
A Programming Language for Future Interests

Shrutarshi Basu*
Nate Foster†

James Grimmelmann‡

Shan Parikh§

Ryan Richardson¶

Learning the system of estates in land and future interests can
seem like learning a new language. Scholars and students must
master unfamiliar phrases, razor-sharp rules, and arbitrarily com-
plicated structures. Property law is this way not because future
interests are a foreign language, but because they are a program-
ming language.

This Article presents Orlando, a programming language for
expressing conveyances of future interests, and Littleton, a freely
available online interpreter (at https://conveyanc.es) that can di-
agram the interests created by conveyances and model the conse-
quences of future events. Doing so has three payoffs. First, for-
malizing future interests helps students and teachers of the subject

* Postdoctoral Fellow in Computer Science, Harvard University. This
work was supported by NSF Award FMitF-2019313. Versions of this work
were presented at the 2017 Roundtable on Computer Science & Law at
the University of Pennsylvania, the 2017 Domain-Specific Language Design
and Implementation workshop, the 2018 Internet Law Works in Progress
conference, the 2019 SPLASH Onward! conference, a 2021 Cornell Law
School faculty workshop, and the 2022 ACM Workshop on Programming
Languages and Law. We are grateful for their comments to the partici-
pants, and to Aislinn Black, Shawn Bayern, Sara Bronin, Charles Duan,
Kate Klonick, Sarah Lawsky, Denis Merigoux, Christina Mulligan, Beth
Noveck, Paul Ohm, Eduardo Peñalver, Jeremy Sheff, Emily Sherwin, Henry
Smith, Jeffrey Stake, Stewart Sterk, Rebecca Tushnet, Laura Underkuffler,
and Reid Weisbord. This Article is available under the Creative Commons
Attribution 4.0 International license, https://creativecommons.org/licenses/
by/4.0.
† Associate Professor of Computer Science, Cornell University.
‡ Tessler Family Professor of Digital and Information Law, Cornell Uni-

versity.
§ Software Engineer, Google.
¶ Software Engineer, Oracle.

https://conveyanc.es
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

76 A Programming Language for Future Interests 2022

by allowing them to visualize and experiment with conveyances.
Second, the process of formalization is itself deeply illuminating
about property doctrine and theory. And third, the computer-
science subfield of programming language theory has untapped
potential for legal scholarship: the programming-language ap-
proach takes advantage of the linguistic parallels between legal
texts and computer programs.

Introduction . 76
I Programming Languages and Law 83
A Contract . 87
B Tax . 90
C Legal Drafting . 91
D Visualization . 94

II An Informal Overview 100
A Previous Work . 100
B Orlando and Littleton 102
C An Example . 107

III The Formal Details 110
A Title Trees . 112
B Semantics . 114
C Conveyances . 120
D Translation . 123
E Conclusion . 125

IV Lessons for Property Law 126
A Design Principles 127
1 Orlando . 128
2 Littleton . 130

B Insights into Property Doctrine 132
1 Defaults . 132
2 Syntactic Ambiguity 134
3 “Theorems” of Property Law 136

C Insights into Property Theory 138
1 The Numerus Clausus 138
2 Recursivity . 140
3 Modularity . 141

Conclusion . 144
Appendix: Orlando Reference 147

Vol. 24 Yale Journal of Law & Technology 77

Introduction

The formulas that govern future interests are similar
to those of chemistry. They seem to be more of the
law of nature than law of men except for one crucial
difference: The rules of future interests occasionally
make no sense.1

Though of feudal origin, it is not a relic of barbarism,
or a part of the rubbish of the dark ages. It is part of
a system; an artificial one, it is true, but still a system,
and a complete one.2

The logician must be rather like a lawyer . . . in the
sense that he is there to give the metaphysician . . . the
tense-logic that he wants, provided that it be consis-
tent. He must tell his client what the consequences of
a given choice will be . . . and what alternatives are
open to him3

Every law student and every law professor has a different reac-
tion on reaching the unit on estates in land and future interests
in Property. For some, it is the worst part of the course. They
find the system of reversions, possibilities of reverter, and re-
mainders vested subject to complete divestment to be an alien
language: dull, desiccated, and divorced from the practical re-
alities of the rest of law.4 For others, it is the best part of the
course. Here, there are no counter-arguments and indetermi-
nate multi-factor tests, only rigorous deduction and clear right
answers.5

1 Daniel B. Bogart, A Casebook for Teaching Teachers: Jesse Dukeminier
and James E. Krier, Property, 22 SEATTLE U. L. REV. 921, 933 (1998).
2 Hileman v. Bouslaugh, 13 Pa. 344, 351 (1850).
3 ARTHUR PRIOR, PAST, PRESENT, AND FUTURE 59 (1967).
4 See, e.g., Palma Joy Strand,We Are All on the Journey: Transforming An-

tagonistic Spaces in Law School Classrooms, 67 J. LEGAL EDUC. 176, 182
(2017) (“T&E has the reputation of being moldy and covered in cobwebs,
akin to and perhaps even more arcane than the future interests of property
law.”); Bogart, supra note 1, at 935 (“At some point, that teacher will have
to train students to do the hard and frustrating mechanical work of future
interests.”).
5 See, e.g., Volume 63 Joint Dedication, 63 S.D. L. REV. i, ix (2018) (state-

ment of Barry R. Vickrey) (“Some of my most enjoyable times at USD in-

78 A Programming Language for Future Interests 2022

These two groups, polar opposites though they may be in
their approach to law school, share an intuition: there is some-
thing logical and computational about estates and future inter-
ests. Whether they want the computer to serve as a junior asso-
ciate that calculates the consequences of conveyances so they
don’t have to, or as a sparring partner that plays along with
them, they share the sense that there is something about this
particular system of legal doctrines that makes them particu-
larly suited for automated algorithmic analysis. A life estate
and a remainder fit together like a lock and a key, with themath-
ematical certainty that establishes 2 + 2 = 4. Couldn’t someone
program a computer do this?

We did.
Our system, called Littleton,6 can interpret stylized con-

veyances like O conveys to A for life, then if B is married
to B, but if B divorces to C and correctly report that B holds
a contingent remainder in fee simple subject to executory lim-
itation. It knows that O holds an implied reversion; that if B
marries while A is alive then B’s remainder is upgraded from
contingent to vested subject to complete divestment; and that
if A conveys their interest to D for life, then D’s interest will be
limited to the shorter of A’s and D’s lifetimes. It can even apply
the Rule Against Perpetuities to strike interests that could vest
too remotely.

We designed Littleton to be useful to teachers trying to
explain the system of future interests and to students trying to
learn it. We have put a web version online at https://conveyanc.
es. Just type a conveyance in the box, click on “Interpret,” and
Littleton will display an easy-to-understand diagram of the re-
sulting interests. It comes with documentation and a tutorial
of demonstration conveyances, and has been validated against
examples drawn from one of the leading student guides, Linda

volved discussions and sometimes debateswithChuck about themost arcane
aspects of the law of estates in land and future interests.”); Byron S. White,
Tribute to Myres S. McDougal, 66 MISS. L.J. 1, 2 (1996) (“Future interests a
laMcDougal was pure fun.”).
6 After Thomas de Littleton, author of the Treatise on Tenures (ca. 1481–

82), an important codification of the doctrines of estates in land and future
interests. See THOMAS LITTLETON, LITTLETON’S TENURES IN ENGLISH (Eugene
Wambaugh ed., 1903) (1481) (translation of the Tenures and a biographical
sketch).

https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es

Vol. 24 Yale Journal of Law & Technology 79

Edwards’s Estates in Land and Future Interests.7 We have also
placed Littleton’s source code online, and released it under the
permissive MIT license, allowing anyone to use and improve it
however they want.8

But that’s not even the interesting part.
Rather than using an existing programming language to

write a program to model future interests, we treated the for-
malized, ritualized language of first-year Property conveyances
as a programming language itself. Each term in this language,
which we call Orlando,9 has a precisely specified syntax and se-
mantics. The expression O conveys to A in Orlando is like x = y *
4 in a traditional programming language like Python, Java, or C:
a command that causes the computer interpreting it to update
its state in a predictable, objectively determined way.

This makes Orlando into a a domain-specific language (or
“DSL”).10 Just like JavaScript is useful for writing interactive
web pages, Ink11 and Inform12 and Twine13 for creating text
adventure games, Solidity for smart contracts,14 or Flash for an-

7 LINDA EDWARDS, ESTATES IN LAND AND FUTURE INTERESTS (3rd ed. 2009);
see Shrutarshi Basu, Nate Foster & James Grimmelmann, Property Con-
veyances as a Programming Language, 2019 PROC. 2019 ACM SIGPLAN
INT’L SYMP. ON NEW IDEAS NEW PARADIGMS & REFLECTIONS ON PROGRAMMING
& SOFTWARE (ONWARD!) 128 [hereinafter Property Conveyances] (describing
test suite).
8 See The MIT License, OPEN SOURCE INITIATIVE, https://opensource.org/

licenses/MIT.
9 After Orlando Bridgeman, one of the most important conveyancers in

the common-law tradition, who drafted the instrument at issue in the case
that created the Rule Against Perpetuities. See The Duke of Norfolk’s Case,
22 Eng. Rep. 931 (Ch. 1682); see also VIRGINIA WOOLF, ORLANDO: A BIOGRA-
PHY (1928); ORLANDO (Sony Pictures Classics 1992).
10 See generally Arie van Deursen, Paul Klint & Joost Visser, Domain-
Specific Languages: An Annotated Bibliography, SIGPLAN NOTICES., June
2000, at 26 (overview of DSLs); MARTIN FOWLER, DOMAIN-SPECIFIC LAN-
GUAGES (2010) (textbook on DSL design and implementation).
11 INK, https://www.inklestudios.com/ink/.
12 INFORM 7, http://inform7.com.
13 TWINE, https://twinery.org.
14 SOLIDITY [hereinafter SOLIDITY], https://docs.soliditylang.org.

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
https://www.inklestudios.com/ink/
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
http://inform7.com
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://twinery.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org
https://docs.soliditylang.org

80 A Programming Language for Future Interests 2022

imations,15 Orlando is a language for expressing property con-
veyances.

Drawing on the computer science discipline of program-
ming language theory, we treat Orlando like any other DSL.16

Littleton’s processing is divided into stages:
• First, Littleton parses a conveyance written in Orlando, rec-
ognizing the individual clauses and their relationship.The lan-
guage O conveys to A for life, then to B, for example, consists
of two separate grants, linked by then. The first has a quantum
(for life) attached to it; the second does not.

• Next, Littleton creates a data structure (which we call a title
tree) that keeps track of the current interests and their rela-
tionships. The title tree corresponding to

O conveys to A for life, then to B until C marries.

is shown in Figure 2.

• Littleton then applies substantive rules of property law to up-
date the title tree as further events occur. That is, while the
syntax of Orlando is given by the stylized language used in
conveyances, Orlando’s semantics are those of property law.

• Littleton analyzes the title tree in accordance with various
rules used by lawyers and law students, so that the various
interests can be properly named. For example, it classifies
remainders as contingent or vested based on whether a con-
dition precedentmust be satisfied before that node in the title
tree can be reached.

• Finally, Littleton displays the current state of the title by ren-
dering the title tree in a graphical format that hides many of

15 But see Steve Jobs, Thoughts on Flash, APPLE.COM (Apr. 2010), https://
web.archive.org / web / 20200430094807 / https: / / www.apple.com / hotnews /
thoughts-on-flash/.
16 Computer programming is distinct from the field of programming lan-
guages. The former is the engineering practice of implementing useful soft-
ware systems. The latter is an academic discipline that studies the charac-
teristics of programming languages themselves, often using mathematical
tools. They stand in roughly the same relationship as legal practice and le-
gal theory. On programming languages, see generally ROBERT W. SEBESTA,
CONCEPTS OF PROGRAMMING LANGUAGES (10th ed. 2012); SHRIRAM KRISHNA-
MURTHI, PROGRAMMING LANGUAGES: APPLICATION AND INTERPRETATION (2d ed.
Apr. 4, 2017), https://cs.brown.edu/courses/cs173/2012/book/book.pdf.

https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://web.archive.org/web/20200430094807/https://www.apple.com/hotnews/thoughts-on-flash/
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf
https://cs.brown.edu/courses/cs173/2012/book/book.pdf

Vol. 24 Yale Journal of Law & Technology 81

Orlando Bridgeman (1606–1674)

Thomas de Littleton (ca. 1407–1481)

Figure 1: Orlando and Littleton’s namesakes

82 A Programming Language for Future Interests 2022

while B does not marry to B

while A is alive to O

to A

Figure 2: Orlando title tree for O conveys to A for life, but if
B marries to B.

