Combinators for
Bi-Directional Tree Transformations:

A Linguistic Approach to the
View Update Problem

J. Nathan Foster (Penn)
Michael B. Greenwald (Lucent)
Jon Moore (Penn)
Benjamin C. Pierce (Penn)
Alan Schmitt (INRIA)

View Update

An old problem from the database community:

Concrete @\ Abstract

Structure View

Updated Updated
Concrete pre= PutBack Abstract
Structure View

@ Combinators for Bi-Directional Tree Transformations - 1 POPL '05

View Update

Our approach: a domain specific language for writing get
and putback at once. A lens is a bi-directional map between
concrete structures and abstract views.

Concrete Abstract
Structure View

Updated Updated
concrete PutBack = Abstract

Structure View

@ Combinators for Bi-Directional Tree Transformations - 2 POPL '05

Lenses and Synchronization

Harmony project goal: a generic synchronization framework
for heterogeneous data:

@ Combinators for Bi-Directional Tree Transformations - 3 POPL '05

Example

e Our data model is unordered, edge-labelled trees of finite
width where every node has at most one child for every
name n.

e Equivalently a trees is a finite map from names to trees.
e (We draw trees sideways to save space.)

Suppose that we have an address book represented as a
tree:

((

Pat —

.
Phone {333—4444 — {}} }

URL — {http://pat-com — {}}

Phone {888—9999 - {}} }
/

URL +— {http://chris-Ilet — {}}

\
)

Chris — <

\ \

@ Combinators for Bi-Directional Tree Transformations - 4 POPL '05

Example

... and we only want to synchronize phone numbers and add
or drop complete entries. Using the get component of a lens,
we transform

(

333-4444 +— {}}
Pat — <

http://pat-ComF—>{}}

888-9999 — {}}
Chris > <

http://chris.net+—>{}}

\ /

Pat +— {333-4444 — {}

{ |
Chris — {888—9999 — {}}

@ Combinators for Bi-Directional Tree Transformations - 5 POPL '05

Example

Now we synchronize the abstract view, yielding a tree:

{Pat — {333-4321 > {}}}

Jo - { 555-6666 — {} |

and putback the updated abstract view into the original tree:

{333—4321 — {}} \
{http://pat.com+—>{}}

{
{

Phone — { 555-6666 +— {}} }
J

http://google.com+—>{}}

@ Combinators for Bi-Directional Tree Transformations - 6 POPL '05

Contributions

1. A natural semantic space of well-behaved lenses.

2. A domain specific language where
e reasoning about well-behavedness is compositional
e every well-typed program denotes a well-behaved

lens.

3. A concrete application: a synchronizer built using lenses.

@ Combinators for Bi-Directional Tree Transformations - 7 POPL '05

Semantic Foundations

[.enses

Let C be a set of concrete structures and A a set of abstract

Views.

A (total) lens [between C and A is a pair of functions

o [/from(CtoA [Get]

o [N, fromAxCtoC [PutBack]

But we don’t want any pair of functions with these types...

Combinators for Bi-Directional Tree Transformations - 8 POPL '05

Well-Behaved Lenses

.. We need guarantees on round-trip behavior

l/ C [GetPut]

Get

Concrete Abstract
Structure View
PutBack

@ Combinators for Bi-Directional Tree Transformations - 9 POPL '05

Well-Behaved Lenses

.. we need guarantees on round-trip behavior:

IN.(l"¢c,c)=c [GetPut]

Concrete Abstract
Structure View

PutBack 1T

@ Combinators for Bi-Directional Tree Transformations - 9 POPL '05

Well-Behaved Lenses

... In both directions:

[N\ (a, ¢) =a [PutGet]

Updated

Concrete
Structure

Concrete
Structure

@ Combinators for Bi-Directional Tree Transformations - 10 POPL '05

Well-Behaved Lenses

... In both directions:

L1\, (a, c)=a [PutGet]

Updated

Concrete
Structure

Concrete
Structure

Write | € C < A for a well-behaved lens between C' and A.

@ Combinators for Bi-Directional Tree Transformations - 10 POPL '05

Recursive Lenses

We want to define lenses by recursion.

We can refine lenses to a partial setting and take fixed points
using standard techniques.

See paper for details; in this talk, we’ll only look at total
lenses.

@ Combinators for Bi-Directional Tree Transformations - 11 POPL '05

A Lens Language

Identity

ide (' «<— C

id "¢
id\(a, ¢)

The get function yields c;

the putback function ignores ¢ and yields a.

@ Combinators for Bi-Directional Tree Transformations - 12 POPL '05

Hoist & Plunge

hoistnE{nHC}@C

hoist n "¢ t ifc:{n|—>t}
hoist n\(a, ¢) {n — a}

plunge n € C <— {’nl—>C}

plunge n "¢ {n — c}

plunge n "\ (a, c) t if a = {n — t}

Combinators for Bi-Directional Tree Transformations - 13

POPL '05

Composition
Iflce C <= Bandk € B<= Athen (l;k) € C < A.
(k) "c=k,/ (17 c) [Get]

Concrete Abstract
Structure View

@ Combinators for Bi-Directional Tree Transformations - 14 POPL '05

Composition
Iflce C <= Bandk € B<= Athen (l;k) € C < A.
(L E) N\ (a, ¢) =1\ (kN (a, 7 ¢), ¢) [PutBack]

Updated
Concrete PutBack

A k
Concrete Abstract
Structure —Gut View
' !PutBack '
Structure v

@ Combinators for Bi-Directional Tree Transformations - 15 POPL '05

XFork

xfork pc pa [y I splits the tree and applies a different lens to
each part:

pra

(ll/)T

@ Combinators for Bi-Directional Tree Transformations - 16 POPL '05

Map

Map applies a lens one level deeper in the tree.

