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Abstract

The need to modify source data through a view arises in a large number
of applications across many areas of computing. Unfortunately, program-
ming language support for defining updateable views is quite primitive—in
most systems, views are defined using one program to compute the view and
another to handle updates, a design that is both error-prone and difficult to
maintain. In this project, I propose bidirectional programming languages as
an effective mechanism for describing updateable views. In a bidirectional
language, every program denotes two functions—one that maps a source to
a view, and another that combines a modified view with the original source
and produces a correspondingly updated source. Starting from the foun-
dations, I develop a semantic space of bidirectional transformations called
lenses whose behavior obeys natural conditions capturing intuitive notions
of correctness. I then instantiate this general framework with a specific
lens language for strings called Boomerang. I develop several extensions
to Boomerang: one addressing problems that come up with reorderable
data, another for handling inessential data, and a third for tracking some
security properties that are important for defining updateable views over
data sources containing confidential information. Finally, using examples, I
demonstrate that Boomerang can be used to build lenses for transforming a
variety of data formats that are used in practice.
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“Never look back unless you are planning to go that way.”

—Henry David Thoreau

1 Introduction

This dissertation proposes bidirectional programing languages as an effective and elegant means
of specifying updateable views. Views are usually discussed in the context of databases—a view
is the structure that results from evaluating a query over some source data, and an updateable
view is one that can be modified, with the changes propagated back to corresponding up-
dates on the underlying source. However, the need to edit through a view arises in a host of
applications across many diverse areas of computing. There are numerous examples:

Data Converters and Synchronizers: views bridge the gap between heterogeneous repli-
cas (Brabrand et al., 2008; Kawanaka and Hosoya, 2006; Foster et al., 2007a).

Data Management: besides traditional applications to relational systems (Bancilhon
and Spyratos, 1981; Dayal and Bernstein, 1982), views have been used in systems for
data exchange (Miller et al., 2001) and schema evolution (Berdaguer et al., 2007).

Software Engineering: model transformations compute views over formal software mod-
els (Schürr, 1995; Stevens, 2007; Xiong et al., 2007).

Serialization: an unpickler computes a view that maps binary representations of data
on the file system to structured objects in memory (the corresponding pickler handles
updates) (Fisher and Gruber, 2005; Eger, 2005).

Systems Administration: views have been used in a system for managing operating
system configurations (Lutterkort, 2008).

Programming Languages: parsers and pretty printers manipulate views of program
sources; in embedded interpreters, run-time values in the object language can be com-
puted as views over corresponding values in the host language (Benton, 2005; Ramsey,
2003).

User Interfaces: structure editors use views to provide convenient editing interfaces for
complicated documents (Hu et al., 2008); views have also been used in general-purpose
user interface frameworks (Meertens, 1998; Greenberg and Krishnamurthi, 2007).

Unfortunately, although the need for updateable views is ubiquitous, linguistic technology for
defining them is embarrassingly primitive. The views in most of the applications listed above
are defined using two separate functions—one that computes the view from the source, and
another that handles updates—a rudimentary design that is tedious to construct, difficult to
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reason about, and a nightmare to maintain. Addressing these limitations is the main motivation
for this project.

Let us start by exploring some of the issues surrounding updateable views in relational
databases, the context where they were first studied. (The same fundamental issues arise in the
other areas listed above.) Suppose that S is a source database, q a query, and V = q(S) the view
that results from evaluating q on S. The view update problem is as follows: given an update u

to the view calculate a source update t (the “translation” of u) such that the following diagram
commutes:

S V

S′ V ′

q

q

t u

View update is a difficult problem because, in general, the update u does not uniquely deter-
mine a source update t. For example, when q is not injective, then there are some view updates
that have several corresponding source updates. It is possible to impose additional constraints
to guide the choice of an update—e.g., requiring that the source update have minimal “side
effects”—but for sufficiently expressive query languages, calculating updates satisfying these
additional constraints is intractable (Buneman et al., 2002). Even worse, if q is not surjective,
then some view updates describe structures that lie outside of the range of q entirely! The
system can refuse to propagate these updates—there is no source update it could choose—but
doing so breaks the abstraction boundary between the source and view: it adds hidden con-
straints on how the view may be updated that are only revealed by considering the action of
the update on the source.

Because of these problems, views in relational systems (except for ones defined by very
simple queries) are generally read-only. To define an updateable view, database programmers
fall back on a variant of the rudimentary mechanism described above: they define a separate
procedure called a trigger that the system executes every time the view is changed. Triggers are
arbitrary programs, and so can be written to implement any view update policy the program-
mer could want, but they are not a robust solution. For one thing, checking that a trigger
correctly propagates updates requires intricate, manual reasoning about the way it works in
tandem with the query. Moreover, the triggers and queries both embody parts of the source
and view schemas, and so will be redundant and difficult to maintain as the schemas evolve.

A better design is to have a language in which the query and the function that handles
updates are described together. Bidirectional programming language are organized around this
idea: every program in a bidirectional language can be read from left to right as a query map-
ping sources to views, and from right to left as a function mapping modified views back to
updated sources. This design eliminates the need to write—and maintain!—two separate pro-
grams, as well as the need to do any manual reasoning about the joint behavior of the two
transformations: the type system of the language can be designed to guarantee correctness.
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The key design challenge lies in balancing the tradeoffs between syntax that is rich enough to
express the queries and update policies demanded by applications, and yet simple enough that
correctness properties can be formulated as straightforward, compositional, and mechanizable
checks.

1.1 Goal and Contributions

The ultimate goal of this dissertation project is to demonstrate that bidirectional languages
are an effective tool for defining updateable views. Its contributions will span three main
areas: a general semantic foundation for well-behaved bidirectional transformations, a specific
bidirectional programming language for processing string data, and a collection of applications
demonstrating that the framework and language are both practical.

Many of the results that will eventually go into the dissertation have already been thor-
oughly described in refereed journal and conference papers Foster et al. (2007b); Bohannon
et al. (2008); Foster et al. (2008b, 2007a). I do not make any attempt to redescribe those
results in depth in this document. (The full technicalities can be found in those papers; of
course, the final dissertation will be a self-contained document with full, formal definitions
and accompanying correctness proofs.) Instead, I focus on the part of the work that is unfin-
ished: a design for building trustworthy updateable security views using lenses. However, to
give the reader a sense of the overall shape that the final dissertation will take, in the rest of this
introductory section, I briefly sketch the other contributions.

Semantic Foundations

The two main advantages of using a bidirectional language are parsimony—two transforma-
tions described by a single program—and the correctness guarantees it provides about the
way the transformations work together. Parsimony is automatic for bidirectional languages.
However, before we can even talk about correctness, we need a characterization of the transfor-
mations that have the properties we want. Thus, the first component of this work is a semantic
space of well-behaved bidirectional transformations called lenses. These structures serve as the
semantic foundation for the rest of the project.

A lens mapping between a set S of source structures and a set V of views has three com-
ponents called get, put, and create. The get component plays the role of the query and is a
total function from S to V . The put and create components handle updates. The put function
takes an updated V and the original S and calculates a new S that reflects the changes made
to V . The create function handles cases where there is no source to use as the “original” S. It
calculates a new S directly from its V argument, filling in any information discarded by the
query with defaults.

Every lens obeys behavioral laws ensuring that updates to views are propagated back to
sources correctly. Additionally, there are also two refinements of lenses that turn out to be im-
portant in practice. Quotient lenses relax the behavioral laws to versions that are only required
to hold modulo specified equivalence relations on the source and view. This facilitates han-
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dling “inessential” data such as whitespace, escaping conventions, and duplicated data using
lenses. Quasi-oblivious lenses strengthen the behavioral laws by requiring that the put function
ignore differences between sources related by a (different) specified equivalence relation. This
extension is useful for guaranteeing that updates to ordered data are handled reasonably.

Boomerang: A Bidirectional Programming Language

The second component of this work is Boomerang, a programming language for writing lenses
on strings. I choose to work with strings, rather than a richer data model such as trees or
complex values, primarily as a matter of research strategy: strings are simple structures that
still expose many fundamental issues in bidirectional programming including ones concerning
order. But there is also a lot of string data in the world—textual databases, ad-hoc formats,
structured documents, scientific data, simple XML, and microformats—and it is useful to have
to be able to manipulate it directly, without first parsing it into (and pretty print it from) more
complicated representations.

Boomerang is built around a set of core combinators based on finite state transducers
(union, concatenation, Kleene star), some generic operators (identity, constant, sequential
composition) and some special constructs for dealing with ignorable (canonizers, quotient-
ing) and ordered (chunks, keys) data. These combinators are a quite natural formalism for
expressing many transformations on strings of practical interest, but even so, programming
with combinators alone would be quite tedious. So instead, in Boomerang, the combina-
tors are embedded in a full-blown functional programming language with a rich collection of
features: first-class functions, user-defined data types, polymorphism, dependent types, refine-
ment types, simple modules, and in-line unit tests. Using this infrastructure, it is easy to build
large lenses quickly, to factor out common programming idioms into generic libraries, and to
write lens programs at a level of abstraction that is appropriate for the application at hand.

Applications

The final component of this project will be a collection of end-to-end applications built using
lenses written in Boomerang. These applications will validate the various design choices made
in the design of the semantic framework and the language, and will serve as case studies of
programming with lenses.

I have already built an implementation of the Boomerang system and have used it to build
a number of prototype applications including data converters and synchronizers for a few
interesting real-world data formats. I believe that the ideas in this project have the potential
to have significant practical impact, so I plan to spend a some of my remaining time carrying
each of these initial steps a little further. However, I plan to spend the bulk of my remaining
time studying some novel extensions for building updateable security views using lenses.