Figure 3: Littleton output

the internal details and emphasizes the viable interests and
the conditions on those interests. The resulting visualization
is designed to be readily comprehensible to lawyers and law
students who need not be aware of the sophisticated process-
ing taking place under the hood. Figure 3 shows an example
of Littleton’s output.

Treating conveyances as a programming language yields insights
into property doctrine, into property theory, and into legal the-
ory more broadly. Doctrinally, Orlando brings the entire sys-
temof future interests into clearer focus by capturing the linguis-
tic structure of property grants in a succinct and intuitive way.
A confusing mess of doctrinal minutiae resolves itself into an or-
derly collection of well-specified rules. Facts about conveyances
that previously became apparent only after detailed study are
now immediately obvious—for example, that a grantor can re-
cursively stack up an indefinite number of successive life estates.
It is even possible to prove “theorems” of property law, such as
that a fee simple is forever.

Vol. 24 Yale Journal of Law & Technology 83

Theoretically, the fact that this fragment of property law
can be formalized in this way is striking: other areas, like trade-
mark law or international human rights law, almost certainly
cannot. Orlando’s simple but generative structure provides a
new kind of support for a line of scholarship, associated with
ThomasMerrill andHenry Smith andwith theNewPrivate Law
movement, that emphasizes the modular and standardized el-
ements in property’s conceptual structure. For example, Or-
lando’s design embodies the numerus clausus principle: that
property interests only come in a finite set of forms.

Finally, Orlando is a proof by example that legal scholars
can learn from programming-language theory. Law and pro-
gramming languages can be to law and computers as law and
linguistics is to law and language: a subfield that draws on the
insight of another discipline to identify and systematize recur-
ring structures of pervasive importance to law. The linguistic
parallel between the natural languages of law and the artificial
languages of software offers a fresh way to reflect on how law,
lawyers, and legal texts work. In property and beyond, defining
a programming language to model a body of law should be part
of legal scholarship’s methodological toolkit.

This Article provides a detailed exposition of a core subset
ofOrlando and Littleton, and a discussion of why theymatter to
legal scholars.17 Part II introduces Orlando informally; Part III
explains the formal details underneath the surface. Part IV dis-
cusses the design philosophy of Orlando and Littleton to show
how they hold lessons for property law and property theory.
And Part I surveys the scattered scholarship applying program-
ming languages to law to argue that other scholars should con-
sider creating their own legal DSLs.

I. Programming Languages and Law

Computerizing legal reasoning is by no means new. There
is a long-standing research program on the use of artificial intel-
ligence (AI) systems for other areas of law. It has proceeded
along two tracks, corresponding to the division within AI be-
tween systems using formal logical reasoning, sometimes called

17 See the Conclusion for a list of additional features implemented in the
full versions of Orlando and Littleton.

84 A Programming Language for Future Interests 2022

“symbolic”AI or “good old fashionedAI” (orGOFAI), and sys-
tems using statistical methods, sometimes called “subsymbolic
AI” or, more recently, “machine learning.”18 Legal scholars
draw on both tracks.19 Orlando is squarely in the former tra-
dition, so we focus on it here.

The use of AI systems to automate logical legal reasoning
goes back decades.20 Many scholars, legal-automation compa-
nies, and even teams of students have built “expert systems”
that can walk the user through a questionaire to help them un-

18 For a thorough history of AI discussing the interplay of these two tradi-
tions, see MARGARET A. BODEN, MIND AS MACHINE: A HISTORY OF COGNITIVE
SCIENCE (2008).
19 See generallyKEVIND.ASHLEY, ARTIFICIAL INTELLIGENCE AND LEGALAN-
ALYTICS: NEW TOOLS FOR LAW PRACTICE IN THE DIGITAL AGE (2017) (broad
overview of both fields); MICHAEL A. LIVERMORE & DANIEL N. ROCKMORE,
LAW AS DATA: COMPUTATION, TEXT, & THE FUTURE OF LEGAL ANALYSIS (2019)
(recent collection on state of the art in statistical methods); Trevor Bench-
Capon,TheNeed forGoodOld FashionedAI andLaw, in 2020 INT’L TRENDS
LEGAL INFORMATICS: A FESTSCHRIFT FOR ERICH SCHWEIGHOFER 23 (recent dis-
cussion of the division).
20 See, e.g., L. Thorne McCarty, Reflections on TAXMAN: An Experiment
In Artificial Intelligence And Legal Reasoning, 90 HARV. L. REV. 837 (1976)
[hereinafter TAXMAN]; John T. Welch, LAWGICAL: An Approach to
Computer-Aided Legal Analysis, 15 AKRON L. REV. 655 (1981); John P .Fi-
nan, LAWGICAL: Jurisprudential and Logical Considerations, 15 AKRON L.
REV. 675 (1981); Marek J. Sergot, Fariba Sadri, Robert A. Kowalski, Frank
Kriwaczek, Peter Hammond & H. Terese Cory, The British Nationality Act
as a Logic Program, 29 COMM. ACM 370 (1986); J.M. Trevor Bench-Capon,
GwenO. Robinson, TomW. Routen &Marek J. Sergot,Logic Programming
for Large Scale Applications in Law: A Formalisation of Supplementary Ben-
efit Legislation, in 1987 PROC. 1ST INT’L CONF. ON A.I. & L. 190; Richard S.
Gruner, Sentencing Advisor: An Expert Computer System for Federal Sen-
tencing Analyses, 5 SANTA CLARA COMPUT. & HIGH TECH. L.J. 51 (1989); Cary
G. Debessonet & George R. Cross, An Artificial Intelligence Application in
the Law: CCLIPS, A Computer Program that Processes Legal Information, 1
HIGH TECH. L.J. 329 (1986); Phan Minh Dung & Giovanni Sartor, The Mod-
ular Logic of Private International Law, 19 A.I. & L. 233 (2011). For a good
survey of the work through the 1980s, see Edwina L. Rissland, Artificial In-
telligence and Law: Stepping Stones to a Model of Legal Reasoning, 99 YALE
L.J. 1957 (1990); for a more recent survey see Henry Prakken & Giovanni
Sartor, Law and Logic: A Review From an Argumentation Perspective, 227
A.I. 214 (2015). Although through the 1980s much of this research appeared
in general-interest law reviews, most of it is now published in specialized
journals such as Artificial Intelligence and Law.

Vol. 24 Yale Journal of Law & Technology 85

derstand the application of a given body of law to their indi-
vidual situation.21 These programs range from simple decision
trees up through complex tax preparation software. They are
essentially hard-coded versions of a Choose Your Own Adven-
ture, Mad Libs, or Excel spreadsheet, designed to slot the user’s
answers into the right blanks, with branching and calculations
as needed to handle compound legal rules. More ambitiously,
scholars have used increasingly sophisticated and powerful log-
ics to model legal rules and sometimes to automate legal anal-
ysis.22 These rule-driven systems typically have a knowledge
base of legal rules encoded in a standard logical form and then
use a search strategy to deductively derive valid legal conclu-
sions on the basis of those rules. They have greater capacity
to make chains of inferences and understand cascading conse-
quences of interacting facts. Research in this tradition aims not
just to understand the doctrines of legal fields, but also to for-
malizing the particular concepts of legal reasoning themselves,
such as the elements of a cause of action, the scope of precedent,
burdens of proof and presumptions, defenses, and defeasible
conclusions.23

21 See, e.g., Hellawell, Robert, A Computer Program For Legal Planning
And Analysis: Taxation Of Stock Redemptions, 80 COLUM. L. REV. 1363
(1980) (tax treatment of stock redemptions); Robert Hellawell, CHOOSE:
A Computer Program for Legal Planning and Analysis, 19 COLUM. J.
TRANSNAT’L L. 339 (1981) (tax planning for mining transactions); Elizabeth
Townsend Gard, The Durationator® Copyright Experiment, in 2013 PROC.
MEMORY WORLD DIGITAL AGE: DIGITIZATION & PRESERVATION 46 (copyright
durations); Josh Goldfoot, SENTENCING.US: A FREE U.S. FEDERAL SENTENC-
ING GUIDELINES CALCULATOR, https://www.sentencing.us (federal Sentenc-
ing Guidelines calculator). See generally Richard Gruner, Thinking Like A
Lawyer: Expert Systems For Legal Analysis, 1 HIGH TECH. L.J. 259 (1986)
(mid-1980s overview of state of the art in legal expert systems).
22 See, e.g., Layman E. Allen, Symbolic Logic: A Razor-Edged Tool for
Drafting and Interpreting Legal Documents, 66 YALE L.J. 833 (1957) (propo-
sitional logic); TAXMAN, supra note 20 (predicate logic); Sarah B. Lawsky,
A Logic for Statutes, 21 FLA. TAX REV. 60 (2017) [hereinafter A Logic for
Statutes] (default logic); L. Thorne McCarty, A Language for Legal Dis-
course I.: Basic Features, 1989 PROC. 2ND INTERNATIONAL CONFERENCE ON AR-
TIFICIAL INTELLIGENCE & LAW 180 (modal logic).
23 See, e.g., A Logic for Statutes, supra note 22; Walter G. Popp & Bern-
hard Schlink, Judith, A Computer Program to Advise Lawyers in Reason-
ing a Case, 15 JURIMETRICS J. 303 (1974); L. KARL BRANTING, REASONING

https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us
https://www.sentencing.us

86 A Programming Language for Future Interests 2022

What is most novel in Orlando and Littleton is the idea
that programming languages have something distinctive to add
to this research program.24 To date, law and legal theory have
engaged only intermittently with programming languages.25 By
far the most common point of contact is intellectual property.
Whether a computer program is copyrightable or patentable de-
pends on what a computer program is, and this is a question that
cannot be answered sensibly without exploring the nature of the
programming language it is written in.26 Sometimes, it is the lan-
guage itself that is the subject of an intellectual property claim,
as inGoogle v. Oracle.27 Similar issues arise in determining the

WITH RULES AND PRECEDENTS: A COMPUTATIONAL MODEL OF LEGAL ANAL-
YSIS (2013); JAMES POPPLE, A PRAGMATIC LEGAL EXPERT SYSTEM (1996).
24 A subsidiary point is that by isolating a well-defined fragment of law that
is more amenable to formalization, our approach sidesteps some of the well-
known challenges to the expert-systems approach to law. See Philip Leith,
The Rise and Fall of the Legal Expert System, 30 INT’L REV. L. COMPUTERS &
TECH. 94 (2016).
25 But seeAntônioCarlos daRochaCosta, SituatedLegal Systems andTheir
Operational Semantics, 23 A.I. & L. 43 (2015) (presenting ambitious opera-
tional semantics of Hans Kelsen’s theory of legal systems).
26 See generally Pamela Samuelson, Randall Davis, Mitchell D. Kapor &
Jerome H. Reichman,AManifesto Concerning the Legal Protection of Com-
puter Programs, 94 COLUM. L. REV. 2308 (1994); Pamela Samuelson, Func-
tionality and Expression in Computer Programs: Refining the Tests for Soft-
ware Copyright Infringement, 31 BERKELEY TECH. L.J. 1215 (2016); BEN KLE-
MENS, MATH YOU CAN’T USE: PATENTS, COPYRIGHT, AND SOFTWARE (2005);
Peter D. Junger, You Can’t Patent Software: Patenting Software Is Wrong,
58 CASE W. RES. L. REV. 333 (2007); Sebastian Zimmeck, Patent Eligibility
of Programming Languages and Tools, 13 TUL. J. TECH. & INTELL. PROP. 133
(2010).
27 Oracle Am., Inc. v. Google LLC, 886 F.3d 1179 (Fed. Cir. 2018). See
generally Dennis S. Karjala, Oracle v. Google and the Scope of a Computer
Program Copyright, 24 J. INTELL. PROP. L. 1 (2016); Marci A. Hamilton &
Ted Sabety vol, Computer Science Concepts in Copyright Cases: The Path to
a Coherent Law, 1997 HARV. J.L. & TECH. 239; Richard H. Stern, Copyright in
Computer Programming Languages, 17 RUTGERS COMPUT. & TECH. L.J. 321
(1991). See also Michael Adelman, Constructed Languages and Copyright:
A Brief History and Pooposal for Divorce, 27 HARV. J.L. & TECH. 543 (2013)
(copyright in constructed natural languages).

