
Property Conveyances as a Programming Language
Shrutarshi Basu

∗

Harvard University

Cambridge, MA, USA

basus@seas.harvard.edu

Nate Foster

Cornell University

Ithaca, NY, USA

jnfoster@cs.cornell.edu

James Grimmelmann

Cornell Law School & Cornell Tech

New York, NY, USA

james.grimmelmann@cornell.edu

Abstract
Anglo-American law enables property owners to split up

rights among multiple entities by breaking their ownership

apart into future interests that may evolve over time. The con-
veyances that owners use to transfer and subdivide property

rights follow rigid syntactic conventions and are governed

by an intricate body of interlocking doctrines that determine

their legal e�ect. These doctrines have been codi�ed, but

only in informal and potentially ambiguous ways.

This paper presents preliminary work in developing a

formal model for expressing and analyzing property con-

veyances. We develop a domain-speci�c language capable

of expressing a wide range of conveyances in a syntax ap-

proximating natural language. This language desugars into a

core calculus for which we develop operational and denota-

tional semantics capturing a variety of important properties

of property law in practice. We evaluate an initial implemen-

tation of our languages and semantics on examples from a

popular property law textbook.

CCSConcepts •Applied computing→Law; • Software
and its engineering→General programming languages;
• Theory of computation → Denotational semantics; Op-
erational semantics; • Human-centered computing → In-

teractive systems and tools.

Keywords Domain-Speci�c Languages, Law, Semantics

ACM Reference Format:
Shrutarshi Basu, Nate Foster, and James Grimmelmann. 2019. Prop-

erty Conveyances as a Programming Language. In Proceedings of
the 2019 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Re�ections on Programming and Software (Onward!
’19), October 23–24, 2019, Athens, Greece. ACM, New York, NY, USA,

15 pages. h�ps://doi.org/10.1145/3359591.3359734

∗
This work was started while the author was at Cornell University.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for pro�t or commercial advantage and that

copies bear this notice and the full citation on the �rst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c

permission and/or a fee. Request permissions from permissions@acm.org.

Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00

h�ps://doi.org/10.1145/3359591.3359734

1 Introduction
Many legal issues depend on vague, open-ended standards.

For example, nuisance law prohibits “unreasonable” interfer-

ence with neighbors’ use of land. What counts as “unreason-

able” depends on an eight-factor balancing test, and many of

the individual factors are themselves vague and open-ended,

including “the social value that the law attaches to the pri-

mary purpose of the conduct;” and “the suitability of the

particular use or enjoyment invaded to the character of the

locality.” [American Law Institute 1979] A lawyer who wants

to know whether a client’s cement plant will be considered

a nuisance will have to research numerous previous cases,

gather extensive facts about the plant and its neighbors, and

rely on her accumulated intuitions about how courts tend

to rule. Indeed, whether her client can build the plant may

depend on the lawyer’s skill in presenting an interpretation

of the facts and the factors that favors the client.

Other legal issues depend on clearer and relatively unam-

biguous rules. For example, the tax code generally allows

individuals to deduct the home mortgage interest they pay,

but only on loans of up to $750,000. There is no room to

argue over whether “$750,000” really should mean $75,000,

$75,000,000, or a context-dependent amount. Tax law is full

of unambiguous, mechanical calculations—this is why tax

software is possible. These portions of tax law are e�ectively

formalizable [Lawsky 2016].

In other areas of law, however, lawyers have been less

quick to appreciate that the rules they work with have an

underlying logical structure. Indeed, legal training, with its

strong emphasis on careful reading and rhetorical skills, and

its corresponding lack of emphasis on quantitative and for-

mal methods, may actively discourage lawyers from thinking

about legal rules in symbolic, rather than verbal, terms. Legal

analysis tends to be inductive, rather than deductive, even

where the law itself allows for truly deductive reasoning.

The elegant structure of the rules themselves is obscured

when they are analyzed with the open-ended techniques one

might use to argue whether a land use is ‘reasonable.”

One such body of rules is the system of “estates in land”

that govern the division of property rights over time. It is

incredibly common for ownership of real estate (i.e. land

and buildings) to be divided among multiple people and for

the passage of time and the occurence of various events to

change the division. For example, in a lease, both the landlord
and the tenant have interests in the property, each of which

comes with di�erent rights. The tenant has the present right

128

https://doi.org/10.1145/3359591.3359734
https://doi.org/10.1145/3359591.3359734

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

to possess the property now; the landlord is not entitled

to possession, but does have the right to receive periodic

rent payments from the tenant. In the future, when the lease

term ends, the tenant’s right to possession will end, and the

landlord will be entitled to reenter the property and retake

possession. Or, the lease might provide that if a speci�ed

event occurs—for example, if an apartment tenant causes

serious damage to the building—the tenant’s interest might

terminate immediately.

Law students learn the basics of the di�erent types of

estates in land in their property course, which is typically

taught in the �rst year. They learn how to parse the legal

documents (generically known as conveyances) by which

one person can give her interest to another, or divide it up

among several others, and how to give legally-meaningful

descriptions of the resulting interests (such as “remainder in

life estate subject to an executory limitation,” meaning that

one has the right to a piece for property for their lifetime,

as long as they satisfy some additional condition). It takes

several weeks to a month of class time and is frequently

regarded as a tedious and pointless exercise in memoriz-

ing arcane rules [Grimmelmann 2017]. At the end of that

time, students are hopefully able to read a conveyance such

as “O conveys to A for life, then to B for life, then

to C for life.” and report that it creates four interests:

1. A has a life estate.

2. B has a remainder in life estate.

3. C has a remainder in life estate.

4. O has a reversion in fee simple.

A “life estate” means that the interest is valid until the

death of the possessor, while “fee simple” means that the

interest is valid inde�nitely (and passes to the possessor’s

legal heirs on their death). As previous legal scholars have

noted, this example suggests the grammar of conveyances

has a recursive structure: adding an additional clause (then

to D for life) would create an additional interest (a remainder

in life estate for D) [Edwards 2009; Merrill and Smith 2017].

Other conveyances have subtle consequences that are not

obvious from a layperson’s reading. Consider “O conveys to

A for life, then to B for life, but if C marries then

to C”. This also creates four interests:

1. A has a life estate.

2. B has a remainder in life estate.

3. O has a reversion in fee simple.

4. C has an executory interest in fee simple.

One surprising twist here is that the event of C marrying

would immediately terminate both A’s and B’s interests; an-

other is that if both A and B were to die before C’s marriage,

then possession would temporarily revert to O.

This combination of a well-de�ned structure, and a sub-

tle relationship between the syntax and semantics of con-

veyances, strongly suggests that tools from programming

language theory may be useful in modeling conveyances.

Some earlier work by the authors [Basu et al. 2017] described

how the language of conveyances could be boiled down to an

abstract syntax that allowed for some automated reasoning.

But we did not provide semantics or derive interesting prop-

erties of our formalism. This paper provides a more formal

treatment of estates in land through the lens of programming

language theory. Our contributions are as follows:

• We develop a domain-speci�c language that is capable

of expressing a wide range of realistic conveyances. It

does not capture every turn of phrase a lawyer might

use, but it covers the standard stock phrases that �rst-

year law students become familiar with.

• The surface syntax for this language is ambiguous in

ways that re�ect well-known ambiguities in the nat-

ural language of actual conveyances. However, the

ambiguities are limited in scope. We use a parser com-

binator library [Arnold and Mouratov 2008] to imple-

ment a parser for the language, one that covers a range

of examples from a popular property law textbook.

• We develop a minimal core calculus that can express

how the interests de�ned by a conveyance change

in response to a sequence of events. Conveyances in

the surface language desugar deterministically into a

program in this core calculus.

• We develop an operational and a denotational seman-

tics for programs in the core calculus and prove their

equivalence. The operational semantics lead to a straight-

forward functional implementation. The denotational

semantics allow us to derive useful properties of the

language, and to give succinct proofs of several max-

ims used by lawyers to describe the functioning of the

estates in land (e.g. “First in time, �rst in right.”).

The rest of this paper is organized as follows:

1. Section 2 gives a number of examples of conveyances,

explains the relevant terminology, and shows how they

may be interpreted as programs in a formal language.

2. Section 3 describes in detail the surface syntax and

the core calculus, and shows how the former desugars

into the latter.

3. Section 4 discusses the operational and denotational

semantics for the core calculus.

4. Section 5 discusses our current implementation and

provides an initial evaluation. We evaluate the utility

of the formalism by showing that common principles

of property law can be formulated as theorems using it.

We evaluate the implementation by testing it against

a large number of examples from a popular property

law coursebook.