Security views are ones that are designed to control access to confidential data. As an exam-
ple, consider a program that generates an online directory from an employee record database.
The full database contains all the information that goes into the directory—names, email ad-
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dresses, and phone numbers—and a great deal of information that does not—salaries, perfor-
mance evaluations, Social Security numbers, etc. If the program has access to the full database,
then a programming error (or a program compromised by a malicious hacker) can result in
private data being published online. If instead, the program accesses the database via a view
that only exposes the public parts and hides the private parts, then the sensitive information
cannot be leaked, no matter how the program behaves.

Security views are already widely used, but current systems do not address two important
issues. First, they do not provide formal tools for establishing that the private data in the
source is not leaked to the view. For simple queries, it may be obvious whether a piece of
the source is leaked by the query. But when the query is complicated, information can flow
from source to view in subtle ways. It is therefore important to have tools for establishing end-
to-end guarantees about the confidentiality of source data. Second, security views are usually
not updateable, and for good reason: propagating changes made by an untrusted user back to
a trusted source can modify the source in arbitrary and irreversible ways. Thus, if untrusted
users are going to modify source data through a view, mechanisms for tracking the integrity of
source data are needed.

I propose enhancements to lenses that addresses both of these problems. For confiden-
tiality, I propose a refinement of Boomerang’s type system to track confidentiality using an
information-flow analysis. Somewhat surprisingly, although there is a large body of work on
information-flow type systems for general-purpose programming languages, very little work
has been done on information-flow for type systems with regular types. Thus, this component
of the work should be of interest for unidirectional languages as well. For integrity, I propose
a generalized semantics for put functions that generates logs recording the changes induced on
the source. The goal is to output a log with sufficient information for a trusted user to audit
the final result, incorporating or rejecting changes as they see fit.

To demonstrate how all of this works, I will develop a collection of lenses for managing
security views of MediaWiki documents. These lenses also serve as the main running example
for this document.

1.2 Outline

The rest of this proposal is organized as follows. Section 2 introduces Boomerang using a
simple transformation for secure documents, and defines the semantic space of basic lenses.
Section 3 lenses discusses some problems related to ordered data, and shows how they can
be resolved in Boomerang using dictionary lenses. Section 4 develops the example further by
illustrating how ignorable information can be handled using quotient lenses. A final extension
to the example making it more realistic is described in Section 5. Section 6 discusses the
properties of lenses that are needed in security settings, and describes preliminary ideas for
extending the lens framework to reason about confidentiality and integrity. Section 7 discusses
related work. I conclude in Section 8 with a brief overview to current implementation status
and a roadmap for the rest of the project.
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2 Basic Lenses

In this first section, I describe a lens that computes a very simple security view of a docu-
ment. This lens serves both to illustrate the main features of Boomerang, and to introduce the
running example used in the rest of this document.

Intelligence organizations often use security clearances to control access to documents con-
taining sensitive information. Every individual and every document in the organization is
assigned a clearance—e.g., public, confidential, secret, top secret, etc.—and individuals are
only allowed to access a particular document if they have sufficient clearance. This scheme is
effective, but a bit coarse: information is classified at the granularity of documents, so individ-
uals who may have clearance to access part of a document are instead denied access if it also
contains information classified at a higher clearance. The usual workaround is have a trusted
individual regrade the document by erasing or redacting the highly classified portions, leaving
behind a residual document that can be reclassified at a lower clearance.

In current practice, regrading is a manual process, so there is significant interest in devel-
oping document models with support for automatic regrading. Tearline documents are a very
simple model that has been proposed for documents in MediaWiki format Potoczny-Jones
(2008). In a tearline source, there is a clear boundary that separates confidential data (at the
top of the document) from public data (at the bottom). (This model can be generalized to
more levels of clearance by introducing more boundaries; I will work with just two levels to
keep the example simple.) To compute a view from a source, the system “tears” off the public
portion at the boundary. This view, which does not contain confidential information, can then
be published freely.

The first lens I will show constructs updateable tearline views. To keep the example simple,
I will work with an extremely simple subset of MediaWiki: a document consists of a single
section; a section has a heading of the form ==Title== and is followed by a sequence of
paragraphs or lists lines; a paragraph consists of blocks of ordinary text; and list items are
indicated by lines beginning with “*”. Also, I exclude the special characters *, % and = from the
strings used as section headings, paragraph bodies, and list items. Eliminating these restrictions
and scaling up to full-blown MediaWiki should be relatively straightforward. To mark the
boundary between the public and confidential sections, I will use the special string

%----- TEARLINE -----%

(any other distinguished string would work equally well).
Before examining the definition of the lens in Boomerang, let’s see how its works on an

example. Its get function maps a source document

==Chefs==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Julia Child

to a view
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==Chefs==
* Julia Child

by copying the heading, deleting the confidential paragraph and separator that follow, and
copying the final list. Conversely, the put function takes an updated view—here I have added
Jacques Pépin to the list of chefs

==Chefs==
* Julia Child
* Jacques Pepin

and combines it with the original source, yielding an updated source that also contains the new
list item:

==Chefs==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Julia Child
* Jacques Pepin

The definition of the lens that does both of these these transformations in Boomerang is as
follows. It mentions some identifiers (in capital letters) denoting regular expressions, which I
define below:

let tearline_section : lens =
copy HEADER .
del BODY .
del TEARLINE .
copy BODY

The primitive lenses copy and del each take a regular expression as an argument. The get
component of the copy lens copies every string belonging to (the language denoted by) its
argument to the view, and conversely in the put direction. The del lens deletes every string
belonging to its argument in the get direction, and restores it the put direction. The concatena-
tion operator on lenses (.) builds a lens that handles large strings from two lenses that handle
smaller ones. Its get and put functions work by splitting the input strings in two, processing
these substrings using the corresponding component of the sublenses, and concatenating the
final results. The typing rule for concatenation ensures that the strings can be split into sub-
strings in just one way. Putting all these pieces together, we see that the get component of the
tearline_section lens processes a whole section by copying the substring matching HEADER,
deleting the substrings matching BODY and TEARLINE that follow, and copying the following
BODY to the view. The put function copies substrings matching HEADER and BODY from the view
and splices in the middle BODY and TEARLINE from the source.

For completeness, here are the regular expressions used to define tearline_section:
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let INNER_CHAR : regexp = [^\n%*=]
let OUTER_CHAR : regexp = INNER_CHAR - [ ]
let TEXT : regexp = OUTER_CHAR . (INNER_CHAR* . OUTER_CHAR)?
let LINE : regexp = TEXT . NL
let PARAGRAPH : regexp = LINE+
let LIST : regexp = ("* " . LINE)+
let HEADER : regexp = "==" . TEXT . "=="
let BODY : regexp = (NL . (PARAGRAPH | LIST))*
let TEARLINE : regexp = "%----- TEARLINE -----%"

The notation for character sets ([^\n%=*] and [ ]), repetitions (*, +, ?, and {2}), and union
(|) are all standard. Concatenation uses the same symbol as for lenses (.). In fact, all of the
regular operators are overloaded in Boomerang and may be used to combine regular expres-
sions, lenses, and strings; the type checker automatically promotes strings to the corresponding
singleton regular expression, and regular expressions to instances of the copy lens as necessary,
as in the concatenation of "* " and LINE in LIST.

2.1 Foundations of Basic Lenses

It is not difficult to see that the get and put components of tearline_section work well
together. But more generally, we need precise criteria for deciding whether a given pair of
functions—a bidirectional transformation—defines a correct updateable view. To this end, I
present in this section a semantic space of well-behaved bidirectional transformations called
basic lenses.

Let S be a set of sources and V a set of views. A basic lens l mapping between S and V of
views comprises three functions

l.get ∈ S → V

l.put ∈ V → S → V

l.create ∈ V → S

obeying the following “round-tripping” laws for every s ∈ S and v ∈ V :

l.put (l.get s) s = s (GETPUT)

l.get (l.put v s) = v (PUTGET)

l.get (l.create v) = v (CREATEGET)

These laws are closely related to the conditions on view update translators in databases dis-
cussed earlier. The GETPUT law stipulates that the put function must restore the original
source exactly when its arguments are a view and a source that get maps to the very same view.
It embodies a simple version of the “minimal side effects” condition, for the special case where
the update is a no-op. (Imposing the general condition seems to require fixing an update lan-
guage, and lenses are designed to be agnostic to the way that updates are expressed; see below.)
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The PUTGET and CREATEGET laws stipulate that put and create must propagate all of the
information in the updated view to the new source. They ensure that the new source is one
that maps back to the updated view via get. The set of basic lenses mapping between S and V

is written S ⇐⇒ V .
As an aside, returning to our tearline_section lens, we can revise its declaration to assert

that it has the lens type we intend:

let SOURCE : regexp = HEADER . BODY . TEARLINE . BODY
let VIEW : regexp = HEADER . BODY
let tearline_section : (lens in SOURCE <-> VIEW) =
copy HEADER .
del BODY .
del TEARLINE .
copy BODY

The Boomerang type checker verifies that the lens has the type we have written down. For type
system experts: Boomerang’s type system has both dependent and refinement types; programs
are checked using a hybrid approach—the static checker performs a coarse typing analysis
and inserts checks that verify the precise conditions at run-time (Flanagan, 2006; Wadler and
Findler, 2007).

The lens laws are not intended to serve as a complete specification of the correct bidirec-
tional manipulation of data, but as a loose guide on the design of lens primitives. Indeed, they
fall far short of that mark—e.g., when supplied with a source s and a view v with v 6= get s,
the put function is free to choose any source s′ such that get s′ = v. Rather, they specify the
results that transformations must produce in a few cases where the correct behavior is clear. In
this spirit, I have used the lens laws many times to rule out bogus candidate lens primitives.

Although lenses are similar to view update translators in databases, there are a few key dif-
ferences worth noting. First, in databases views are virtual structures that are not represented
by any physical table. Thus, modifications to the view can only be handled by translating
the update back to the source. In contrast, the put and create components of a lens manip-
ulate whole view states—i.e., in database jargon, the views are materialized. Both of these
approaches are reasonable and each has advantages. Systems that translate operations have
more precise information about the nature of the update, but require tighter integration with
applications. Conversely, systems that manipulate view states are agnostic to the way that up-
dates are expressed, and so only require loose coupling to applications. Because I am interested
in deploying lenses in a variety of settings, I choose the state-based approach. (An investigation
of operation-based lenses is an excellent topic for future research.)

