
Languages for
Bidirectional Transformations

Nate Foster (Cornell)
Robert Glück (DIKU)

Martin Hofmann (LMU)
Zhenjiang Hu (NII)

Benjamin Pierce (Penn)
Janis Voigtländer (Bonn)

BX Dagstuhl Seminar
17 January 2011.

.

.

.

.

.

.

Objective

.

.

Goals:
• Present the key semantic issues in a clean setting
• Study similarities and differences between languages
• Provide a common vocabulary for the meeting

2

Plan

Part I: Semantics
“The use of [QVT-style] bidirectional transformations has not
spread fast, despite the early availability of a few tools, partly
(we think) because of uncertainty among users over
fundamental semantic issues.” [Stevens ’09]

Part II: Mechanisms

• Survey approaches used in several different languages
• Identify open questions

Goal: accessible to everyone =⇒ ask questions!
3

Terminology

.

.

4

Terminology

.

.

sources

4

Terminology

.

.

views

4

Terminology

.

.

4

Terminology

.

.

4

Terminology

.

.

4

Terminology

.

.

get

4

Terminology

.

.

put

4

Question #1:
What dowe provide to the put
function?

State-based vs. operation-based

.

.

Do we give it...

• the new state of the view?
• (a description of) the update applied to the view?

Both of these are reasonable answers.

6

State-based vs. operation-based

.

.

Do we give it...

• the new state of the view?
• (a description of) the update applied to the view?

Both of these are reasonable answers.

6

State-based vs. operation-based

.

.

Do we give it...
• the new state of the view?

• (a description of) the update applied to the view?

Both of these are reasonable answers.

6

State-based vs. operation-based

.

.

insert {name=John, age=39}
delete records with age > 35
change John's age to 40
change Fred's age to 38
delete Fred

Do we give it...
• the new state of the view?
• (a description of) the update applied to the view?

Both of these are reasonable answers.

6

State-based vs. operation-based

Tradeoffs:

• State-based approach:
+ mathematically simpler
+ easier to build “loosely coupled” systems: put does not

need to know what update was applied, just the result
• Operation-based approach:
+ provides putwith more information
+ captures intuition of “manipulating (small) deltas to (huge)

structures”

We’ll focus on the simpler state-based approach.

See [Diskin, Xiong, and Czarnecki ’10] for more...

7

Question #2:
Can the get function be used to hide
part of the source?

Bijective vs. Bidirectional

• Formally, can the get function be non-injective?

• No =⇒ put can map the view directly to a source.
• Yes =⇒ put needs to take the source as an input.

.

.

9

Bijective vs. Bidirectional

• Formally, can the get function be non-injective?
• No =⇒ put can map the view directly to a source.

• Yes =⇒ put needs to take the source as an input.

.

.

injective function

get ∈ S → V
put ∈ V → S

9

Bijective vs. Bidirectional

• Formally, can the get function be non-injective?
• No =⇒ put can map the view directly to a source.
• Yes =⇒ put needs to take the source as an input.

.

.

non-injective function

get ∈ S → V
put ∈ V× S → S

9

Complements

We can reöne this architecture by representing the
complement to the view explicitly.

.

.

non-injective function

get ∈ S → V× C
put ∈ V× C → S

10

Complements

We can reöne this architecture by representing the
complement to the view explicitly.

.

.

non-injective function

get ∈ S → V× C
put ∈ V× C → S

10

Complements

We can reöne this architecture by representing the
complement to the view explicitly.

.

.

complement

get ∈ S → V× C
put ∈ V× C → S

10

Complements

We can reöne this architecture by representing the
complement to the view explicitly.

.

.

complement

get ∈ S → V× C
put ∈ V× C → S

10

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric? [Stevens ’09]

.

.

get ∈ S× V → V
put ∈ V× S → S

11

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric? [Stevens ’09]

.

.

get ∈ S× V → V
put ∈ V× S → S

11

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric? [Stevens ’09]

.

.

get ∈ S× V → V
put ∈ V× S → S

11

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric? [Stevens ’09]

.

.

get ∈ S× V → V
put ∈ V× S → S

11

Symmetry + Complements

...and we can reöne the framework again by introducing
complements [Hofmann, Pierce, Wagner ’11]

.

.

get ∈ S× C → V× C
put ∈ V× C → S× C

(...and these symmetric lenses compose!)

12

Symmetry + Complements

...and we can reöne the framework again by introducing
complements [Hofmann, Pierce, Wagner ’11]

.

.

get ∈ S× C → V× C
put ∈ V× C → S× C

(...and these symmetric lenses compose!)