5. Section 6 discusses related work from both computa-

tional and legal �elds, and Section 7 concludes.

129

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

Olive conveys to Alice for life,

then to Bob.

conveys

Olive then

Alice, for life Bob

conveys

Atom Olive ;

While "alive (Alice) "

Atom Alice

Atom Bob

Figure 1. Parsing and desugaring a single conveyance.

2 Examples and Terminology
Property law deals with the rights of owners of interests in
property. (We follow the terminology and the substantive

law as described in [American Law Institute 1936], a historic

and highly in�uential scholarly summary of United States

property law.) The most important rights are typically the

right to use a piece of property as one wishes and to exclude

others from using it. These two rights are usually linked, and

a person who has an interest that includes the rights to use

and to exclude is said to be entitled to possession of the prop-

erty, and the interest is said to be possessory. For real estate
(land and things permanently attached to it, like buildings),

an interest is called a present estate if it is possessory, and a

future interest if it might become possessory sometime in the

future (if at all). Interests are created (and the corresponding

rights transferred) from one party (the grantor) to another
(the grantee) in a variety of ways (wills, deeds, etc.), which

we will collectively call conveyances.
We will follow the conventions of legal education and

write conveyances in the simpli�ed form that law students

and legal textbooks commonly discuss them. For example, in

the elementary conveyance “Olive conveys to Alice for

life, then to Bob”, Olive is the grantor and Alice and Bob

are the grantees. The term “conveys to” indicates that Olive

is transferring her interest. This conveyance has two clauses,
separated by a comma for convenience. The �rst clause gives

Alice an interest that will entitle her to possession start-

ing immediately and continuing until Alice’s death. Alice’s

interest is said to have a natural duration—Alice’s lifetime,

indicated by the term “for life”. The second clause gives

Bob an interest that will entitle him to possession starting at

Alice’s death and continuing forever (it will pass to his legal

heirs upon his death). Alice’s interest is presently possessory

as it entitles her to possession now; Bob’s is a future interest,

since it will not entitle him to possession until Alice dies.

Our model of conveyances has two stages: �rst, we parse

a conveyance written in (a very restricted subset of) Eng-

lish into an AST. Then we desugar the AST into a term in

the core calculus. The parsing step identi�es the clauses in

the conveyance and their components; the desugaring step

cleans them up into a standard representation.

Figure 1 shows parsing and desugaring for the exam-

ple “Olive conveys to Alice for life, then to Bob.” The

syntax conveys to indicates to the parser that this is a con-

veyance from owner Olive, and then to denotes a boundary

between the two clauses. The �rst clause describes an inter-

est owned by Alice, but guarded by a condition. The syntax
for life indicates a duration that desugars into a condition

attached to this clause. In this case, “for life” desugars to the

condition “Alice is alive”, referencing the owner. Our imple-

mentation provides desugarings for common durations and

conditions, including “for life”, “for the life of P” (where P is

some person other than the grantee) and “for N years.” At the

end of the desugaring process, the AST generates the core

language program on the right. For the rest of this paper we

use gray to indicate connective keywords, blue to indicate

durations, and green for other limiting events.

Conditions are language constructs that evaluate to true

or false, depending on a history of events. For example, sup-

pose the event “Alice dies” occurs. Once Alice has died, the

condition “Alice is alive” no longer evaluates to true. Thus

we can replace the subterm While("Alice is alive ", Alice)

with the empty subterm Bottom. This leaves the overall term

as Bottom; Atom Bob, which simpli�es to Atom Bob. This is

typical of the operational semantics of terms: events can

cause some conditions to become false, which in turn causes

subterms to terminate. These terminated terms are replaced

by Bottom, which yields possession to the following subterm

in a sequence (the semicolon is the sequencing operator). If

another event occurs—say “Olive dies”—no further changes

take place, because Atom p always evaluates to Atom p under

any possible event. Conditions and the operational semantics

of terms are discussed in further detail in Section 4.

Here is a more complicated example:

1 Olive owns.
2 Olive conveys to Alice for life , then to Bob

for life until Bob marries , then to Carol.
3 Alice dies.
4 Bob conveys to Dave for life.
5 Bob marries.

130

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

Let us trace the execution of this “program,” step by step.

It begins with an ownership statement. This is necessary for

multi-part conveyances; otherwise, it is unclear whether the

party named in each subsequent conveyance actually owns

anything to convey. So after the �rst statement, the term is:

Atom Olive

The second statement is a conveyance, but it is more com-

plicated in two ways. First, it has three clauses, instead of

two. The fact that the language of conveyances is recursive,

in that additional clauses can be added inde�nitely, is one

of the key observations motivating our use of a context-free

grammar for parsing conveyances. Second, the clause giv-

ing Bob an interest contains an added limitation (“until Bob

marries”). This is an additional condition which could cut o�

Bob’s interest “early” (i.e., before its natural duration). We

model added limitations by adding an additional condition

to the While node. Finally, the rule for a conveyance (for

reasons to be explained shortly) is that the term created by

the conveyance is added as a left sibling to the interest being

conveyed. So after line 2, the term is

;

;

While "alive (Alice) "

Atom Alice

;

While "alive (Bob) and unmarried(Bob)"

Atom Bob

Atom Carol

Atom Olive

The third statement (Alice dies) is an event. It causes

the condition " alive (Alice) " to become false, so the entire

subterm While "alive (Alice) "—(Atom Alice) is replaced with

Bottom. The overall term simpli�es to:

;

;

While "alive (Bob) and unmarried(Bob)"

Atom Bob

Atom Carol

Atom Olive

The fourth statement is another conveyance, but it raises

two new complications. The �rst is that Bob does not convey

all of his interest: he does not specify what happens to the

property after Dave’s death. This is where an important rule

of property law, which we model, comes in. Bob is said to

retain a reversion: a portion of his original interest that will

become posesssory again if the interest he has conveyed

to Dave ends. In e�ect, it is as though every conveyance

ends with the implied words “then to grantor”. This is why

we add the new term as a left sibling to the interest being

conveyed, rather than replacing it. The second complication

is that Bob, who is conveying his interest, owns less than all

of the property. So we add the new term created by Bob’s

conveyance as a left sibling to Bob’s interest rather than to

the overall term. The term is now:

;

;

While "alive (Bob) and unmarried(Bob)"

;

While "alive (Dave)"

Atom Dave

Atom Bob

Atom Carol

Atom Olive

The �fth statement is another event. It causes the condi-

tion "alive(Bob) and unmarried(Bob)" to fail, terminating all

the interests that the condition guards. The complete term

simpli�es to:

;

Atom Carol Atom Olive

Notice that Bob’s death would also have yielded the same

result. The failure of an outer condition causes all inner terms

to be replaced with Bottom and be pruned away. Dave’s death,

on the other hand, would only have caused the subterm with

Dave’s interest to fail, so that the term would have become

;

;

While "alive (Bob) and unmarried(Bob) "

Atom Bob

Atom Carol

Atom Olive

This is exactly the same as the term before Bob’s con-

veyance to Dave. This makes sense: Bob gave away part of

his interest, but the part he gave away has terminated, so he

is left in the same situation he was in before. In Section 5.1,

we prove this is a general theorem about our model of prop-

erty law. Note that the term Atom Carol ; Atom Olive will

never simplify further, because no events are capable of

terminating Carol’s interest. Therefore, Olive’s reversion is

unreachable. Our implementation is capable of detecting and

pruning unreachable interests (as lawyers do implicitly when

talking about the state of title to a property), but we defer a

full description of the required analysis to future work.

131

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

The next sections describe howwe formalize the intuitions

we have developed in this chapter, starting with a formal-

ization of the syntactic structures we have discussed, and

followed by operational semantics that allow us to perform

the relevant evaluations and simpli�cations.

3 Concrete and Core Syntaxes
We have developed a surface syntax for expressing con-

veyances that that resembles natural English language and

that desugars into terms in a core calculus. The surface syn-

tax allows for specifying conveyances in a (very) restricted

subset of English. These conveyances resemble the examples

used in legal textbooks [Edwards 2009; Merrill and Smith

2017], and most of our examples are legally su�cient to do

what they claim to. (Having said that, please don’t try this

at home—this is an academic paper, not legal advice!)

Figure 2b shows the concrete syntax of our surface lan-

guage, which is designed to be familiar to legal practitioners.