Another difference is that the put component of a lens is a total function. Totality, in
combination with the lens laws, guarantees that a lens is capable of doing something reason-
able with any view and any source. This is a very strong requirement that rules out many
transformations and has therefore not been imposed in databases or in most other bidirec-
tional languages. In those systems updates may fail—a design that is maximally flexible since
the decision about whether or not to propagate a particular update can be made dynamically.
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Unfortunately, it makes views “leaky” abstractions of the source because the semantics of up-
dating a view—in particular, whether it succeeds or fails—depends on properties of the source.
While this may be reasonable in some interactive applications, where the user can be provided
with immediate feedback on illegal updates, in the applications where I am interested in using
lenses—data synchronizers, which are often run in unsupervised environments, and security
views, whose very purpose is to hide confidential parts of the source—it is critical that views
be robust abstractions that encapsulate the source completely. Therefore, I insist that the put
components of lenses be total functions.

3 Dictionary Lenses

So far, the tearline lens only handles a single section. In this section, I will scale it up to
a lens that handles whole documents. This lens illustrates the treatment of ordered data in
Boomerang.

As a first attempt, we can try just iterating the tearline_section lens using the Kleene
star operator:

let tearline : (lens in SOURCE* <-> VIEW* ) =
tearline_section*

Kleene star generalizes lens concatenation in the obvious way. For example, the get function of
tearline maps source documents containing multiple sections, such as the following

==Chefs==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Julia Child
==Supreme Court Justices==
Arthur Goldberg worked for the Secret Intelligence Branch.
%----- TEARLINE -----%
* Arthur Goldberg

to views where the confidential region in each section is deleted:

==Chefs==
* Julia Child
==Supreme Court Justices==
* Arthur Goldberg

The put function takes an updated view

==Chefs==
* Julia Child
* Jacques Pepin
==Supreme Court Justices==
* Felix Frankfurter
* Arthur Goldberg
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and combines it with the original source, splicing in the confidential portion to each section

==Chefs==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Julia Child
* Jacques Pepin
==Supreme Court Justices==
Arthur Goldberg worked for the Secret Intelligence Branch.
%----- TEARLINE -----%
* Felix Frankfurter
* Arthur Goldberg

as expected.
Unfortunately, although put works correctly for these inputs, there are others on which it

behaves rather poorly. If, for example, in addition to adding the new list items we swap the
order of sections in the view

==Supreme Court Justices==
* Felix Frankfurter
* Arthur Goldberg
==Chefs==
* Julia Child
* Jacques Pepin

then the put function produces a new source in which the confidential regions are spliced in to
the wrong sections!

==Supreme Court Justices==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Felix Frankfurter
* Arthur Goldberg
==Chefs==
Arthur Goldberg worked for the Secret Intelligence Branch.
%----- TEARLINE -----%
* Julia Child
* Jacques Pepin

The root of this problem is the Kleene-star operator, whose put function splits the source and
view into substrings and invokes the put function of the lens being iterated on corresponding
(by position!) substrings from the source and view. If the update to the view string breaks the
positional association between sections in the source and the view, then the source document
it produce will be mangled. This is a show-stopper for our secure document application; we
cannot have a lens that mangles documents in this way.
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Boomerang provides constructs specifically designed to deal with this problem using an
extension of lenses called dictionary lenses. The rough idea is that programmers should identify
chunks of the source and how to compute a key for each chunk. These notions induce an
association between chunks in the source and substrings of the view, and this association rather
than the positional one is used by the put function to align the source and view. Here is a
dictionary lens that has the behavior we want:

let tearline_section : (lens in SOURCE <-> VIEW) =
key HEADER .
del (BODY . TEARLINE) .
copy BODY

let tearline : (lens in SOURCE* <-> VIEW* ) =
<tearline_section>*

Compared to the basic lens version, the first thing to notice is that the occurrence of tearline_section
in the definition of tearline is enclosed in angle brackets. This syntax indicates that the sub-
strings processed by tearline_section should be treated as reorderable chunks. The second
difference is that the first occurrence of copy at the beginning of tearline_section has been
replaced by key. The key lens has get and put components that behave exactly the same as
the corresponding components of copy, but key additionally specifies that the view should be
used as the key of the chunk in which it appears. In this example, the key of each section is its
heading.

Operationally, the put function of a dictionary lens does its work in two phases. The first
phase parses the entire source string into a dictionary structure in which chunks are organized
by key. In the second phase, the put function uses this dictionary (rather than the original
source) to locate the missing information for each part of the view. The end effect is that the
put function aligns sections in the source and view by key rather than position. For example,
on the same inputs as before, it yields

==Supreme Court Justices==
Arthur Goldberg worked for the Secret Intelligence Branch.
%----- TEARLINE -----%
* Felix Frankfurter
* Arthur Goldberg
==Chefs==
Julia Child worked for the Office of Strategic Services
during World War II.
%----- TEARLINE -----%
* Julia Child
* Jacques Pepin

as expected.
Boomerang also supports an extension where keys are matched approximately, using a

greedy heuristic to align keys in the view and dictionary by minimizing edit distance. This ex-
tension to “fuzzy” alignment addresses the problem of updating views where keys have changed,
and also facilitates using dictionary lenses with unstructured text when there is no obvious key
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to use and we want to use the full contents of the view as its key. We will see an example of
fuzzy alignment in Section 5.

3.1 Foundations of Dictionary Lenses

The second version of the tearline lens shows that dictionary lenses can be used to build
updateable views that handle updates involving reorderings correctly. Unfortunately, at the
level of semantics, the basic lens framework does not provide criteria for distinguishing the
first version of tearline, which mangles sources, from the second version, which is correct.
Both are well-behaved as basic lenses. In the rest of this section, I define a refined space of
quasi-oblivious lenses that makes such distinctions possible.

Suppose that l is a basic lens mapping between S and V and let ∼ be an equivalence relation
on S. Then l is a quasi-oblivious lens with respect to ∼ if its put function obeys the following
law:

s ∼ s′

l.put v s = l.put v s′
(EQUIVPUT)

stipulating that the put function must ignore differences between sources related by ∼.
One way to understand its effect of the EQUIVPUT law is to notice how it extends the

range of situations to which the GETPUT law applies. By itself, GETPUT only constrains
the behavior of put on the exact view computed from the source; with EQUIVPUT, it must
behave the same results on all equivalent sources. In particular, if the equivalence is one that
relates source strings up to stable reorderings of chunks (i.e., a reordering that does not change
the relative order of chunks having the same key) then PUTEQUIV forces the put function to
handle updates that reorder the view by doing a corresponding reordering on the source.

Like the basic laws, quasi-obliviousness does not lead to a complete specification of the
correct handling of ordering in bidirectional languages—in particular, it says nothing about
what must happen when the update changes keys. But, it is still very useful as a constraint on
the design of lens primitives. Indeed, dictionary lenses, whose put functions that operate on
dictionaries obtained by parsing the source, are designed to be quasi-oblivious with respect to
the reordering equivalence described above.

It is also interesting to consider lenses that are quasi-oblivious with respect to other re-
lations. Every basic lens is trivially a quasi-oblivious lens with respect to equality, the finest
equivalence relation. A lens l is bijective if its put function is completely oblivious—i.e., if

l.put v s = l.put. v; s′

for every v ∈ V and s, s′ ∈ S. Bijectiveness can also be characterized using the coarsest
equivalence relation for which l satisfies EQUIVPUT, called ∼max: c∼maxc

′ iff ∀v. put v s =

put v s′. A lens is bijective iff ∼max is the total relation on S. Another important special case
of basic lenses also has a characterization using ∼max. A lens l is called very well behaved if the
effect of two puts in sequence just has the effect of the second—i.e., if

l.put v (l.put v′ s) = l.put v s
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for every v, v′ ∈ V and s ∈ S. Very well behavedness is a strong condition—it turns out
to be equivalent to the classical notion of view update translation under “constant comple-
ment” (Bancilhon and Spyratos, 1981)—and imposing it on all lenses rules out many useful
transformations. In particular, conditional and iteration operators are not very well behaved
for reasons that seem pragmatically unavoidable. It turns out that a lens is very well behaved if
and only if every equivalence class Si of S induced by ∼max maps via get to all of V , or formally,
if get Si = V (lifting get from strings to sets in the obvious way).

4 Quotient Lenses

Now let’s extend the tearline lens a little further, by developing a lens that converts between
MediaWiki and HTML. This lens is useful, for example, for rendering documents for viewing
in a web browser, or for manipulating MediaWiki sources using HTML authoring tools.

In the get direction, the html lens takes a string formatted in the simple subset of Medi-
aWiki I am working with, and produces a string in a corresponding fragment of HTML. For
example, it maps

==Chefs==
* Julia Child
==Supreme Court Justices==
* Arthur Goldberg

to

<html>
<body>
<h2>Chefs</h2>
<ul>
<li>Julia Child</li>

</ul>
<h2>Supreme Court Justices</h2>
<ul>
<li>Arthur Goldberg</li>

</ul>
</body>

</html>

and conversely in the put direction.
But notice that although this lens is almost bijective, there are artifacts of representing

HTML trees as strings—in particular, the amount of whitespace between elements—that make
this not literally true. We would like to have the put function map an updated HTML docu-
ment such as

<html><body>
<h2>Chefs</h2>
<ul><li>Julia Child</li><li>Jacques Pepin</li></ul>
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<h2>Supreme Court Justices</h2>
<ul><li>Felix Frankfurter</li><li>Arthur Goldberg</li></ul>

</body></html>

to the MediaWiki source

==Chefs==
* Julia Child
* Jacques Pepin
==Supreme Court Justices==
* Felix Frankfurter
* Arthur Goldberg

but the get function maps this MediaWiki source to a view that is, strictly speaking, different
than the one we started with:

<html>
<body>
<h2>Chefs</h2>
<ul>
<li>Julia Child</li>
<li>Jacques Pepin</li>

</ul>
<h2>Supreme Court Justices</h2>
<ul>
<li>Felix Frankfurter</li>
<li>Arthur Goldberg</li>

</ul>
</body>

</html>

Thus, this transformation violates the PUTGET law, which requires that the updated source
map back to the updated view exactly. Of course, the differences between this view and the
one we started with are not important—the two strings represent the same HTML tree—but
Boomerang is a general-purpose language that does not know anything about trees. From this
general perspective, the lens is not well behaved.

