Life on the Edge: Unraveling Policies into Configurations

Shrutarshi Basu
Cornell University

Paparao Palacharla
Fujitsu Labs of America

Abstract

Current frameworks for network programming assume that the net-
work comprises a set of homogenous devices that can be rapidly
reconfigured in response to changing policies and network condi-
tions. Unfortunately, these assumptions are incompatible with the
realities of modern networks, which contain legacy devices that of-
fer diverse functionality and can only be reconfigured slowly. Ad-
ditionally, network service providers need to walk a fine line be-
tween providing flexibility to users, and maintaining the integrity
and reliability of their core networks. These issues are particularly
evident in optical networks, which are used by ISPs and WANs and
provide high bandwidth at the cost of limited flexibility and long
reconfiguration times. This paper presents a different approach to
implementing high-level policies, by pushing functionality to the
edge and using the core merely for transit. Building on the NetKAT
framework and leveraging linear programming solvers, we develop
techniques for analyzing and transforming policies into configura-
tions that can be installed at the edge of the network. Furthermore,
our approach can be extended to incorporate constraints that are
crucial in the optical domain, such as path constraints. We develop
a working implementation using off-the-shelf solvers and evaluate
our approach on realistic optical topologies.

1. INTRODUCTION

Recent years have seen the development and deployment of in-
creasingly programmable network devices, as well as software sys-
tems for managing them. Advances in this area fall under the gen-
eral umbrella of Software-Defined Networking (SDN) and include
new frameworks for managing network configurations [6, 21, 20,
16], new languages for programming networks [10, 34, 33, 5, 27],
and new applications that implement advanced network function-
ality [15, 14]. However, most existing SDN frameworks assume
that the network is comprised of homogenous devices that can be

rapidly reconfigured as policies change or network conditions evolve—

an assumption that is often unrealistic in practice:

e Legacy Devices: Many organizations deploy thousands of
network devices that are supplied by multiple different ven-
dors. SDN deployments, where they exist, tend to be partial

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

Nate Foster
Cornell University RIT

Christian Skalka
University of Vermont

Hossein Hojjat

Xi Wang
Fujitsu Labs of America

in nature. Hence, any framework for real-world network pro-
gramming must be able to implement high-level policies in
the presence of legacy devices.

o Heterogeneous Functionality: There is a fundamental mis-
match between the capabilities of SDN switches, which al-
low packets to be transformed in essentially arbitrary ways at
each hop, and devices such as IP routers, MPLS LSRs, and
optical ROADMs. 1t is not clear how to incorporate these
devices and their specific limitations into SDN-like program-
ming frameworks, which assume a homogeneous collection
of switches.

o Performance Limitations: Existing frameworks tacitly as-
sume that it is possible to rapidly reconfigure devices in re-
sponse to policy updates, traffic shifts, topology changes, and
other changes. However, on many devices, updating a for-
warding table can take several seconds, which limits the net-
work’s ability to react to changing conditions.

Taken together, these issues strongly suggest that a fundamentally
different model for network programming is needed.

One way to address these challenges is to distinguish the “edge”
devices at the perimeter of the network from the “fabric” devices
in the core that connect edge devices to each other. So long as the
edge devices provide SDN-like functionality, it is possible to imple-
ment a broad set of policies specified by programmers. Meanwhile
the fabric devices, which are more constrained, only need to imple-
ment the “plumbing” needed to carry packets across the network.
By carefully enforcing a division of labor between edge and fabric
devices, it is possible to address all three of the issues discussed
above. Heterogeneous devices in the core of the network are only
required to implement infrequently changing configurations as part
of the fabric, while updates to policy can be realized at the edge,
thus reducing overhead.

The distinction between edge and fabric devices is particularly
relevant in optical circuit networks that are used to connect tradi-
tional packet networks. In these networks, traffic is transported us-
ing optical channels which are slow to set up (on the order of sev-
eral seconds), but allow for high bandwidth, at the cost of flexibil-
ity. Unlike packet networks, where the header fields of each packet
can be used to control forwarding, optical forwarding devices typ-
ically can only forward according to the frequency range occupied
by a channel, and cannot easily access the header fields of the trans-
ported packets. Extending the flexibility of SDN to these networks
would be a great improvement to their current level of programma-
bility. For these reasons, we focus on optical circuit networks as
our primary application domain.

This paper presents the design and implementation of a practical
framework for implementing high-level policies at the edge, using a

Policy
(expressed in >
NetKAT)

NetKAT
Compiler

FDDs Dyads
(ag, By

Fabric
(encoded in
NetKAT)

Edge Fabric

A

(@, By
'

LP Problem

'

Edge
Configurations

Figure 1: System architecture.

fixed fabric to provide connectivity through the core of the network.
The idea of implementing network programs in terms of an edge-
fabric distinction is not new. In fact, the term “fabric” is borrowed
from a paper by Casado et al. that is motivated by some of the same
issues identified above [7]. Recent work on the Felix traffic mea-
surement system also adopts an edge-fabric distinction: it analyzes
the paths used by the fabric and pushes monitoring tasks to the edge
of the network [8]. Panopticon tackles the issue of partial SDN de-
ployments in enterprise networks, but does not distinguish between
edge and fabric devices [23].

We had to overcome a number of technical challenges in building
our framework for “unraveling” policies into configurations:

e Analysis: To generate configurations for the devices at the
edge, we need to determine how the fabric forwards traffic
between end points. We exploit recent advances in data plane
verification, and build on the NetK AT framework [2], to com-
pute the requirements of the policy and the forwarding paths
provided by the fabric.

e Adaptation: To faithfully implement the functionality spec-
ified by a high-level policy using a fixed fabric, we need to
check that the transformations on packets performed in the
fabric are not in conflict with the transformations performed
at the edge. Sometimes it is possible to co-opt “spare” bits
in the header field to encode the high-level policy, but more
generally it is necessary to rely on some form of tunneling.

e Expressiveness: Certain policies can be expressed in terms
of a “one big switch” abstraction, in which only input-output
behavior matters [18]. But other policies, such as network
function virtualization and middlebox service chaining re-
quire paths with multiple segments, or require that paths tra-
verse certain nodes. Our approach naturally supports policies
based on the “one big switch” abstraction, and we add natural
extensions to support segmented paths and path constraints.

We have built a prototype implementation of our approach for rewrit-
ing high-level policies into edge device configurations. The front-
end analyzes the high-level policy and fabric configuration using
NetkAT. The artifacts of this analysis are then supplied to a back-
end that encodes them into constraint problems that can be solved
using a linear programming (LP) solver. The solution provided by

the solver is finally translated into forwarding rules that are installed

on the SDN-enabled edge switches at the edge. To evaluate the

performance and scalability of our approach, we conducted experi-

ments using real-world topologies and synthetic configurations.
The contributions of this paper are as follows:

1. We develop a practical framework for implementing high-
level network policies, based on the “one big switch” abstrac-
tion. Our framework supports heterogeneous devices, focus-
ing on networks with optical circuit cores and SDN-enabled
packet switches at edge.

2. We show how to automatically analyze and transform poli-
cies into equivalent edge configurations using the NetKAT
framework and off-the-shelf solvers for LP problems.

3. We design extensions to our basic framework including: (i)
multi-segment paths supporting applications like service chain-
ing and network function virtualizaion, and (ii) path con-
straints, which gives policies finer-grained control over how
the fabric is utilized.

4. We present an implementation that supports heterogenous
networks, using SDN devices for the edge and optical cir-
cuit devices for the core. We evaluate our implementation on
a large-scale, real-world topology and synthetic policies.

The rest of this paper is organized as follows: Section 2 motivates
the edge-fabric distinction and informally explains our approach us-
ing an example of an optical circuit network. Section 3 explores the
space of fabrics and policies and positions our work. Section 4 de-
scribes the NetK AT programming language, focusing on the proper-
ties we leverage, and extensions to support optical networks. Sec-
tion 5 describes the analysis techniques we build atop the NetKAT
compiler, and the translation to linear programming problems. Sec-
tions 6 details our implementation and 7 evaluates it on a real-world
optical topology. Section 8 discusses related work and Section 9 ex-
plores possible future directions. We conclude in Section 10.