A “program” consists of an initial ownership declaration fol-

lowed by zero or more statements. A statement can represent

either the occurrence of an event e , or a conveyance. Thus
events and conveyances can be interleaved, as is the case in

the real world. A conveyance is a pair of a grantor p and a

combination of clauses qs . Each clause has a grantee (to p)
and optionally, a precondition (if c), a duration (for d) and a

limitation (while c). The clauses can be singletons, or linked

in various combinations, representing the common syntactic

forms (as seen in Section 2). The syntax supports sequential

composition (“q then qs”), or guarded composition, where

the ful�llment of a condition cuts short all previous interests

(“but if c then”, i.e., an executory interest).

The grammar of conditions includes a few primitives that

cover conditions common in practice (e.g., “p is married”), a

primitive that is true when the corresponding event occurs,

and operators for combining simpler conditions (including

the standard logical operators). Our implementation is a little

more �exible than the syntax shown in Figure 2. For example,

a condition that is true as long as a person p is in school may

be phrased as “while p is in school”, as shown in Figure 2,

but also as “until p graduates”, or “so long as p is in school”.

One of our core insights is that althoughmany conveyances

can appear complex in the surface syntax, they can usually

be translated into programs in a simpler core language with

a small collection of basic forms, as shown in Figure 2c. The

treatment of programs, statements, conditions, and events is

essentially unchanged. However, the numerous special cases

associated with clauses, combinations, and durations have

been simpli�ed as terms in the core language.

Terms elide most syntactic characteristics of conveyances

in favor of preserving the core semantic di�erences. The

term Atom γ encodes what property law practitioners would

recognize as a distinct interest: a triple of unique identi�er

(n ∈ N), a grantor (д ∈ P), and an owner (or grantee) (o ∈ P).

Naturals N 3 n ::= 0 | 1 | 2 . . .
Persons P 3 p,д ::= O,G, P,A,B . . .
Strings x,y, z ::= Strings

Events E 3 e ::= p dies | n years pass | x occurs | . . .
Histories E∗ 3 ē ::= [e0, . . . , en]

(a) Common Types.

Durations d ::= life | the life of p | n years

Conditions c ::= p is married | p is alive | e occurs
| ¬c | c1 ∧ c2 | c1 ∨ c2

Clauses q ::= [if c] to p [for d][while c]

Combinations qs ::= q | q, then qs
| qs , but if c then qs

Statement snat ::= (p, qs) | e occurs
Program πnat

::= [Owns p; snat
0

; . . . snatk]

(b) Natural Language Syntax.

Interest Γ 3 γ ::= To (n ∈ N,д,o ∈ P) Transfer

Terms t 3 T ::= Atom γ One Interest

| Seq (t1, t2) Sequencing

| While (c, t) Termination

| If (c, t) Precondition

| Bottom Reversion

Statement S 3 s ::= Conveys (γ , t) | e
Program π ::= [Owns p; s0 . . . sn]

(c) Core Language Syntax.

Figure 2. Syntax for Expressing Conveyances.

The additional structure is necessary because some property

doctrines depend on whether an interest is owned by its

grantor and on the identity of speci�c interests over time.

Placing this information in the interest itself, rather than

reconstructing it from context in a term, allows for simpler

semantics. The unique identi�ers allow for a program-level

property: an interest can only be conveyed once, i.e., γ can

appear on the right-hand-side of only one Conveys (γ ,t)
statement in a program. The term Seq (t1, t2) represents

the linear sequence of the subterms t1 and t2: i.e., �rst the
interests in t1 are possessory, and then those in t2 are. For
concision, we often write (t1 ; t2). The term While(c, t) rep-
resents the termination of the subterm t on the failure of the

condition c: if t is possessory and c becomes false, then the

entire term ends. Conversely, If(c, t) evaluates the subterm t

132

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

γ (·) : Person (P) → Interest (Γ)
ν (·) : Person (P) → Interest (Γ)

DJ·K : Duration → Condition

TnJ·K : Natural → Core

TqJ·K : Person → Combination → Term

TcJ·K : Clause → Term

TnJOwns o; s̄K = Atom ν (o);TnJs̄K

TnJs1; s2; . . . ; snK = TsJs1K;TsJs1K; . . . ;TsJsnK
TnJeK = e

TnJConveys (д,qs)K = (γ (д),TqJqsKд)

TqJqKд = TcJqK
TqJq, then qsKд = TcJqK; TqJqsKд

TqJqs1, but if c then qs2Kд = While (not c, (TqJqs1Kд ; Atom ν (д))); TqJqs2Kд

TcJ_, to p, for d,while cK = While (c ∨ ¬DJdK,Atom ν (p))
TcJ_, to p, _,while cK = While (c,Atom ν (p))
TcJ_, to p, for d, _K = While (¬DJdK,Atom ν (p))

TcJ_, to p, _, _K = Atom ν (p)
TcJif c,p,d, c ′K = If (c, TcJ(_,p,d, c ′)K)

Figure 3. Translating from Natural to Core Language.

only if the condition c is true; if not, the entire term ends im-

mediately. Bottom represents the case when all interests in

a subterm have terminated. It is used only internally within

the semantics while processing the e�ects of events. As we

shall see in Section 4, the semantics prune away constructs

that reduce to Bottom. Finally, a conveyance is a pair of the
interest γ owned by the grantor and the term t representing
the interests created by the conveyance.

Figure 3 shows the translation from natural language to

the core programs. There are a number of important sub-

tleties. First, conveyances of the form “qs1 but if c then qs2”
make use of the While(c, t) construct, (not the If(c, t) con-
struct, as would be intuitive) enclosing all preceding terms

as the body term. This is to correctly implement the legal

interpretation that condition c becoming true terminates all

preceding interests (as shown in the example in Figure 1).

This translation also inserts a transfer back to the grantor д
after the translation of qs1. Intuitively, this accounts for the
case when all the interests represented by qs1 might have

been terminated (due to their own durations and limitations),

but the condition c has not yet been ful�lled.

However, a di�erent translation applies for syntax of the

form “if c to p” as in the �nal case (i.e., when the condition c
is part of the clause, rather than appearing before it). In this

case, the translation to the core If(c, t) construct implements

a requirement that the condition c hold at the time that the
wrapped term t is to be evaluated (i.e., when all preceding

interests have been terminated).

Translating the remaining forms of clauses according to

TcJ·K is more straightforward. All clauses require a grantee

(to p), but durations (for d) and conditions (while c) are op-
tional. We elide the duration translation function DJ·K for
concision. There are a small number of possible durations

(as shown in Figure 2); DJ·K simply hard-codes their corre-

sponding conditions. When both a duration and condition

are present, their conditions are conjoined. Conditions are

explained in greater detail in Section 4.1.

The translation also makes use of two book-keeping func-

tions. The function ν (γ) generates a fresh interest γ ′
in the

core language such thatγ andγ ′
share the same owner. Fresh

interests are necessary because the same person could hold

two or more distinct interests. The function γ (д) picks out a
speci�c interest conveyed by the person д and is necessary

for the same reason: one person could hold two or more

distinct interests. Currently, γ (д) returns the most recent in-

terest owned by д known to the system. It could be extended

(along with the Conveys statement) to allow particular inter-

ests to be chosen without altering the rest of the formalism.

The translation from concrete to core syntax is straight-

forward, but not trivial. It requires understanding the intri-

cacies of the language used in conveyances, and depends on

domain-speci�c knowledge, often producing results that are

di�erent from a non-expert reading of the legal text. As we

shall see in the next section, the design of the core syntax

supports an operational semantics that closely matches the

legal interpretation of the corresponding terms.

133

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

P : Π → Γ

P(Owns o; s̄) =

{
o if γ = ⊥

γ otherwise

where γ = E(∆s̄ (Atom o))

(a) Program evaluation function P .

E ∈ T → Γ ∪ {⊥}

E(Bottom) = ⊥

E(Atom γ) = γ
E(t1 ; t2) = E(t1)
E(If(c, t)) = E(t)
E(While(c, t)) = E(t)

(b) Observation function E.

∆s̄ : T → T

∆ϵ (t) = δ (t)
∆s̄s (t) = δ (〈t ′〉s ′)

where t ′ = ∆s̄ (t)
and s ′ = 〈s〉s̄

(c) Transition function ∆.

Figure 4. Operational semantics of conveyance programs.

4 Operational and Relational Semantics
The previous section showed how to construct terms in the

core language that represent the legal understanding of what

the equivalent natural language conveyances should do. In

this section, we develop two forms of semantics for the core

language. These semantics de�ne how these terms represent

the changing of interests in response to sequences of events.

In Section 4.2, we develop an operational semantics, based

loosely on the notion of derivatives of regular expressions

[Antimirov 1996; Brzozowski 1964]. This operational se-

mantics translates directly to a concrete implementation

discussed in Section 5. Then, in Section 4.3 we develop a de-

notational semantics that relates sequences of events and the

corresponding possessory interests represented by a term.

