A Pairwise Abstraction for Round-Based Protocols

Lonnie Princehouse

Nate Foster

Ken Birman

Department of Computer Science, Cornell University

{ lonnie, jnfoster, ken }@cs.cornell.edu

Distributed systems are hard to program, for a number of
reasons. Some of these reasons are inherent. System state
is scattered across multiple nodes, and is not random ac-
cess. Bandwidth is an ever-present concern. Fault tolerance
is much more complicated in a partial-failure model. This
presents both a challenge and an opportunity for the pro-
gramming languages community: What should languages
for distributed systems look like? What are the shortcom-
ings of conventional languages for describing systems that
extend beyond a single machine?

Prior work in this area has produced diverse solutions.
The DryadLINQ [7] language expresses distributed compu-
tations using SQL-like queries. BLOOM [1] also follows a
data-centric approach, but assumes an unordered program-
ming model by default. MACEDON [6] provides constructs
for describing overlay networks. P2 [5] uses declarative syn-
tax based on Datalog to express network protocols. Bast [4]
provides object-oriented, extensible, and composable proto-
cols. Lastly, Jini [2] offers a framework for extensible net-
work services.

Two categories of related work differ in the kind of ab-
straction given to the programmer: Languages based on a
single-node perspective, including conventional languages
like C and Java, only provide programmers with access to
a local slice of the global system state. Hence, access to
state on remote nodes must be obtained using explicit com-
munication. Writing distributed systems in such languages
is difficult, as the language and compiler are unaware that
the program is part of a larger system. Languages based
on a whole-system perspective provide programmers with a
broader view of system state. This allows implementations
to more closely resemble design, and makes reasoning about
the theoretical behavior of distributed systems simpler. How-
ever, these languages must often make trade-offs between
simplicity and power. Many whole-system languages focus
on a particular class of distributed system.

Our system, Code Partitioning Gossip (CPG), provides
an abstraction that lies between the single-node and whole-
system perspectives. It is designed specifically for syn-
chronous, fault-tolerant systems—a class that includes many
gossip and self-stabilization protocols. These are especially
relevant to current computing trends. Because of their pas-
sive, round-based nature, they tend to be well-behaved and

make predictable use of the network. As such, they are
“good neighbors” in massive multi-tenant data centers, such
as those that drive Amazon’s EC2. Many cloud computing
services have relaxed consistency requirements in favor of
availability, and this also plays to the strengths of round-
based protocols.

Our goal with CPG is to design abstractions for describ-
ing these protocols that make it easy to develop richer proto-
cols via composition and code re-use. The fundamental unit
seen by programmers in CPG is a pair of nodes. A protocol
in CPG is defined using a select function, which identifies
pairs of nodes to communicate in each round, and an up-
date function, which takes the states of the selected nodes
as input and produces their updated states after communica-
tion as output. The global state of the system evolves by the
repeated application of the pairwise update function to se-
lected states. If 3 denotes the set of possible node states, the
types of these functions can be written as follows:

select € ¥? — Address
update € ¥.2 — %2

Execution proceeds in rounds. In each round, every node
uses the select function to pick a partner to gossip with, and
then executes update with the selected node. We do not as-
sume the existence of a central clock; rounds are approxi-
mate and each node uses its own clock. We also assume that
network communication may time out and that nodes may
fail or malfunction at any time. The protocol specified by
the programmer must be sufficiently fault tolerant, as many
gossip and self-stabilizing protocols are.

CPG provides two operators for composing protocols,
merge and embed. These operators allow multiple protocols
to be written separately and then combined, in the same way
that classes in object oriented langauges can be composed.
In fact, our prototype implementation uses Java as its base,
making it literally possible for one protocol to inherit an-
other, or for one protocol to use instances of others. The Java
type system can be used to express properties of protocols.
For example, protocols implementing the Overlay interface
are expected to build and maintain a network overlay, and
the TreeOverlay interface is an extension with the additional
constraint of a spanning tree. Protocols that run on an over-
lay can reference the Overlay interface, allowing different



public class MinAddressLeader implements Protocol {

private Address leader;

public MinAddressLeader(Overlay overlay) {
Selector s = new RandomSelector(overlay.getView());
setSelector(s);

}

public Address getLeader() {
if (leader == null) { leader =
return leader;

}

public void exchange(Protocol other) {
MinAddresslLeader o = (MinAddressLeader) other;
Address a = getLeader();
Address b = o.getLeader();
// Set leader to smallest address
if (a.compareTo(b) > 0) { leader = b; }
else { o.leader = a }

getAddress(); }

public interface Protocol {

}

public void setSelector(Selector selector);
public Selector getSelector();
public void exchange(Protocol other);

public interface Overlay extends Protocol {

}

public Collection<Address> getView();

public interface Selector {

}

public Address selectHost();

public class RandomSelector implements Selector {

}

private Collection<Address> view;

public RandomSelector(Collection<Address> view) {
this.view =

}

public Address selectHost() { ... }

view;

Figure 1. Simple leader election protocol in CPG. (Some boilerplate code elided for brevity)

overlay implementations to be easily substituted. Addition-
ally, it is possible to generalize transformations on proto-
cols. For example, [3] outlines a “pipelining” procedure, by
which an arbitrary self-stabilizing protocol can be imbued
with Byzantine fault tolerance. CPG’s abstractions make it
possible to implement pipelining as a function on protocols.

Our CPG prototype is implemented a Java bytecode post-
processor. Protocols are written as Java classes, with special
annotations used to denote the update and select functions.
The post processor splits update into two functions, one
for each node in a communicating pair. Networking code
is added automatically. To illustrate, Figure 1 presents the
Java definitions of the select and update functions for a
simple gossip protocol that implements leader election for
an overlay network. The code on the left side of the figure
presents the gossip protocol itself; the code on the right
side gives some supporting library definitions. The select
function chooses randomly from the collection of nodes in
the overlay. The update function compares the addresses of
the leaders on the two nodes being updated, and updates the
node whose leader has the larger address. When the protocol
eventually stabilizes, the overlay node with the least address
is elected leader.

In our experience, CPG’s pairwise abstraction is not only
sufficient to represent a broad range of real-world protocols,
but also intuitive for the programmer. The pairwise abstrac-
tion helps to bridge the gap between implementation and de-
sign, and offers substantial benefits through code re-use and
composition.

Although CPG can express a diversity of gossip, peer-
to-peer and self-stabilizing protocols, the language model
is inherently probabilistic. For example, the leader election
protocol exhibited above converges in logarithmic time to a
single leader, but lacks the stronger atomicity semantics of
consensus-based leader election solutions. A particularly in-

teresting open problem is this: can CPG be used to simulate
the execution of that sort of consensus-based solution, or is
there a true separation between the class of programs CPG
can express, and the class that includes consensus? We hope
to explore this in future work.
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