The get function is easy:

((nlr—wfl\\ (n1+—>l/t1
(map)/ [¢ ¢ ¢ '
\\nk’—)tk}) Wind?ay
When a and ¢ have the same children the putback function
IS also easy:

() () ()
(ny— t ny — t \ ny — I\ (t1, 1)
map)N ¢ ¢+ .4 1 ¢ :
\ |7 =t / (ke = DN (s, T)

)

In general, a and ¢ might have different children...

@ Combinators for Bi-Directional Tree Transformations - 17 POPL '05

Map

A natural choice for the putback of (map /) is to keep the
children in a, and discard children that only appear in c. (In
fact PutGet requires it.)

e Children appearing only in ¢ are dropped,;
e Children in both a and ¢ are putback as in simple case;

e Children appearing only in a are putback with what?

— Use special tree, Q2 (“missing”) to mark where a
default is needed.

\

"IN (a(n), ¢(n)) | n € dom(a) N dom(c)
\n|—>l\ (a(n), Q) | n € dom(a) \ dom(c)

(map 1)\ (a, ¢) =<

/

Combinators for Bi-Directional Tree Transformations - 18 POPL '05

Constant

Lenses whose get functions are projections need to handle
handle €2 (by providing defaults).

const t d € C <= {t}

consttd, c t
const t d\,(a, ¢) c ifc£Qanda=t1
d fc=Qanda =1

The get function discards the entire concrete tree.

The putback function restores the original concrete tree, or a
default if c is Q:

@ Combinators for Bi-Directional Tree Transformations - 19 POPL '05

Conditionals

Conditionals are a fun challenge in a bi-directional setting.

Have to select a lens in both directions.

@ Combinators for Bi-Directional Tree Transformations - 20 POPL '05

ACond

Ifl, € (CNPo)< (ANPy)andly, € (C\ Po) < (A\ Pa)

then acond Py P4 l1 1o € C <— A.

I
Get

=
(Get_
|12

@ Combinators for Bi-Directional Tree Transformations - 21 POPL '05

ACond

Ifl, e (CNPo) <~ (ANPy)and s € (C\ Po) < (A\ Pa)

then acond Ppo Py |1 I, € C <— A.

11

Get

L\

PutBack

Get

12

@ Combinators for Bi-Directional Tree Transformations - 22 POPL '05

Concrete . Abstract
Structure - View

@ Combinators for Bi-Directional Tree Transformations - 23 POPL '05

Abstract
View

Concrete
Structure

@ Combinators for Bi-Directional Tree Transformations - 24 POPL '05

ACond

l1€(CﬂP(j)<:>(AﬂPA)

Updated
Concrete
Structure

Abstract

Concrete
Structure

@ Combinators for Bi-Directional Tree Transformations - 24 POPL '05

Lenses for Lists

Can encode lists using standard “cons cells”.

The list [v; ...v,] Is represented by the tree

.
*h — vq

4 3
*h — Vo

*t > < *xh — v,
*CH— ¢ ... —
\ \ oo i J)

Lenses implementing functions on lists are derived forms.

@ Combinators for Bi-Directional Tree Transformations - 25 POPL '05

Demo

Lenses for Lists

xfork {*h} {*h} id (comnst {} {*t=[1});
hoist *h

xfork {*t} {*t} id (comst {} {*h={}});
hoist *t

let rec list_map 1 =
xfork {*h} {*h} (map 1) (map (list_map 1))

@ Combinators for Bi-Directional Tree Transformations - 26 POPL '05

Lenses for Lists

let rename x y = xfork {x} {y} (hoist x; plunge y) id
let swaphd =
rename *h tmp;
xfork {*t} {*h *t} (hoist *t) id;
xfork {tmp *t} {*t} (rename tmp *h; plunge *t) id
let rec rotate =
acond isSingletonOrEmptyList isSingletonOrEmptyList
id
(swaphd; xfork {*t} {*t} (map rotate) id)
let rec list_reverse =

xfork {*t} {*t} (map list_reverse) id; rotate

Combinators for Bi-Directional Tree Transformations - 27 POPL '05

Other Lenses

We have investigated several other lenses:
e pivoting, copying, and merging
e conditionals (two additional ones!)

e filtering and flattening (for lists)

and have built several applications using these lenses:

e a bookmark synchronizer
e a calendar synchronizer

e an addressbook synchronizer

@ Combinators for Bi-Directional Tree Transformations - 28 POPL '05

Future Work

1. Semantic Framework

e Explore stronger lens laws (e.g., in a metric space).

2. A Lens Language
e Mechanical type checking for lenses.

e Characterization of the expressive power of lenses
and our language.

e Beyond trees (e.qg., relational lenses).

3. Applications of Lenses
e End-to-end typed synchronizer.

e More applications.

@ Combinators for Bi-Directional Tree Transformations - 29 POPL '05

Related Work

e Semantic Framework - many related ideas in database
literature (see paper).

— [Bancilhon, Spryatos '81] “translators under constant
complement”.

— [Gottlob, Paolini, Zicari '88] “dynamic views”.

e Bi-Directional Languages

— [Meertens] - language for constaint maintainers;
similar behavioral laws.

— [Hu, Mu, Takeichi '04] - language at core of a
structured document editor.

e Bijective and Reversible Languages

@ Combinators for Bi-Directional Tree Transformations - 30 POPL '05

http://www.cis.upenn.edu/ bcpierce/harmony/