This semantics allows us to prove that our model obeys a

number of important and widely-accepted concepts in prop-

erty law (as shown in Section 5.1). Finally, in Section 4.4 we

show that the two semantics are equivalent. This guarantees

that an implementation of the core language that obeys the

operational semantics will conform to the expectations of

legal practitioners.

4.1 Conditions
Before we dive into the semantics, a discussion of condi-

tions is warranted. In reality, conditions can be arbitrarily

complex, but there are a number of conditions that are com-

mon in the practice of property law, e.g., marriages, divorces,

births and deaths. Fully characterizing the space of possible

conditions is outside the scope of this work. Conceptually,

we model conditions as functions from sequences of events

to a boolean: E∗ → {true, false}. As demonstrated in the

previous sections, evaluating a term often requires checking

whether a condition is true or false. We write ē |= c when
c(ē) = true. When ē = ϵ we write simply |= c .

We will also be concerned with how conditions evolve as

events occur. Thus, we also need some notion of “stepping”

them forward on single events. We require each condition

c to have an associated stepping function 〈c〉e such that

ē |= 〈c〉e i� eē |= c . The stepping function 〈·〉 lifts from

events to sequences of events in the obvious way.

In many cases, conditions can be de�ned as automata

over a sequence of events. In that case, conditions could be

expressed with a language similar to regular expressions.

c ::= Now e | Occurred e
| ¬c | c1 ∧ c2 | c1 ∨ c2

|= ∈ C × E∗ → {true, false}

ē |= Now e i� ē = ē ′e
ē |= Occurred e i� e ∈ ē

ē |= ¬c i� ē 6 |= c
ē |= c1 ∧ c2 i� ē |= c1 and ē |= c2
ē |= c1 ∨ c2 i� ē |= c1 or ē |= c2

Figure 5. De�ning simple conditions over events.

The stepping function would be similar to the notion of

derivatives of regular expressions. In this paper we treat con-

ditions abstractly, and leave exploring this direction to fu-

ture work. Speci�cally, our current implementation provides

hand-coded implementations of some common conditions

and the related stepping functions (eg., births, deaths, mar-

riages and divorces). The implementation allows for de�ning

new events (as opaque strings) and new conditions using

boolean operators in terms of those events, as in Figure 5.

This provides an “escape hatch” for complicated conditions,

and lets us focus on the semantics of conveyances, rather

than dealing with the intricacies of real-world conditions.

4.2 Operational Semantics
These semantics are based on the following principles:

1. At any given time, exactly one interest is possessory
(i.e., the owner of that has interest the right to use the

property at that time). A term is su�cient to determine

the current possessory interest: it is the leftmost non-

terminated interest in the term.

2. Terms change when particular conditions become true

(or false) in response to events, and when interests are

conveyed—i.e., when they are syntactically replaced

by other terms.

3. Thus, we can think of applying a term to a statement

to produce another term. A term t ′ produced in this

way is the derivative of the original term t with respect
to a statement s . Here, t ′ denotes the possible future
interests allowed by t after statement s has occurred.

134

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

〈·〉s : T → T

〈Atom γ 〉e = Atom γ
〈Atom γ 〉(γ ′,t) = Atom γ if γ , γ ′

〈Atom γ 〉(γ ,t) = t ; Atom γ ′
where γ ′ = ν (γ)

〈Bottom〉s = Bottom

〈If(c, t)〉s = If(〈c〉s , 〈t〉s)
〈While(c, t)〉s = While(〈c〉s , 〈t〉s)

〈t1 ; t2〉s = 〈t1〉s ; 〈t2〉s

(a) Stepping a term by one statement

〈t〉ϵ = t
〈t〉s̄s = 〈〈t〉s̄ 〉〈s 〉s̄

(b) Stepping a term by a sequence of statements.

〈·〉s : S → S
〈e〉s = e

〈(γ , t)〉s = (γ , 〈t〉s)

(c) Stepping one statement.

〈·〉s : S∗ → S∗

〈ϵ〉s = ϵ
〈s̄s ′〉s = 〈s̄〉s 〈s

′〉s

(d) Stepping a sequence of statements by one statement.

〈·〉s̄ : S → S
〈s ′〉ϵ = s ′

〈s ′〉s̄s = 〈〈s ′〉s̄ 〉〈s 〉s̄

(e) Stepping one statement by a sequence of statements.

Figure 6. Stepping functions 〈·〉 for terms and statements.

The semantics of an entire program are de�ned by a pro-

gram evaluation function P shown in Figure 4a. P starts

with an initial ownership as de�ned by the initial Owns state-
ment, applies transition function ∆ to evaluate the e�ects

of subsequent events and conveyances, and then observes

the resulting possessory interest with observation function

E(de�ned in Figures 4b and 4c respectively.)

This formulation is based loosely on the notion of An-

timirov partial derivatives for regular expressions [Antimirov

1996]. ∆a(r) is the derivative of a regular expression r with
respect to the character a. It is the language that results from
removing the character a from from all those words that

start with a in the language r . E(r) ∈ {0, 1} observes if the
empty string is accepted by the regular expression r , i.e., if
r is already satis�ed. Together they de�ne how a regular

expression changes as a stream of characters are observed.

In our setting, ∆ describes how a term changes with re-

spect to a list of statements (events or conveyances) by pro-

ducing a new term, while E gives the current possessory

interest. E is straightforward. Recall from Section 3 that a

conveyance is a pair of a grantor and a term in the core

language. If the term has terminated, E returns the grantor,

otherwise it returns the current possessory interest by re-

cursively traversing the term.

The transition function ∆ alternately steps a term t by one
statement s using 〈·〉 and simpli�es the result with δ to apply

any changes required by the state of the conditions in the

term. ∆ is complicated by the fact that a statement can either

be a single event, or another conveyance, which might insert

a new subterm. The ∆ function is applied recursively to all

but the �nal statement, producing a penultimate term t ′. This
term is then stepped, not with the �nal statement s , but with
that �nal s itself stepped by all previous statements s̄ . This
ensures that if s is a conveyance with a term, conditions in

that term are stepped according to all previous statements.

The simpli�cation function δ : T → T de�ned in Figure 7

is straightforward: it removes the leftmost subterm when

required by a failing condition.

δ : T → T
δ (Bottom) = Bottom

δ (Atom γ) = Atom γ
δ (t1 ; t2) = if δ (t1) = Bottom then δ (t2)

else δ (t1) ; t2
δ (If(c, t)) = if |= c then δ (t) else Bottom

δ (While(c, t)) = if |= c then While(c, δ (t))
else Bottom

Figure 7. Simpli�cation function δ .

The stepping function 〈·〉 is de�ned in Figure 6. First, 〈·〉s :

T → T in 6a steps a term. For terms that are not Atom,

〈·〉s steps all the conditions and subterms in the term by

the given statement. The Atom cases are more complex. If

the statement is an event, the term is unchanged. If the

statement is a conveyance, but for an interest other than the

one wrapped by the Atom, the term is also unchanged. If the

statement is a conveyance for the wrapped interest γ , then
Atom γ is replaced by the term t in the conveyance, followed

by a term, Atom γ ′
, representing a reversion to the owner

of the original interest γ . This γ ′
is a fresh, unique interest,

di�erent from both the conveyed interest γ and any other

interest γ ′′
created elsewhere in the program. To create it,

we use the function ν described in Section 3.

Figure 6b shows how to step a term by a sequence of

statements. This is analogous to Figure 6e (described below)

and required for the equivalence proof in Section 4.4.