Vol. 24 Yale Journal of Law & Technology 87

scope of First Amendment coverage for software; the linguistic
aspects of software are inescapable.28

In this Part, we sketch the engagement of lawwith program-
ming languages in four: law, contract law, tax law, legal drafting,
and visualization of law. What unites them is that in each do-
main, legal scholars have made meaningful progress by express-
ing legal relationships as a programming language. Sometimes
they have used existing languages; sometimes they have created
their own. In the right domains, this is a useful tool for gaining
insights into legal doctrines and concepts.29

A. Contract

Contract law is a good doctrinal fit for what programming
languages can do.30 Parties enjoy substantial autonomy to cus-
tomize the terms of their contractual obligations, so the flexibil-
ity offered by programming languages is appealing. At the same
time, contracting parties often want certainty about the mean-
ing and effects of their contracts, so the clarity and precision of
programming languages is also appealing. Thus, several schol-
ars have discussed the prospects for expressing contract terms
directly in computer-standardized forms.31 From the computer-
science side, there has been extensive work on finding appropri-
ate logics to model contractual relationships.32

28 See, e.g., Lee Tien, Publishing Software As A Speech Act, 15 BERK. TECH.
L.J. 629 (2000).
29 We leave for another day the broader jurisprudential questions of what
law and legal theory can learn from programming languages in general.
30 See Harry Surden, Computable Contracts, 46 U.C. DAVIS L. REV. 629
(2012); see also Erik F. Gerding, Contract as Pattern Language, 88 WASH.
L. REV. 1323 (2013). Surden describes contracts that have been expressed in
computer-processable form as “data-oriented,” which captures the fact that
every computer program, by virtue of the fact that it can be stored on and
processed by a computer, is also data. The duality between code and data is
central to computer science.
31 See Surden, supra note 30; Lawrence A. Cunningham, Language, Deals,
and Standards: The Future ofXMLContracts, 84WASH.U. L.REV. 313 (2006).
For a recent survey of approaches, see LSP Working Group, Developing a
Legal Specification Protocol (2019), https://www-cdn.law.stanford.edu/wp-
content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf.
32 E.g., Shaun Azzopardi, Gordon J. Pace, Fernando Schapachnik & Ger-
ardo Schneider, Contract Automata, 24 A.I. & L. 203 (2016).

https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf

88 A Programming Language for Future Interests 2022

One notable project in using programming-language the-
ory to model contracts is 2000’s Composing Contracts: An Ad-
venture in Financial Engineering by Simon Peyton Jones, Jean-
Marc Eber, and Julian Seward.33 It describes a carefully crafted
library of primitive operators to model option contracts. Once
standard contracts are encoded in this way, it becomes possible
to do sophisticated financial analyses on them automatically, for
example, computing the expected value of a contract that de-
pends on changes in interest rates over time. There are now
dozens of domain-specific languages for contracts.34

This approach is reflected in Orlando. Although property
is a different problem domain than contracts, we followed Com-
posing Contracts’s design principle of finding a minimal set of
simple orthogonal primitive operators in creating the set of title
tree nodes.35 We also adopted a similar language choice; Com-
posing Contracts’s system is implemented in Haskell, which like
OCaml is a strongly typed polymorphic functional languagewith
pattern-matching.36

More recently, there has been an explosion of interest in
creating “smart” “contracts.” 37 These are programs that adjust

33 Simon Peyton Jones, Jean-Marc Eber & Julian Seward, Composing Con-
tracts: An Adventure in Financial Engineering, 2000 ICFP0�0 280; see also
Patrick Bahr, Jost Berthold & Martin Elsman, Certified Symbolic Manage-
ment of FinancialMulti-Party Contracts, in 2015 PROC. 20THACMSIGPLAN
INT’L CONF. ON FUNCTIONAL PROGRAMMING 315; Jesper Andersen, Ebbe Els-
borg, Fritz Henglein, Jakob Grue & Christian Stefansen, Compositional
Specification of Commercial Contracts, 8 INT’L J. ON SOFTWARE TOOLS FOR
TECH. TRANSFER 485 (2006).
34 See FIN. DOMAIN-SPECIFIC LANGUAGE LISTING, http://www.dslfin.org/
resources.html (directory of projects).
35 See Shrutarshi Basu, AnshumanMohan, Nate Foster, & James Grimmel-
mann,Legal Calculi, in 2022 PROGRAMMING LANGUAGES & L. (PROLALA) (dis-
cussing this design principle for legal programming languages).
36 There is another line of influence here. The OCaml libraries Littleton
is built with are developed and maintained by Jane Street Capital, a quan-
titative trading firm. See Yaron Minsky & Stephen Weeks, Caml Trading:
Experiences with Functional Programming on Wall Street, 18 J. FUNCTIONAL
PROGRAMMING 553 (2008) (describing Jane Street’s adoption of OCaml).
37 See generally Shaanan Cohney & David A. Hoffman, Transactional
Scripts in Contract Stacks, 105 MINN. L. REV. 319 (2020); Usha R. Rodrigues,
Law and the Blockchain, 104 IOWA L. REV. 679 (2018); Jason G. Allen,
Wrapped and Stacked: ‘Smart Contracts’ and the Interaction of Natural and

http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html

Vol. 24 Yale Journal of Law & Technology 89

the relationship between multiple parties and various resources
automatically. Programs require programming languages, which
are supported by a blockchain or other digital platform. These
platforms typically have a basic virtual machine—effectively a
shared, simulated computer—and one ormore general-purpose
programming languages.38 Numerous groups interested in de-
veloping applications that can displace the need for traditional
legal contracts, or integrate smoothly with legal contracts, have
created special-purpose programming languages specifically for
encoding contractual rights and obligations.39

Note, however, that expressing a contract in a program-
ming language does not solve all of the problems of contract
law. Interpretation and enforcement remain real problems,40

programing languages can be inferior to natural languages in
capturing the nuances of parties’ relationships,41 and turning
contracts into programs means that contracts are all but certain
to have bugs, too.42

Formal Language, 14 EUR. REV. CONT. L. 307 (2018); Lauren Henry Scholz,
Algorithmic Contracts, 20 STAN. TECH. L. REV. 128 (2017); Kevin Werbach &
Nicolas Cornell, Contracts Ex Machina, 67 DUKE L.J. 313 (2017).
38 E.g., SOLIDITY, supra note 14.
39 See, e.g., LEGALESE, https://legalese.com; OPENLAW, https://www.
openlaw.io; ACCORD PROJECT, https://docs.accordproject.org; see also Shaun
Azzopardi, Gordon J. Pace & Fernando Schapachnik, On Observing Con-
tracts: Deontic Contracts Meet Smart Contracts, in 2018 PROC. 31ST INT’L
CONF. ON LEGAL KNOWLEDGE & INFO. SYSTEMS (JURIX 2018) 21 (linking
smart contracts to deontic logic); Palina Tolmach, Yi Li, Shang-Wei Lin,
Yang Liu & Zengxiang Li, A Survey of Smart Contract Formal Specifi-
cation and Verification (2020) (unpublished manuscript), https://arxiv.org/
abs/2008.02712 (survey of methods for verifying smart contracts, including
for adherence to a legal specification); Jan Ladleif & Mathias Weske, AUni-
fying Model of Legal Smart Contracts, in 2019 PROC. INT’L CONF. ON CONCEP-
TUALMODELING 323 (comparison of smart-contract specification support for
legal desiderata).
40 See James Grimmelmann, All Smart Contracts Are Ambiguous, 2 J.L. &
INNOVATION 1, 19-22 (2019).
41 See Karen E.C. Levy, Book-Smart, not Street-Smart: Blockchain-Based
Smart Contracts and the Social Workings of Law, 3 ENGAGING SCI. TECH. &
SOC’Y 1, 4-10 (2017).
42 See Shaanan Cohney, David Hoffman, Jeremy Sklaroff & David Wish-
nick, Coin-Operated Capitalism, 119 COLUM. L. REV. 591, 634-39 (2019).

https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://legalese.com
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://www.openlaw.io
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://docs.accordproject.org
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712
https://arxiv.org/abs/2008.02712

90 A Programming Language for Future Interests 2022

B. Tax

Tax law is also a good fit for programming languages, but
for slightly different reasons. Here, the goal of formalization
is typically to express existing legal rules in as much detail and
with as little ambiguity as possible. The underlying rules, more
so than in any other area of law, are already computational; a
tax code is in large part simply a statement of computations to
be applied to a taxpayer’s activities. It is not entirely a coinci-
dence that one of the earliest notable attempts at formalizing
statutory law was Thorne McCarty’s TAXMAN, which mod-
eled the tax treatment of corporate reorganizations—although
ironically, McCarty selected this particular topic because it was
unlike other parts of tax law in being more open-ended and in-
determinate.43

Several tax scholars have deal with linguistic themes in for-
malizing tax law. Sarah Lawsky proposes using formalized log-
ical models to make drafters more attentive to problems of def-
initional scope,44 and her work on modeling statutes using de-
fault logic is grounded in tax law.45 In other work, she observes
that existing tax forms are in effect a sub silentio formalization
of the tax code; they give concrete algorithmic form to the legal
requirements of the code.46 In the other direction, several re-
search groups areworking on using natural-language techniques
to parse the tax code and extract a formalized underlying struc-
ture.47

43 TAXMAN, supra note 20; see also David M. Sherman, A Prolog Model
of the Income Tax Act of Canada, in 1987 PROC. 1ST INT’L CONF. ON A.I. & L.
127; Kathryn E. Sanders, CHIRON: Planning in an Open-Textured Domain,
9 A.I. & L. 225 (2001).
44 Sarah B. Lawsky, Formalizing the Code, 70 TAX L. REVIEEW 377 (2016).
45 A Logic for Statutes, supra note 22; Sarah Lawsky, Nonmonotonic Logic
and Rule-Based Legal Reasoning (2017) (unpublished manuscript), https://
escholarship.org/uc/item/59j2j45w; Marcos A. Pertierra, Sarah Lawsky, Erik
Hemberg&Una-MayO’Reilly, Towards Formalizing Statute Law as Default
Logic throughAutomatic Semantic Parsing, in 2017 PROC. SECONDWORKSHOP
ON AUTOMATED SEMANTIC ANALYSIS INFO. LEGAL TEXT.
46 Sarah Lawsky, Form as Formalization, 16 OHIO ST. TECH. L.J. 114 (2020);
see alsoRichard J. Kovach,Application of Computer-Assisted Analysis Tech-
niques to Taxation, 15 AKRON L. REV. 713 (1981).
47 Nils Holzenberger, Andrew Blair-Stanek & Benjamin Van Durme, A
Dataset for Statutory Reasoning in Tax Law Entailment and Question An-

https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w
https://escholarship.org/uc/item/59j2j45w

Vol. 24 Yale Journal of Law & Technology 91

Another use of formal programming-language methods in
law is an ongoing overhaul of the tax computation software used
by the French Public FinancesDirectorate (DGFiP).48 It is com-
mon for governments to automate tax and other computations
with software; whether the DGFiP’s 125,000 lines of custom-
written software correctly implements the 3,500-page French
tax code is another and harder question. A research groupwork-
ing with the DGFiP are helping it transfer its software into a
language with precise formal semantics so that parts of its algo-
rithms can be proven correct and other parts subjected to better
public auditing. In areas like tax where the computational parts
of legal rules can be stated with high precision, formal methods
drawn from programming-language theory are useful in reduc-
ing the gap between law on the books and law on the server.

C. Legal Drafting

The process of expressing conveyances in Orlando’s spe-
cific syntax exposes users (gently) to the discipline of program-
ming. It invites them to think about what legal outcomes they
are trying to achieve and then come up with specific expressions
to generate those outcomes. In other words, using Littleton is
a kind of legal drafting. Writing Orlando conveyances is a kind
of programming that may help develop the same kinds of skills
that are useful in legal drafting of all sorts. (Again, Littleton’s
ability to provide instant feedback may be particularly useful.)

