Languages for

Bidirectional Transformations

Nate Foster (Cornell)
Robert Gllck (DIKU)
Martin Hofmann (LMU)
Zhenjiang Hu (NII)
Benjamin Pierce (Penn)
Janis Voigtlander (Bonn)

Lo BX Dagstuhl Seminar
@ 17 January 2011

Objective

'zabion

2 confidential

delGas s -2 Omodulo
ordered 5 2

bjjecbive %”:u"wu?mébnssbencgs £ 500ce

.mu.mblcllollreg Gional; 5 Sz 3
e iEViewsgransformabions

O menbelljeCtiVe ~ lenses racea ility
£ constant ydaba § Gotaiiby

ll-behaved

"é
Goals:
e Present the key semantic issues in a clean setting
e Study similarities and differences between languages

e Provide a common vocabulary for the meeting

Plan

Part I: Semantics

“The use of [QVT-style] bidirectional transformations has not
spread fast, despite the early availability of a few tools, partly
(we think) because of uncertainty among users over
fundamental semantic issues.”

Part Il: Mechanisms
e Survey approaches used in several different languages

« Identify open questions

Goal: accessible to everyone = ask questions!

Terminology

Terminology

SSSSSSS

Terminology

Terminology

]

Terminology

o

]

Terminology

S

B e o

Terminology

Terminology

Question #1:

What do we provide to the put
function?

State-based vs. operation-based

-
-]

]
]

State-based vs. operation-based

C
— ‘,

Do we give it...

State-based vs. operation-based

e e
e

Do we give it...

e the new state of the view?

State-based vs. operation-based

—<

]
]

Do we give it...
e the new state of the view?

e (a description of) the update applied to the view?

Both of these are reasonable answers.

State-based vs. operation-based

Tradeoffs:

e State-based approach:
+ mathematically simpler
+ easier to build “loosely coupled” systems: put does not
need to know what update was applied, just the result
e Operation-based approach:

+ provides put with more information
+ captures intuition of “manipulating (small) deltas to (huge)
structures”

We'll focus on the simpler state-based approach.

See for more...

Question #2:

Can the get function be used to hide
part of the source?

Bijective vs. Bidirectional

e Formally, can the get function be non-injective?

]
B e B

Bijective vs. Bidirectional

e Formally, can the get function be non-injective?
e No — put can map the view directly to a source.

injective function
e
]

get ¢ S—V
put ¢ V—-S

Bijective vs. Bidirectional

e Formally, can the get function be non-injective?
e No — put can map the view directly to a source.
* Yes — put needs to take the source as an input.

non-injective function

S

get ¢ S—V
put € Vx5—-S

Complements

We can refine this architecture by representing the
complement to the view explicitly.

non-injective function
C >]
)} <]

Complements

We can refine this architecture by representing the
complement to the view explicitly.

non-injective function
= >]
)} <[]

Complements

We can refine this architecture by representing the
complement to the view explicitly.

complement —__ I

B e o

Complements

We can refine this architecture by representing the
complement to the view explicitly.

e >]

complement —__ I

get ¢ S—>VxC
put ¢ VxC—S

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric?

<

e
N,]

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric?

]
E

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric?

[]
]

A Digression on Symmetry...

What about the other direction? Can the put function be
used to hide information in the view?

That is, can we make everything symmetric?

]

e

get ¢ SxV-—-V
put ¢ VxS—S

Symmetry + Complements

...and we can refine the framework again by introducing
complements [Hofmann, Pierce, Wagner "11]

L

=

Symmetry + Complements

...and we can refine the framework again by introducing
complements [Hofmann, Pierce, Wagner "11]

L

O &

[

Symmetry + Complements

...and we can refine the framework again by introducing
complements [Hofmann, Pierce, Wagner '11]

-
-

>_
=
_<

[[

Symmetry + Complements

...and we can refine the framework again by introducing
complements [Hofmann, Pierce, Wagner "11]

-
-

[[

>_
=0
- -

get ¢ SxC—-VxC
put € VxC—-SxC

(...and these symmetric lenses compose!)

Question #3:

What constraints do we need place on
get and put to ensure that they work
well together?

An Easy Case

With bijective transformations...

injective function
C >]
)} <]

..the desired behavior is obvious

put (gets) =s
get (putv) =v

The General Case

But for bidirectional transformations...
=
B e o

We need to identify conditions that allow us to

e recognize and reject bad (unreasonable) primitives
e understand and predict behavior

An Unreasonable Example

An Unreasonable Example

project out string component

=) — P (=

An Unreasonable Example

(oo o) —Pp—— [0

An Unreasonable Example

(oo o) —Pp—— [0

[blech [5 | «—<@—— [(bar |
e

return a constant

An Unreasonable Example

(oo o) —Pp—— [0

beon[5) ~——

| bar |
*

The PutGet law

Principle:
Updates should be “translated exactly” — i.e., to a

source structure for which get yields exactly the
updated target structure.

Formally:
get (putvs) = v

A Debatable Example

A Debatable Example

project out and duplicate string component

(o) — P (]

A Debatable Example

—>—> foo | foo

\

“bar | foo |

A Debatable Example

—>—> foo | foo

\ 4
) —€— (o]
%

propagate "newest" string

A Debatable Example

—->—>| foo | foo

\ 4

o) ~— @ [o]
+

bar

Weakening the PutGet law

If we want to allow such behavior, we need to weaken
PutGet. Here is one possibility:

putvs=ys gets' =V
putv's=y¢

Intuition:

Propagating an update may have “side-effects’, but only
on the initial round-trip.