135

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

PJ·K : Π → Γ ∪ {⊥}

CJ·K : T → (S∗ × S∗) → {true, false}
J·K : T → (S∗ × S∗) → Γ ∪ {⊥}

J·K6⊥ : T → S∗ → P(S∗)
B : P(S∗) → P(S∗)

PJOwns o; s̄K = JAtom oK(ϵ, s̄)

CJcK(s̄0, s̄1) = if ∀s̄ ′
1
≤ s1 : s̄0s̄

′
1
|= c then true else false

JBottomK(s̄0, s̄1) = ⊥

JAtom γ K(s̄0, s̄1) = if ∃min s̄ ′
0
: s̄0 = s̄

′
0
(γ , t ′)s̄ ′′

0
then Jt ′ ; Atom γ K(s̄ ′

0
s̄ ′′
0
, s̄1)

else if ∃min s̄ ′
1
: s̄1 = s̄

′
1
(γ , t ′)s̄ ′′

1
then Jt ′ ; Atom γ K(s̄0s̄ ′1, s̄

′′
1
)

else γ
JIf(c, t)K(s̄0, s̄1) = if s̄0 |= c then JtK(s̄0, s̄1) else ⊥

JWhile(c, t)K(s̄0, s̄1) = if CJcK(s̄0, s̄1) then JtK(s̄0, s̄1) else ⊥

Jt1 ; t2K(s̄0, s̄1) = if ∃s̄ ′
1
: s̄1 = s̄

′
1
s̄ ′′
1

∧ s̄ ′
1
∈ B(T (Jt1K6⊥(s0))) then Jt2K(s̄0s̄ ′1, s̄

′′
1
) else Jt1K(s̄0, s̄1)

JtK6⊥(s̄0) = {s̄1 | JtK(s̄0, s̄1) , ⊥}

T (L) = {x | ∀y ≥ x : y < L}
B(L) = {x | ∀y < x : y ∈ L}

Figure 8. Relational Semantics

Function 〈·〉s : S → S de�ned in Figure 6c steps a state-
ment by stepping any terms that are part of a conveyance.

This gives the correct semantics with respect to events that

have happened when the conveyance is executed.

There are two ways to lift the stepping function to se-

quences of statements. Stepping a sequence of statements

by one statement is straightforward and is described in Fig-

ure 6d. However, stepping a single statement s ′ by sequences
of statements s̄s is more complicated: before s ′ can be stepped
by s , the statement s must itself be stepped by all preceding

statements in s̄ . This second lifting is formalized in the func-

tion 〈·〉s̄ : S → S in Figure 6e and depends on the preceding

lifted function 〈·〉s : S∗ → S∗ for the base case. This is re-
quired because programs will be composed of sequences of

statements, and evaluating a program requires stepping an

initial ownership term by the statements in the program.

4.3 Relational Semantics
We can also de�ne a relational semantics J·K that regards
each term in the core language as specifying a function from

a history (a past sequence of events) and a future (also a

sequence of events) to the interest that will be possessory

after the future (or ⊥ if no interest decribed by the term will

be possessory). This relational formulation uses a denota-

tion function CJ·K for conditions, which describes (given a

history) the futures on which a condition always evaluates

to true. The semantics also makes use of a boundary func-

tion B(·) which informally describes the futures that cause

a term to irrevocably fail so that it can no longer result in

any possible possessory interests. The most natural way to

build up the boundary function is in three steps. First, the

denotation function JtK6⊥(s̄0) returns the set of futures s1 for
which JtK(s̄0), s̄1) has a value other than ⊥. Then, treating

this set as a language L, the set T (L) of terminated strings is

the set of strings whose extensions (including themselves)

are not in the language. We then take the boundary B(T (L))
of the set of terminated strings: the strings that are in T (L)
but none of whose pre�xes are.

4.4 Relating the Two Semantics
Next we prove a theorem relating the two semantics:

Theorem 4.1. E(∆ 〈s̄1 〉s̄
0

(〈t〉s̄0)) = JtK(s̄0, s̄1).

Note how each semantics keeps track of the sequence of

past (s̄0) and future (s̄1) statements. The proof, which goes

by induction on t , |s̄0 |, |s̄1 |, is given in the appendix.

5 Implementation and Evaluation
We have developed an implementation of the parser and

semantics. Our implementation accepts conveyances written

in the simpli�ed natural language syntax described in Sec-

tion 3, and performs the translation to the core syntax. The

system then executes each statement in the program, one

at a time, producing each intermediate term. Additionally,

we have developed a user interface atop the implementation

that adds some key features. The user interface is discussed

in more detail in Section 5.3.

136

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

The core system is implemented in about 2600 lines of

OCaml. The web-based user interface is implemented in

about 300 lines of HTML, CSS, and JavaScript. It is accessible

online at https://conveyanc.es.
We evaluate our work in two ways. First, we phrase a

number of common legal principles in terms of our syntax

and semantics, and show that they hold as theorems in our

formalism. Second we have translated a number of examples

from a popular property law textbook and show that our

implementation produces the expected answers. Finally, we

show some output from the user interface, highlighting some

aspects that extend beyond our formalism and point to the

direction of possible future work.

5.1 Legal Theorems
Our treatment of conveyances enables us to provide formal

models and “proofs” of commonly recited legal propositions.

We use the term “proof” lightly—no formal model or mathe-

matical proof is capable of predicting or constraining what

courts do in all cases, and we have not yet written down

detailed proofs using the formal semantics for each of these

propositions. Instead, the point of these examples is to show

that our formalization can be used to correctly capture shared

understandings of property lawyers and scholars.

A fee simple is perpetual and unconditional. Unless she
conveys it away, the current owner of a fee simple will be

the owner forever, regardless of how they acquired it and no

matter what else happens. In our model, this is equivalent

to the statement that JAtom γ K(s̄0, s̄1) = γ for all s̄0 ∈ S∗ and
s̄1 ∈ S∗γ . The notation Sγ refers to E ∪ {(γ ′, t)|γ ′ , γ }, i.e., all
statements except a conveyance of γ . The proof is trivial by
inspection of the Atom γ case in the de�nition of J·K.

Ownership is always unambiguous. No matter what has

happened or will happen, someone will always be entitled

to possession of the property. It is never the case that more

than one party is entitled to possession, or that no one is.

In our model, this requires that ∀π ∈ Π.PJπK exists, is

single-valued, and is not equal to ⊥ . The proof is straightfor-

ward: PJOwns o; s̄K = JAtom oK(ϵ, s̄). Existence and single-

valuedness follow from the equivalence of the operational

and denotational semantics. Inspection of the de�nition of

JAtom oK shows that it can never have the value ⊥.

Nemo dat quod non habet. ("no man can give what he does

not have"). No person can execute a conveyance that will

eliminate someone else’s right to possession, now or in the

future. In our model, this is equivalent to the statement that

if JtK(s̄0, s̄1) = γ and γ , γ ′
, where s̄0 ∈ S∗ and s̄1 ∈ E∗,

then JtK(s̄0, (γ ′, t ′)s̄1) = γ . The proof relies on an important

property of the semantics of terms: s̄1 ∈ (JtK6⊥(s̄0) if and only
if (γ , t ′)s̄1 ∈ (JtK6⊥(s̄0)). This property states, informally, that

a conveyance cannot change whether some interest will be

possessory according to a term, only which interest will be

possessory. The main non-trivial case is Atom γ , and the

key observation is that JAtom γ K 6⊥ = S∗. The next step is

to recognize that T (·) and B(·) are also invariant under pre-

�xing by a conveyance, which follows immediately from

their de�nitions. From here, the main property should fol-

low by an induction on t . The cases for Bottom, If(c, t), and
While(c, t) are trivial. The case for Atom γ splits into simple

cases depending on whether γ = γ ′
, and the case for t1 ; t2

follows from the invariance of B(·).

First in time, �rst in right. If a party attempts to convey

the same interest twice in succession, the �rst conveyance

takes priority. In our model, this can be captured by the

statement that if JtK(s̄0, (γ , t ′)s̄1) = γ ′
for s̄0, s̄1 ∈ S∗, and

γ , γ ′
, then JtK(s̄0, (γ , t ′)(γ , t ′′)s̄ ′′1) = γ

′
. The proof, like the

principle, is a special case of nemo dat.

Conservation of estates. If an owner of a present or future

interest conveys away less than all of her interest, she re-

tains a reversion that is entitled to possession if none of the

interests she has created is. In our model, this is equivalent

to the statement that if JtK(s̄0, s̄1s̄2) = γ and Jt ′K(s̄0, s̄1) = ⊥,

for s̄0, s̄1, s̄2 ∈ S∗, then JtK(s̄0, s̄1(γ , t ′)s̄2) = γ . The proof is

immediate from the de�nition of J·K.

5.2 Textbook Examples
The textbook Estates in Land and Future Interests: A Step-by-
Step Guide [Edwards 2009] is often used to teach property

law as part as the �rst-year law curriculum. There are six

chapters in �rst half of the textbook that fall within the scope

of our work. For our evaluation, we took examples in the text

and exercises in each chapter, and made any minor changes

necessary to write them as inputs in our concrete syntax.

We compared the output of our implementation, in terms of

interests after evaluation, against the provided answers in

the textbook. We consider our implementation successful if

we produce the same set of interests as in the textbook.