The parallel between programming and drafting is of schol-
arly interest, too.49 There is a large literature on the kinds of
legal rules that can and cannot be made precisely computable,
and on the consequences of doing so.50 Some of this work en-
gages with the tools that legal drafters use. For highly standard-

swering, in 2020 PROC. 2020 NAT. LEGAL LANGUAGE PROCESSING (NLLP)
WORKSHOP; Pertierra, Lawsky, Hemberg & O’Reilly, supra note 45.
48 Denis Merigoux, Raphaël Monat & Jonathan Protzenko, A Modern
Compiler for the French Tax Code (2020) (unpublished manuscript), https://
arxiv.org/abs/2011.07966.
49 See Houman B. Shadab, Software is Scholarship (2020) (unpublished
manuscript), https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464;
Ohm, Paul,Computer Programming and The Law: ANew Research Agenda,
54 VILANOVA L. REV. 117 (2009); Grimmelmann, supra note 40.
50 See Frank Pasquale & Glyn Cashwell, Four Futures of Legal Automa-
tion, 63 UCLA L. REV. DISCOURSE 26 (2015); Surden, supra note 30; William

https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://arxiv.org/abs/2011.07966
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464
https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3632464

92 A Programming Language for Future Interests 2022

ized instruments, such as wills, early expert systems and mod-
ern services like LegalZoom have worked to computerize the
process of filling in an appropriate template from a legal form-
book. Some such projects are one-offs: systems purpose-built to
generate a particular kind of formulaic document, such as UCC
financing statements.51 Others are designed to work with multi-
ple kinds of forms, which means that the templates themselves
must be specified in a domain-specific language.52

More ambitiously, some projects hybridize the drafting pro-
cess so that users are essentially drafting a natural-language le-
gal text and an exact computational model of that text in par-
allel. Constraining the form of drafts in this way in essence
compels the drafter to become a programmer of the specialized
format being used. In some cases, such as the software used
by legislative drafters to produce properly numbered and for-
matted statutes and track amendments, the constraints are rel-
atively weak.53 But other research efforts “force the attorney
or paraprofessional to proceed in a highly organized fashion . . .
so that the computer, and not the attorney or paraprofessional,
keeps track of the complex linkages between the elements of
the system as it evolves.” This is not quite a programming lan-
guage; rather it is a “controlled” or “normalized” language in
which some elements, such as conjunctions and deontic expres-
sions of obligation, have precisely defined meanings.54 Some
scholars in this tradition recognize and embrace the idea that

McGeveran, Programmed Privacy Promises: P3P and Web Privacy Law, 76
N.Y.U. L. REV. 1812 (2001).
51 William E. Boyd & Charles S Saxon, The A-9: A Program for Drafting
Security Agreements Under Article 9 of the Uniform Commercial Code, 6 L.
& SOC. INQUIRY 639 (1981).
52 E.g., Charles S. Saxon, Computer-aided Drafting of Legal Documents, 7
L. & SOC. INQUIRY 685 (1982). For a recent survey of efforts at legal spec-
ification see LSP Working Group, Developing a Legal Specification Proto-
col (2019), https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/
LSPWhitePaperJan1119v021419.pdf.
53 LEGISPRO, https://xcential.com; OPENL.DRAFT, https://www.openlawlib.
org/platform/open-law-draft/. See generally TIMOTHY ARNOLD-MOORE, AD-
VANCED TOOLS FOR LEGISLATION (2019), https://ial-online.org/wp-content/
uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.
pdf (discussing functions performed by legislative drafting software).
54 See, e.g., Layman E. Allen & C. Rudy Engholm,Normalized Legal Draft-
ing and the Query Method, 29 J. LEGAL EDUC. 380 (1977); James A. Sprowl,

https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://www-cdn.law.stanford.edu/wp-content/uploads/2019/03/LSPWhitePaperJan1119v021419.pdf
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://xcential.com
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://www.openlawlib.org/platform/open-law-draft/
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf
https://ial-online.org/wp-content/uploads/2019/01/1.-Advanced-tools-for-legislationTimothy-Arnold-Moore.pdf

Vol. 24 Yale Journal of Law & Technology 93

they are making the language of law more like a programming
language, and are thoughtful about the language-design issues
involved.55

Similarly, other authors describe the legal drafting of doc-
uments that are semi-structured.56 These documents are not
themselves programs; they consist mostly of natural language.
But key terms are marked where they appear with specific tags
indicating that they are being used consistently throughout, are
referring to identified other sections, or other specified mean-
ings designed to reduce ambiguity. This is similar to what legal
research services already do when they hyperlink citations to
the cited source and cross-reference defined terms in statutes to
the sections where they are defined, except that it is carried out
by the drafters themselves as a discipline for avoiding mistakes,
making their meaning clearer to readers, and enabling limited
automated analysis.57

Another interesting line of research draws on ideas from
software engineering to improve legal drafting at a slightly higher
level of abstraction. These scholars observe how programmers
develop complex high-quality programs through specific design
practices, such as packaging discrete units of functionality into
self-contained “objects,” and suggest ways that legal drafters
could realize some of the same benefits by adopting similar prac-
tices.58 Of particular interest here, these practices are typically
supported by the programming languages that these develop-
ers work in. For example, an “object-oriented” language is pre-
cisely one that has built-in features for dividing functionality
into discrete and self-contained objects.

Automating TheLegal Reasoning Process: AComputer that Uses Regulations
and Statutes to Draft Legal Documents, 4 L. & SOC. INQUIRY 1 (1979).
55 E.g., Sprowl, supra note 54; Thomas F. Blackwell, Finally AddingMethod
to Madness: Applying Principles of Object-Oriented Analysis and Design to
Legislative Drafting, 3 NYU. J. LEGIS. & PUB. POL’Y 227 (2000).
56 ALogic for Statutes, supra note 22; MatthewRoach, Toward ANew Lan-
guage Of Legal Drafting, 17 J. HIGH TECH. L. 43 (2016).
57 Also worth of note is Lynn LoPucki’s VisiLaw, in which statutory texts
are marked up with standardized symbolic annotations to make their gram-
matical structure clearer. See VISILAW, https://www.visilaw.com.
58 See Gerding, supra note 30.

https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com
https://www.visilaw.com

94 A Programming Language for Future Interests 2022

Another such technique is “literate programming,” inwhich
a program is interwoven with its documentation.59 A few au-
thors have proposed literate programming specifically for im-
plementing computational versions of statutes.60 Again, the
linguistic parallel between legal text and computer program is
evident.

D. Visualization

Generations of Property teachers have sketched diagrams
of future interests for their students. A few of them have done
so in a reasonably systematic way and published their diagrams.
Most closely on point is Roger Anderson’s catalog of geomet-
ric shapes for various future interests, such as a square for a
life estate and a triangle with a dot in it for a reversion in fee
simple.61 Hopperton, for his part, illustrated his step-by-step
analysis with a two-page summary chart of different estates.62

Further afield, Mark Reutlinger used diagrams to create
timelines of events relevant to a RAP analysis,63 William H.
Lawrence used them to summarize commercial-paper transac-
tions,64 and WilliamM. Richman used them to map the facts in
conflict-of-laws cases.65 And there is a tradition going back to

59 SeeDonald Ervin Knuth,Literate Programming, 27 COMPUT. J. 97 (1984).
60 See also Denis Merigoux & Liane Huttner, Catala: Moving Towards the
Future of Legal Expert Systems (2020) (unpublished manuscript), https://
hal.inria.fr/hal-02936606/document; Ohm, supra note 49 (discussing rele-
vance of literate programming to law, in the form of a law-review article
that is also a computer program).
61 Roger W. Andersen, Present and Future Interests: A Graphic Explana-
tion, 19 SEATTLE U. L. REV. 101 (1995).
62 Robert J. Hopperton, Teaching Present and Future Interests: AMethodol-
ogy for Students that Unifies Estates in Land Concepts, Structures, and Princi-
ples, 26 U. TOL. L. REV. 621 (1994) [hereinafter Teaching Present and Future
Interests].
63 Mark Reutlinger,When Words Fail Me: Diagramming The Rule Against
Perpetuities, 59 MO. L. REV. 157 (1994).
64 William H Lawrence„Diagramming Commercial Paper Transactions, 52
OHIO ST. L.J. 267 (1991).
65 William M Richman, Diagramming Conflicts: A Graphic Understand-
ing of Interest Analysis, 43 OHIO ST. L.J. 317 (1982); William M. Richman,
Graphic Forms in Conflict of Laws, 27 U. TOL. L. REV. 631 (1995); cf. Dung
& Sartor, supra note 20 (formal logic for choice of law).

https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document
https://hal.inria.fr/hal-02936606/document

Vol. 24 Yale Journal of Law & Technology 95

Figure 4: Anderson’s future-interest diagrams

Figure 5: Reutlinger’s RAP timelines

Wigmore of using diagrams to present the logical structure of
legal arguments.66

What unites these legal diagrams is their attempt to be con-
sistently rule-bound aboutwhat elements their diagrams include
and how they are arranged. The synergy with computational
law is obvious: in recent years scholars have developed systems
to generate a variety of illuminating visualizations algorithmi-

66 See John H. Wigmore, The Problem of Proof, 8 ILL. L.R. 77 (1913). See
generally Chris Reed, Douglas Walton & Fabrizio Macagno, Argument Dia-
gramming in Logic, Law and Artificial Intelligence, 2007 KNOWLEDGE ENGI-
NEERING REV. 1 (tracing history).

96 A Programming Language for Future Interests 2022

Figure 6: The first half of Hopperton’s summary chart of future
interests

Vol. 24 Yale Journal of Law & Technology 97

Figure 7: Richman’s’ conflict-of-laws diagrams

Figure 8: Lawrence’s commercial-paper diagrams

Figure 9: Wigmore’s argument diagrams

98 A Programming Language for Future Interests 2022

Figure 10: Camilleri, Paganelli, and Schneider’s diagrams of for-
malized contracts

Figure 11: A previous version of Orlando visualizations

Vol. 24 Yale Journal of Law & Technology 99

Figure 12: Bayern’s’ automatically generated future-interest di-
agrams

cally.67 Themost ambitiouswork linking visualizing computable
representations of legal relationships comes from contract law,
where there have been various attempts to add visualizations to
formalizations of contracts.68

Programming languages add another arrow to the quiver
by describing a useful way to do visualization. As in Littleton,
the human-readable “program” of a legal text, its digital rep-
resentation as an abstract data structure, and its graphical visu-
alization are three different views of the same object. Shawn
Bayern’s work on parsing conveyances does a version of this; it
generates simple and elegant diagrams.69

Legal scholars looking for interesting ways to visualize le-
gal law should consider writing a legal DSL for their domain of

67 See, e.g., Daniel Martin Katz & Michael James Bommarito, Measuring
the Complexity of the Law: The United States Code, 22 A.I. & L. 337 (2014)
(hierarchical diagrams of the United States Code); The Supreme Court Map-
ping Project, U. BALT., https://law.ubalt.edu/faculty/scotus-mapping/index.
cfm (timelines of precedent in Supreme Court cases); Joseph Scott Miller,
Law’s Semantic Self-Portrait: DiscerningDoctrinewithCo-CitationNetworks
and Keywords, 81 U. PITT. L. REV. 1 (2019) (networks of related Supreme
Court cases).
68 See, e.g., John J. Camilleri, Gabriele Paganelli & Gerardo Schneider, A
CNL for Contract-Oriented Diagrams, 2014 CONTROLLED NAT. LANGUAGE
135.
69 Shawn Bayern, CONVEYANCE INTERPRETER [hereinafter Conveyance In-
terpreter], https://essentially.net/property/.

https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://law.ubalt.edu/faculty/scotus-mapping/index.cfm
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/
https://essentially.net/property/

100 A Programming Language for Future Interests 2022

interest, and then exploring different ways of interpreting pro-
grams in that DSL to generate diagrams. Figure 11 shows an
earlier version of our title-tree diagrams, in which→ nodes were
explicit as nodes. By separating the translation code that gener-
ates title trees from the graphical code that transforms them into
diagrams, we were able to experiment with different visualiza-
tions without having to rewrite any of Littleton’s core syntactic
and semantic logic.

II. An Informal Overview

Only a few projects in formalizing law deal with property
law,70 and most of those focus on logical decomposition of the
idea of rights in a thing, rather than with the specifics of future
interests.71 There are, however, a few notable exceptions. This
Part surveys the prior work on formalizing property law, and
then explains the approach taken in Orlando.