Similar idea in databases:

Propagating an update must have “minimal
side-effects” on the view.

Another Unreasonable Example

project out string component

—p— [0

20

Another Unreasonable Example

—p— [0

20

Another Unreasonable Example

—Pp— [0

ar [o] ~—<@— [oar

propagate always set numeric
updated string field to O

20

Another Unreasonable Example

—p— [0

foo

20

Another Unreasonable Example

—Pp— [0

+

(oo 0] ~—@— [0

20

The GetPut law

Principle:
If the view does not change, neither should the source.

Formally:
put(gets)s = s

21

Another Debatable Example

project out string component

=) — P (=

22

Another Debatable Example

(o2 lo] — P (oo

22

Another Debatable Example

(o2 To) — P [

-l

increment numeric component
if string component has changed

22

Another Debatable Example

(2 1o) — P (o

€[]

22

Another Debatable Example

(o2 To) — P [

translated updates produce
"side effects" on source

s
(awnclz] —— [am]

22

Another Debatable Example

(o2 To) — P [

]

restore original target

foo

22

Another Debatable Example

(2 1o) — P (o

€[]

original source
is not restored

-]

22

The PutPut law

Principle:
Each update should completely overwrite the effect of

the previous one. In particular, the effect of two puts in a
row should be the same as just the second.

Formally:
putv, (putvy;s) = putvys

The PutPut law

Principle:

Each update should completely overwrite the effect of
the previous one. In particular, the effect of two puts in a
row should be the same as just the second.
Formally:
putv, (putvy;s) = putvys

Nice properties:
e Ensures that every update can be “rolled back”
e Implies that S is isomorphic to V x C, for some C

e Bancilhon and Spyratos’s update translators preserving
a “constant complement” are a slight refinement

The PutPut law

Principle:

Each update should completely overwrite the effect of
the previous one. In particular, the effect of two puts in a
row should be the same as just the second.
Formally:
putv, (putvy;s) = putvys

Nice properties:

e Ensures that every update can be “rolled back”

e Implies that S is isomorphic to V x C, for some C

e Bancilhon and Spyratos’s update translators preserving
a “constant complement” are a slight refinement

Seems sensible. But do we want to always require it?

Another Example

24

Another Example

delete baz

[foo [3]]

24

Another Example

[foo [3]]

delete baz

24

Another Example

N
«&°
&

59

O
\&

1)

+,

@00

delete baz

restore baz

24

Another Example

delete baz

[foo [3]]

restore baz

back to original source

24

Y
et Another Example

select green
records @
golete nUMPE'S

>,

25

Y
et Another Example

select green
records an
\ete numboers

delete baz

Lo]

25

Y
et Another Example

select green
records am

delete numoers
[foo []

delete baz

—@—| =

25

Y
et Another Example

select green
records @
golete nUMPE'S

4—4_

25

Yet Another Example

select green

delete baz

=

restore baz

d
0

number set to some default

GetPut vs. PutPut

The GetPut law implies a weaker variant of PutPut:

putv(putvs) = putvs

Proof is a straightforward calculation:

putv (putvs)
put (get (putvs)) (putvs) by PutGet
putvs by GetPut

Question #4:

Given a get function, can
programmers choose an appropriate
put function?

How many puts? (Bijective Case)

A bijective lens defines a one-to-one correspondence
between Sand V.

28

How many puts? (Bijective Case)

The behavior of put is completely fixed by get.

How many puts? (Bidirectional Case)

If we are defining a bidirectional transformation, then
many structures from S can map onto the same structure
from V.

How many puts? (Bidirectional Case)

S

The get function projects out part of the information in
the source structure...

How many puts? (Bidirectional Case)

The get function projects out part of the information in
the source structure... and throws away the rest.

How many puts? (Bidirectional Case)

If the lens obeys PutPut...

How many puts? (Bidirectional Case)

If the lens obeys PutPut... then the “view part” of the new
source structure is fixed by PutGet...

How many puts? (Bidirectional Case)

If the lens obeys PutPut... then the “view part” of the new
source structure is fixed by PutGet... and the “projected
away part” is fixed by PutPut to be exactly the one from
the original source.

How many puts? (Bidirectional Case)

However, if the lens only obeys PutGet, then the behavior
of put is less constrained...

...and there are many puts to choose from!

How many puts? (Bidirectional Case)

However, if the lens only obeys PutGet, then the behavior
of put is less constrained...

...and there are many puts to choose from!
Need extra information to select one.

Question #5:
Does put handle every update?

Totality

Does the put function handle every view and every source
or does it reject some combinations (by failing)?

32

Totality

Does the put function handle every view and every source
or does it reject some combinations (by failing)?

1

Totality ensures that the view is a robust abstraction of the
source [Hegner '90]

32

Totality and Injective Embeddings

Can simulate a bidirectional transformation with an
injective get function by storing a complement along with
the view [Hu, Mu, Takeichi '04]

= > B
Lo < (B

33

Totality and Injective Embeddings

Can simulate a bidirectional transformation with an
injective get function by storing a complement along with
the view [Hu, Mu, Takeichi '04]

R
o < (B

However, in general, the put function will only be defined
on {(v,c) e Vx C|3s.gets=(v,c)}andnot V x C.

33

Summary

1. What is an update?

2. Bijective or bidirectional? Symmetric?
3. Reasonable?

4. Choice of put?

5. Total?

