
Nate Foster
with Aaron Bohannon, Malo Denielou,

Michael Greenwald, Christian Kirkegaard,
Stéphane Lescuyer, Benjamin Pierce, and Alan Schmitt

 SYNCHRONIZATION ALGORITHM
sync(S,o,a,b) =
 if a = b then (a,a,b) -- equal replicas: done
 else if a = o then (b,b,b) -- no change to a
 else if b = o then (a,a,a) -- no change to b
 else if o = c then (o,a,b) --unresolved con!ict
 else if a = t and b 7 o then (a,a,a) --a deleted more than b
 else if a = tand b C o then (c,a,b) --delete/create con!ict
 else if b = tand a 7 o then (a,a,a) --b deleted more than a
 else if b = tand a C o then (c,a,b) --delete/create con!ict
 else --proceed recursively
 let (o’(k),a’(k),b’(k) = sync(S(k),o(k),a(k),b(k))
 ck2 dom(a), dom(b) in
 if (dom(a’) ; doms(S) or dom(b’) ; doms(S))
 then (X,a,b) -- schema domain con!ict
 else (o’,a’,b’)

De!nition: S is path consistent i" whenever t,u2S we can update t along any
path present in u and the resulting tree also belongs to the schema.
Theorem: if a, b2S and S is path consistent, then a’, b’2S and are the most
synchronized safe results.

harmony: a generic synchronization framework
 for heterogeneous, replicated data

 ARCHITECTURE
Harmony’s architecture has two key
components:

• lenses: view update translators
for trees; used to map between
heterogeneous concrete replicas
and trees belonging to a common
abstract synchronization schema;
• synchronization algorithm: a
generic, local, state-based,
schema-aware algorithm that
merges the non-con!icting
updates made to each replica.

Wiring these components together
the architecture is as depicted. A and
B are the repliacs, the archive O
represents the last synchronized state, S is the synchronization schema, A’ and B’
are updated replicas, and O’ an updated archive.

 LENSES, SEMANTICALLY
A “well-behaved” lens is a pair of functions, Get and PutBack, with types:

• Get: C % A
• PutBack: A × C % C

that obey two behavioral “round-trip” laws:

 LENSES, SYNTACTICALLY
Focal is a language of combinators where every well-typed expression denotes
a well-behaved lens. Every Focal program can be run forwards (get) and
backwards (putback) with meaningful results in both directions. These are just a
few of the interesting lenses in Focal:

• id: the identity;
• compose: puts two lenses in sequence;
• const: the constant lens;
• hoist/plunge: adds or removes an edge near the root;
• fork/xfork: splits the tree in two and applies a di"erent lens to each part;
• map/wmap: applies a lens below every child;
• acond/ccond: conditionally selects a lens to apply;
• μ: de$nes recursive lenses.

Concrete
Structure View

Abstract

PutBack

Get

Structure

Concrete

Abstract
View

Updated

Structure

Concrete
PutBack

Get

PutGetGetPut
 ABSTRACT BOOKMARK SCHEMA
Browser bookmark data comes in many formats (e.g., Mozilla Firefox uses HTML,
Safari XML, and IE the $lesystem). The lenses in our bookmark synchronizer map
each of these formats to trees belonging to a common abstract schema:

schema Link = {”name”=Value, “url”=Value}
schema Folder={”name”=Value, “contents”=Contens}
and Contents=List.T (Folder | {”link”=Link})
schema Abstract={”bookmark”=Contents, “toolbar”=Contents}

 MOZILLA FIREFOX LENS
module Mozilla =

 (* item: process a separator, folder, or link *)
 let item : lens =
 acond {"HR" = Any} {”separator”={}}
 (const { "separator" = {} } {"HR" = {Xml.Children = []}})
 (schema CFolder = [{"H3" = Any },{"DL" = Any}] in
 hoist "DT";
 hoist Xml.CHILDREN;
 acond CFolder Bookmarks.Folder
 (protect (folder))
 (protect (link)))

 (* folder: process a folder, recursively map item on contents *)
 and folder : lens =
 hoist_nonunique List.HD { "H3" };
 rename "H3" "name";
 hoist_nonunique List.TL { `List.HD, `List.TL };
 xfork { `List.HD, `List.TL } { "contents" }
 (focus List.HD { `List.TL=[] };
 rename "DL" "contents")
 id;
 wmap { "name" -> focus Xml.CHILDREN {};
 List.hd [];
 hoist Xml.PCDATA,
 "contents" -> hoist Xml.CHILDREN;
 List.map item }

 (* link: process a link, just a projection *)
 and link : lens =
 List.hd [];
 rename "A" "link";
 wmap { "link" ->
 (xfork { `Xml.CHILDREN, "HREF" } { "name", "url" }
 (rename "HREF" "url";
 fork {"url"}
 id
 (focus Xml.CHILDREN {};
 List.hd [];
 rename Xml.PCDATA "name"))
 (const {} {})) }

(* l1: strips away prelude, apply item, $x up toolbar *)
 let l1 : lens =
 List.hd [];
 hoist "DT";
 hoist Xml.CHILDREN;
 List.tl { "H1" = { `Xml.CHILDREN =
 [{`Xml.PCDATA = {Bookmarks}}]}};
 List.hd [];
 hoist "DL";
 hoist Xml.CHILDREN;
 List.map item;
 xfork { `List.HD } { "toolbar" }
 (hoist List.HD;
 focus "contents" { "name" = { "BookmarksBar" } };
 plunge "toolbar")
 (rename List.TL "bookmarks")

 (* l2: project away separators *)
 let l2 : lens =
 let $lter_seps : lens =
 List.$lter
 ({"contents" = Any, "name" = Any} | { "link" = Any })
 { "separator" } {};
 List.map (wmap { "contents" -> $lter_seps }) in
 l1;
 map $lter_seps

 SUMMARY
Harmony is a framework that can be instantiated to build synchronizers for a wide
variety of heterogeneous, tree-structured data. Building on the system’s core
implementation we have assembled synchronizers for address books, browser
bookmarks, calendars, structured text, and several others. Harmony’s design
emphasizes the use of lenses to transform the replicas before (and after)
synchronization. Lenses facilititate synchronization of heterogeneous data and
also simplify the synchronizer because the replicas are pre-processed (and
generally made less complicated). The synchronization algorithm is simple: it
traverses the replicas, merging non-con!icting updates and issuing a local schema
test. This local check is enough to ensure that the results are globally well-formed.

Sync

A

O

B

A’
O’

B’

S

Lens

Lens