2. BACKGROUND

This section presents our approach, using a simple running ex-
ample. Figure 1 depicts the individual components of our system
and its overall architecture.

2.1 Optical Networks

The distinction between edge and fabric is particularly prominent
in packet-optical networks, where the edge is composed of flexible
electrical switches, and the fabric is a optical circuit network.

In the optical core, network nodes are connected to each other via
optical fibers. Information is transmitted using wave-division multi-
plexing (WDM), which allows multiple channels to occupy a single
fiber on different frequency slots. WDM requires a multiplexer at
the source to combine multiple optical channels and a demutiplexer
at the destination to separate them back out. These functions can
be combined into a single physical device called an optical add-
drop multiplexer (OADM). OADMs typically have multiple ports,
each connecting an optical fiber to the OADM. On reconfigurable
optical add-drop multiplexers (ROADMS), the optical channels that
are demultiplexed from a particular port can be directed to differ-
ent outgoing ports, via software reconfiguration. In the rest of this
paper, we assume all devices in our optical core are ROADMs.

The edge of the network is composed of electrical switches, which
are connected to ROADMs via transceiver ports. When an edge
switch sends data to the optical core, the transceiver converts the
incoming electrical signals to an optical signal occupying a single
optical channel. The multiplexer on the ingress ROADM combines
several such single channels and emits the resulting signal on a
physical optical fiber. Conversely, on the receiver side, the egress
ROADM’s multiplexer separates out the optical signal from a phys-
ical fiber into the constituent channels, and emits each channel to a
transceiver on a particular port. The transceiver converts the optical
signal to an electrical signal for transmission to the receiving host.

We call the optical channel connecting an ingress and egress
ROADM a lightpath—a single-source, single-sink channel that may
span multiple contiguous fiber links, but must occupy the same set
of frequency slots on each such link. Each ROADM in a multi-link
lightpath demultiplexes incoming optical signals, routes the sepa-
rated channels to possibly different ports and then multiplexes the
signals for each port on to the connected optical fiber.

Crucially, reconfiguring an optical lightpath may take several
seconds, as opposed to packet switches which can be reconfigured
in milliseconds. This has important repercussions for network man-
agement, especially for latency critical applications and fault toler-
ance. To quickly respond to policy changes, a network manage-
ment solution must minimize reconfigurations of optical lightpaths.
Thus, it is imperative that most changes be implemented using the
packet switches at the edge. The framework developed in this paper
addresses this need, allowing the network administrator to flexibly
change policies while restricting configuration changes to the edge.

2.2 Example

As an example of a hybrid packet-optical network, consider the
topology shown in Figure 2. It consists of a fabric of ROADMs (di-
amonds), SDN-enabled packet switches on the edge (circles) and
end-hosts connected to the switches (squares). Let us assume that
there are two optical channels set up, one connecting port 2 on
ROADM 4 to port 2 on ROADM 5, and another connecting port
3 on ROADM 4 to port 2 on ROADM 6.

A network user may write a variety of policies that make use of
this topology. One possible policy is that all SSH traffic (TCP des-
tination port 22) from host 1 is sent only to host 3, and all Web
traffic from host 1 is sent only to host 2. To express this policy, we
need a concise way of specifying predicates on packet header fields,
and forwarding paths through the network. Fortunately, the NetK AT
programming language allows us to do just this [2]. A NetKAT pro-
gram allows a user to express network behavior in terms of func-
tions on packets. These programs are implemented in the network

Host 2

Host 1

Host 3

Figure 2: Optical fork topology.

Listing 1: User Policy NetKAT Program.

if switch=1 and port=1 and tcpDst=80 then
(sl:1 => s2:1)

else if switch=1 and port=1 and tcpDst=22 then
(sl:1 => s3:1)

else if switch=2 and port=1 then
(s2:1 => sl1:1)

else if switch=3 and port=1 then
(s3:1 => sl1:1)

Listing 2: Optical Configuration NetKAT Program.

if roadm=4 and port=2 then
channel:=1; (r4:1 => r7:1); (r7:2 => r5:1);
port:=2

else if roadm=4 and port=3 then
channel:=2; (r4:1 => r7:1); (r7:3 => r6:1);
port:=2

else if roadm=5 and port=2 then
channel:=1; (r5:1 => r7:2); (r7:1 => r4d:1);
port:=2

else if roadm=6 and port=2 then
channel:=2; (r6:1 => r7:3); (r7:1 => rd:1);
port:=3

by compiling them to flowtables for SDN-capable switches (eg.,
switches supporting the OpenFlow protocol). Section 4 describes
the syntax and semantics of the language, as well as the process for
compiling policies to flowtables. The intended forwarding behav-
ior in this example is concisely expressed by the NetKAT program
shown in Listing 1.

Implementing this policy on the given topology presents several
challenges. Since reconfiguring the optical channels incurs a large
time penalty, we should avoid changing the existing core configura-
tion if possible. In that case, even though the user is only concerned
with end-to-end behavior, they would have to understand the details
of the optical fabric configuration. Then, instead of the clean pol-
icy shown in Figure 1, the user would have to manually match up
packet switch ports to the optical transceiver ports and the chan-
nels they connect to. Finally, the user would need to write another
program—either in NetKAT or directly as a forwarding table—that
operates on the edge switches and correctly implements the desired
forwarding behavior. Although doing all this is feasible in princi-
ple, it is quite tedious and error prone process—moreover, it would
need to be repeated every time the policy changes.

Fortunately, in addition to allowing us to specify network be-
havior, the NetkKAT language and its compiler provides the tools
required to automate this rewriting. First, we encode the configu-

Listing 3: Generated NetKAT Ingress Program.

if switch=1 and port=1 and tcpDst=80 then

vlanId := 1; port := 2
else if switch=1 and port=1 and tcpDst=22 then
vlanId := 2; port := 3
else if switch=2 and port=1 then
vlanId := 3; port := 2
else if switch=3 and port=1 then
vlanId := 4; port := 2

Listing 4: Generated NetKAT Egress Program.

if vlanId=1 and switch=2 and port=2 then
strip vlan; port :=1

else if vlanId=2 and switch=3 and port=2 then
strip vlan; port := 1

else if vlanId=3 and switch=1 and port=2 then
strip vlan; port := 1

else if vlanId=4 and switch=1 and port=3 then
strip vlan; port := 1

ration of the optical core in NetKAT as well, using a subset of the
language that can be compiled to optical circuits (described in Sec-
tion 4.2). Listing 2 shows a NetKAT program that implements the
optical channels for this example. Using this fabric program, we
can “unravel” the user policy into ingress and egress NetKAT pro-
grams that apply only to the edge switches (as shown in Listings
3 and 4 respectively). Section 5 describes how we use the NetK AT
compiler to transform programs into pairs of predicates and modi-
fications that capture the input-output behavior of the network, and
then match the pairs from the policy with those in the fabric.

The user can treat the core fabric as “one big switch” that con-
nects the edge locations. Our compiler finds paths in the fabric
that provide the end-to-end connectivity required by the policy, and
relocates any predicates (eg., t cpDst=80) or modifications spec-
ified in the policy to the edge. Changes to the policy only affect the
edge switches. This reduces the overheads associated with imple-
menting policy changes, assuming the fabric changes infrequently.

To perform this rewriting, we leverage the intermediate data struc-
tures used in the NetKAT compiler. NetKAT programs are com-
piled to intermediate representations called Forwarding Decision
Diagrams (FDDs), which are used to generate forwarding tables
for switches running the OpenFlow protocol [29]. By analyzing the
FDD representation of the program we can pair up each predicate
used to distinguish traffic classes, and the corresponding modifica-
tions made to matching packets. We call each such pair a dyad.
Since NetKAT treats switch and port location as logical fields in
packet headers, the collected predicates include the starting switch
and port, and modifications include the destination switch and port.
Thus each pair of a predicate and modification denotes the source
and sink of a particular traffic class.