The observation that the same HTML tree can be encoded by many different strings hints
at a solution. Although many real-world transformations do not literally obey the lens laws,
they do obey them modulo “insignificant details.” Thus, we should loosen the requirements
on lenses to allow such unimportant differences to be ignored. In the relaxed semantic space
of quotient lenses, we will be able to show that the html lens is well behaved modulo an
equivalence that relates views encoding the same HTML tree.

4.1 Foundations of Quotient Lenses

Semantically, the definition of quotient lenses is a straightforward generalization of basic lenses.
Let ∼S and ∼V be equivalence relations S and V . A quotient lens l mapping between S
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(modulo ∼S) and V (modulo ∼V ) has components with the same types as a basic lens, but is
only required to obey the lens laws up to ∼S and ∼V :

l.put (l.get s) s ∼S s (GETPUT)

l.get (l.put v s) ∼V v (PUTGET)

l.get (l.create v) ∼V v (CREATEGET)

These relaxed laws are just the basic lens laws on the equivalence classes obtained by quo-
tienting S and V , S/∼S and V/∼V (and when ∼S and ∼V are equality they revert to the
basic lens laws precisely). But although we want to reason about the behavior of quotient
lenses as if they worked on equivalence classes, their component functions actually manipulate
representatives—i.e., members of the underlying sets of concrete and abstract structures: the
type of get is still S → V , not S/∼S → V/∼V . Thus, we need three additional laws stipulating
that the functions respect ∼S and ∼V .

S ∼S S′

l.get S ∼V l.get S′ (GETEQUIV)

v ∼V v′ S ∼S S′

l.put v S ∼S l.put v′ S′ (PUTEQUIV)

v ∼V v′

l.create v ∼S l.create v′
(CREATEEQUIV)

These laws ensure that the components of a quotient lenses do not distinguish equivalent
structures. The set of quotient lenses mapping between S (modulo ∼S) and V (modulo ∼V )
is written S/∼S ⇐⇒ V/∼V .

4.2 Canonizers and Quotient Lens Syntax

At the level of syntax, quotient lenses are a bit more interesting. All lens primitives in Boomerang
start out as quotient lenses that are well behaved in the strict sense—i.e., that are quotient lenses
modulo equality, the finest equivalence relation. To loosen the equivalence on the source or
view, we quotient the lens using a new kind of transformation called a canonizer. Canonizers
have two components: canonize, which maps all the strings in a given equivalence class to a
string that represents that class, and choose, which maps back from strings representing equiv-
alence classes to canonical representatives. Like lenses, canonizers are a kind of bidirectional
transformations—indeed, every lens can be converted into a canonizer—but they only have to
satisfy weaker requirements: choosing a representative and then re-canonizing must land back
in the equivalence class where we stated. This additional flexibility gives enormous latitude for
writing canonizing transformations that would not be legal as lenses.
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To see how all this works, let us investigate the treatment of whitespace in the html lens.
First, we need one more lens primitive. The const lens takes as arguments a regular expression
E and two strings, d and e. Its get component maps every source string in E to d and its
put component discards the view, which must be d, and restores the original source. The
create component discards d and returns a default, e. As an example, the del lens described
previously is derived from const in Boomerang:

let del (E:regexp where not (is_empty E)) : (lens in E <-> "") =
const E "" (shortest E)

It uses const to map all of E to the empty string and uses an arbitrary representative of E as the
default. We can also use const to define a sort of dual lens that inserts a string into the view
in the get direction and removes it in the put direction:

let ins (s:string) : (lens in "" <-> s) =
const "" s ""

test (ins "abc").get "" = "abc"
test (ins "abc").put "abc" into "" = ""

This lens is almost what we need for inserting whitespace into HTML views, but the strings
it inserts into the view are a little too rigid: since the only valid view is the string s, any
whitespace inserted using ins will be uneditable. What we need is a more flexible version
whose get function inserts whitespace just like ins, perhaps according to some pretty printing
convention, but whose put function accepts—and deletes—arbitrary amounts of whitespace.
We can write a quotient lens that has behavior by quotienting ins using a canonizer:

let qins (E:regexp) (e:string in E) : (lens in "" <-> E) =
right_quot (ins e) (canonizer_of_lens (const E e e))

The right_quot operator takes a lens and a canonizer as arguments and quotients its lens ar-
gument by wrapping its get, put, and create functions in calls to the canonizer. Specifically, the
raw string produced the get function of the lens gets post-processed using the canonizer’s choose
component, and the view arguments to put and create get pre-processed using canonize. The
canonizer_of_lens instance, which builds a canonizer from a lens, uses the get function as
canonize and the create function as choose. Thus, given the empty string "", the get component
of qins E e first applies the get of ins e to obtain e and then the choose of the canonizer,
which yields e again. (For canonizers like this one that normalize some data, the choose com-
ponent of a canonize is usually the identity function; in general, however, there are canonizers
whose choose components actually do some work.) Given an updated view e′, the put function
first applies canonize to obtain e, and then invokes the put component of ins e, yielding "".
For handling whitespace, this lens has the exact behavior we want, as the following unit tests
demonstrate (the WS regular expression, defined in the Boomerang standard prelude, denotes
whitespace):

test (qins WS " ").get "" = " "
test (qins WS " ").put " \n\n " into "" = ""
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Note that (qins WS " ") is not well behaved in the strict sense—the put function maps strings
such as " \n\n " to the empty string, but the get function produces the string with a single
space. The quotient lens type of qins records the fact that the equivalence relation on the view
side is the total relation that relates any two strings consisting of whitespace.

Now let’s use qins to define a lens for building HTML elements. There are actually several
different ways we might want to pretty print elements: with whitespace before the opening
tag of the element, before its closing tag, or before both tags. To avoid repeating code, and to
illustrate the features of Boomerang’s functional programming infrastructure, I have factored
out the common parts of these lenses into a helper function that takes a parameter specifying
which pretty printing convention to use:

type loc = Open | Close | Both
let mk_elt_generic (l:loc) (ws:string) (name:string) (body:lens) : lens =
(match l with

| Close -> copy EPSILON
| _ -> qins WS ws : lens) .

ins ("<" . name . ">") .
body .
(match l with

| Open -> copy EPSILON
| _ -> qins WS ws : lens) .

ins ("</" . name . ">")

The l and ws arguments to mk_elt_generic represent the location and amount of whitespace
that should be inserted around the element, name is the name of the element, and body is the
lens used to process the data it contains. Partially applying this generic helper to each loc yields
three lens constructors handling each of the pretty printing conventions described above:

let mk_outer_elt = mk_elt_generic Close
let mk_simple_elt = mk_elt_generic Open
let mk_elt = mk_elt_generic Both

Using these definitions, the rest of the lenses are straightforward. The strings NL2, NL4, etc. are
defined in the standard prelude and denote newlines followed by fixed amounts of indentation
and Xml.esc_string is a function from Boomerang’s XML library that handles the escaping
of special characters—e.g., it rewrites < to &lt; and vice versa (the invert primitive flips the
direction of a bijective lens):

let text : lens = invert (Xml.esc_string [=*%])
let paragraph : lens =
mk_simple_elt NL4 "p" ((text . copy NL)* . (text . del NL))

let list_elt : lens =
mk_simple_elt NL6 "li" (del "* " . text)

let list : lens =
mk_elt NL4 "ul" (list_elt . del NL)+

let section : lens =
mk_simple_elt NL4 "h2" (del "==" . text . del "==") .
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(del NL . (paragraph | list))*
let html : lens =
mk_outer_elt NL0 "html"
(mk_elt NL2 "body" section* )

This lens has the behavior we want: the get function maps MediaWiki documents to pretty-
printed HTML, and the put and create functions map HTML documents containing arbitrary
whitespace back to MediaWiki. Using sequential composition, we can build a lens that does
regrading and conversion to HTML:

let tearline_html : lens =
tearline ; html

Quotient lenses are a critical piece of technology that makes it possible to build the bidi-
rectional transformations that are needed in practice. Besides whitespace, I use quotient lenses
to handle escaping, line wrapping, sorting, and filtering, and duplication in many of lenses I
have built. Although the problems that quotient lenses solve may appear minor at first sight,
they are important for handling real-world examples and attempting to sidestep these problems
renders many lenses essentially useless.

As a final example, consider the following quotient lens, which uses dup2 to generate a table
of contents from a second copy of the source:

let toc_section : lens =
mk_simple_elt NL6 "li" (del "==" . text . del "==") .
del (NL . (PARAGRAPH | LIST)* )

let toc : lens =
mk_simple_elt NL4 "h1" (ins "Table of Contents") .
mk_elt NL4 "ul" (toc_section* )

let html_toc : lens =
mk_outer_elt NL0 "html"
(mk_elt NL2 "body" (dup2 section* (get toc) (atype toc)))

let tearline_html_toc : lens =
tearline ; html_toc

The get function maps the original tearline source to the following view:

<html>
<body>
<h1>Table of Contents</h1>
<ul>
<li>Chefs</li>
<li>Supreme Court Justices</li>

</ul>
<h2>Chefs</h2>
<ul>
<li>Julia Child</li>

</ul>
<h2>Supreme Court Justices</h2>
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<ul>
<li>Arthur Goldberg</li>

</ul>
</body>

</html>

The put component of tearline_html_toc does the reverse transformation—in particular,
it discards the generated table of contents. The quotient lens type for tearline_html_toc

records the fact that updates to the the table of contents do not round-trip; the entire table is
considered ignoreable information.