Figure 9 summarizes the results of the evaluation. For each

chaper, we detail the total number of test cases, the number

of successes and failures. As we see, the implementation

is successful in most of these cases. However, for some of

them, we need to make minor changes to the syntax from

the textbook to work with our implementation (the Smooth-

ing column). In most cases, this involved removing minor

punctuation like commas and semicolons. In some other

cases, we need to add an event into the program before eval-

uating the conveyances (the Positive column). In general,

this is to allow for what would be “common sense” reason-

ing, or dependence on real world events. For example, for

a conveyance “O conveys to A while A is in school”, we

add an event “A is in school” before the conveyance.

The majority of failures were due to the presence of com-

plicated conditions that our system does not currently handle

(the Complicated column). A few fail due to syntax that is

outside what we currently handle (the Syntax column).

137

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

Chapter Total Success Smoothing Positive Fail Complicated Syntax

1 1 1 0 0 0 0 0

2 31 30 0 0 1 1 0

3 44 40 8 18 4 4 0

4 5 5 0 0 0 0 0

5 38 29 0 0 9 8 2

Total 119 105 8 18 14 13 2

Figure 9. Summary of implemention evaluation on examples from a property law textbook.

In summary, our implementation is capable of handling the

majority of examples found in the chapters that are within

the scope of our work. The need to add in events to sat-

isfy conditions, as well as the failures due to complicated

conditions point to the need to support a richer model of con-

ditions and how they interact with events. This is a primary

topic for our future work.

5.3 User Interface
The user interface to the implementation has some additional

features that we have not formalized. As an example, recall

the extended conveyance from Section 2:

1 Olive owns.
2 Olive conveys to Alice for life , then to Bob

for life until Bob marries , then to Carol.
3 Alice dies.
4 Bob conveys to Dave for life.
5 Bob marries.

Figure 10 shows the output of our implementation after

executing each line of the example. The output is similar to

the representation of the terms we show in Section 2, with

some key di�erences. First, we implement atomic conditions

(e.g., “A is alive”) in terms of events (e.g., “not(A dies)”). The

output of conditions guarding while and if subterms refer

to the events that a�ect these conditions, rather than to the

natural language originally used to specify the conditions.

Second, the interface prunes away terms that would be

unreachable in practice. In Section 2 the terms have a �nal

Atom Olive subterm, indicating a reversion to the grantor

Olive. However, the UI recognizes that Alice’s reversionary

interest could never be possessory, i.e., the Atom Olive sub-

term is unreachable, since the preceding preceding interest

(Atom Carol) is not guarded by a condition and thus never

terminates. Thus, it is safe to prune away the Atom Olive

subterm. In fact, this is the correct thing to do from a legal

perspective; lawyers would not say that Olive retained an

interest in these circumstances. Terms are currently pruned

according to a set of heuristics based on the term structure

and the properties of the particular conditions involved. We

plan to formalize the pruning algorithm in future work.

Finally, the interface annotates each interest term with

a human-readable name that contains legally relevant in-

formation. Much of this name is derived from reasoning

about when the interest could become possessory (its vesting
properties, in legal jargon), and how it might terminate. For

example, Bob’s interest (in Figure 10b) is initially described

as “a remainder in life estate determinable (vested subject

to divestment).” It is a remainder because it follows Alice’s
life estate (which terminates at Alice’s death). It is in life
estate because it will be a life estate (i.e., terminable at Bob’s

death) if it becomes posessory. It is determinable because of
the added limitation, that Bob must remain unmarried. It is

vested because all necessary prerequisites to its becoming

posessory (i.e., Alice’s death) are guaranteed to be satis�ed

eventually, since Alice will eventually die. And it is subject
to divestment because Bob’s death or marriage could cause it

to cease being possessory. But after Alice’s death (in 10c), it

is labeled as being possessory (rather than a remainder), and

in property law the terminology of vesting and divestment

only applies to future interests (speci�cally remainders), not

possessory ones.

The vesting and naming logic is principled, in the sense

that it follows the same logic taught to law students based on

the structure of terms and the details of relevant conditions.

We have also tested it on examples described in the previous

section. However, as noted in Section 4.1, we do not fully

model conditions and their relationships with events. Thus

the current implementation of the vesting logic relies on

heuristics and is limited to a number of common conditions.

We plan to formalize the vesting rules in future work, placing

the naming logic on surer footing.

6 Related Work
There is a well-established tradition of knowledge represen-

tation to enable formally valid reasoning about legal propo-

sitions. [McCarty 1976; Sergot et al. 1986]. Our approach is

similarly intended to enable deductive reasoning. The princi-

pal di�erence is that we systematically rely on programming

language concepts to capture the underlying structure of the

legal domain. Our goal is not merely to provide a knowledge
representation of property law, but also to capture the imper-

ative nature of conveyances as updates to the “state” of the

title to a piece of property. To that end, our domain-speci�c

language �ts the problem domain more closely than a purely

declarative list of facts about property law would.

138

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

(a) Olive owns. (b) Olive conveys to Alice for life, then to Bob for life until Bob marries, then to Carol.

(c) Alice dies.

(d) Bob conveys to Dave for life.

(e) Bob marries.

Figure 10. User interface output from extended example.

Ours is not the �rst attempt to formalize some aspect of

property law. McCarty [McCarty 2002], following the work

of the legal philosopher Wesley Newcomb Hohfeld [Hohfeld

1913], discusses the decomposition of “ownership” into rela-

tions between individuals. But this is a much more abstract

exercise, meant to clarify the nature of ownership rather

than to answer speci�c legal questions. At the other extreme,

Finan and Leyerle [Finan and Leyerle 1987] implemented an

expert system in basic to walk users through the application

of a property law concept known as the Rule Against Perpe-
tuities. Their system, however, is essentially a decision tree

based on a series of yes-no questions to the user, applicable

to one interesting aspect of property law. It has no internal

representation of the property interests themselves, nor does

it reason more generally about how interests interact. To

similar e�ect is [Becker 1989], which presents a related deci-

sion tree as a series of questions for a lawyer to ask, with no

attempt at implementation.

The observation that conveyances have a potentially re-

cursive structure, like the outputs of a context-free grammar,

is made in a law-school casebook [Merrill and Smith 2017],

one of whose authors holds a Ph.D. in linguistics. An ear-

lier version of the point is found in [Lowry 1979]. Previous

work by the authors [Basu et al. 2017] describes an abstract

syntax for some conveyances that is similar to the concrete

syntax described in this paper. However, we did not provide

semantics or prove any interesting properties, nor did we ex-

plore an implementation in depth. A conveyance interpreter

developed by Shawn Bayern, like ours, parses a variety of

conveyance patterns, generating graphical repesentations

of the resulting interests [Bayern 2010]. The parsing from

concrete syntax to abstract syntax trees is based in part on

ideas from Bayern’s implementation. We extend Bayern’s

work by developing a model that has semantics as well as

syntax: conditions and interests behave in well-de�ned ways

in response to events and conveyances. This approach lets

139

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

us take a principled approach to interleaving sequences of

conveyances and events, in which the di�erent types of state-

ments interact as they would in real life.

Otherwise, there is little prior work on formal models for

property conveyances—especially by comparison with the

well-developed body of work formalizing contracts [Hvitved

2010; Pace and Rosner 2009], including approaches that rep-

resent contracts using automata [Azzopardi et al. 2016] or

functional languages [Jones et al. 2000].

The Legalese project has developed a language for spec-

ifying privacy policies that restrict how user data is han-

dled in cloud services, as a step to ensuring that services

comply with their privacy policies [Sen et al. 2014]. Recent

work on blockchain-based smart contracts has also proposed

domain-speci�c languages for contracts [Accord 2018; Szabo

2002]. The Ethereum blockchain and its associated bytecode

programming language has generated a lot of interest in for-

malizing and verifying properties of smart contracts [Amani

et al. 2018; Grech et al. 2018; Tsankov et al. 2018].

Finally, one paper gives an "operational semantics" for a

highly abstracted legal system [da Rocha Costa 2015]. It is

best understood as an exercise in legal philosophy, working

out structural relationships between generic legal concepts.

7 Conclusion & Future Work
In this paper, we have presented the foundation for a formal

domain-speci�c language that describes property transac-

tions. More speci�cally, we have described:

• A concrete syntax that closely enough approximates a

commonly used fragment of written legal English to

express literal textbook examples of conveyances.

• A two-step transformation (parsing followed by trans-

lation) from the concrete syntax to a simple core cal-

culus with a small number of elementary operators.

• Operational and denotational semantics for the core

calculus and a proof of equivalence between them.

• Examples showing that our semantics respects �ve

important and well-known characteristics of actual

property conveyances.

• An implementation of our syntax and semantics which

correctly analyzes a substantial number of examples

from a widely-used legal textbook.