Performing this analysis on the user policy gives us the required
sources and sinks of each traffic class. The same analysis on the
fabric gives us sources and sinks of each path provided by fabric.
We develop two back-ends to match the required end-points to the
provided paths—one using simple graph algorithms, and another
using a translation to a linear programming problem, which can be
solved automatically.

Once policy end-points are matched to fabric paths, we need to
distinguish multiple policy traffic classes that are sent across the
same fabric-provided paths. At the destination, we may need to
separate them out again, either to forward out different ports, or to
modify header fields in different ways. This separation is achieved

by generating an ingress program that uses the policy’s predicates
to match incoming traffic, apply a unique tag to each packet and
forward to ports that match suitable paths in the fabric (as in List-
ing 3). Conversely, the egress program matches on the tag at edge
locations and performs any policy-specified modifications and final
forwarding (as in Listing 4).

3. FABRIC REQUIREMENTS

The example presented in Section 2 uses an optical fabric that
provides connectivity between two end-points, with no further re-
strictions or modification on what kind of traffic it carries. However,
in general, the fabric may only forward certain traffic classes—i.e.,
it may require incoming traffic to satisfy some other predicate in or-
der to be forwarded to its destination. The fabric may also modify
packets in transit in ways that conflict with the policy. For example,
if the fabric forwards packets based on destination addresses, then
incoming packets will need to have a particular address to reach the
correct destination. Hence, traffic entering at the edge of the net-
work may need to be modified to reach the correct destination, and
these modifications should be reverted at the end. In general, any
approach to rewriting a network policy to utilize an existing fabric
will depend on properties of the fabric and policies, in terms of for-
warding ability, predicate enforcement and underlying implemen-
tation. This suggests a rich space of fabric capabilities and policy
requirements that is worth classifying to guide further development.

In order to implement a given policy, the fabric must satisfy two
crucial requirements. First, it must provide connectivity between
the required end-points. Second, it must not irreversably alter traf-
fic that passes through it. Section 5.2 describes a path matching
technique that tests for the first condition—whether a fabric pro-
vides the required connectivity. Since multiple classes of policy
traffic may traverse the same fabric path, utilizing these connections
requires some form of tagging in general (possibly a VLAN tag or
MPLS label) to keep the policy-defined traffic classes separate. The
modifications required by the policy can be extracted from the FDD
representation of a NetKAT program, and can be applied at the des-
tination by checking the tag. These techniques can be implemented
using switches supporting SDN protocols like OpenFlow.

If the fabric modifies packet headers, then even if policy traffic
can be directed to the correct destination, it might be modified in
a way that violates the policy (for example, a fabric that performs
some kind of network address translation would break any policy
that depends on IP addresses and TCP ports). Having some form of
tunneling available at the end points avoids this problem.

An adequate tunneling mechanism encapsulates incoming pack-
ets, protecting them from modifications made by the fabric, and
allows recovery of the original, unaltered packet at the destination.
As far as the policy is concerned, traffic is carried unchanged from
one point on the edge to another. This could be provided by pro-
tocols such as MPLS or VXLAN, or by custom dataplanes written
using a language like P4 [5]. Tunneling is common enough that we
can safely assume some form of tunneling to be present in practical
network deployments.

The techniques described in this paper focus on fabrics imple-
mented using optical channels. In this setting, connectivity between
two points is provided by an optical channel between them. Optical
fabrics provide a form of tunneling: ROADMs can operate only on
the optical signals without affecting the packets they carry. They
provide the necessary connectivity and tunneling properties, and
provide good motivation for exploring the edge-fabric distinction
(as described in Section 2).

If a fabric provides connectivity, but does not have some form of
encapsulation, all is not lost—the fabric may test header fields on

[p+q

Semantics
[p] € pk — {pk}

[true] pk = {pk}
[false] pk = {}
if pk.f =n

[f=n]pk =’ {gjk} otherwise
[=al pk £ {pk} \ ([a] pk)
[f <=nl pk £ {pk[f = n]}
[pk £ [p] pk U [q] pk
[p- ql pk = ([p] ® [q]) Pk
[[p*]] PkéUiFiPk

where F° pk 2 {pk} and '™ pk £ ([p] F?) pk

Figure 3: NetKAT abstract syntax and semantics.

Syntax
Naturals n:==0]1]2]...
Fields f:u= Al | fe
Packets pk:= {fi=mn1, -, fi =nk}
Predicates a,b ::= true Identity
| false Drop
| f=n Test
| a+b Disjunction
| a-b Conjunction
| —a Negation
Programs p,q ::=a Filter
| f<n Modification
| p+gq Union
| p-gq Sequencing
| p* Iteration
Filter f ::= switch=n-port=n
Channel w ::= channel :=n
Links [== sw:pt— sw :pt
| 1-1
Circuit ¢ == f- w-l- port:=n
Programs c

c+c

(a) Circuit NetKAT syntax.

Allocation A € (sw,pt) — channel
Channel C' € circuit — channel
Path P €circuit — {(sw,pt)}

f = switch = sw - port = pt
w = channel :=n
c=f-w- - port:=pt
last(c) = (sw’, pt")
V(sw,pt) € P(c). A(sw,pt) =n

e CONTINUITY
Ak At e
C(c1) =C(c2) = P(c1) NP(e2) = @
DISJOINTNESS
Al ci+co

(b) Circuit NetKAT validity rules.
Figure 4: Circuit NetKAT syntax and validity rules.

incoming traffic, or make modifications before it exits the fabric. If
the fabric tests header fields, but performs no modifications, we can
still use path matching to detect appropriate fabric paths. The same
technique that we use to detect a fabric path between two end points
also detects the complete predicate on packet headers tested by the
fabric to take that path. Even if this tests are applied in the middle
of the fabric, or is distributed across multiple nodes, the technique
described in Section 5.2 can collect and “pull out” this predicate
so that it can be used for analysis as described below. Alternatively,
the fabric may conflict with the policy. This conflict can be detected
by analyzing the fabric’s requirements according to three cases:

1. The fabric tests only switch and port. In this case, no mod-
ifications are required, traffic only has to be directed to the

correct location to enter the fabric.

2. The fabric tests a subset of fields that a policy predicate tests.
In this case, the policy already requires us to produce a fine-
grained forwarding rule to enter the fabric. The ingress rule
can apply the packet header modifications to satisfy the fabric
as well as a unique tag. The egress program matches this tag
and rewrites the modified headers back to what the policy
expects. Since we generate rules to attach and match tags
anyway, this does not increase the size of flowtables on the
edge switches. This is also handled easily by SDN-capable
switches.

3. For all other cases, it is necessary to encapsulate the user
traffic in a packet whose headers may be modified freely to
satisfy the fabric and then discarded at the egress.

However, if the fabric alters incoming traffic in some way, there
is no general way to reverse the modifications (at least, without
an exponential increase in the size of the flow tables at the edge).
Thus a lack of encapsulation is not fatal, but severely restricts what
classes of fabrics can be targeted by our techniques.

4. NETKAT LANGUAGE

This section reviews the syntax and semantics of NetKAT, to pro-
vide background for the rest of the paper. NetKAT is a domain-
specific language for specifying and reasoning about packet for-
warding behavior in SDN-enabled networks [2, 11, 29]. The lan-
guage provides high-level, hardware-independent constructs for writ-
ing network programs, as well as sound and complete mechanisms
for reasoning about the packet-forwarding behavior.

The abstract syntax and semantics of NetKAT are presented in
Figure 3. The semantics of the NetKAT language is given in terms of
functions on packets. The notation [p] pk = S means that program
p produces output set S when supplied with input packet pk. For
readers familiar with NetKAT, note that we only model the local
semantics of the language—i.e., we do not keep track of packet
histories, as we do not need them in this paper.

NetKAT is higher-level than the APIs exposed by most SDN con-
trollers, which are usually based around low-level structures like
forwarding tables for switches. By contrast, NetKAT programs are
functions defined in terms of predicates on packet header fields,
modifications to the headers, and combinations thereof using se-
quencing, union and iteration operators.