12

Symmetry + Complements

...and we can reöne the framework again by introducing
complements [Hofmann, Pierce, Wagner ’11]

.

.

get ∈ S× C → V× C
put ∈ V× C → S× C

(...and these symmetric lenses compose!)

12

Symmetry + Complements

...and we can reöne the framework again by introducing
complements [Hofmann, Pierce, Wagner ’11]

.

.

get ∈ S× C → V× C
put ∈ V× C → S× C

(...and these symmetric lenses compose!)
12

Question #3:
What constraints do we need place on
get and put to ensure that they work
well together?

An Easy Case

With bijective transformations...

.

.

injective function

...the desired behavior is obvious

put (get s) = s
get (put v) = v

14

The General Case

But for bidirectional transformations...

.

.

We need to identify conditions that allow us to
• recognize and reject bad (unreasonable) primitives
• understand and predict behavior

15

An Unreasonable Example

16

An Unreasonable Example

.

.

 foo 0 foo

project out string component

16

An Unreasonable Example

.

.

 foo 0

bar

foo

16

An Unreasonable Example

.

.

foo 0

blech 5 bar

foo

return a constant

16

An Unreasonable Example

.

.

foo 0

blech 5 bar

foo

 blech

≠

16

The PutGet law

Principle:
Updates should be “translated exactly”— i.e., to a
source structure for which get yields exactly the
updated target structure.

Formally:
get (put v s) = v

17

A Debatable Example

18

A Debatable Example

.

.

 foo 0 foo

project out and duplicate string component

foo

18

A Debatable Example

.

.

 foo 0

bar

foo foo

foo

18

A Debatable Example

.

.

foo 0

bar 0 bar

foo

propagate "newest" string

foo

foo

18

A Debatable Example

.

.

foo 0

bar 0 bar

foo

 bar

≠

foo

foo

bar

18

Weakening the PutGet law

If we want to allow such behavior, we need to weaken
PutGet. Here is one possibility:

put v s = s′ get s′ = v′

put v′ s = s′

Intuition:
Propagating an updatemay have “side-effects”, but only
on the initial round-trip.

Similar idea in databases:
Propagating an updatemust have “minimal
side-effects” on the view.

19

Another Unreasonable Example

.

.

 foo 5 foo

project out string component

20

Another Unreasonable Example

.

.

 foo 5

bar

foo

20

Another Unreasonable Example

.

.

foo 5

bar 0 bar

foo

propagate
updated string

always set numeric
field to 0

20

Another Unreasonable Example

.

.

 foo 5

foo

foo

=

20

Another Unreasonable Example

.

.

foo 5

foo 0 foo

foo

=≠

20

The GetPut law

Principle:
If the view does not change, neither should the source.

Formally:
put (get s) s = s

21

Another Debatable Example

.

.

 foo 0 foo

project out string component

22

Another Debatable Example

.

.

 foo 0

bar

foo

22

Another Debatable Example

.

.

foo 0

bar 1 bar

foo

increment numeric component
if string component has changed

22

Another Debatable Example

.

.

foo 0

bar 1

quux

bar

foo

22

Another Debatable Example

.

.

foo 0

bar 1

quux 2 quux

bar

foo

translated updates produce
"side effects" on source

22

Another Debatable Example

.

.

foo 0

bar 1

foo

bar

foo

restore original target

22

Another Debatable Example

.

.

foo 0

bar 1

foo 2 foo

bar

foo

original source
is not restored

22

The PutPut law

Principle:
Each update should completely overwrite the effect of
the previous one. In particular, the effect of two puts in a
row should be the same as just the second.

Formally:
put v2 (put v1 s) = put v2 s

Nice properties:
• Ensures that every update can be “rolled back”
• Implies that S is isomorphic to V× C, for some C
• Bancilhon and Spyratos’s update translators preserving

a “constant complement” are a slight reönement

Seems sensible. But do we want to always require it?

23

The PutPut law

Principle:
Each update should completely overwrite the effect of
the previous one. In particular, the effect of two puts in a
row should be the same as just the second.

Formally:
put v2 (put v1 s) = put v2 s

Nice properties:
• Ensures that every update can be “rolled back”
• Implies that S is isomorphic to V× C, for some C
• Bancilhon and Spyratos’s update translators preserving

a “constant complement” are a slight reönement

Seems sensible. But do we want to always require it?

23

The PutPut law

Principle:
Each update should completely overwrite the effect of
the previous one. In particular, the effect of two puts in a
row should be the same as just the second.

