.

The putback function restores the original concrete tree, or a
default if c is Q:
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Conditionals

Conditionals are a fun challenge in a bi-directional setting.

Have to select a lens in both directions.
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ACond

Ifl, € (CNPo)< (ANPy)andly, € (C\ Po) < (A\ Pa)

then acond Py P4 l1 1o € C <— A.

I
Get

=
(Get_
|12
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ACond

Ifl, e (CNPo) <~ (ANPy)and s € (C\ Po) < (A\ Pa)

then acond Ppo Py |1 I, € C <— A.

11

Get

L\

PutBack

Get

12
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Concrete . Abstract
Structure - View
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Abstract
View

Concrete
Structure
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ACond

l1€(CﬂP(j)<:>(AﬂPA)

Updated
Concrete
Structure

Abstract

Concrete
Structure
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Lenses for Lists

Can encode lists using standard “cons cells”.

The list [v; ...v,] Is represented by the tree

.
*h — vq

4 3
*h — Vo

*t > < *xh — v,
*CH— ¢ ... —
\ \ oo i J )

Lenses implementing functions on lists are derived forms.
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Demo



Lenses for Lists

xfork {*h} {*h} id (comnst {} {*t=[1});
hoist *h

xfork {*t} {*t} id (comst {} {*h={}});
hoist *t

let rec list_map 1 =
xfork {*h} {*h} (map 1) (map (list_map 1))

@ Combinators for Bi-Directional Tree Transformations - 26 POPL '05



Lenses for Lists

let rename x y = xfork {x} {y} (hoist x; plunge y) id
let swaphd =
rename *h tmp;
xfork {*t} {*h *t} (hoist *t) id;
xfork {tmp *t} {*t} (rename tmp *h; plunge *t) id
let rec rotate =
acond isSingletonOrEmptyList isSingletonOrEmptyList
id
(swaphd; xfork {*t} {*t} (map rotate) id)
let rec list_reverse =

xfork {*t} {*t} (map list_reverse) id; rotate
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Other Lenses

We have investigated several other lenses:
e pivoting, copying, and merging
e conditionals (two additional ones!)

e filtering and flattening (for lists)

and have built several applications using these lenses:

e a bookmark synchronizer
e a calendar synchronizer

e an addressbook synchronizer
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Future Work

1. Semantic Framework

e Explore stronger lens laws (e.g., in a metric space).

2. A Lens Language
e Mechanical type checking for lenses.

e Characterization of the expressive power of lenses
and our language.

e Beyond trees (e.qg., relational lenses).

3. Applications of Lenses
e End-to-end typed synchronizer.

e More applications.
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Related Work

e Semantic Framework - many related ideas in database
literature (see paper).

— [Bancilhon, Spryatos '81] “translators under constant
complement”.

— [Gottlob, Paolini, Zicari '88] “dynamic views”.

e Bi-Directional Languages

— [Meertens] - language for constaint maintainers;
similar behavioral laws.

— [Hu, Mu, Takeichi '04] - language at core of a
structured document editor.

e Bijective and Reversible Languages
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http://www.cis.upenn.edu/ bcpierce/harmony/