{au, .. .,alk} + {a21, .. .,agl} é{0,11, .. .,alk} U {61217 .. .,agl}
(f:n?d11 :dlz) + {CL217 .. .agl} £ (fzn?d11 + {61/217 .. .agl} tdio + {a21> c. agl})
(fi=n1?7di + do1 :di2 + d22) if i =foandni =no

(fi=n1?di1:di2) + (o=n2?do1:da2) 2 ¢ (A

(omitting symmetric cases)

=n1 ?7di1 + da2:di2 + (f
(i=n17du + (f

=ns ?do1 :d22)) iffl = f2 and ny C no
=ng ?do1 :d22) :di2 + (fo=n27da1:d22)) iffi Cfo

{a1, .. ar}l=n 2 (f=n? {a1,...,ax} : {})
(f:’l’L?dll : {}) lff = f1 and n = ni
d n if f=fiandn #n
(i iy + dz) |y 2 (d12) |s= . f=h #n
(f n7(f1 nl?d111d12)1{}) lff |:f1
(i=n17?(d11)|f=n :(d12)|f=n) otherwise
di-d2] a-{ay,...a}2{a a0 ai) -2
a-ds if f<nea —{ai1,...,ar} = {} where k > 1
a-(f=n?di:dz) =< a-do iff+n'€ann’ #n (f=n7di:d2) = (f=n?-d:~ds)
(f=n?a-di:a-d2) otherwise P de 2 fix (Ad .
= . +d-d
{al,...,ak}-déal‘d+...+ak-d * IX({{}})
(f=n?di1:d12) - da £ (di1 - da) |f=n +(d12 - d2) |f£n

Figure 5: Formal definitions for local compilation to FDDs, from [29].

NetKAT treats a packet as a record of fields f ranging over stan-
dard headers such as Ethernet and IP source and destination, as
well as logical fields such as sw and pt, which keep track of the
switch and port where the packet is currently located in the network
and are useful for program analysis. Atomic terms in the language
are predicates on, or modifications to, packet fields. Each predi-
cate behaves like a filter on packets—packets that do not match the
boolean condition encoded in the predicate are dropped. Predicates
include primitive tests on field values (f = n), as well as standard
boolean operators (4, -, and —). Modifications (f — n) update the
field f with the value n. The union operator (p + p’) copies the
input packet, processes one copy using p and the other copy using
p’, and takes the union of the resulting sets of packets. Note that
some operators are overloaded and can be applied to predicates and
policies—e.g., + is meant to represent disjunction on predicates
and union on policies. The behavior specified in the denotational
semantics in Figure 3 captures both cases. The sequential compo-
sition operator (p - p’) processes the input packet using p and then
feeds each output of p into p’. This form of composition is denoted
by e. Iteration p* behaves like the union of p composed with it-
self zero or more times. To make authoring programs easier, links
(swl : ptl — sw?2 : pt2) and conditionals (if-then-else) are en-
coded as follows:

swl : ptl — sw2 : pt2 =

sw = swl - pt = ptl - sw = sw2 - pt := pt2
if a then p; else p2 £

(a-p1) + (ma-p2)

We will use these constructs frequently in examples, although they
do not increase the expressive power of the language.

4.1 Encoding Network-Wide Behavior

NetKAT can be used to specify both the forwarding functionality
provided by the fabric, as well as the behavior required by a pol-
icy. The programmer specifies forwarding paths using predicates
and modifications, combined using the regular operators described

L[false] < {}
Lltrue] = {{}}

Llfn] = {{fen}}
Llf=n] = (f=n? {{}} : {})
L[=p] £ ~L[p] Llpr + p2] = L[p1] + L[p2]
Llp"] = LIp) Lpr - p2] = LIpa] - LIp2]

Figure 6: Local compilation to FDDs, from [29].

above. Since NetKAT expresses links as modifications to switch
and port fields, a network topology can be encoded as a union
of links. Furthermore, given predicates ¢n and out defining ingress
and egress locations, the end-to-end behavior of a network with for-
warding policy p and topology ¢ is described by:

n-(p-t)"

Informally, this program accepts incoming packets and repeatedly
processes them at switches and forwards them across links until
they exit the network. We refer to this construct as the analysis
form of a NetKAT program. A program in this form accepts incom-
ing packets and repeatedly forwards them across switches and links
in the topology, until they exit the network. Expressing network
behavior in this form allows the compiler to perform analyses and
generate data structures useful for our rewriting approach in Sec-
tion 5. Finally from the analysis form, the compiler can generate
forwarding tables for individual SDN switches. These flowtables
together implement the forwarding behavior specified by the origi-
nal NetKAT program [29, 13].

4.2 Circuit NetKAT

Although NetKAT allows the specification of global behaviors,
it is sometimes less convenient for describing certain kinds of fab-
rics. In particular, circuit-based fabrics (such as optical networks)
have their own set of constraints that are not enforced by default
in NetKAT. For example, optical channels have the following con-

-p-out

straints, which differentiate them from switches in packet networks:

1. Optical continuity: an incoming channel can be dropped
or forwarded to an outgoing port, without changing the fre-
quency slots the channel occupies.

2. Split restriction: an incoming channel cannot be forwarded
to more than one outgoing ports.

3. Merge restriction: channels occupying overlapping frequency

slots coming from multiple incoming ports cannot be merged
to the same outgoing port.

4. Transponder restriction: a transponder port (that converts
between electrical and optical signals) cannot input or output
on more than one optical channel.

To enforce these constraints, we identify a constrained subset of
NetkAT, called Circuit NetKAT. As its name suggests, a Circuit
NetKAT program is a set of circuits, where each circuit is defined
by a starting switch and port, a channel identifier, a list of hops and
a final egress port, where each switch is an optical ROADM. The
syntax is given in Figure 4a.

Circuit NetK AT programs are valid if they satisfy the validity con-
ditions outlined in Figure 4b. Each circuit can be viewed as an al-
location (A) from (switch, port) pairs to a channel identifier. The
first condition (CONTINUITY) states that all points on the path de-
fined by the circuit are allocated the same channel identifier. This
satisfies the optical continuity restriction. The second condition
(DISJOINTNESS) states that if two circuits use the same channel
identifier, then their paths must be disjoint, i.e., at each port, a par-
ticular channel comes from, and is forwarded to, at most one des-
tination. This condition satisfies the split, merge and transponder
restrictions above.

A compiler takes a Circuit NetKAT program and checks if the
program is valid according to the above conditions. If the program
is valid, it is converted into a NetKAT program, otherwise it is re-
jected. This conversion simply involves inserting port assignments
in between the links to properly forward signals from ingress to
egress ports on each ROADM. The resulting program can then be
compiled to flowtables that implement an optical forwarding fabric.
In our implementation, we developed an extension to the NetKAT
compiler backend so that the generated flowtables can be installed
and tested on an optical network simulator (described in Section 6).

4.3 Forwarding Decision Diagrams

NetKAT programs can be compiled to an intermediate representa-
tion called a Forwarding Decision Diagram (FDD) [29]. FDDs are
generalizations of structures called binary decision diagrams [1].
They are trees where internal nodes represent tests on packet head-
ers, each with a “true” and a “false” branch. Leaf nodes are sets
of modifications to packet headers. Figure 7 shows an example
NetKAT program and the FDD it generates.

A leaf node in the FDD is a set of actions, denoted {a1, . .., ax}.
An action a maps fields to values: {fi<ni,..., fr<ni} with
each field occuring at most once. An internal node, written as
(f=n7d:d2), is specified by a test f=n and two sub-diagrams.
If the packet satisfies the test the true branch (d,) is evaluated, oth-
erwise the false branch (d2) is evaluated. FDDs must also satisfy
well-formedness judgments ensuring that tests appear in a consis-
tent order and do not contradict previous tests to the same field.