Taken together, these contributions show how an area of

law is e�ectively mechanizable, in the tradition of [McCarty

1976]. It is a small fragment of one �eld of law, to be sure, but

is the essential foundation for formalizing larger portions

of that �eld. We hope that this will be the beginnings of

what McCarty calls a “deep conceptual model” of a legal

domain [McCarty 1989].

Our work can help apply the power of computing to legal

thinking in two ways. One way is forward-looking: it shows

how to augment what lawyers currently do by predicting

the consequences of di�erent choices, and giving clean ways

of accomplishing speci�c objectives. A lawyer taking this

approach would use a tool that modeled the e�ects of di�er-

ent conveyances until she found one that met her client’s

objectives; it would then assist in drafting the appropriate

documents. Our current implementation is a prototype of

such a tool, allowing users to write down conveyances and

events and see how they interact. To be more practically

useful it would require a better understanding of conditions

and events and an improved interface to help users explore

their options and understand the e�ects of their choices.

The second way is backward-looking: it shows how to an-

alyze the current consequences of what lawyers have done

in the past. A lawyer taking this approach would use a tool

that took a pre-existing natural-language conveyance and

generated one or more possible formal representations of it.

This approach would require more substantial use of natural-

language processing techniques than we have attempted so

far. We believe that our formal representations are good can-

didates for the targets of such natural-language processing.

As noted in Section 5.3, we have formalized a subset of the

features of our current implementation. Most signi�cantly,

our implementation currently also prunes away unreachable

interests and decorates interests with names according to the

property-law naming rules. In future work, we will describe

in formal detail these naming rules.

There are also a signi�cant number of additional property

doctrines that we plan to incorporate into our framework.

These include the doctrines of the destructability of contin-
gent remainders, vesting,merger, the Rule in Shelley’s Case, the
Doctrine of Worthier Title, and the Rule Against Perpetutites.
An important theme tying together many of these doctrines

is that they depend on determining whether a future inter-

est is vested—roughly, guaranteed to become posseessory at

some future time. This concept depends on reasoning about

future events, and on understanding conditions in detail.

Thus, future work will need a better way to model condi-

tions and their relations to events, and properly integrate

reasoning about conditions with our current reasoning about

language terms. We suspect that we will need to leverage

existing work on temporal logics and their related automata-

theoretic models to achieve this. Other fruitful directions for

extending our framework would be to add representations

for shared simultaneous ownership (e.g. joint tenancies) and
to model the e�ects of state recording acts for adjudicating
con�icting conveyances.

A Equivalence Proof
This section gives a proof of Theorem 4.1.

Proof. By induction on |s̄0 |, |s̄1 | and t . Each use of the induc-

tive hypothesis is either on sub-sequence of s̄0 or s̄1 or a
sub-term of t . The proof is nearly a structural induction on

t , but the case for Atom γ requires an inductive hypothesis

for a longer t due to substitution. We analyze several cases.

140

Onward! ’19, October 23–24, 2019, Athens, Greece Shrutarshi Basu, Nate Foster, and James Grimmelmann

Case: t = Bottom:
Note that for all s̄ we have:

〈Bottom〉s̄ = Bottom = ∆s̄ (Bottom)

Using this fact, we calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈Bottom〉s̄0)

=E(∆ 〈s̄1 〉s̄
0

(Bottom))

=E(Bottom)

=⊥

= JBottomK(s̄0, s̄1)

obtaining the required equality, which �nishes the case.

Case t = Atom γ :
We anlayze several sub-cases.

• Suppose that s̄0 ∈ S∗γ and s̄1 ∈ S∗γ . Note that for all

s̄ ∈ S∗γ we have:

〈Atom γ 〉s̄ = Atom γ = ∆s̄ (Atom γ)

Using this fact, we calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈Atom γ 〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(Atom γ))

=E(Atom γ)
=γ
= JAtom γ K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

• Suppose that s̄0 = s̄
′
0
(γ , t ′)s̄ ′′

0
where s̄ ′

0
∈ S∗γ . Note that:

〈Atom γ 〉s̄ ′
0
(γ ,t ′)s̄ ′′

0

= 〈t ′ ; Atom γ 〉s̄ ′
0
s̄ ′′
0

Moreover, by uniqueness of interests, we also have

〈s̄1〉s̄ ′
0
(γ ,t)s̄ ′′

0

= 〈s̄1〉s̄ ′
0
s̄ ′′
0

Using these facts, we calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈Atom γ 〉s̄0))

=E(∆ 〈s̄1 〉s̄′
0
(γ ,t ′)s̄′′

0

(〈Atom γ 〉s̄ ′
0
(γ ,t ′)s̄ ′′

0

))

=E(∆ 〈s̄1 〉s̄′
0
(γ ,t ′)s̄′′

0

(〈t ′ ; Atom γ 〉s̄ ′
0
s̄ ′′
0

))

=E(∆ 〈s̄1 〉s̄′
0
s̄′′
0

(〈t ′ ; Atom γ 〉s̄ ′
0
s̄ ′′
0

))

= Jt ′ ; Atom γ K(s̄ ′
0
s̄ ′′
0
, s̄1)

= JAtom γ K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

• Suppose that s̄0 ∈ S∗γ , but s̄1 = s̄
′
1
(γ , t ′)s̄ ′′

1
where s̄ ′

1
∈ S∗γ .

Note that:

∆ 〈s̄ ′
1
(γ ,t ′)s̄ ′′

1
〉s̄
0

(Atom γ) = ∆ 〈s̄ ′′
1
〉s̄
0
s̄′
1

(〈t ′〉s̄0s̄ ′
1

; Atom γ)

Using this fact, we calculate as follows:

=E(∆ 〈s̄1 〉s̄
0

(〈Atom γ 〉s̄0))

=E(∆ 〈s̄ ′
1
(γ ,t ′)s̄ ′′

1
〉s̄
0

(〈Atom γ 〉s̄0))

=E(∆ 〈s̄ ′
1
(γ ,t ′)s̄ ′′

1
〉s̄
0

(Atom γ))

=E(∆ 〈s̄ ′′
1
〉s̄
0
s̄′
1

(〈t ′〉s̄0s̄ ′
1

; Atom γ))

=E(∆ 〈s̄ ′′
1
〉s̄
0
s̄′
1

(〈t ′ ; Atom γ 〉s̄0s̄ ′
1

))

= Jt ′ ; Atom γ K(s̄0s̄ ′1, s̄
′′
1
)

= JAtom γ K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case

and the case.

Case t = If(c, t):
We analyze several sub-cases.

• Suppose that s̄0 |= c . Note that |= 〈c〉s̄0 . Using this fact,
we calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈If(c, t)〉s̄0)

=E(∆ 〈s̄1 〉s̄
0

(If(〈c〉s̄0, 〈t〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(〈t〉s̄0)

= JtK(s̄0, s̄1)
= JIf(c, t)K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

• On the other hand, suppose that s̄0 6 |= c . Note that 6 |=
〈c〉s̄0 . We calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈If(c, t)〉s̄0)

=E(∆ 〈s̄1 〉s̄
0

(If(〈c〉s̄0, 〈t〉s̄0))

=E(Bottom)

=⊥

= JIf(c, t)K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

Case t =While(c, t):
We analyze several sub-cases.

• Suppose that CJcK(s̄0, s̄1) and ∆ 〈s̄1 〉s̄
0

(〈t〉s̄0) , Bottom.

Note that |= 〈c〉s̄0 . We calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈While(c, t)〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(While(〈c〉s̄0, 〈t〉s̄0)))

=E(While(〈c〉s̄0s̄1,∆ 〈s̄1 〉s̄
0

(〈t〉s̄0)))

=E(∆ 〈s̄1 〉s̄
0

(〈t〉s̄0))

= JtK(s̄0, s̄1)
= JWhile(c, t)K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

• Suppose that CJcK(s̄0, s̄1) and ∆ 〈s̄1 〉s̄
0

(〈t〉s̄0) = Bottom.

We calculate as follows:

E(∆ 〈s̄1 〉s̄
0

(〈While(c, t)〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(While(〈c〉s̄0, 〈t〉s̄0)))

=E(While(〈c〉s̄0s̄1,∆ 〈s̄1 〉s̄
0

(〈t〉s̄0)))

=E(∆ 〈s̄1 〉s̄
0

(〈t〉s̄0))

=E(Bottom)

=⊥

= JWhile(c, t)K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case.

• Suppose that ¬CJcK(s̄0, s̄1). Note that 6 |= 〈c〉s̄0 . We calcu-

late as follows:

E(∆ 〈s̄1 〉s̄
0

(〈While(c, t)〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(While(〈c〉s̄0, 〈t〉s̄0)))

=E(Bottom)

=⊥

= JWhile(c, t)K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case

and the case.