A. Previous Work

In 1988, John Finan and Albert Leyerle described a pro-
gram called Perp Rule, for testing future interests for compli-
ance with the RAP.72 Perp Rule asked users a series of yes/no
questions such as, “IS THERE ANY POSSIBILITY THAT
THECLASS COULD INCREASE IN SIZE BYTHEBIRTH

70 John Zeleznikow, Andrew Stranieri & Mark Gawler, Project Report:
Split-Up–A Legal Expert System Which Determines Property Division upon
Divorce, 3 A.I. & L. 267 (1995) (division of property on divorce); Donald
H. Berman & Carole D. Hafner, Representing Teleological Structure in Case-
Based Legal Reasoning: The Missing Link, 1993 PROC. 4TH INT’L CONF. ON
A.I. & L. 50 (first possession); Trevor Bench-Capon, Arguing with Dimen-
sions in Legal Cases, 2017 18TH WORKSHOP ON COMPUTATIONAL MODELS NAT.
ARGUMENT 2 (same); Katie Atkinson, Introduction to Special Issue on Mod-
elling Popov v. Hayashi, 20 A.I. & L. 1 (2012) (same); Sanders, supra note 43
(types of property transactions).
71 L. Thorne McCarty, Ownership: A Case Study in the Representation of
Legal Concepts, 10 A.I. & L. 135 (2002); see also Layman E. Allen„ Formal-
izing Hohfeldian Analysis to Clarify the Multiple Senses to Legal Right: A
Powerful Lens for the Electronic Age, 48 S. CAL. L. REV. 428 (1974) (initial
entry in decades-long project to formalize Hohfeldian relationships).
72 John P. Finan & Albert H. Leyerle, The Perp Rule Program: Computer-
izing the Rule Against Perpetuities, 28 JURIMETRICS J. 317 (1988).

Vol. 24 Yale Journal of Law & Technology 101

OF A NEWMEMBER?” and, “ARE ANY ONE ORMORE
MEMBERS OF THE CLASS ENTITLED TO IMMEDIATE
DISTRIBUTION OF THE PRINCIPAL?”73 As these exam-
ples, show, Perp Rule dealt with different aspects of the RAP
than Littleton currently does. More importantly, Perp Rule was
incapable of answering these questions for itself; it had to ask
the user to do the necessary analysis at each step. In essence, it
was an elementary expert system for walking the user through
a decision tree that models the RAP. 74

In 1989, DavidBecker also attacked theRAPwith an aston-
ishingly detailed step-by-step procedure for analyzing compli-
ance.75 His article runs to an astonishing 187 pages and nearly
100,000 words. Becker’s “methodology” shows how formaliza-
tion can exert a disciplining effect. It forthrightly confrontsmany
of the details and special cases that a more casual treatment can
sweep under the rug. But unlike Finan and Leyerle, Becker
made no attempt to actually implement it as a program. In-
deed, the article does not even contemplate that computeriza-
tion might be possible or desirable. As a result, the procedure
is riddled with “exceptions,” “observations,” and “adjustments.”
Robert Hopperton, in articles published in 1994 and 1999, also
attempted to impose greater logical structure on the teaching
of future interests and the RAP.76 And a few professors have
created interactive study aids, some of which can generate prob-
lems for students to try.77

73 Id. at 328-29.
74 Id. at 325. The full version of Littleton implements a significantly more
sophisticated RAP algorithm. But that is a tale for another time.
75 DavidM. Becker,AMethodology for Solving Perpetuites Problems under
the Common Law Rule: A Step-by-Step Process that Carefully Identifies All
Testing Lives in Being, 67 WASH. U. L.Q. 949 (1989).
76 Teaching Present and Future Interests, supra note 62; Robert J. Hopper-
ton, Teaching the Rule against Perpetuities in First Year Property, 31 U. TOL.
L. REV. 55 (1999).
77 Lawsky Practice Problems, LAWSKYPRACTICEPROBLEMS.ORG, https://
www.lawskypracticeproblems.org; Peter B. Maggs & Thomas D. Morgan,
Computer-Based Legal Education at the University of Illinois: A Report
of Two Years’ Experience, 27 J. LEGAL EDUC. 138 (1975); John A. Hum-
bach, EST. SYS. & BASIC FUTURE INTERESTS (2010), http://webpage.pace.edu/
jhumbach/BES00page-Gateway.htm; Ned Snow, FUTURE INTERESTS MADE
SIMPLE (2015), https://apps.apple.com/us/app/future-interests-made-simple/
id933368390; see also FUTURE INTERESTS APPLICATION (defunct), https://

https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
https://www.lawskypracticeproblems.org
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
http://webpage.pace.edu/jhumbach/BES00page-Gateway.htm
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://apps.apple.com/us/app/future-interests-made-simple/id933368390
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/

102 A Programming Language for Future Interests 2022

In 2010, Shawn Bayern wrote a conveyance interpreter in
the Java programming language.78 Like Littleton, Bayern’s in-
terpreter parses a conveyance written in English, displays a di-
agram of the resulting interests, and is capable of naming most
of the standard interests taught in First-year property. Bayern’s
was the first formal treatment to truly capture the recursive lin-
guistic structure of standard conveyances; his interpreter can
parse conveyances containing an arbitrary number of clauses.
In addition, its linguistic analysis of granting clauses is quite in-
sightful; it clearly distinguishes conditions precedent, durations,
and limitations.

Orlando andLittleton build onBayern’s work by linking an
interpreter to a language with precisely specified syntax and se-
mantics. That clean and well-theorized core enables it to (1) in-
terpret a wider range of constructions, (2) handle more compli-
cated interrelationships among conditions, (3) update the state
of title in response to events and subsequent conveyances, (4)
reason formally about future events (and thus about vesting and
the Rule Against Perpetuities), (5) and clarify important prop-
erty concepts. In short, Orlando and Littleton provide a firm
theoretical foundation for systematic research in a new field for
which Bayern developed the initial proof of concept.

B. Orlando and Littleton

More precisely, Orlando deals with conveyances like “O
conveys toAandher heirs.” The actual language used by lawyers
past and present is more complicated, but when explaining the
system, it is customary to write stylized conveyances like this
one. For simplicity, we will omit the “O conveys” part when it
is clear from context. In addition, we will write the conveyances
in a distinctive fixed-width typeface—e.g., to A and his heirs—

web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/;
RULE AGAINST PERPETUITIES APPLICATION (defunct), https://web.archive.
org/web/20180827233129/http://www.rapapp.info/.
78 Conveyance Interpreter, supra note 69. Bayern documented it in a short
conference article. Shawn J. Bayern, A Formal System for Analyzing Con-
veyances of Property Under the Common Law, 23 JURIX 139 (2010). We
are also grateful to Bayern for making available the source code to his inter-
preter, from which we have learned much, even though we ultimately made
very different design decisions.

https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180820192604/http://www.futureinterestsapp.com/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/
https://web.archive.org/web/20180827233129/http://www.rapapp.info/

Vol. 24 Yale Journal of Law & Technology 103

while A is alive to B

to A

Figure 13: to A for life, then to B and her heirs

when they follow the rules of Orlando’s formal syntax, rather
than than the looser standards of legal English. Orlando speci-
fies, and Littleton carries out, a translation of a conveyance into
a data structure called a title tree. As an initial example, Fig-
ure 13 shows the title tree for to A for life, then to B and her
heirs.

This picture contains nodes to representA andB’s interests
and the relationship between them:
• Two are “to” nodes that represent their ownership interests.
Each of them consists of the keyword to plus the name of the
person who owns the interest: A and B, respectively.79

• One is a“while” node that describes the circumstances under
which another interest terminates. A while has a condition
(here “A is alive”) and a vertical line downwards to whatever
interest should be terminated when that condition becomes
false (here, A’s).

• Finally, the horizontal→ arrow from the while to B’s interest
shows what order their interests come in. Note that the arrow
starts at the while node, not at the to node beneath it.80

Initially, while the condition “A is alive” is true, A’s interest is
possessory. But when the condition becomes false, the while ter-
minates A’s interest and B’s interest becomes possessory. Thus,
this picture as a whole shows a life estate followed by a remain-
der. The while and the to A beneath it are a unit—a subtree—
that as a whole represents A’s life estate. The to B represents
B’s remainder.

Note that nothing in the tree is labeled a “life estate” or a
“remainder.” Indeed, the entire concept of “life estate” takes
more than one node to represent, and the only reason we can
recognize to B as a “remainder” is because of where it appears

79 These to nodes are displayed in a box to visually distinguish them and
emphasize that they corresponds to ownership interests.
80 Formally, this kind of arrow is another type of node. See infra III.

104 A Programming Language for Future Interests 2022

while A is alive while B is alive to C

to A to B

Figure 14: to A for life, then to B for life, then to C

while A is alive while B is alive while C is alive to D

to A to B to C

Figure 15: To A for life, then to B for life, then to C for life,
then to D

in the tree as a whole. This is fundamental to the design of Or-
lando. Rather than have separate types of nodes for every dis-
tinctly named type of interest, it uses a small set of node types
to model the behavior of interests: who is entitled to possession
under what circumstances.

InOrlando, both the language of conveyances and the struc-
ture of title trees are recursive. They are built up from smaller
parts. The conveyance to A for life, then to B for life, then
to C and his heirs adds an additional granting clause; it creates
two life estates, rather than one. This additional granting clause
becomes an additional “life estate” in the resulting title tree: ad-
ditional while and to node, as shown in Figure 14. The process
can be extended indefinitely. Figure 15 shows three successive
life estates and a remainder. For four, five, six, or more, all one
needs is a big enough piece of paper.

Time, and possession, flow from left to right in a title tree.
In Figure 14, possession will start at A’s interest at the left, then
move to B’s interest in the center, and ultimately to C’s interest
at the right. Imagine putting your finger on the currently pos-
sessory interest and moving it forward as time passes and the
state of title changes. Your finger will move only forward to the
right, never backwards to the left against the direction of an ar-
row. This means that any interests to the left of your finger are
irrelevant to the state of title; they can never become possessory.

Thus, Littleton discards all nodes in the “past,” to the left
of the currently possessory interest. When a node terminates,
it is removed from the title tree. A while node that is in the

Vol. 24 Yale Journal of Law & Technology 105

whileA is alive while B is alive to C

toA to B

(a) to A for life, then to B for life, then to C

while B is alive to C

to B

(b) A dies

to C

(c) B dies

Figure 16: Updating a title tree

present—at the left of the title tree–terminates when its condi-
tion becomes false, along with any nodes beneath it. Figure 16
shows what happens to the title tree in Figure 14 at A’s death.
The condition “A is alive” in the left while node becomes false,
so that node—and A’s interest beneath it—disappears. Posses-
sion passes to the right, ending up with the newly leftmost inter-
est: B’s life estate. If B then dies, the same thing happens again
and C takes possession. In an Orlando title tree, a while node
is not just a static description of the duration of an interest. It
also responds dynamically to events.

There are two more types of node to introduce. One is
needed for conditions precedent, such as in the conveyance to A
for life, then if B is married to B for life, then to C. The other
does some useful bookkeeping and plays an important role in
the formal version of title trees. Both are illustrated in Figure 17.
The while and to at the left are familiar, as is the to at the right.
The new parts are in the middle.

• The if represents the branching possibilities at A’s death. If
the condition B is married is true when possession reaches the
if node, then possession passes immediately to the node on
the “yes’ branch: the while in B’s life estate. If the condition
is false, possession instead follows the “no” arrow, to . . .

106 A Programming Language for Future Interests 2022

while A is alive if B is married ⊥no
to C

to A while B is alive

to B

yes

(a) to A for life, then if B is married to B for life, then to C

while B is alive to C

to B

(b) B is married when A dies

to C

(c) B is unmarried when A dies

Figure 17: An if node

• The ⊥ (pronounced “bottom”) on the “no” branch is a sym-
bol used in computer science theory to denote an absence,
literally nothing.81 In Orlando, it represents a term that has
terminated, or one that was never there to begin with. Here,
it means that if B is unmarried at A’s death, possession should
bypass B’s interest and go immediately to C’s.

Again, we follow the convention that nodes in the “past” are
eliminated, which means that an if immediately disappears as
soon as it is reached. Its only job is to pass possession forward
along one branch or the other. The title trees corresponding to
these two cases are illustrated in the rest of Figure 17.

The English statement “the language to X and his heirs
creates a fee simple in X” is an informal description of the rela-
tionship between the language of a conveyance and the result-
ing interests. Figure 18 shows the correspondence informally.