The NetKAT primitives true, false, and f <—n all compile to sim-
ple leaf nodes. The empty action set {} drops all packets while
the singleton action set {{}} contains the identity action {} which

src=11.1.1.1
if src=11.1.1.1 then /
(if dst=10.0.0.1 then !

port el K dst=10.0.0.1
else if dst=10.0.0.2 then /) J
port:=2 / ? dsti=10.0.0.2
else ;o
false) yl‘{/
else O O O
false drop pt<2 pt«1
o B
—src=11.1.1.1 drop
src=11.1.1.1 A =dst=10.0.0.2 A =dst=10.0.0.1 | drop
src=11.1.1.1 A dst=10.0.0.1 pt+1
src=11.1.1.1 A dst=10.0.0.2 A =dst=10.0.0.1 | pt<2

Figure 7: Example NetKAT program, FDD, and dyads.

copies packets unchanged. NetKAT tests f=n compile to a con-
ditional whose branches are the FDDs for true and false respec-
tively. The union operator (dy + d2) traverses d; and d2 and takes
the union of the action sets at the leaves. Sequential composition
(d1 - d2) merges two packet-processing functions into a single func-
tion. It uses auxiliary operations d |f=, and d |f£n (described in
Figure 5) to restrict a diagram d by a positive or negative test re-
spectively. The FDD Kleene star operator dx is defined using a
fixed-point computation. The well-formedness conditions on FDDs
ensure that such a fixed point exists. The compilation process is for-
malized in Figures 5 and 6 and is described in further detail in the
original paper on the NetKAT compiler [29].

4.4 Generating Dyads from FDDs

A depth-first search over the FDD lets us collect up pairs of pred-
icates (the conjunction of internal nodes, denoted «) and corre-
sponding modifications (a leaf node, denoted () that encode the
input-output behavior of the program. That is, by compiling a
NetKAT program to an FDD, we can easily produce a compact rep-
resentation of its forwarding behavior that can be used for further
analysis. We call each pair of a predicate o and its correspond-
ing modifications /3 a dyad. Since the analysis form includes the
topology and ingress and egress predicates, « includes the starting
switch and port, and 3 includes the destination switch and port.
Thus a dyad captures the source and sink of all traffic satisfying a
given predicate.

Figure 7 shows a simple NetKAT program, the corresponding
FDD and the generated dyads. There are four paths from the root
node of the FDD to a leaf. The two leftmost paths lead to a drop
node. The rightmost path checks the source IP (src=11.1.1.1) and
destination IP (dst=10.0.0.1) and forwards out port 1. The remain-
ing path checks the source and destination IP addresses, must also
check for the negation of the previous destination IP address.

Performing this analysis on the programmer-supplied policy gives
us the required sources and sinks of each traffic class. The same
analysis on the fabric gives us sources and sinks of each path pro-
vided by fabric. The remainder of our system leverages the FDD
structure and the dyads derived from them to determine how re-
quired functionality can be mapped onto an existing fabric. Sec-
tion 5 discusses the requirements for a correct mapping and de-
scribes our architecture and approach.

S. COMPILATION TO THE EDGE

Next we describe how to implement policies expressed in NetKAT
into an equivalent edge implementations. We first present a basic

compilation algorithm, and then discuss extensions with segmented
paths and constraints on paths.

5.1 Problem Statement

Our goal is to start with a network policy and generate edge con-
figurations that leverage the fabric for connectivity. Accordingly,
our compiler takes as inputs a network policy and a forwarding fab-
ric (both expressed as NetKAT programs), as well as a set of edge
switches to target. Additionally, we assume knowledge of the phys-
ical topology, such as the ingress/egress predicates for both the pol-
icy and fabric. Given these inputs, we generate ingress and egress
NetK AT programs, with the following properties:

1. Edge implementation: Both programs can be implemented
entirely on edge switches—i.e., any switch predicates in
the generated programs only match edge switches.

2. Ingress classification: The ingress program implements the
same traffic classification as the user policy—i.e., the union
of all the as derived from the user policy’s FDD.

3. Egress modification: The egress program implements the
same modifications to packet header fields as the user policy—
i.e., for each o implemented by the ingress program, the
egress program must apply the corresponding /3 to the same
traffic class.

4. Fabric transit: From each («, 8) pair derived from the pol-
icy’s FDD, the fabric forwards from the source location in «
to the sink location in .

Together, these properties ensure a “one big switch” abstrac-
tion [18, 3]—a combination of edge program and fabric is equiv-
alent to a policy program if they produce the same input/output be-
havior. Formally, if f and p are the NetKAT programs for the fabric
and policy, then let ¢ = [f], ¢p = [p] denote the corresponding
packet forwarding functions according to the NetKAT semantics in
Figure 3. The desired edge forwarding functions are given by ¢;
(for ingress), and ¢, (for egress). The correctness condition for a
compiler implementing the “one big switch” abstraction is captured
by the following equivalence:

piopsedo=dp

Our compiler computes programs 4 and o such that ¢; = [¢] and
¢o =[], or fails if no such programs exist.

5.2 Basic Compiler

For both the fabric and user policy we produce an analysis form
as described in Section 4.1. The NetKAT compiler generates For-
warding Decision Diagrams for each program. By iterating through
the FDD, we convert each program to a set of dyads—pairs of pred-
icates (o) and modifications (/3). Since the analysis form includes
the topology as well as network ingresses and egresses, as include
the starting switch and port (sources), and s include the destination
switch and port (sinks). In order to correctly implement a policy
using an existing fabric, we need to match the sources and sinks re-
quired by the policy’s dyads to those provided by the fabric. We’ve
explored two approaches to solving this matching problem.

Our first approach is based on simple graph algorithms. We con-
struct a connectivity graph G where the nodes are the sources and
sinks of the user policy. There is an edge between two nodes if
they are connected via a path in the fabric. We determine this by
iterating through the (v, 3) pairs for the fabric, and adding an edge
to G if the « contains (or is one hop away from) a source and the
corresponding [contains the sink (or is one hop away from it). To

Element | Definition
Input F Fab.rlc dyads, %ndexed by]
P Policy dyads, indexed by ¢

src(d) A function (Dyad — switch)
dst(d) A function (Dyad — switch)

Generated | V; ; Dyad ¢ possibly implemented by dyad j

Output Vi,; =1 | Dyad ¢ implemented by dyad j
Minimize S Vi
ieP
JEF
such that Vi e P > Vii=1
JEF
VieP,Vj eF Vi =20
iff sre(P;) # src(F})
V dst(P;) # dst(F})

Figure 8: Dyad matching as an LP problem.

connect a source and sink, we simply check whether there is an
edge between them in G.

Our second approach is based on a formulation as a linear pro-
gramming problem whose solution is a matching between policy
and fabric dyads. We generate a sequence of variables V; ; denot-
ing the possibility of policy dyad ¢ using the fabric dyad j. If the
endpoints of policy dyad ¢ and the fabric dyad j are not identical
(or adjacent), then we generate a constraint limiting V; ; = 0. In
the basic case, we choose a single fabric dyad to implement each
policy dyad. This is enforced by a constraint > V;; = 1 for

J Efabric
each policy dyad j. The full LP formulation is given in Figure 8.

Using an LP formulation is more powerful than is strictly needed,
but it allows for better extensibility. To include additional features
such as path constraints, we simply need to add more variables and
constraints to the LP problem. Without it, we would have to write
custom analyses over the dyads or the connectivity graph for the
same functionality. Note also that the generic objective function
used here could be replaced with network-specific objectives.

After a matching fabric dyad is found for each policy dyad, we
need to generate ingress and egress programs that implement the
policy using the fabric. We use each « in the policy as the predi-
cate for a forwarding rule on the source switch, and generate output
actions for the rule in two steps. At the source, since more than
one stream of traffic may take the same path through the fabric, we
attach a tag (eg, a VLAN tag) unique to this « to each packet. The
collection of these forwarding rules form the required ingress pro-
gram. Similarly, on the corresponding sink we install the matching
B, modifying it to act only on traffic matching the tag attached by
the source. These modified Bs form the egress program.