141

Property Conveyances as a Programming Language Onward! ’19, October 23–24, 2019, Athens, Greece

Case t = t1 ; t2:
We analyze several sub-cases.

• Suppose that ∃min s̄ ′
1
: s̄1 = s̄ ′

1
s̄ ′′
1
∧ ∆ 〈s̄ ′

1
〉s̄
0

(〈t1〉s̄0) =

Bottom, then s̄ ′
1
∈ B(T (Jt1K 6⊥(s̄0))). We calculate as fol-

lows:

E(∆ 〈s̄1 〉s̄
0

(〈t1 ; t2〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(〈t1〉s̄0 ; 〈t2〉s̄0))

=E(∆ 〈s̄ ′
1
s̄ ′′
1
〉s̄
0

(〈t1〉s̄0 ; 〈t2〉s̄0))

=E(∆ 〈s̄ ′′
1
〉s̄
0
s̄′
1

(〈t2〉s̄0s̄ ′
1

))

= Jt2K(s̄0s̄ ′1, s̄
′′
1
)

= Jt1 ; t2K(s̄0, s̄1)
obtaining the required equality, �nishing the sub-case.

• Suppose that no such s̄ ′
1
exists. Then there is no s̄ ′

1
≤ s̄1

such that s̄ ′
1
∈ B(T (Jt1K 6⊥(s̄0))). We calculate as follows:

=E(∆ 〈s̄1 〉s̄
0

(〈t1 ; t2〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(〈t1〉s̄0 ; 〈t2〉s̄0))

=E(∆ 〈s̄1 〉s̄
0

(〈t1〉s̄0) ; 〈t2〉s̄0s̄1)

=E(∆ 〈s̄1 〉s̄
0

(〈t1〉s̄0))

= Jt1K(s̄0, s̄1)
= Jt1 ; t2K(s̄0, s̄1)

obtaining the required equality, �nishing the sub-case,

the case, and the proof. �

Acknowledgments
We wish to thank the Onward! reviewers for helpful com-

ments and suggestions. Thanks to Michael Greenberg and

Stephen Chong for providing valuable feedback on the se-

mantics. This work was supported by the National Science

Foundation under grant CNS-143972.

References
Accord. 2018. Introduction to Ergo, Accord Project. Retrieved April 29,2019

from h�ps://docs.accordproject.org/docs/ergo.html
Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018.

Towards Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL.

In Proceedings of the 7th ACM SIGPLAN International Conference on
Certi�ed Programs and Proofs. ACM, New York, NY, USA, 66–77.

American Law Institute. 1936. Restatement of Property.
American Law Institute. 1979. Restatement (Second) of Torts.
Valentin M. Antimirov. 1996. Partial Derivatives of Regular Expressions

and Finite Automaton Constructions. Theor. Comput. Sci. 155, 2 (1996),
291–319. h�ps://doi.org/10.1016/0304-3975(95)00182-4

Holger Arnold and Max Mouratov. 2008. MParser, a simple monadic parser

combinator library. Retrieved April 29,2019 from h�ps://github.com/
murmour/mparser/

Shaun Azzopardi, Gordon Pace, Fernando Schapachnik, and Gerardo Schnei-

der. 2016. Contract automata: An operational view of contracts be-

tween interactive parties. Arti�cial Intelligence and Law 24 (09 2016).

h�ps://doi.org/10.1007/s10506-016-9185-2
Shrutarshi Basu, James Grimmelmann, and Nate Foster. 2017. Property Law

as a Programming Language. Presentation. In Domain Speci�c Languages
Design and Implementation. ACM.

Shawn J. Bayern. 2010. A Formal System for Analyzing Conveyances of Prop-

erty Under the Common Law. In Proceedings of the 2010 Conference on

Legal Knowledge and Information Systems: JURIX 2010: The Twenty-Third
Annual Conference. IOS Press, Amsterdam, The Netherlands, 139–142.

h�p://dl.acm.org/citation.cfm?id=1940559.1940579
David M Becker. 1989. A Methodology for Solving Perpetuites Problems

under the Common Law Rule: A Step-by-Step Process that Carefully

Identi�es All Testing Lives in Being. Wash. ULQ 67 (1989), 949.

Janusz A Brzozowski. 1964. Derivatives of regular expressions. In Journal
of the ACM. Citeseer.

Antônio Carlos da Rocha Costa. 2015. Situated legal systems and their

operational semantics. Arti�cial Intelligence and Law 23, 1 (01 Mar 2015),

43–102. h�ps://doi.org/10.1007/s10506-015-9164-z
Linda Edwards. 2009. Estates in land and future interests : a step-by-step

guide. Wolters Kluwer Law & Business Aspen Publishers, Austin New

York, NY.

John P Finan and Albert H Leyerle. 1987. The Perp Rule Program: Comput-

erizing the Rule Against Perpetuities. Jurimetrics 28 (1987), 317–335.
Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz,

and Yannis Smaragdakis. 2018. MadMax: Surviving Out-of-Gas Condi-

tions in Ethereum Smart Contracts. In Proceedings of the 31st Annual
ACM SIGPLAN Conference on Object-Oriented Programming Languages,
Systems, Languages, and Applications. ACM, New York, NY, USA.

James Grimmelmann. 2017. Real + Imaginary = Complex: Toward a Better

Property Course. Journal of Legal Education 66 (2017), 930–955.

Wesley Newcomb Hohfeld. 1913. Some fundamental legal conceptions as

applied in judicial reasoning. Yale Law Journal 23 (1913), 16–59.
Tom Hvitved. 2010. A survey of formal languages for contracts. Formal

Languages and Analysis of Contract-Oriented Software (2010), 29–32.
S Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Composing

contracts: an adventure in �nancial engineering. ACM SIGPLAN Notices
35, 9 (2000), 280–292.

Sarah B Lawsky. 2016. Formalizing the Code. Tax Law Review 70 (2016),

377.

Houston Putnam Lowry. 1979. Normalization: A Revolutionary Approach.

Jurimetrics 20, 2 (1979), 140–144.
L Thorne McCarty. 1976. Re�ections on TAXMAN: An experiment in

arti�cial intelligence and legal reasoning. Harv. L. Rev. 90 (1976), 837.
L Thorne McCarty. 1989. A language for legal Discourse I. basic features.

In ICAIL, Vol. 89. 180–189.
L Thorne McCarty. 2002. Ownership: A case study in the representation of

legal concepts. Arti�cial Intelligence and Law 10, 1-3 (2002), 135–161.

Thomas W. Merrill and Henry E. Smith. 2017. Property : principles and
policies. Foundation Press, St. Paul, MN.

Gordon J Pace and Michael Rosner. 2009. A controlled language for the

speci�cation of contracts. In InternationalWorkshop on Controlled Natural
Language. 226–245.

Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Y. Tsai,

and Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big

Data Systems. In 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society, 327–342.

h�ps://doi.org/10.1109/SP.2014.28
Marek J Sergot, Fariba Sadri, Robert A Kowalski, Frank Kriwaczek, Peter

Hammond, and H Terese Cory. 1986. The British Nationality Act as a

logic program. Commun. ACM 29, 5 (1986), 370–386.

Nick Szabo. 2002. A Formal Language for Analyzing Contracts. Retrieved

April 29,2019 from h�p://nakamotoinstitute.org/contract-language/
Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,

Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security

Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, David Lie, MohammadMannan,Michael

Backes, and XiaoFengWang (Eds.). ACM, 67–82. h�ps://doi.org/10.1145/
3243734.3243780

142

https://docs.accordproject.org/docs/ergo.html
https://doi.org/10.1016/0304-3975(95)00182-4
https://github.com/murmour/mparser/
https://github.com/murmour/mparser/
https://doi.org/10.1007/s10506-016-9185-2
http://dl.acm.org/citation.cfm?id=1940559.1940579
https://doi.org/10.1007/s10506-015-9164-z
https://doi.org/10.1109/SP.2014.28
http://nakamotoinstitute.org/contract-language/
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780

	Abstract
	1 Introduction
	2 Examples and Terminology
	3 Concrete and Core Syntaxes
	4 Operational and Relational Semantics
	4.1 Conditions
	4.2 Operational Semantics
	4.3 Relational Semantics
	4.4 Relating the Two Semantics

	5 Implementation and Evaluation
	5.1 Legal Theorems
	5.2 Textbook Examples
	5.3 User Interface

	6 Related Work
	7 Conclusion & Future Work
	A Equivalence Proof
	References