81 SeeDana Scott & Christopher Strachey, Toward a Mathematical Seman-
tics for Computer Languages 23 (1971) (unpublished manuscript) (Oxford
University Computing Laboratory Technical Monograph PRG-6), https://
home.cs.colorado.edu/~bec/courses/csci5535/reading/PRG06.pdf (“The new
element 𝑏𝑜𝑡 can be regarded as an ‘embodiment’ of the undefined.”).

https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf
https://home.cs.colorado.edu/protect unhbox voidb@x protect penalty @M {}bec/courses/csci5535/reading/PRG06.pdf

Vol. 24 Yale Journal of Law & Technology 107

to A for life, then to B for life, then to C and her heirs

(a) Conveyance

for life for life
then

to C and her heirs
then

to A to B

(b) Grammatical structure

while A is alive while B is alive to C

to A to B

(c) Title tree

Figure 18: Translation of a conveyance

Each to node corresponds to an occurrence of to X in the con-
veyance; each while node corresponds to an occurrence of for
life; each horizontal line to an occurrence of then. The essence
of the programming-language approach to estates and future in-
terests is to formalize this mapping.

C. An Example

Orlando and Littleton can handle some quite intricate con-
veyances. For example, consider the conveyance To Lear for
life, then if Goneril survives Regan to Goneril for life, oth-
erwise to Regan, then to Cordelia and her heirs, which cre-
ates four interests. Lear has a possessory life estate, then Re-
gan andGoneril havemutually exclusive remainders, and finally
Cordelia has a remainder.

Orlando and Littleton represent this state of title using a
title tree with four nodes corresponding to interests. This title
tree are is depicted in the top diagrams of Figures 19 (Orlando)
and 20 (Littleton). The Orlando diagram is abstract; it is a for-
mal, mathematical representation of the present and future in-
terests in this property. The Littleton diagram is concrete; it is
the output of our actual computer program to help users visu-
alize future interests. The Orlando representation is skeletal; it

108 A Programming Language for Future Interests 2022

while L is alive if G survives R to R
no

to C

to L while G is alive

to G

yes

(a) To Lear for life, then if Goneril survives Regan to Goneril
for life, otherwise to Regan, then to Cordelia and her heirs.

while L is alive while G is alive to C

to L to G

(b) Regan dies.

while G is alive to C

to G

(c) Lear dies.

to C

(d) Goneril dies.

Figure 19: A more complicated example of successive and alter-
native interests (Orlando)

contains the bare minimum needed to describe the state of title.
The Littleton visualization is more verbose; it includes such de-
tails as thatGoneril’s remainder is in life estate whereasRegan’s
is in fee simple, and that all three remainders are contingent.

A professor teaching this examplemight test their students’
understanding by asking, ”What happens if Regan dies?”As the
second diagrams in Figures 19 and 20 show, this event has three
important effects. First, Regan’s interest needs to be struck be-
cause its condition precedent (that Goneril not survive Regan)
has definitively failed. Second, although Goneril’s remainder
is still a future interest, it becomes vested rather than contin-
gent because its condition precedent (that Goneril survive Re-

Vol. 24 Yale Journal of Law & Technology 109

Figure 20: Amore complicated example of successive and alter-
native interests (Littleton)

110 A Programming Language for Future Interests 2022

gan) has been satisfied. Third, Cordelia’s remainder is now also
vested because the contingency that could prevent it from be-
coming possessory (Regan surviving Goneril) is now impossi-
ble.

At this point, the consequences of further events are read-
ily predictable. At Lear’s death, Goneril’s remainder becomes
possessory () and at Goneril’s death, Cordelia’s remainder be-
comes possessory. As the third and fourth diagrams in Figures 19
and 20 show, Orlando and Littleton capture every one of these
changes. Orlando’s formalism provide the necessary framework
for Littleton to correctly describe these changes.

III. The Formal Details

The informal description of Orlando in II had four moving
parts: (1) a conveyance like to A for life, then to B is (2) trans-
lated into (3) a title tree, which is (4) updated in response to
events. They correspond to four fundamental theoretical tools
in the design and implementation of programming languages:
• A grammar that defines the syntax of a “program.” In Or-
lando, this grammar resembles a subset of English, but with
tightly restricted, formally specified syntax.82

• An abstract data type that models the current state of a pro-
gram as it executes. In Orlando, this data type is a title tree,
which is specified by another grammar that describes the con-
tents of title trees.

• A translation function that specifies how to turn a conveyance
into a title tree that describes the interests that conveyance
creates. In Orlando, this translation function consists of a set
of rules, each of which translates a small portion of a con-
veyance into a corresponding portion of a title tree.

• An operational semantics that specifies how a program is ex-
ecuted, step by step.83 In Orlando, the operational semantics

82 Orlando uses a context-free grammar, in which there are no long-
distance interdependencies between different parts of an expression. See
generallyMICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION (3d
ed. 2012) (describing context-free grammars).
83 See generally GLYNN WINSKEL, THE FORMAL SEMANTICS OF PROGRAM-
MING LANGUAGES: AN INTRODUCTION (1993); HANSHÜTTEL, TRANSITIONS AND

Vol. 24 Yale Journal of Law & Technology 111

consists of update rules that describe how a title tree changes
in response to events.

This Section presents these four ideas, in detail but not quite in
this order.

The formal presentation of Orlando follows some standard
conventions from computer science. First, certain keywords—
like to and heirs—have specifically defined roles in Orlando.84

For example, heirs is part of the standard phrase and her heirs
used to create a fee simple. It is common for programming lan-
guages to have a few dozen reserved keywords—“reserved” in
the same sense that a statutory section number is reserved and
should not be used for something else. You can name your bard-
core band “Adam And His Heirs” if you want, but using Adam
and his heirs as the name of a person in an Orlando program
is a good way to confuse Littleton and yourself. Littleton rec-
ognizes and responds to specific keywords, but it has no deeper
understanding of their connotations. It responds to and her heirs
and and the heirs of his body, but not the heir of all the ages.

Next, the equations that defineOrlando will frequently use
variables like person and 𝑡1. Each variable has a specific type,
e.g. person always refers to a person’s name, 𝑡 always refers to a
title tree, and so on. So whenever the variable person appears
in a definition it can be filled in with the name of an arbitrary
person. The names of variables that represent expressions in
Orlando, like a complete conveyance or a limitation on a grant,
will be the name of the kind of thing they represent. The names
of variables that represent parts of title trees will be individual
letters, like 𝑐 for “condition”. By convention, having introduced
a variable like 𝑐, we can also put subscripts on it. Thus 𝑐1, 𝑐2, 𝑐3,
and so on all refer to conditions—possibly different conditions,
possibly the same one.

TREES: AN INTRODUCTION TO STRUCTURAL OPERATIONAL SEMANTICS (2010). In
PropertyConveyances, supra note 7, we also presented a denotational seman-
tics for Orlando and proved that its operational and denotational semantics
are equivalent. The denotational formulation ismore convenient for proving
certain types of propositions about the behavior of programs. See generally
WINSKEL, supra; DAVID A. SCHMIDT, DENOTATIONAL SEMANTICS: A METHOD-
OLOGY FOR LANGUAGE DEVELOPMENT (1986).
84 Keywords are written in the monospaced typeface used for the literal lan-
guage of a conveyance.

112 A Programming Language for Future Interests 2022

The full set of rules that define the core subset of Orlando
are collected in the Appendix.

A. Title Trees

Title trees and conveyances in Orlando are terms in formal
languages. Unlike a natural language, which is whatever peo-
ple speak to each other, the syntax and semantics of a formal
language are precisely specified by a grammar. Like the gram-
mar for a natural language, it spells out how the pieces of one
fit together, how larger units are made up of smaller ones, and
what counts as a valid expression. The difference is that while
natural-language grammar is flexible and context-dependent, a
formal-language grammar is rigid and rigorous. These rules are
constitutive; any expression allowed by them is meaningful in
Orlando, while all other expressions are officially meaningless.
The rules are symbolic; they describe Orlando’s syntax using
mathematical and logical notation. And the rules are recursive;
they show how to build up more complicated expressions from
simpler ones.

II described informally five types of title tree nodes. More
formally, they are defined by a grammar with five rules:

𝑡 ⇒ to 𝑝
𝑡 ⇒ ⊥
𝑡 ⇒ 𝑡1 while 𝑐
𝑡 ⇒ if 𝑐 then 𝑡1 else 𝑡2
𝑡 ⇒ 𝑡1→𝑡2

Read the symbol ⇒ as “can consist of.” Each line describes a
different one of the title tree node types. Thus, a title tree can
consist of
1. the keyword to and a person 𝑝 (an interest),
2. the symbol ⊥ by itself (nothing),

3. the symbol while linking a smaller title tree 𝑡1 and a condition
𝑐 (a temporal limit),

4. the symbols if, then, and else linking a condition 𝑐 and two
smaller title trees 𝑡1 and 𝑡2 (a choice between two mutually
exclusive possibilities), or

5. the symbol → linking two smaller title trees 𝑡1 and 𝑡2 (a se-
quential division of ownership across time).

Vol. 24 Yale Journal of Law & Technology 113

There are two important types here. Title trees themselves are
denoted with the letter 𝑡 (and the usual optional subscript).85
Conditions, written with the letter 𝑐, are statements about the
world being modeled that can be true or false. A logician would
say that conditions are predicates; a mathematician would say
that they are Boolean-valued functions. So far, we have seen
two: “𝑝 is alive” and “𝑝 is married”.86

These rules are obviously recursive. The third rule, for ex-
ample, says that a if a title tree 𝑡 consists of a while node, then
it contains another title tree 𝑡1. That title tree, in turn, must be
one of the five types. If it is a to or a ⊥, then the recursion ends,
because neither of these rules has another title tree on the right
hand side. But if it is another while, the recursion continues:
this new title tree must be expanded until every subtree has bot-
tomed out with a to or a ⊥. For example, here is the derivation
of the title tree from Figure 13, which depicts a life estate fol-
lowed by a remainder:

𝑡 ⇒ 𝑡1→𝑡2
⇒ 𝑡1→ to 𝑝
⇒ 𝑡1→ to B

⇒ (𝑡3 while A is alive)→ to B

⇒ (to 𝑝 while A is alive)→ to B

⇒ (to A while A is alive)→ to B

These symbolic description of title treesmay not lookmuch
like the diagrams from II. But there is a straightforward, one-to-
one correspondence between the textual and graphical depic-
tions of title trees. Figure 21 shows the corresponding fragment
of a title-tree diagram for each of the title-tree rules. To form a
complete title tree, just glue together the appropriate pieces.

The visual description and the symbolic one are two dif-
ferent flavors of concrete syntax to describe the same abstract
object, just like a graph and the equation 𝑦 = 3𝑥 + 4 are two dif-
ferent descriptions of the same line. The advantage of the visual

85 Title trees are an example of an algebraic data type. See generally
BENJAMIN C. PIERCE, TYPES AND PROGRAMMING LANGUAGES (2002) (thorough
presentation of type theory).
86 Conditions are written in an ordinary serif typeface, to distinguish them
from the words describing a condition in an Orlando program, which are
written in a monospaced terminal font.

114 A Programming Language for Future Interests 2022

to 𝑝
(a) to 𝑝

⊥
(b) ⊥

while 𝑐

𝑡1
(c) 𝑡1 while 𝑐

𝑡1 𝑡2
(d) 𝑡1→𝑡2

if 𝑐 𝑡1
yes

𝑡2

no

(e) if 𝑐 then 𝑡1 else 𝑡2
Figure 21: Graphical representation of title trees

version is that it is easier for people to grasp. The advantage of
the symbolic version is that it is easier to specify precisely how to
carry out formal mathematical operations on. To be clear, the
diagrams are not just heuristic sketches; they are well-defined
representations of well-defined mathematical objects, and can
be freely converted to and from the symbolic representation.
Littleton uses the symbolic version internally and displays di-
agrams to users. This Article will continue to use both.

A title tree represents the state of title at a single moment
in time. It incorporates all of the information needed to keep
track of who owns what, and who will own what in the future. If
you have a title tree, you can discard the conveyance that gen-
erated it; the title tree captures everything you need to know.
As events occur, the title tree can be updated to keep track of
how they affect the state of title—at which point the new title
tree will capture everything relevant and the old one can be dis-
carded.