5.3 Segmented Path Compilation

The “one big switch” abstraction allows network administrators
to specify the endpoints of a particular class of traffic. A natural ex-
tension is to allow specifying an entire path, (e.g., s1 = s2 = 53)
instead of just a source-sink pair. Such a segmented path connects
intermediate nodes that are part of the user-controlled edge. For
each neighboring pair of nodes in the chain, the compiler would
have to find a connecting segment through the fabric. The seg-
ments are then chained together to construct the whole path. Just as
in dyad matching, we use a unique tag (e.g., a VLAN tag) to differ-
entiate traffic classes and track them across segments. An ingress
program that matches the policy’s « and attaches the appropriate

Listing 5: Multi-segment program for applying a firewall.

if dst=backend and tcpDst=80 then
frontend ==> firewall ==> backend

else if dst=backend and tcpDst=22 then
frontend ==> backend

else if dst=frontend then
backend ==> frontend

Listing 6: Ingress and egress program for firewall application.

if switch=2 and port=1 and dst=frontend then
vlanId := 3; port := 2
else if switch=1 and port=1 and
tcpDst=22 and dst=backend then
vlanId := 2; port := 3
else if switch=1 and port=1 and
tcpDst=80 and dst=backend then
vlanId := 1; port := 2

if vlanId=3 and switch=1 and port=3 then
strip vlan; port :=1

else if vlanId=2 and switch=3 and port=2 then
strip vlan; port := 1

else if vlanId=1l and switch=2 and port=2 then
strip vlan; port :=1

else if vlanId=1 and switch=3 and port=2 then
strip vlan; port :=1

tag is installed at the start of the path. At each intermediate node,
we send traffic from the fabric to the edge switch, and install bounce
programs that examine the tag and return traffic to the fabric. Fi-
nally, we install an egress program at the end to match the tag and
apply modifications according to the policy’s 5. Note that we only
install rules on the relevant edge switches, without modifying the
fabric connecting them. Thus the core of the network can remain
static, reducing the overhead in changing network policy.

Segmented paths are simply an extended form of dyad matching.
We find a fabric dyad to carry the traffic in between each consecu-
tive pair of points. We extend our LP back end with some additional
bookkeeping to reuse the same tag across each segment, and then
apply the proper modifications at the end. NetKAT can already de-
scribe paths by specifying each hop, as shown in our motivating
example in Listing 2. This extension allows us to to describe gen-
eral paths while letting the compiler determine the specific hops.
Such policies are useful for applications involving service chaining
and middleboxes—e.g., network functions such as firewalls and in-
trusion detection are implemented on nodes at various points in the
network, and simpler switches in the core of the network move traf-
fic to the required processing nodes.

For example, Listing 5 shows a NetKAT program that directs Web
requests from a front-end to a back-end through the firewall, but
SSH traffic and traffic from back-end to front-end can pass directly
through. An optical fabric similar to that in Figure 2 could support
this program, with the firewall, front-end and backend replacing the
hosts. The fabric program would be similar to Listing 2. Listing 6
shows generated ingress and egress programs. VLAN tags are used
to separate different traffic classes. We assume that the intermediate
nodes require the original traffic, without tags. Therefore tags are
removed and reapplied at the end of every segment.

5.4 Compilation With Path Constraints

Segmented paths allow the policy to direct traffic across multi-
ple points on the edge. However they do not provide any control

Element | Definition
F Fabric dyads, indexed by j
P Policy dyads, indexed by ¢

Inout src(d) Function: Dyad — source switch

P dst(d) Function: Dyad — sink switch
path(d) Function: Fabric dyad — nodes on path
pes(d) Function: Policy dyad — path constraints
Generated Vi Dyaq 1 possibly implemented 'by dyad j

Ny, j Fabric nodes n used by dyad j

Output Vi,; =1 | Dyad ¢ implemented by dyad j

Minimize S Vi
ieP
JEF
such that
VieP S>Vii=1
JEF
Vn € nodes,Vj €F N, ,; =0 iff n ¢ path(j)
Vi e P,Vj €F Vi =0 iff
Ny < [pes(i)
néepes(i)
Vi e P,Vj €F Vi =0 iff
src(P;) # sre(Fy)

V dst(P;) # dst(F)
Figure 9: Dyad matching with path constraints as an LP problem.

over how the fabric is utilized—the compiler chooses any available
fabric dyad with matching end-points. Finer-grained control can be
exposed by incorporating path constraints—i.e., instead of allowing
arbitrary intermediate nodes on the path that implements a policy,
we allow the programmer to specify constraints on the paths that
traffic must pass through. To find a matching fabric dyad, we need
to consider the entire path represented by the dyad, not just the end-
points. Only the fabric dyads whose paths contain all the required
nodes can be used to carry the policy traffic. This form of path con-
straint is particularly useful in the optical domain—optical signals
need to be regenerated after being transmitted for a certain distance,
but only certain nodes in an optical fabric are equipped with regen-
erators. By specifying that the appropriate nodes with regenerators
must be visited as points on the path, a policy can ensure that traffic
will reach its destination.

Starting from the linear programming formulation described in
Section 5.2, we add more constraints to capture the fabric’s pro-
vided paths and the policy’s required intermediate nodes. First, we
use the NetKAT compiler framework to produce a mapping from
fabric dyads to paths (the path(d) function in Figure 9). This can
be done by symbolically executing the NetKAT program with re-
spect to the given dyad. From the policy, we produce a mapping
from policy dyads to the intermediate nodes required for each dyad.
This is represented by the pcs(d) function in Figure 9

We generate a variable IV, ; for each dyad j, and node n in the
fabric. We generate constraints setting N, ; = 1 if n is on the
path for dyad j and O otherwise. Recall that in the original LP for-
mulation we generate variables V; ; representing the possibility of
policy dyad ¢ being implemented using fabric dyad j. We constrain
Vi,; = 0 unless the dyad endpoints are the adjacent. If policy dyad
1 also specifies nodes ng . .. ny as intermediates, we generate fur-
ther constraints that set V; ; = 0 unless all of Ny ;... Ny, ; are
1. The extended LP formulation is shown in Figure 9.

Figure 10: CORONET 60-node optical topology [4].

6. IMPLEMENTATION

We have developed a prototype implementation of our edge com-
pilation framework as well as a supporting simulation and testing
system. The dyad matching algorithm, segmented paths and path
constraint extensions are implemented atop the NetKAT compiler.
The iteration over FDDs to produce dyads is implemented as a 400-
line OCaml module. A 300-line OCaml module serializes the lin-
ear programming problems to a format understood by the Gurobi
solver. This serialization module is used by both the dyad matching
back-end (100 lines of OCaml) and the path constraints back-end
(115 lines). Syntax extensions to support Circuit NetKAT and seg-
mented paths are another 300 lines of OCaml.

We also develop a simulator for hybrid packet-optical networks
as in Section 2. The open-source Linc-OE software switch sim-
ulates ROADMs, and supports an API based on the OpenFlow 1.3
protocol to set up the optical channels. The packet switches are sim-
ulated using the Mininet simulator [22], and we developed a 200-
line Python extension to embed Linc-OE switches in Mininet. To
control the switches in the network, we developed a packet-optical
OpenFlow controller in Java using the OpenFlowl] library (500 lines
of Java). The controller accepts switch forwarding tables as emitted
by compiler and installs them on the simulated switches. The ex-
amples in Sections 2 and 5.3 have been tested using this simulator.

Finally, we developed a set of tools to generate optical fabrics
and test policies based on network topologies. We use these tools to
perform scalability tests on our system using a real-world topology,
as described in the next section.

7. EVALUATION

We evaluate our compiler on CORONET (Figure 10), a real-
world optical topology with 60 nodes that is representative of cur-
rent carrier networks [4]. The network stretches across the conti-
nental United States with three link-diverse cross-continental paths.
We use this topology to generate realistic optical fabrics and poli-
cies and measure our compiler’s performance on a variety of inputs.
All experiments were run on Dell r620 servers, equipped with two
eight-core 2.60 GHz E5-2650 Xeon CPUs and 64 GB of RAM run-
ning Ubuntu 14.04.1 LTS.

7.1 Topologies, Fabrics, and Policies

To generate the optical topology, we place a ROADM at each
node in the physical topology. Then we attach packet switches to
the ROADMs on the two coasts, using a configurable number of
transponder ports. The packet switches constitute a flexible edge

3,000 |- R

2,000 |- 4

1,000 |- B

Conversion time(in s)

I I I I
5 10 15 20

Number of edge nodes

(a) NetKAT Fabric to Dyad conversion.
T T T

s

150 - b
100 |~ b

50 - b

Conversion time(in ms)

Number of edge nodes

(b) NetKAT Policy to Dyad conversion.
Figure 11: Dyad conversion scalability.

network to use as the target for our generated edge programs. Given
this topology, we generate a range of fabrics and edge policies.