5 Fine-grained Secure Documents

The tearline document model we have been working with so far works well, but it requires that
users maintain a strict separation between the confidential and public regions of documents.
In this section, I design a final lens for computing security views over documents that relaxes
this burden using a finer-grained document model in which confidential and public data may
be mixed freely. Understanding the details of how this lens works is not important for the
discussion that follows in later sections. Therefore, to keep things moving, I just illustrate
the main features of this lens using examples, and do not explain how it is implemented in
Boomerang; Appendix A contains a complete source code listing.

In the fine-grained document model, individual sections, paragraphs, and list items may
be tagged as confidential. The syntax is as follows: confidential sections and paragraph are
indicated by including the line “%% CONFIDENTIAL %%” before them; confidential list items
are indicated by lines that begin with “%” (ordinary public items begin with “*”). For example,
in the following document, the entire first section and the initial paragraphs of the next two
sections are confidential:

%% CONFIDENTIAL %%
==Office of Strategic Services==
The Office of Strategic Services was the forerunner to
the Central Intelligence Agency.
==Chefs==
%% CONFIDENTIAL %%
Julia Child worked for the Office of Strategic Services
during World War II.

* Julia Child
==Supreme Court Justices==
%% CONFIDENTIAL %%
Arthur Goldberg worked for the Secret Intelligence Branch.

* Arthur Goldberg

Allowing confidential data to be scattered throughout the document is convenient for users,
because it allows them to control access to particular pieces of the document very precisely.
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But this added flexibility do not come without cost: the task of defining updateable security
views over fine-grained documents is more complicated than for simple tearline documents. In
particular, the designer of a lens has the following additional choices about how its put function
should behave:

• Erasing/Redacting: The get function of a lens that computes a tearline view erases the
confidential regions completely by tearing off the public regions. In fine-grained doc-
uments it is also reasonable for the get function to merely redact the the confidential
regions by obscuring their content.

• Alignment: We have already seen that put functions can align the source and view posi-
tionally, or using an association calculated from notions of chunk and key. The same is-
sues arise in fine-grained security views. Additionally, because a single region can contain
multiple confidential subregions, we can choose to have confidential regions associated
to the public subregions that precede or follow them.

• Nesting/Flattening: In tearline documents, confidential information appears in exactly
one location—just before a tearline. However, in the fine-grained model, confidential
information can appear at several different nested levels of document structure. The put
function can either restore confidential information using a policy that strictly follows
this nested structure, or it can use a policy that aligns different kinds of confidential
information independently.

Let us examine each of these choices briefly.
First, consider the choice to hide versus redact confidential information. Given the source

document shown above, we can easily build a lens whose get function erases the confidential
information completely, yielding the following view:

==Chefs==
* Julia Child
==Supreme Court Justices==
* Arthur Goldberg

Alternatively, we can build a lens that redacts by replacing the contents of confidential regions
with special strings marking the location of a confidential region in the source:

==%% REDACTED %%==
==Chefs==
%% REDACTED %%

* Julia Child
==Supreme Court Justices==
%% REDACTED %%

* Arthur Goldberg
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Marking data as redacted leaks more information about the source to the regraded view (we
will return to this, in our analysis of confidentiality in Section 6). For example, this regraded
view leaks the fact that confidential information exists for both Child and Goldberg. It is
sometimes useful, however, for public users to be able to see the placement of secrets—e.g.,
to edit the placement of confidential information—even if they cannot view their contents.
Lastly, note that we can choose to erase some information while redacting others. The lens
definitions in Appendix A are written so that the choice to erase or redact confidential regions
can be picked independently for sections, paragraphs, and list items.

Next, consider the choice of an alignment strategy for the put function. As before, we can
align data positionally, so that if we have an view consisting of a single list of names

* Dick Cheney
* George W. Bush

and put it back into a source containing the names followed by their Secret Service code names
(so here the update has modified Cheney’s first name to “Dick”, added Bush’s initial, and
swapped the order of names)

* George Bush
% Tumbler or Trailblazer
* Richard Cheney
% Angler

we get an updated source

* Dick Cheney
% Tumbler or Trailblazer
* George W. Bush
% Angler

where the code names are restored positionally. Alternatively, we can use dictionary lenses
to use each public item as the key of a chunk consisting of that public item followed by the
sequence of confidential items that follow. The put function of this lens maps the same updated
view and source to

* Dick Cheney
% Angler
* George W. Bush
% Tumbler or Trailblazer

We can also arrange the chunks so that a public item serves as the key for the confidential items
that precedes it. Note that this lens uses “fuzzy” alignment that was discussed earlier—even
though we have changed both public items, the put function still associates each confidential
item to the correct public item.

The third design choice concerns the treatment of nested confidential regions. For example,
if a list containing confidential items appears within a public section, then we can either design
the put function so that confidential lists are only ever restored if it also aligns the enclosing
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sections, or so that the alignment of list items and sections are independent. I call the first
strategy “nested” and the second “flat”. To illustrate the difference, consider the following toy
source document,

"==First==
* public
% confidential
==Second==
text"

which maps to

"==First==
* public
==Second==
text"

by an erasing get function. If we use the nested strategy, and the update to the view moves a
list across a section boundary, then the confidential data for that list will be lost. For example,
putting

"==First==
text
==Second==
* public"

into the source yields

"==First==
text
==Second==
* public"

since the confidential data list item is aligned with the section named First, which contains
no lists. Using the flat approach, then the put function produces

"==First==
text
==Second==
* public
% confidential"

instead—the alignment of list items and of sections are completely independent.
This concludes our tour of Boomerang, and of lenses for secure documents. Next I discuss

the extensions to lenses for reasoning about properties of trustworthy updateable security views.
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6 Trustworthy Security Views

Boomerang’s type system guarantees that the components of well-typed lenses are total func-
tions and that they obey the lens laws. These properties go a long way towards ensuring that
lenses build correct updateable views, but in security settings, we need more. In particular, we
need to be able to establish, in a formal way, that the get function of a lens does not leak the
information we intend to keep secret, and that its put function does not taint source data. This
section describes some preliminary ideas towards extending Boomerang to meet both of these
needs.

6.1 Confidentiality

The whole reason for defining a security view is to restrict access to particular parts of the
source. Thus, it is useful to have a way to establish that the information in the source we
intend to keep secret is not leaked into the view. For simple queries, such as the get function of
the lens for tearline documents, it is not difficult to see that the confidential information—i.e.,
the contents of the regions above each tearline—is not leaked to the view. But for queries
that are not just simple projections, such as the redacting lenses for fine-grained documents,
or lenses built using sequential composition, it is not always obvious which information in the
source is kept secret.

This section describe a refined type system for Boomerang based on an information-flow
analysis. It facilitates precise, end-to-end reasoning about confidentiality properties of lenses.
The outline of the development is standard—I show how to decorate lens types with anno-
tations drawn from a lattice L of labels representing clearances, I extend the typing rules for
lenses to track data flows, and I prove a non-interference theorem establishing that the low-
security parts of the view do not depend on any high-security parts of the input Sabelfeld and
Myers (2003)—but the details, in particular the application of information flow to regular
types, is novel.

I start by defining the semantics of security-annotated types. Formally, I extend the syntax
of regular expressions, which are the main building blocks for lens types in Boomerang, to
annotated versions by extending the grammar

R ::= u | R·R | R|R | R∗

with a new production R : l where l is a label in L. The semantics of an annotated expression
R has two components: a set of strings [[R]] and a family of label-indexed binary relations ∼R

l

on [[R]]. The set of strings [[R]] is the same set as is denoted by the ordinary regular expression
obtained by erasing all the annotations in R. The relations capture the notion that two strings
cannot be distinguished by an observer with clearance is l.

Interestingly, there seem to be several reasonable semantics for these observability relations.
At this preliminary stage of the investigation, I do not have any evidence that leads me to favor
one semantics of annotated regular expressions. Thus, I will describe all three; any of these
semantics can be plugged in to the rest of the information-flow type system for lenses.
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braceu(s) = = s
brace(R1·R2)(s1·s2) = braceR1(s1)·braceR2(s2)
braceR1∗(s1 · · · sn) = braceR1(s1) · · · braceR1(sn)

braceR1:l(s) =

{
s if l = L

(s) otherwise

brace(R1|R2)(s) =


braceR1(s) if s ∈ [[R1]] \ [[R2]]

braceR2(s) if s ∈ [[R2]] \ [[R1]]

merge braces(braceR1(s), braceR2(s)) otherwise

Figure 1: Brace insertion.

For simplicity, I work in a two-point lattice with L < H; generalizing to more interesting
lattices is straightforward. I only give the definition of ∼L since the relation ∼H is equality—
an observer with the highest level of clearance can distinguish strings exactly when they are
different strings.

Let R be an annotated regular expression in which concatenations and iterations are un-
ambiguous (these conditions are required by the unique splittability conditions on the typing
rules for lenses anyways). I first define in Figure 1 a function brace that maps strings in [[R]]

to strings where the secrets regions are delimited using special symbols ( and ). The function
merge braces is a function on pairs of well-braced strings and merges their braces by to yield
another well-braced string—e.g.: merge braces((ab)c, a(bc)) = (abc). The most interesting
cases in this definition are braceR1:l, which puts the entire string in braces if l = H and does
nothing if l = L, and braceR1|R2

in the case where [[R1]] and [[R2]] are not disjoint, which merges
the braces assigned by observability relations of R1 and R2.