B. Semantics

So far, a title tree is just an abstract data structure. We have
been saying informally that the leftmost to node represents a
possessory interest, and that other to nodes represent interests
that can become possessory in response to events. Just as we
formalized the intuitive description of the structure of title trees,
we can also formalize the intuitive description of how they be-
have in response to events. This provides an operational seman-
tics for the formal language of title trees.87

87 The particular style of operational semantics we use is a derivative se-
mantics. See Janusz A. Brzozowski,Derivatives of Regular Expressions, 11 J.
ASS’N FORCOMPUTINGMACHINERY 481 (1964) (defining derivative semantics).
For a fuller treatment of the formalisms as used inOrlando see PropertyCon-

Vol. 24 Yale Journal of Law & Technology 115

Orlando models the changes to a title tree over time with
the concept of events: discrete occurrences such as A dies, 5
years pass, and Mars becomes a state. A sequence of zero or
more events is a history, e.g.:

B dies .
Mars becomes a state .
The property is used as a school .

The actual mechanics of appropriately modifying a title tree in
response to events are handled by an update function 𝛿() (so
named because it computes the “delta” or change in the state
of the title). To update a title tree 𝑡 in response to an event,
replace it with 𝛿(𝑡).88

The basic idea of 𝛿() is that the special value ⊥ represents
a portion of a title tree that has completely terminated. All of
the interests it describes have ended. All it can do is pass pos-
session onwards to the next interest ready to receive it. 𝛿() iden-
tifies interests that have terminated, replaces them with ⊥, and
then deletes the ⊥s from the title tree, pushing possession for-
ward to the interests that follow them. while and if nodes do the
terminating;→ arrows do the pushing forward. (to nodes never
terminate on their own; they can only be terminated by nodes
above them in the tree.)

In particular, 𝛿() is computed—andonly computed—on the
leftmost branch of a title tree. That is the branch leading to the
currently possessory interest, and that is where the state of title
could actually change.

The actual value of 𝛿() is an example of definition by cases.
Since a title tree 𝑡 could take one of five forms, 𝛿(𝑡) must be de-
fined for each of those forms. So there is a line in the definition
corresponding to each of the rules in the grammar for title trees.

veyances, supra note 7. For general introductions to the theory of languages
and automata, on which the derivative semantics draws, see SIPSER, supra
note 82; DEXTER C. KOZEN, AUTOMATA AND COMPUTABILITY (1997); HARRY R.
LEWIS & CHRISTOS H. PAPADIMITRIOU, ELEMENTS OF THE THEORY OF COMPUTA-
TION (2d ed. 1997). A few papers have applied operational semantics to legal
topics. See da Rocha Costa, supra note 25; Azzopardi, Pace, Schapachnik &
Schneider, supra note 32.
88 The event itself is not formally a parameter of 𝛿(). That is because 𝛿()
must be interleaved with a function that updates the state of conditions in a
title tree. See Property Conveyances, supra note 7 for the details.

116 A Programming Language for Future Interests 2022

to 𝑝 ⇒ to 𝑝

(a) Updating a to

⊥ ⇒ ⊥
(b) Updating a ⊥

⊥ 𝑡2 ⇒ 𝛿(𝑡2)

(c) Updating a→

while false

𝛿(𝑡1)
⇒ ⊥

while 𝑐

⊥
⇒ ⊥

(d) Updating a while node

if true 𝑡1
yes

𝑡2

no ⇒ 𝑡1

if false 𝑡1
yes

𝑡2
no ⇒ 𝑡2

(e) Updating an if node

Figure 22: Update rules

The definitions here are the heart of Orlando, so it is worth go-
ing through them carefully.

𝛿(to 𝑝) = to 𝑝
A to by itself represents a fee simple, which cannot be affected
by events because it is always possessory. Other nodes can limit
a to and cause it to terminate, but the to itself is unaffected. Thus
𝛿() leaves it unchanged. Figure 22a illustrates.

𝛿(⊥) = ⊥
A ⊥ represents the opposite of a fee simple: a node that can-
not be affected by events because it is never possessory. Other
nodes cannot revive it. Thus it too is unchanged by 𝛿(). Fig-
ure 22b illustrates.

Vol. 24 Yale Journal of Law & Technology 117

There are two possibilities for 𝑡1→𝑡2, which are illustrated
in Figure 22c.

if 𝛿(𝑡1) = ⊥ then 𝛿(𝑡1→𝑡2) = 𝛿(𝑡2)
On the one hand, it might be the case that the first half of the→,
has terminated, i.e., that 𝛿(𝑡1) = ⊥. If so, then possession should
pass to the second half. In this case, the → itself is removed,
leaving only the right-hand subtree 𝑡2, which itself will now need
to be updated to 𝛿(𝑡2).

if 𝛿(𝑡1) ≠ ⊥ then 𝛿(𝑡1→𝑡2) = 𝛿(𝑡1)→ 𝑡2
On the other hand, if the left subtree still exists, the→ remains.
In this case, the left subtree 𝑡1 should be updated, but the right
subtree 𝑡2 should not. Only currently possessory interests need
to be checked for termination by 𝛿(), and the right subtree has
no such interests (they are all in the future).

The subcases for while and if are similar. A while termi-
nates (i.e. is replaced with ⊥) either if its associated condition
has become false, or if the subtree beneath it has terminated.
Otherwise, the subtree updates in place and the while remains.
A if node is always removed when it is evaluated with 𝛿(). If
the condition is true, the if is replaced with its first subtree (the
“yes” branch), but if the condition is false, the if is replaced with
its second subtree (the “no” branch).

These definitions capture formally the idea of interests ter-
minating in response to events and possession passing to subse-
quent interests. Theymay seem abstract, but that is what makes
them so convenient to compute with. The formal definition of
𝛿() can be applied mechanically in a way that natural-linguistic
descriptions of the rules cannot.

A detailed example will show how the rules work together.
Consider the following sequence of events:

O conveys to A for life , then if B is
married to B for life , then to C .

B marries .
A dies .
B dies .

First, consider this symbolically. The conveyance in the first
line translates into the following title tree:

(to A while A is alive) →
(if B is married then (to B while B is alive) else⊥) →
to C

118 A Programming Language for Future Interests 2022

while A is alive if B is married ⊥no
to C

to A while B is alive

to B

yes

(a) to A for life, then if B is married to B for life, then to C

⊥ if B is married ⊥no
to C

while B is alive

to B

yes

(b) A dies / while simplifies

if B is married ⊥no
to C

while B is alive

to B

yes

(c)→ simplifies

while B is alive to C

to B

(d) if simplifies
⊥ to C

(e) B dies / while simplifies
to C

(f)→ simplifies

Figure 23: An updating example

Vol. 24 Yale Journal of Law & Technology 119

A’s interest is possessory. The condition A is alive is true, so there-
fore 𝛿(to A) = to A, which does not equal ⊥. Thus, the while
A is alive at the left does not simplifiy, i.e., the title tree does not
immediately terminate A’s interest.

Next, B marries. This does not change the truth of the con-
dition A is alive or terminate to A, so the tree does not change.
The truth of the condition B is married in the if changes, as does
the truth of B is alive in the second while, but since they are not
currently at the left, these changes are irrelevant for now. They
will become relevant as they reach the left of the title tree.

The real action starts when A dies. This does change the
value of the condition A is alive, which is now false. Now it is the
case that 𝛿(to A while A is alive) evaluates to ⊥, so the overall title
tree becomes:

⊥→(if B is married then (to 𝐵 while B is alive) else⊥)→ to C

The simplifications are not yet done. Now the rule for→ kicks
in, because 𝛿(⊥→ , 𝑡2) = 𝛿(𝑡2). Thus, the first → should also be
removed from the tree, resulting in:

(if B is married then (to B while B is alive) else⊥)→ to C

But wait, there’s more! Now that the if is now leftmost, the
condition B is married must be checked. It is true, which means
the if takes the “yes” branch, because 𝛿(if true then 𝑡1 else 𝑡2) =
𝛿(𝑡1). The title tree is now:

(to B while B is alive)→ to C

Now the (formerly second) while is at the left. But in this case,
its condition is true, as B is alive. Thus the title tree does not
simplify further.

Finally, B dies. This is a replay of the updates at A’s death.
The condition B is alive is now false, so 𝛿(to B while B is alive) = ⊥.
Thus the title tree becomes:

⊥→ to C

The remaining→ drops out, just like the first one did, leaving:
to C

Thus, after A’s and B’s deaths, C’s interest is possessory.

These symbolic computations are not difficult, just tedious.
But these computations are notmeant to be carried out by hand.
That’s what Littleton and other computer implementations are
for. The point of including them here is to show that there are

120 A Programming Language for Future Interests 2022

no cards hidden up our sleeves. Every step of the analysis can
be made precise, explicit, and mechanical.

What is useful to people is the visualization based on it. Fig-
ure 23 shows the same example, done visually rather than sym-
bolically.89

C. Conveyances

Orlando models the language of conveyances themselves
with another grammar. Instead of generating abstract data struc-
tures, as the title-tree grammar does, the conveyance grammar
generates outputs that look much more like natural language.

Title trees had one primary type 𝑡 , because every title tree
can be plugged into any title-tree-shaped hole. That’s not the
case for conveyances. The their grammatical and logical struc-
ture means that there are conveyances whose parts make sense
on their own but not together, like to A and his heirs for life,
but if to B while B is married then to C. Instead, conveyances
have a few distinct types:
• A conveyance like O conveys to A for life, then to B until Mars

becomes a state expresses a transfer from a grantor to various
recipients.

• A grant like to A and her heirs creates an interest. One of the
most striking things about the conveyance grammar is that in-
dividual granting clauses like to B for life and combinations
of granting clauses like to C for life, then to D for life play
the same grammatical role.

• A quantum like for life or and his heirs describes what estate
an individual grant creates.

• A condition like B is married or A survives B expresses in words
a logical condition.

• A limitation like until Mars becomes a state or while B is married
uses a condition to terminate an interest.

• A few miscellaneous types round out the list. A conveyance
can contain a person like Tilda, a pronoun like her, or a natural
number 𝑛 like 2 or 10.

89 The “yes” and ”no” branches in the if have been swapped for clarity, but
the semantics are the same whichever is drawn on top.

Vol. 24 Yale Journal of Law & Technology 121

The first rule in the conveyance grammar is the only one
for conveyances as a whole:

conveyance ⇒ owner conveys grant
It says that a conveyance consists of a person followed by the
keyword conveys followed by a grant. For example:

conveyance ⇒
person
⎴⎴⎴⎴⎴⎴⎴Owner conveys

grant

⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴to Alice

The first part is easy to fill in: person can be Owner or O or any
valid name. And conveys is always just itself.

But a grant is another and different conveyance. For now,
consider the first two:

grant ⇒ to person quantum
grant ⇒ grant then grant

Thefirst option says that a grant can consists of the keyword
to followed by a person and a quantum. In lawyers’ lingo, to
person is the “words of purchase” describing who receives the
interest and quantum the “words of limitation” describing what
estate they receive. So to Alice and her heirs is a valid granting
clause; so is to B for life. For example:

grant ⇒ to

person
⎴⎴⎴⎴⎴⎴⎴Alice

quantum
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴for life

This is not the only option for a grant, which could also consist
of two granting clauses, separated by the keyword then.90 For
example:

grant ⇒
grant

⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴to Alice for life then

grant

⎴⎴⎴⎴⎴⎴⎴⎴to Bob

This option is the one thatmakes the grammar powerful enough
to write indefinitely long conveyances creating arbitrarily large
numbers of interests. Because this rule could be applied recur-
sively, one of the two grants could itself consist of two grants,
one or both of which could consist of two more, and so on. Any-
where that a conveyance could contain a single granting clause,
it could contain two, three, four, or more of them.

Next consider the rules for a quantum, which specifies the
duration of an interest.

quantum ⇒ and pronoun heirs
quantum ⇒ for life

90 Littleton allows for optional commas between granting clauses, but for
simplicity they are not listed in the formal grammar for Orlando.

122 A Programming Language for Future Interests 2022

These are familiar phrases. The language and . . . heirs spec-
ifies a fee simple. The language for life specifies a life estate
measured by the life of the grantee.