To generate the fabric, we choose a subset of ROADM nodes
located along either coast. From this subset, we randomly choose
pairs of nodes (Re, Ry), such that each is on an opposite coast.
We then find three paths between R. and R,, such that each path
goes over a different physically disjoint cross-continental path. For
each such path, we create a unique optical channel between R.
and R,,. Using these channels, we generate a NetKAT program to
implement the fabric. The program matches traffic incoming on
the transponder ports (connected to the packet switches) and places
them on an appropriate channel. The channels are forwarded across
the network using the appropriate paths. At the egress, the program
matches optical channels and outputs them to a transponder port.
By increasing the number of coastal ROADMs that we connect via
optical channels we can scale the size of the fabric. Using this fab-
ric, we can generate policies to test the various parts of our system.

To test the scalability of the basic dyad matching functionality,
we generate policies to provide cross-country connectivity. We start
with pairs of nodes (P, P,,) such that each is a packet switch on
opposite coasts. We use NetKAT predicates to separate out and for-
ward a number of traffic classes between each P. and P,,. By con-
necting increasing number of edge nodes, we can increase the size
and complexity of the policy.

7.2 Dyad Generation Scalability

The first step in producing the required edge programs is to con-
vert the fabric and the policy from NetKAT programs into dyads for
the later stages. This computation is the same irrespective of how
the dyads are matched. Figure 11(a) shows the time taken to con-
vert the fabric into dyads using the NetKAT compiler framework.
Figure 11(b) shows the time taken to convert the policy into dyads.

The time taken to produce the dyads for the fabric is the largest—
nearly an hour for the largest fabrics. This time dominates the con-
version time for the policy (less than 200 ms). However, one of
our motivating constraints is that the fabric is rigid and changes
infrequently, while the policy may change often. Thus the dyad
conversion for the fabric could easily be performed just once and
then cached for subsequent changes to the policy. Moreover, we
believe its performance can be further improved by adding further
optimizations to the NetKAT compiler.

7.3 Dyad Matching Scalability

The results of running our dyad-matching back-end on increasing
fabric and policy sizes is shown in Figure 12. Each graph plots
the number of coastal nodes on the X-axis, and the time taken to
complete each stage of the matching process on the Y-axis. Figures
12(a-c) show the time taken to generate the matching problem, the
time to solve the problem, and the time to generate the NetK AT edge
programs to implement the found matching respectively.

The graphical matching approach completes in microseconds,
while generating the LP problem and solving it takes only hundreds
of milliseconds. In either case, even very complex changes to the
policy across the entire topology can be handled in a small amount
of time. The time penalty paid for the LP approach is made up
for by flexibility—generating the extra linear constraints for imple-
menting path constraints takes only 10 lines of OCaml.

7.4 Path Constraint Scalability

We can now extend the basic matching evaluation with path con-
straints. Starting from the same fabric and policy setup, we add
an increasing number of intermediate nodes to the policy. For each
bicoastal pair of nodes (P, P,,) we add an increasing number of in-
termediate points drawn from one of the physical paths connecting
them. Figures 13(a-c) show the time taken to generate the matching
problem, the time to solve the problem, and the time to generate
the NetKAT edge programs to implement the found matching re-
spectively. The baseline case (0 intermediate nodes) is the dyad
matching approach described in the previous section.

Using a linear programming solver allows us to support path con-
straints by simply adding more variables and constraints. However,
adding this functionality considerably increases the size of the LP
problems, increasing the time taken to generate, solve and recover
the solution. Though the time penalty is significant in going from
the basic to the smallest number of constraints, there are no addi-
tional penalty to increasing the number of intermediate nodes. This
is to be expected, since the majority of the LP problem is composed
of variables and constraints representing the fabric paths, rather
than the policy’s intermediate nodes.

7.5 Discussion

The process for generating edge programs from NetKAT fab-
ric and policy programs can be broken down into four stages—
preprocessing the programs into dyads, formulating the matching
problem, solving the matching problem and finally generating edge
programs from the solutions. The preprocessing step converts the
programs into their dyad representation. Applying this step to the
fabric takes the longest amount of time (on the order of multiple
minutes to an hour). However, since our use cases are networks
where the core fabric is meant to be rigid and change rarely, this
step would only be performed infrequently. Formulation and solu-
tion takes on the order of milliseconds for the basic case, and less
than a second if we include path constraints. Generating the final
edge programs takes even less time.

These experiments suggest that our framework could be used to

generate edge programs from network policies, provided the fabric
is stable for a relatively long period of time. This is a reasonable as-
sumption for both the optical circuit networks we’ve been consider-
ing, as well as other fabrics involving legacy, non-SDN devices [23,
7]. Thus we believe that our system provides a practical method for
flexible network management.

8. RELATED WORK

Our approach leverages a number of theoretical advances made
in previous work on NetKAT [2]. In addition we rely on the existing
compiler infrastructure for NetKAT to produce the FDDs that our
analysis takes as input [29].

Optical networks. The flexibility of SDN's is attractive for opti-
cal networks as well. Recent work has identified a set of challenges
that are different from that in packet networks [12]. In particu-
lar, signal attenuation at long distances is a significant problem that
requires the careful placement of regenerator nodes. Our path con-
straints extension finds paths connecting the required regenerator,
while previous work has tackled the problem of where in a network
to place these regenerators in the first place [19].

A number of recent efforts have developed architectures and con-
trol abstractions for hybrid packet-optical networks. REACToR in-
corporates optical circuits into data center network with the goal of
improving performance without sacrificing control [24]. Another
system, OWAN jointly manages the optical and packet layers to
optimize bulk data transfers in wide-area networks [17]. Our work,
which focuses on mechanisms for implementing programs at the
edge, is complementary to these efforts.

Edge-fabric distinction. Several existing systems are also based
on an edge-fabric distinction. An early paper by Casado et al. [7]
proposed an architecture based on a fabric service model. The same
paper discussed the problem of mapping policies to the edge but did
not propose a solution. Panopticon addresses incremental deploy-
ment of SDNs using data structures called Solitary Confinement
Trees, which are similar to our fabrics [23]. However, Panopticon
focuses on L2/L.3 packet networks in small to medium scale enter-
prises, rather physically heterogenous deployments. As mentioned
above, Felix is also based on an edge-fabric distinction and adopts
a similar approach based on NetKAT and FDDs [8].

SDN controller frameworks. ONIX was an influential early
SDN controller that offered a number of features including slicing
and virtualization [21]. These features are also realized in more
recent work on VMware NSX [20]. Exodus translates SDN poli-
cies into configurations that can be installed on legacy devices [28].
Finally, Fibbing developed approaches for implementing SDN-like
control using distributed routing protocols [32].

Software synthesis for networks. Several recent systems have
applied ideas from program synthesis to networks. Software syn-
thesis is attractive because it offers the promise of finding general
solutions to a wide class of problems, rather than relying on ad-hoc
and possibly brittle solutions to particular problems. Genesis and
SyNet synthesize device-level configurations from high-level poli-
cies that incorporate path and traffic engineering constraints [31, 9].
Our approach is also based on synthesis, but we exploit domain-
specific knowledge to produce dyads by analyzing NetKAT pro-
grams, that are then fed to a solver to compute a matching. By
doing so, we cut down the space of possible solutions that a solver
has to investigate.

—e-> Graphical
—=> LP

80 -

60 -

40|

Time(in ms)

ol -5 ¥

—

5 10

15

Number of edge nodes

20

(a) Time to create matching problem.

Figure 12:

v v v
15
—e>0
—-> 2
0.4 | 4 —o> 4
- _ 100 e 6
Py ~ 2
& & : il
= 2 g = g
0 0.5 =
50
0 N ok
I I I I I I I I | I I I
5 10 15 20 5 10 15 20 5 10 15 20

Number of edge nodes

(a) Time to create matching problem.