The first semantics intuitively corresponds to “erasing” secrets. Two strings can be distin-
guished by an individual with L clearance in this semantics if inserting braces and then erasing
the braces and all the characters they enclose yields identical strings:

s1 ∼R
L s2 ⇐⇒ erase(bracesR(s1)) = erase(bracesR(s1))

where erase is the obvious function on strings—e.g. erase((ab)c) = c. As an example, if R

is [a-z]:H then for every string s in [[R]] we have that erase(bracesR(s)) is the empty string,
so ∼R

L is the total relation. Likewise, if R is ([a-z]:H)* then ∼R
L is also the total rela-

tion because for every s in [[R]] we have erase(bracesR(s)) is the empty string. Finally, if R

is [a-z]:L.[0-4]:H | [a-z]:L.[5-9]:H then for any string s in [[R]] where s = cn with
c ∈ [[[a-z]]] and n ∈ [[[0-9]]] we have erase(bracesR(s)) = c. It follows that cn ∼R

L c′n′ if and
only if c = c′.

The second semantics intuitively corresponds to “redacting” secrets. The observability rela-
tion is defined in the same way as in the erasing semantics, except that in the final step, instead
of erasing regions enclosed in braces, we use redact to replace them with a symbol #—e.g.,
redact((ab)c) = #c:

s1 ∼R
L s2 ⇐⇒ redact(bracesR(s1)) = redact(bracesR(s1))
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The different between this semantics and the previous one is illustrated best by considering an
annotated regular expression that involves Kleene star. If we take R to be ([a-z]:H)* then a
low observer can distinguish ab and abcde because bracing and redacting maps the first string
to ## and the second string to #####. In the erasing semantics, we saw that ∼R

L was the total
relation.

A final semantics, also based on redacting, can be obtained by obscuring each individual
character rather than the entire redacted region. For example, if we take R to be the type
([a-z]*:H) (note the different placement of the Kleene star) then a low security observer can
distinguish ab from abcde in this semantics since marking and redacting maps these strings
## and #####. By contrast, the first redacting semantics maps both strings to #, so they are
indistinguishable.

Having defined several semantics for annotated regular expressions, I now describe revised
the typing rules for the core lens combinators with an information-flow analysis. These revised
rules satisfy the following non-interference theorem:

6.1 Theorem [Non-interference]: Let l ∈ S ⇐⇒ V be a lens, l ∈ L be a label, and s, s′ ∈ [[S]]

with s ∼S
j s′. Then l.get s ∼V

j l.get s′.

The standard Boomerang typing rules for some of the combinators, copy, const, and concate-
nation already satisfy the non-interference property:

E ∈ R
copy E ∈ E ⇐⇒ E

E ∈ R e ∈ [[E]]

const E d e ∈ E ⇐⇒ d

l1 ∈ S1 ⇐⇒ V1 S1·!S2

l2 ∈ S2 ⇐⇒ V2 V1·!V2

l1·l2 ∈ S1·S2 ⇐⇒ V1·V2

(The notation S1·!S2 in the typing rule for concatenation asserts that strings in S1·S2 be
uniquely splittable; S1

!∗, used for Kleene star below, denotes an analogous condition.)
The rules for union and Kleene star, however, do not satisfy non-interference. Intuitively,

the reason is that the union combinator fails to have the property is that an observer can deduce
facts about the source by examining the view and reasoning backwards from the branch that
was selected. In this way, even if no secrets are explicitly copied from the source to view, the
observer can sometimes still glean information about the source. For example, in the following
lens

let l : lens =
(copy [a-m] . del [5-9])

|| (copy [a-z] . del [0-4])

(the notation || is a variant of lens union) if the letters are public and the numbers are secret,
then observing a view [n-z] reveals that the secret number in the source belongs to [0-4] and
not [5-9].

The standard way to track these implicit flows of information is using a typing rule that
escalates the label on the view component of the type by the label of the data that was used
to pick a branch. The lens union operator picks a sublens by testing which sublens has a type
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that matches the source string. Thus, the label of the data used to pick a branch is the minimal
label that observes that the two source types are disjoint:

6.2 Definition [Observes Disjoint]: Let R1 and R2 be security-annotated regular expressions
and let l ∈ L be a label. I will say that l observes R1 ∩ R2 = ∅ if and only if for every
r, r′ ∈ [[R1 | R2]] if r ∈ [[R1]] and r′ ∈ [[R2]] then r 6∼R1|R2

L r′.

With this definition, the typing rule for union is a straightforward generalization of the stan-
dard Boomerang rule:

l1 ∈ S1 ⇐⇒ V1 l2 ∈ S2 ⇐⇒ V2

j = join{j′ | j′ minimally observes S1 ∩ S2 = ∅}
l1 | l2 ∈ (S1 | S2) ⇐⇒ (V1 | V2) : j

Similar issues with implicit flows come up with the Kleene star operator. For example
consider the lens

let l : (lens in [a-z]* <-> "a"* ) =
(const [a-z] "a" "a")*

The const lens being iterated can validly be given the type [a-z]:H <-> "a":L However, l
cannot be given the type ([a-z]:H)* <-> ("a":L)* To see why, observe that in the erasing
semantics, an L observer cannot distinguish any source strings, but they can distinguish differ-
ent views. Thus, we need to escalate the label on the view component of the type by the label
that observes the iterability of the source.

6.3 Definition [Observes Iterable]: Let R1 be a security-annotated regular expression and let
l ∈ L be a label. I will say that l observes R1

!∗ if and only if for every r1, . . . , rk, r
′
1, . . . r

′
l ∈ [[R1]]

we have that r1 · · · rk ∼
R1|R2

l r′1 · · · r′l implies k = l.

With this definition, the typing rule for Kleene star is a straightforward generalization of the
standard rule in Boomerang:

l1 ∈ S1 ⇐⇒ V1

j = join{j′ | j′ minimally observes S1
!∗}

l1
∗ ∈ (S1

∗) ⇐⇒ (V1
∗) : j

This type system represents a first step toward a system in which it will be possible to
decorate the source and target components of a lens type with security annotations, and guar-
antee that the get function does not leak data marked secret. To finish the job, a few tasks
remain. First, I would like to study the various semantics for security-annotated regular types
further. (For example, I would like to relax the condition that concatenations and unions be
unambiguous.) Second, the typing rules must be integrated with all of the other features of
Boomerang—in particular, the interaction with quotient lenses may be interesting. Second,
to really be able to use this type system in practice, I need to find or design algorithms for
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deciding properties such as type equivalence and minimal label observing the disjointness and
iterability of security-annotated types. I am optimistic that such procedures can be found, per-
haps by adapting previous work on the weighted automata that have been thoroughly studied
in the context of natural language processing (Mohri, 2004).

6.2 Integrity

The second security property we need to be able to track is integrity. Allowing security views to
be updated opens the door to a whole host of nasty complications because it makes it possible
for individuals to modify source data (via the view) that they do not even have clearance to
access! Even worse, for many transformations, the modifications to the source are irreversible—
we cannot back them out simply by rolling back to the change to the view.

As an example illustrating these problems, consider the following toy lens

let l : (lens in ? <-> [a-z]) =
(copy [a-m] . del [0-4]) | (copy [n-z] . del [5-9])

(the notation ? <-> [a-z] asserts that l has a type whose source type is anything and view
type is [a-z]) and suppose that the letters ([a-z] and [n-z]) copied from the source to view
are public while the numbers ([0-4] and [5-9]) are secret. The get function maps the source
m1 to a view m that only contains public information. If a user with public clearance modifies
this view to n, then the put function cannot restore the deleted number by copying it from
the original source because n1 is not valid. So instead, the union lens will discard the original
source and invoke the create function of the second sublens, yielding n5 as a result. The key
thing to notice is that propagating the changes made by an untrusted user to a public view
changes secret data in the source—namely the deleted number goes from 1 to 5.

A similar problem comes up with the Kleene star operator. Consider the lens

let l : (lens in ([a-z] . [0-9])* <-> [a-z]* ) =
(copy [a-z] . del [0-9])*

and suppose that, as in the previous example, the letters are public and the numbers are secret.
The get function maps a source a1b2c3 to the view abc. If a public user then modifies this
view to ab, then the put function produces the new source a1b2. This is a reasonable result,
but it means that the secret value 3 is deleted.

There are two broad approaches we could take to handling this problem: we could restrict
the class of transformations for defining security views to ones that do not suffer from the
problems illustrated by the examples above, or we could instrument the transformations to
provide sufficient information for a trusted user to audit the changes induced by propagating
updated views back to the source.

Recall that a lens is called very well behaved if two puts in sequence just has the effect of
the second:

l.put v (l.put v′ s) = l.put v s
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Requiring that all lenses be very well behaved would ensure that updates to the view did not
cause the source to be changed irreversibly: to roll back the changes induced after one put,
we would just invoke put again with the old view and the new source. However, as discussed
previously, very well behavedness is an extremely restrictive condition that rules out several core
combinators that we use all the time in practice. In particular, we would have to give up most
instances of union and Kleene star. Thus, requiring very well behavedness in general would
restrict security views a class of transformations that is too weak to build many examples of
practical interest.

A different approach would be to design a static analysis tracking which parts of the source
have been tainted. It has often been noticed that confidentiality and integrity are dual no-
tions. Formally, this idea would work by generalizing our lattice of security clearances to track
confidentiality and integrity simultaneously and flipping around the non-interference theorem
around so that it applies to the put function as well. First, we would generalize the lattice of
security labels to a product lattice—the label 〈li, lc〉 represents data with integrity li and con-
fidentiality lc—with order in the lattice calculated component-wise. For example, if there are
just two levels of confidentiality and integrity, then the combined lattice is as follows:

〈Li, Hc〉

〈Hi, Hc〉

〈Hi, Lc〉

〈Hi, Lc〉

Intuitively, labels that are higher in the lattice place more restrictions on programs that ma-
nipulate data carrying that label. For example, the top element, representing “low” integrity
and “high” confidentiality (i.e., tainted and secret) data, requires the most care, while “high”
integrity and “low” confidentiality (i.e., endorsed and public) data can be used freely.