Formally:
put v2 (put v1 s) = put v2 s

Nice properties:
• Ensures that every update can be “rolled back”
• Implies that S is isomorphic to V× C, for some C
• Bancilhon and Spyratos’s update translators preserving

a “constant complement” are a slight reönement

Seems sensible. But do we want to always require it?
23

Another Example

.

.

foo 3

bar 5

baz 8

foo 3

baz 8

select g
reen

records

24

Another Example

.

.

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

select g
reen

records

delete baz

24

Another Example

.

.

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5
foo 3

select g
reen

records

delete baz

24

Another Example

.

.

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5

foo 3

baz 8

foo 3

select g
reen

records

delete baz

restore baz

24

Another Example

.

.

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

bar 5

foo 3

bar 5

baz 8

foo 3

baz 8

foo 3

select g
reen

records

delete baz

restore baz

back to original source

24

Yet Another Example

.

.

foo 3

bar 5

baz 8

foo

baz

select green

records and

delete numbers

25

Yet Another Example

.

.

foo 3

bar 5

baz 8

foo

baz

foo

select green

records and

delete numbers

delete baz

25

Yet Another Example

.

.

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5
foo

select green

records and

delete numbers

delete baz

25

Yet Another Example

.

.

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5
foo

select green

records and

delete numbers

delete baz

restore baz

foo

baz

25

Yet Another Example

.

.

foo 3

bar 5

baz 8

foo

baz

foo 3

bar 5

foo 3

bar 5

baz 0

foo

select green

records and

delete numbers

delete baz

restore baz

foo

baz

number set to some default

25

GetPut vs. PutPut

The GetPut law implies a weaker variant of PutPut:

put v (put v s) = put v s

Proof is a straightforward calculation:

put v (put v s)
= put (get (put v s)) (put v s) by PutGet
= put v s by GetPut

26

Question #4:
Given a get function, can
programmers choose an appropriate
put function?

How many puts? (Bijective Case)

.

.

S

V

A bijective lens deönes a one-to-one correspondence
between S and V.

28

How many puts? (Bijective Case)

.

.

S

V

The behavior of put is completely öxed by get.

28

How many puts? (Bidirectional Case)

.

.

S

V

If we are deöning a bidirectional transformation, then
many structures from S can map onto the same structure
from V.

29

How many puts? (Bidirectional Case)

.

.

S

V

The get function projects out part of the information in
the source structure. . .

29

How many puts? (Bidirectional Case)

.

.

S

V

The get function projects out part of the information in
the source structure. . . and throws away the rest.

29

How many puts? (Bidirectional Case)

.

.

S

V

If the lens obeys PutPut. . .

29

How many puts? (Bidirectional Case)

.

.

S

V

If the lens obeys PutPut. . . then the “view part” of the new
source structure is öxed by PutGet. . .

29

How many puts? (Bidirectional Case)

.

.

S

V

If the lens obeys PutPut. . . then the “view part” of the new
source structure is öxed by PutGet. . . and the “projected
away part” is öxed by PutPut to be exactly the one from
the original source.

29

How many puts? (Bidirectional Case)

.

.

S

V

?? ?

However, if the lens only obeys PutGet, then the behavior
of put is less constrained...

...and there are many puts to choose from!

30

How many puts? (Bidirectional Case)

.

.

S

V

However, if the lens only obeys PutGet, then the behavior
of put is less constrained...

...and there are many puts to choose from!

Need extra information to select one.

30

Question #5:
Does put handle every update?

Totality

Does the put function handle every view and every source
or does it reject some combinations (by failing)?

.

.

 ?

Totality ensures that the view is a robust abstraction of the
source [Hegner ’90]

32

Totality

Does the put function handle every view and every source
or does it reject some combinations (by failing)?

.

.

 ⊥
Totality ensures that the view is a robust abstraction of the
source [Hegner ’90]

32

Totality and Injective Embeddings

Can simulate a bidirectional transformation with an
injective get function by storing a complement along with
the view [Hu, Mu, Takeichi ’04]

.

.

However, in general, the put function will only be deöned
on {(v, c) ∈ V× C | ∃s.get s = (v, c)} and not V× C.

33

Totality and Injective Embeddings

Can simulate a bidirectional transformation with an
injective get function by storing a complement along with
the view [Hu, Mu, Takeichi ’04]

.

.

However, in general, the put function will only be deöned
on {(v, c) ∈ V× C | ∃s.get s = (v, c)} and not V× C.

33

Summary

1. What is an update?
2. Bijective or bidirectional? Symmetric?
3. Reasonable?
4. Choice of put?
5. Total?

34