—e> Graphical
200 |- —m> LP

Time(in ms)

Number of edge nodes

(b) Time to solve matching problem.

—e> Graphical
—=> LP

100 -

Time(in ps)

50 |-

5 10

|
15

Number of edge nodes

(c) Time to generate edge programs.

Scalability of LP and graphical dyad matching.

Number of edge nodes

(b) Time to solve matching problem.

20

Number of edge nodes

(c) Time to generate edge programs.

Figure 13: Scalability of matching with path constraints.

Network programming languages. There is a also large body
of work on domain-specific programming languages for SDN. Ex-
amples include Frenetic [10], Nettle [33], Pyretic [26], NetCore [25],
NetKAT [2], Maple [34], and FlowLog [27], among others. The
compilers for these languages translate high-level programs into
switch-level forwarding rules—i.e., they assume that the network
consists of SDN switches that can be frequently reprogrammed in
response to changing conditions. An important difference is that
these systems employ simple forms of tagging and encapsulation
whereas our system leverages whatever mechanism the underlying
fabric provides.

9. FUTURE WORK

This paper focuses on compiling policies to edge programs, such
that they make use of an existing fabric. We view this work as
a first step toward exploring the interaction of flexible edges and
rigid fabrics. We have explored some extensions to the basic “one
big switch” programming model—segmented paths and path con-
straints. There are more interesting extensions that could be sup-
ported, including fault tolerance, load balancing and more inter-
esting path constraints such as node or edge disjointness. Imple-
menting these extensions will undoubtedly require further devel-
opment of the linear programming based back-end, or exploring
techniques based on counter-example guided inductive synthesis
(CEGIS) [30].

Another line of future work involves generating more than just
the NetKAT edge programs. There may be cases where an existing
fabric cannot be used to implement a given policy. In such cases, the
compiler could suggest minimal extensions to the fabric required to
support the policy, or conversely, precisely locate portions of the
policy that the fabric cannot support. Again, CEGIS seems like a
promising approach for such extensions.

10. CONCLUSION

This paper tackles the problem of deploying high-level user poli-
cies to heterogenous networks. We assume a rigid core network,
surrounded by flexible, SDN-enabled edge switches. Leveraging
the NetkKAT compiler framework we develop techniques to com-
pile user policies into programs that only modify configurations on
edge switches, using the fabric to provide connectivity. We focus
on a particular class of such fabrics—optical circuit networks—and
develop language extensions and testbeds to properly utilize them.
Our system provides a practical way to reap the benefits of high-
level network programming languages, while operating on the het-
erogenous networks deployed today. In the future, we intend to
explore useful extensions to the policies, possibly using techniques
such as counter-example guided inductive synthesis.

Acknowledgments. The authors wish to thank the ANCS re-
viewers for helpful feedback. Our work is supported by the NSF
under grants CNS-1111698, CNS-1413972, CCF-1422046, CCF-
1253165, and CCF-1535952; the ONR under grant NO0014-15-1-
2177; and gifts from Cisco, Facebook, Google, and Fujitsu.

11. REFERENCES

[1] S. B. Akers. Binary decision diagrams. IEEE Trans. Comput.,
27(6):509-516, June 1978.

[2] C.J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages
113-126, January 2014.

[3] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
SNAP: Stateful network-wide abstractions for packet processing. In
Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, pages 29—43, August 2016.

[4]

[5

[ty

[6]

[7

—

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

M. N. Architects. Coronet optical topology. Available at
http://www.monarchna.com/topology.html, October 2006.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, 44(3):87-95, 2014.
M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane: taking control of the enterprise. In Proceedings
of the ACM SIGCOMM 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 1-12, August 2007.

M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A
Retrospective on Evolving SDN. In Proceedings of the third
workshop on Hot topics in software defined networking, HotSDN ’12,
pages 85-90, August 2012.

H. Chen, N. Foster, J. Silverman, M. Whittaker, B. Zhang, and

R. Zhang. Felix: Implementing traffic measurement on end hoses
using program analysis. In ACM SIGCOMM Symposium on
Software-Defined Networking Research (SOSR), March 2016.

A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vecheyv.
Network-wide configuration synthesis. CoRR, abs/1611.02537, 2016.
N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,

A. Story, and D. Walker. Frenetic: A Network Programming
Language. In Proceeding of the 16th ACM SIGPLAN international
conference on Functional Programming, ICFP 2011, pages 279-291,
2011.

N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A
coalgebraic decision procedure for NetKAT. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, pages 343-355, January
2015.

S. Gringeri, N. Bitar, and T. J. Xia. Extending software defined
network principles to include optical transport. I[EEE
Communications Magazine, 51(3):32—40, March 2013.

A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 483-494,
2013.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In ACM SIGCOMM 2013 Conference, SIGCOMM’13, pages
15-26, August 2013.

S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle,

S. Stuart, and A. Vahdat. B4: Experience with a Globally Deployed
Software Defined WAN. In ACM SIGCOMM 2013 Conference,
SIGCOMM’13, pages 3—14, August 2013.

X. Jin, J. Gossels, J. Rexford, and D. Walker. CoVisor: A
compositional hypervisor for software-defined networks. In 12th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 15, pages 87-101, May 2015.

X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and

J. Rexford. Optimizing bulk transfers with software-defined optical
WAN. In Proceedings of the 2016 conference on ACM SIGCOMM
2016 Conference, pages 87-100, August 2016.

N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "One Big
Switch" Abstraction in Software-defined Networks. In Conference on
emerging Networking Experiments and Technologies, CONEXT ’13,
pages 13-24, December 2013.

I. Kim, P. Palacharla, X. Wang, Q. Zhang, D. Bihon, M. D. Feuer, and
S. L. Woodward. Regenerator predeployment in cn-roadm networks
with shared mesh restoration. J. Opt. Commun. Netw.,
5(10):A213-A219, Oct 2013.

T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,

B. Fulton, J. G. Igor Ganichev, N. Gude, P. Ingram, E. Jackson,

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff,
, R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,

D. Wendlandt, A. Yip, and R. Zhang. Network virtualization in
multi-tenant datacenters. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2014, pages 203-216, April 2014.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A distributed control platform for large-scale production networks. In
9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, pages 351-364, October 2010.

B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19.
ACM, 2010.

D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann.
Panopticon: Reaping the benefits of incremental sdn deployment in
enterprise networks. In 2014 USENIX Annual Technical Conference,
USENIX ATC 14, pages 333-345. USENIX Association, June 2014.
H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker,

G. Papen, A. C. Snoeren, and G. Porter. Circuit switching under the
radar with REACToR. In NSDI, pages 1-15, 2014.

C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and
run-time system for network programming languages. In Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, pages 217-230. ACM,
January 2012.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, pages 1-13. USENIX Association,
April 2013.

T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi.
Tierless programming and reasoning for software-defined networks.
In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2014, pages 519-531.
USENIX Association, April 2014.

T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca, and S. Krishnamurthi.
Exodus: Toward automatic migration of enterprise network
configurations to sdns. In Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, SOSR 15,
pages 13:1-13:7. ACM, June 2015.

S. Smolka, S. Eliopoulos, N. Foster, and A. Guha. A fast compiler for
NetKAT. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, pages
328-341. ACM, September 2015.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat.
Combinatorial sketching for finite programs. SIGOPS Oper: Syst.
Rev., 40(5):404-415, October 2006.

K. Subramanian, L. D’ Antoni, and A. Akella. Genesis: Synthesizing
forwarding tables in multi-tenant networks. In POPL, pages 572-585,
2017.

S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford. Central
Control Over Distributed Routing. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication,
SIGCOMM 2015, pages 43-56. ACM, August 2015.

A. Voellmy and P. Hudak. Nettle: Taking the sting out of
programming network routers. In R. Rocha and J. Launchbury,
editors, Practical Aspects of Declarative Languages - 13th
International Symposium, PADL 2011, volume 6539 of Lecture Notes
in Computer Science, pages 235-249. Springer, January 2011.

A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:
Simplifying SDN programming using algorithmic policies. In ACM
SIGCOMM 2013 Conference, SIGCOMM’13, pages 87-98. ACM,
August 2013.