Unfortunately, using a static type system to track integrity does not seem to give precise
enough information about the locations of changes. Consider the lens l built using Kleene star
from above. The source starts out as a list containing a mixture of endorsed and confidential
(〈Hi, Hc〉) data and endorsed and public (〈Hi, Lc〉) data. Regrading this source using the get
function yields a uniform list of endorsed and public (〈Hi, Lc〉) data. An edit to the list by an
untrusted party introduces new data that is tainted and public (〈Li, Lc〉). But now we have
a problem: the type of edited lists is a mixture of endorsed and tainted public data (〈Hi, Lc〉
and 〈Li, Lc〉), and this type does not tell us which list elements are tainted, but only that some
elements (may) have be tainted, but not which elements are tainted. Thus, applying a static
analysis based on information flow seems to result in a system that is too coarse in practice.

Static techniques do not seem capable of tracking integrity with enough precision to be
useful in practice. So instead, let us explore dynamic techniques. Broadly, the idea is that
propagating changes to the view should generate metadata about the source —in the form of
provenance or an explicit log—that a trusted user can use to audit the changes and verify that
all of the changes are reasonable.
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The first idea based on a dynamic approach uses provenance metadata. Provenance is meta-
data that records the facts about the history of a piece of data as it flows through a computation.
The idea here is to interpret the provenance as integrity. We would first extend the data model
so that every piece of the source and view carry an explicit annotation indicating whether it is
endorsed or tainted. We would then generalize the semantics of lenses so that the get, put, and
create functions operate on these annotated strings—in particular, so that they propagate this
metadata as they transforming the underlying strings (Green et al., 2007; Foster et al., 2008a).
Source data would originate with “neutral”, endorsed provenance. But as untrusted users edit
the view, they would tag as tainted the specific pieces of the view they change. The put func-
tion would then propagate these annotations back to the source, yielding a structure whose
annotations precisely identify the pieces of the source that have been changed and that need
to be audited. In certain ways, this design is quite attractive—indeed, for tracking integrity
it seems to give almost everything that is needed—but it requires deep structural to the data
model and the semantics of lenses. Additionally, it means that applications built using lenses
will require tighter integration, since they will need to manipulate the provenance metadata of
views.

The final idea for tracking integrity, and the one that I propose to actually investigate and
implement in Boomerang, approximates the behavior of previous without requiring that all
structures carry explicit annotations by imposing a few simplifying assumptions. It is based on
the observation that the put function already infers when and how it changes the source, and
so it can use this information to generate an audit log. For example, returning to the example
from before,

let l : (lens in ([a-z] . [0-9])* <-> [a-z]* ) =
(copy [a-z] . del [0-9])*

with the source a1b2c3 and view ab, the put function can detect that the first two pieces of the
source and view will be restored exactly, while the third piece will be deleted, and it can record
these facts in a log.

This approach depends on two simplifying assumptions. First, the source only contain
endorsed data. This means that data model and get function do not need to be generalized to
work on annotated strings. Second, it assumes that the edits to the view originate with a single
user. This means that the put function does not need to track which user has edited the view,
only that it has been edited.

In fact, I believe that this second assumption can be relaxed—the architecture can be gen-
eralized to multiple untrusted users using a synchronizer. If multiple users need to edit a view
then they should first agree on a consistent view states using a synchronizer (possibly using
several rounds of synchronization to resolve conflicts). After synchronizing, the log generated
by the synchronizer indicates which edits to specific pieces of the view originated with which
users. The information in this log is analogous to the annotated strings described in the pre-
vious approach. The put function can then use this extra information to report the changes
to the new source precisely. Returning to our example, if after synchronizing both Alice and
Bob agree that c should be deleted from the view, then the output of the synchronizer will be
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the new view ab and a log indicating that c was deleted by both parties. The put function can
combine these pieces of information to produce an appropriate log for the source recording
the fact that c3 was deleted by both.

The main thing lost with the implicit approach compared to the previous one with explicit
provenance is the ability to represent sources that contain both endorsed and tainted data—i.e.,
audits need to be done after each update. The benefits, however, are significant: get functions
do not have to be retooled to propagate annotations, and applications do not need to indicate
which parts of the view they have changed—the synchronizer and the put function infer this
information instead. Thus, I believe it to be a promising approach to tracking integrity in
security applications built on lenses.

7 Related Work

The original paper describing basic lenses (Foster et al., 2007b) includes an extensive survey of
work related to lenses. In this section, I highlight just a few of the most relevant pieces of work
for completeness, and to provide references for languages that have emerged since that paper
was published as well as for security views.

In the area of foundations, the work most closely related to lenses comes from the database
literature. The seminal papers of Dayal and Bernstein (1982) and Bancilhon and Spyratos
(1981) propose notions of correct view update for relational systems. Dayal and Bernstein’s
notion of “exactly performing an update” corresponds to the PUTGET law of basic lenses and
Bancilhon and Spyratos’s “constant complement” approach corresponds to very well behaved
lenses. The idea of using constant complements also influenced later work by Lechtenbörger
(2003). Hegner (2004) studied a additional condition called monotonicity—updates that add
more records to the view should be translated to larger source updates (and similarly for dele-
tions). Similar theories based on ordering translations have also been studied by Johnson and
Rosebrugh (2007) and Buneman, Khanna, and Tan (2002). In particular, the latter work
established the intractability of inferring minimal updates in the relational setting for stan-
dard query languages, as discussed in the introduction. Finally, the tradeoffs between update
translators that are total and ones that may fail has been studied by Hegner (1990).

There are a large number of programming languages that, in some way, describe bidirec-
tional transformations. Basic lenses for relations, using primitives based on relational algebra,
have been developed by Bohannon, Vaughan, and Pierce (2006).

Meertens’s constraint maintainers for user interfaces addresses the problem of connecting
graphical objects on the screen so that, whenever one of the objects is changed by the user,
the change can be propagated by the maintainer to the other object such that the relationship
between the objects is maintained (Meertens, 1998). Similar issues were studied by Greenberg
in the context of DOM-based interfaces (Greenberg and Krishnamurthi, 2007).

The bidirectional combinator language X is a tree manipulation languages loosely based
on basic lenses (Hu et al., 2004; Mu et al., 2004). The main focus in X is on developing
mechanisms for handling dependencies that arise when source information is duplicated in
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the view, motivated by applications to a structure editor. The semantic foundation of these
languages is weaker than lenses; in particular, they relax the lens laws to trip-and-a-half versions
and allow updates to fail. X was later used as the basis for a bidirectional interpretation of core
XQuery (Liu et al., 2007).

Recent work by some of the same authors has tackled the problem of specifying bidirec-
tional transformations using ordinary λ-notation. Starting from a restricted fragment with
affine variables, they show how to derive explicit view complements, which they then use to
derive the backwards function (Matsuda et al., 2007). As in previous work from the same
group, updates are allowed fail. However, they show how to calculate an update checker that
tests if a given update will succeed.

A number of bidirectional languages for writing conversions intended to be bijective mod-
ulo “ignorable information” have been proposed. XSugar (Brabrand et al., 2008) is a bidirec-
tional language that maps between XML documents and strings. Transformations are speci-
fied using pairs of intertwined grammars. A similar language, biXid (Kawanaka and Hosoya,
2006), converts between XML on both sides. The PADS system (Fisher and Gruber, 2005)
has a bidirectional language that describes the parser and pretty printer (and a number of ad-
ditional software artifacts) for an ad-hoc data formats from a single, declarative description.
Kennedy’s combinators (2004) describe pickler and unpicklers for serializing data out to the
disk or network and reading it back in. Benton (2005) and Ramsey (2003) both describe sys-
tems for mapping between run-time values in a host language and values manipulated by an
embedded interpreter.

There has been a flurry of recent interest in applying bidirectional languages to problems in
software engineering. Stevens (2007) applied the ideas of basic lenses in the context of model
transformations. This idea has also been pursued by the designers of X (Xiong et al., 2007).

The idea of using views to encapsulate sensitive information in XML was proposed by Sto-
ica and Farkas (2002) and extensively studied by Fan, Chan, and Garofalakis (2004). The
latter work develops a system similar to the confidentiality framework for get functions pro-
posed here. In particular, they emphasize the need to provide a type (formulated as a DTD)
for users of the security view. Unlike this work, however, their views are virtual and cannot be
updated.

There are a number of programming languages with static type systems that track confi-
dentiality properties using information flow (Sabelfeld and Myers, 2003; Pottier and Simonet,
2003). Swamy, Corcoran, and Hicks have recently proposed a system that combines static in-
formation flow and dynamic provenance propagation in the same system(Swamy et al., 2008;
Corcoran et al., 2007). Their approach to security properties is largely the same as that pro-
posed in this work, but their focus is on a mechanisms for specifying a variety of different
access control properties whereas mine is on the mechanisms of updateable views in bidirec-
tional languages with a type system based on regular expressions.

The designers of the functional language CDuce proposed a dynamic analysis to track
information flow for XML transformations (Benzaken et al., 2003). Their goals are similar,
but they state their non-interference result in terms of specific subexpressions in a program,
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rather than as an end-to-end property of whole transformations.

8 Implementation Status and Roadmap

In this section, I briefly describe the implementation status of the Boomerang system and
several of the prototype applications I have assembled using it. I also sketch a roadmap and
rough timeline for the remaining work.

8.1 The Boomerang System

I have developed a prototype implementation of the Boomerang language with major assistance
from Alexandre Pilkiewcz and Michael Greenberg. This system includes an interpreter for
the surface language, native implementations of the core basic, dictionary, and quotient lens
combinators, and several lens libraries for handling escaping, lists, sorting, and XML.

The core combinators in Boomerang rely on functions drawn from a regular expression li-
brary. These combinators make heavy use of several slightly non-standard operations including
operations to decide whether concatenations and iterations are unambiguous. I have imple-
mented an efficient regular expression library in OCaml based on Brzozowski derivatives Br-
zozowski (1964). The library makes heavy use of hash consing and memoization to avoid
recomputing results, and a clever algorithm for deciding ambiguity due to Møller (2001).

As illustrated in many of the example lenses in this document, Boomerang has a very
rich type system with regular expression types, dependent function types, refinement types,
datatypes, and polymorphism. The combination of these features makes for a very complicated
type system. Rather than trying to identify a decidable, fragment of this beast that could be
implemented in a static type checker, I have pursued a hybrid approach. Boomerang’s type
checker uses a very coarse analysis to rule out obviously ill-formed programs and verifies the
precise conditions expressed by types using dynamic tests. Much of the recent work on the
type checker has been carried out by Michael Greenberg. In particular, he has designed and
implemented an algorithm for inserting checks that addresses some serious efficiency problems
with the obvious, naive approach.

Using Boomerang, I have developed a number of lenses, several of which are described in
the next section. Among the lens that I have implemented is... this very document! All of the
examples displayed in a typewriter font have been generated from its literate source file and
type checked and run within Boomerang.

8.2 Data Converters and Synchronizers

One of the most compelling applications of lenses is for converting between and synchronizing
data represented in different formats. I have implemented lenses for a variety of real-world data
formats including vCard and CSV address books, BibTeX and RIS-formatted bibliographies,
a number of transformations between text and XML originally developed as a part of the
XSugar project (Brabrand et al., 2008), and a large lens that maps between textual and XML
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Figure 2: Boomerang Emacs interface.

representations of UniProtKB genomic databases. The Boomerang front-end can be used with
these lenses to convert between instances of all of these formats.

With Benjamin Pierce and Alan Schmitt, I have also recently extended a synchronization
algorithm, originally developed for trees (Foster et al., 2007a), to strings. This algorithm takes
a type as input, which it uses to calculate the alignment of substrings in each replica. This
algorithm, whose core uses heuristics based on the Unix utility diff3, appears to work well in
practice, but we are still studying its formal properties.

8.3 Structure Editor

Another application I have implemented is a simple Emacs interface for editing source and
view strings related by a lens. A screenshot of this interface is shown in Figure 2. In this mode,
the user has two windows, with the source on the left and the view on the right. They edit
either buffer and the Boomerang system propagates the changes from source to view or vice
versa when the buffer is saved.

8.4 Roadmap

The remaining work divides cleanly into three main areas. I propose to work on these topics
in sequence, with the goal of completing the project by the summer of 2009.

The next immediate step is to complete the investigation into information flow for lan-
guages with regular types, and implement the refined type system for lenses in Boomerang. In
parallel, I plan to develop the approach sketched in this document for tracking the integrity
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of source data using implicit provenance further. I hope that both of these pieces will be fin-
ished by the end of the fall semester, and will eventually lead to separate publications—one on
information flow for regular types in general, and another on using lenses to build updateable
security views. I also plan to spend a significant chunk of time polishing and extending the
Boomerang system and its associated applications. Specifically, I hope to develop a few ad-
ditional lenses for real-world formats, integrate lenses with the Unison file synchronizer, and
tune the implementation further by studying algebraic optimizations and building streaming
physical implementations of the core lens combinators. It is my firm belief that lenses, even
in the relatively simple domain of string transformations, have the potential to have signifi-
cant practical impact. I am therefore highly motivated to make these ideas accessible to users
(and programmers!) by packaging and releasing a robust implementation before the project is
finished.
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A Listing of Wiki.boom

As described in Section 5, there are several reasonable policies that one can use in updateable
security views over MediaWiki documents. Rather than picking a single policy, I have imple-
mented a collection of function that can be instantiated to obtain lenses with any combination
of the policies. Formally, all of the lens definitions are parameterized on these choices:

type align = Before | After | Positional
type hide = Hide | Redact
type nest = Nest | Flatten

To specify the of data at each level of structure, the programmer specifies one policy for each
level. For example, the expression

let ahn = (after,hide,nest) in
document (ahn,ahn,ahn)

builds a lens that handles documents where, at each level of structure (in our simplified format:
sections, paragraphs, lists) confidential data appears after public data, the get function hides
confidential data, and the handling of confidential data follows the nesting structure of the
document.

(***********************************************************)
(* The Harmony Project *)
(* harmony@lists.seas.upenn.edu *)
(* Copyright (C) 2007-2008 *)
(* J. Nathan Foster and Benjamin C. Pierce *)
(***********************************************************)
(* wiki.boom *)
(* Fine-grained security views of MediaWiki documents. *)
(***********************************************************)

module Wiki =

(* ----- regular expressions ----- *)
let NL : regexp = [\n]
let SPACE : regexp = [ ]
let STAR : regexp = [*]
let PCT : regexp = [%]
let NONNL : regexp = [^\n]
let DNL : regexp = NL{2}
let DEQ : regexp = [=]{2}
let DPCT : regexp = [%]{2}
let CONFIDENTIAL : regexp = /%% CONFIDENTIAL %%/
let HEADER : regexp = [^=\n%]+
let not (X:regexp) : regexp =
ANY - containing X

let PARAGRAPH : regexp =
let R : regexp = [^*%=\n] in
R | (R . (not (NL . [=%*\n])) . R)

(* ----- configuration ----- *)
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type align = Before | After | Positional
type hide = Hide | Redact
type nest = Nest | Flatten

let ahn = (After,Hide,Nest)
let ahf = (After,Hide,Flatten)
let arn = (After,Redact,Nest)
let bhn = (Before,Hide,Nest)
let phn = (Positional,Hide,Nest)

let red_config = (arn,arn,arn)
let std_config = (ahn,ahn,ahn)
let flat_config = (ahf,ahf,ahf)

(* ----- helper functions ----- *)
let iter_with_sep (l:lens) (s:lens) =
l . (s . l)*

let key_or_copy (a:align) : regexp -> lens =
match a with
| Positional -> copy
| _ -> key : (regexp -> lens)

let del_or_copy (h:hide) : regexp -> lens =
match h with
| Hide -> del
| Redact -> copy : (regexp -> lens)

let secret_aux (h:hide) (R:regexp) (red:string)
(def:string) (SEP:regexp) : lens =

match h with
| Hide -> del (R . (SEP . R)* )
| Redact ->

begin
let l = default (R <-> red) def in
iter_with_sep l (copy SEP)

end : lens

let sequence_aux (a:align) (h:hide) (n:nest) (pub:lens)
(sec:lens) (SEP:regexp) (tag:string) : lens =

let dsep : lens = del_or_copy h SEP in
let ksep : lens = key_or_copy a SEP in
let pub_sec : lens = match a with
| Before -> sec . dsep . pub
| _ -> pub . dsep . sec : lens in

let chunk : lens = pub || pub_sec in
let m : lens = match n with
| Nest -> <~{1.0} chunk >
| Flatten -> smatch "1.0" tag chunk : lens in

let ms : lens = iter_with_sep m ksep in
(match a with

| Before -> ms . (copy "" || (dsep . sec))
| _ -> (copy "" || (sec . dsep)) . ms) : lens

(* ------ itemized lists ------ *)
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let public_list_elt (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let ((a,_,_),_,_) = conf in
key_or_copy a (STAR . SPACE . NONNL+)

let secret_list_elts (conf:(align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let ((_,h,_),_,_) = conf in
secret_aux h (PCT . SPACE . NONNL+)
"% REDACTED"
"% INSERTED CONFIDENTIAL"
NL

let list (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let ((a,h,n),_,_) = conf in
sequence_aux a h n
(public_list_elt conf)
(secret_list_elts conf)
NL "l"

let list_std : lens =
list std_config

let list_bhn : lens =
list (bhn,ahn,ahn)

let list_phn : lens =
list (phn,ahn,ahn)

let list_arn : lens =
list red_config

(* ----- paragraphs ----- *)
let public_paragraph (conf: (align * hide * nest) *

(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,(a,h,n),_) = conf in
let p : lens = key_or_copy a PARAGRAPH in
let l : lens = list conf in
let nl : lens = key_or_copy a NL in
let pl : lens = p . nl . l in
p | l | (pl . nl)* . pl . (nl . p)?

let secret_paragraphs (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,(_,h,_),_) = conf in
secret_aux h (CONFIDENTIAL . NL . ctype (public_paragraph conf))
"%% REDACTED %%"
"%% CONFIDENTIAL %%\nINSERTED PARAGRAPH."
DNL
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let paragraphs (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,(a,h,n),_) = conf in
sequence_aux a h n
(public_paragraph conf)
(secret_paragraphs conf)
DNL "p"

let paragraphs_std = paragraphs std_config

(* ------ sections ----- *)
let public_section (conf: (align * hide * nest) *

(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,(_,_,_),(a,_,_)) = conf in
let dnl = key_or_copy a DNL in
let h : lens = key_or_copy a (DEQ . HEADER . DEQ . NL) in
let p = paragraphs conf in
h . forgetkey (paragraphs conf)

let secret_sections (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,_,(_,h,_)) = conf in
secret_aux h (CONFIDENTIAL . NL . ctype (public_section conf))
"==%% REDACTED %%=="
"%% CONFIDENTIAL %%\n==INSERTED SECTION==\nINSERTED PARAGRAPH."
NL

let sections (conf: (align * hide * nest) *
(align * hide * nest) *
(align * hide * nest)) : lens =

let (_,_,(a,h,n)) = conf in
sequence_aux a h n
(public_section conf)
(secret_sections conf)
NL "s"

(* ----- documents ----- *)
let document (conf: (align * hide * nest) *

(align * hide * nest) *
(align * hide * nest)) : lens =

sections conf

let document_std : lens =
document std_config

let document_red : lens =
document red_config

let document_flat : lens =
document (ahf,ahf,ahf)
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