While we are at it, we can also say a bit more about valid
names and pronouns.

person ⇒ O | A | B | C | … | Alice | Bob | …
pronoun ⇒ her | his | hir | their | zir | …

A person consists of any single-letter pseudonym like A, B, O, and
so on, or any given name like Alice, Bob Terwilliger, and many
others. Littleton allows a person to be one or more words, each
of which begins with a capital letter.91 A pronoun can be any
single word, like her or zir.92

Like the title-tree grammar, the conveyance grammar gives
a procedure for generating valid expressions. Start with a vari-
able conveyance that represents an arbitrary conveyance. Now
apply one of the rules of the grammar to expand a variable. In
this case, there is only one variable and exactly one applicable
rule, so that conveyance expands to owner conveys grant. Now
apply another rule to one of the remaining variables, e.g. ex-
pand person into Owner, yielding Owner conveys grant. Apply an-
other rule to a variable, say expanding grant into grant then
grant. Repeat, replacing a variable in the current conveyance
by the right-hand-side of a rule applicable to it as as needed, un-
til there are no variables left to expand. Here is an example, one
that generates our by-now familiar friend: a life estate followed

91 The specific set of valid names is not further defined here, since the details
are unimportant. All that matters is that Alice is always Alice, and that Alice
and Bob are distinct.
92 Cf. Sprowl, supra note 54, at 48-49 (describing a program that asks about
a testator’s and spouse’s preferred pronouns, but then discarding it in favor
of one that askswhether the testator ismale and assigns pronouns “assuming,
of course, a heterosexual marriage”). We submit that Littleton’s is the better
approach; it is both more respectful and computationally simpler.

Vol. 24 Yale Journal of Law & Technology 123

by a remainder.
conveyance

⇒ person conveys grant
⇒ Owner conveys grant
⇒ Owner conveys grant then grant
⇒ Owner conveys to person quantum then grant
⇒ Owner conveys to Alice quantum then grant
⇒ Owner conveys to Alice for life then grant
⇒ Owner conveys to Alice for life then to person quantum
⇒ Owner conveys to Alice for life then to Bob quantum
⇒ Owner conveys to Alice for life then to Bob and his heirs

Littleton runs this process in reverse; it starts from the text
of a conveyance like the one in the last line and reconstructs the
sequence of rules that yielded it. This process, called parsing,
tells Littleton what the linguistic structure of a conveyance is,
and how its parts fit together.93

D. Translation

The final piece of the formalization of Orlando is the con-
version from conveyances to title trees. This is carried out by a
translation function written using a new kind of notation:Jto A for lifeK𝑂 = to A while A is alive

93 At an abstract level, Littleton does recursive descent parsing with back-
tracking. It reads a conveyance from left to right, using a list of of Orlando’s
grammar rules to test out different ways of generating the conveyance’s lan-
guage. Whenever its current hypothesis is contradicted by the next part of
the conveyance, it backs up to the last point at which it had multiple op-
tions and tries the next available one it has not previously tried. Littleton
uses theMParser library for OCaml, which is derived from the Parsec library
for Haskell. See Daan Leijen & Erik Meijer, Parsec: Direct Style Monadic
Parser Combinators For The Real World (2001) (unpublished manuscript),
https:/ /www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
parsec-paper-letter.pdf (describing Parsec); Graham Hutton & Erik Mei-
jer, Monadic Parser Combinators (1996) (unpublished manuscript) (Tech-
nical Report NOTTCS-TR-96-4, Department of Computer Science, Univer-
sity of Nottingham) (describing approach taken by Parsec). See generally
ALFRED V. AHO, MONICA S. LAM, RAVI SETHI & JEFFREY D. ULLMAN, COMPIL-
ERS: PRINCIPLES, TECHNIQUES, AND TOOLS (2d ed. 2006) (overview of parsing);
DICKGRUNE &CERIEL J.H. JACOBS, PARSING TECHNIQUES: APRACTICALGUIDE
(2007) (same, in more detail).

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/parsec-paper-letter.pdf

124 A Programming Language for Future Interests 2022

The double (or “denotation”) brackets JK are computer-science
notation to indicate the meaning or translation of the expres-
sion that appears between the brackets.94 They describe a func-
tion from conveyances to title trees.95 That is, the title tree frag-
ment on the right hand side of the = is the translation of the
conveyance fragment on the left hand side between the double
brackets. (The subscript on the brackets keeps track of informa-
tion abut the context—in this case, who the grantor is.)

Just as the update function 𝛿() is defined by cases on the ti-
tle tree grammar, the translation function JK is defined by cases
on the conveyance grammar. Every rule in the conveyance gram-
mar has a corresponding translation rule. In this approach, which
is known as syntax-directed translation, there is exactly one
translation rule applicable for each syntactic option, so the trans-
lation is fully determined by the syntax of an expression.96 For
example, here are the grammar and translation rules for two
successive granting clauses linked by then.

grant ⇒ grant then grantJgrant1 then grant2K𝑜 = Jgrant1K𝑜 → Jgrant2K𝑜
Just as a grant is formed by recursively applying grammar rules,
so too is JgrantK recursively computed by recursively applying
translation rules. And just as a grant can consist of grant then
grant, when it does, the value of Jgrant1 then grant2K is com-
puted from Jgrant1K and Jgrant2K. The process of translating a
94 The notation is required to deal with a nuance of quotation. Using deno-
tation brackets to describe a function indicates that keywords such as “for
life” are to be read literally when the function is computed, but variables
such as “𝑝” are to be replaced with their values. The symbol was chosen be-
cause it was available on the typewriter the computer scientist Dana Scott
was using at the time. Brian Rabern, The History of the Use of J.K-Notation
in Natural Language Semantics, 9 SEMANTICS & PRAGMATICS 12 (2016).
95 We omit the details of Littleton parses the string of characters describ-
ing a conveyance to recognize which translation rules apply. The high-level
version is that it first translates the language of a conveyance into a abstract
syntax tree (AST) that describes which rules of the conveyance grammar
were used to generate it. The AST is to the text of a conveyance as the visual
diagram of a title tree is to its symbolic description. So to be more precise,
the translation function is a function from ASTs to title trees. See Property
Conveyances, supra note 7 (documenting Orlando ASTs and the translation
function).
96 See AHO, LAM, SETHI & ULLMAN, supra note 93 (discussing syntax-
directed translation).

Vol. 24 Yale Journal of Law & Technology 125

while A is alive to B

to A

Figure 24: Translation of a conveyance

conveyance just consists of applying JK to successively smaller
portions of a conveyance, as in the following example:Jto A for life, then to B and her heirsKO

= Jto A for lifeKO→ Jto B and her heirsKO
= Jto A A is aliveKO→ Jto B and her heirsKO
= (to A while A is alive)→ Jto B and her heirsKO
= (to A while A is alive)→ Jto B trueKO
= (to 𝐴 while A is alive)→ to B

The resulting title tree, shown in Figure 24, should look familiar.
This systematic dependence of the meaning of larger com-

pound expressions on themeanings of smaller and simpler subex-
pressions contained within them is known as compositionality,
and it is an important part of what makes an approach based in
programming-language theory so fruitful.97

E. Conclusion

This completes the initial survey of Orlando. It is not a
complete presentation; indeed, it is not even a complete pre-
sentation of the fragment of core Orlando documented in the
Appendix. Instead, it is meant to give a clear sense of what Or-
lando does and how it does it. The rest is, more or less, more of
the same.

How much more? The core subset of Orlando in the Ap-
pendix also includes rules to generate and process special limi-
tations (e.g., to A until A marries), executory limitations (e.g., to
A, but if B graduates college to B), conditions subsequent (e.g.,
to A, but if the property is used as a school the grantor may reen-
ter), implied reversions (e.g., as in O conveys to A for life), and
successive conveyances, (e.g., O conveys to A for life, then to B.

97 See Scott & Strachey, supra note 81, at 12; WINSKEL, supra note 83, at
60. See generally Zoltán Gendler Szabó, Compositionality, STAN. ENCY-
CLOPEDIA PHIL. (2020), https://plato.stanford.edu/archives/fall2020/entries/
compositionality/.

https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/
https://plato.stanford.edu/archives/fall2020/entries/compositionality/

126 A Programming Language for Future Interests 2022

A conveys to C.). The full version of Orlando as implemented in
Littleton handles far more, including:
• Estates for a term of years and in fee tail, including disentail-
ment by conveyance of a fee simple.

• Simplification, which removes unreachable interests from the
title tree so that it more closely reflects the state of title as a
lawyer would describe it.

• Naming of interests (e.g., “remainder in fee simple subject to
executory limitation”).

• Vesting and the Rule Against Perpetuities.

• Miscellaneous doctrines, such as the Rule in Shelley’s Case,
the Doctrine of Worthier Title, and merger.

• Concurrent interests as tenancies in common, joint tenancies,
and tenancies by the entireties.

• Wills, intestacy, and escheat.98

• Class gifts (e.g., to the children of A), vesting subject to open,
and the rule of convenience.

The fragment discussed in this Part is just the tip of the iceberg.
But it is made of the same frozen H2O as the rest; if you under-
stand howOrlando and Littleton model a life estate, you under-
stand how it is possible for them to model everything else.

IV. Lessons for Property Law

Why teach future interests to a computer?, you may be won-
dering. Hasn’t the poor thing suffered enough already?

Most obviously, we hope that Orlando and Littleton will
help property scholars better understand the doctrinal rules of
future interests. Orlando’s rules are precise and concise; they
make it easy to see how a special limitation differs from an ex-
ecutory limitation, how a reversion differs from a possibility of

98 See Lilian Edwards, Building an Intestate Succession Advisor: Compart-
mentalisation and Creativity in Decision Support Systems, in INFORMATICS
AND THE FOUNDATIONS OF LEGAL REASONING 311 (Zenon Bankowski, Ian
White, & Ulrike Hahn ed., 1995) (describing expert system for Scots intes-
tacy law).

Vol. 24 Yale Journal of Law & Technology 127

reverter. Whether they read Orlando’s rules or simply use Lit-
tleton to analyze conveyances, scholars may see a familiar sub-
ject in fresh ways. Future interests are the right hybrid of simple
and complex to be illuminated by formalization.99

We also hope that Littleton will be useful as a teaching
tool.100 Teachers can generate expository diagrams in seconds
and walk their students through the consequences of various
contingencies. Some people are visual learners; having a good,
consistent, visualization tool will help them understand how fu-
ture interests fit together. In particular, because Littleton is in-
teractive, it enables students to learn through self-directed ex-
ploration. The student wonderingWhat happens if A dies? can
type A dies and find out. Teachers and students can use Littleton
without even knowing that Orlando exists.101

More profoundly, the fact that future interests can be for-
malized as a programming language provides deeper insights
into property theory. For example, the fact that Orlando uses
only a small and carefully defined set of title-tree node types
validates the idea that property law follows the numerus clausus
principle—that property interests come only in a set of specific
predefined forms. This Part considers what Orlando has to say
to Property scholars. It explains the design philosophy behind
Orlando and Littleton, describes how they can illuminate spe-
cific property doctrines, and and discusses the broader systemic
insights they offers into property-law theory.

A. Design Principles

Before discussing what Orlando and Littleton have to say
about property law, it will be helpful to say a bit about why they
are the way they are.

99 See TAXMAN, supra note 20, at 842-43.
100 On teaching AI and law, see Kevin D. Ashley, Teaching Law and Digital
Age Legal Practice with an AI and Law Seminar, 88 CHI.-KENT L. REV. 783
(2012).
101 For more interesting recent work on generating teaching problems auto-
matically, see Lawsky Practice Problems, supra note 77.

128 A Programming Language for Future Interests 2022

1. Orlando

Orlando title trees have a number of overlapping design
principles. First, they are minimal. The core language of title
trees is as small as possible. This makes it easier to get the se-
mantics right. Compared with the dozens of distinct interests
possible under the traditional naming system, a core set of five
title-tree node types is clean and easy to reason about.

Relatedly, the semantics of title trees are simple. The up-
date function 𝛿() can be defined in a handful of lines. It is also
easy to define functions on title trees (like the path analyses of
reachability and vesting) and be confident that they are correct.
Simplicity makes it easier to teach howOrlando works, and eas-
ier to create implementations like Littleton.

The core title-tree node types are also orthogonal.102 Each
node type implements a different concept: it does one thing and
one thing only. A to node represents ownership, and ⊥ repre-
sents its absence. A while represents termination: events can
cause an interest to come to an end. An if represents choice:
either A or B but not both. And a→ represents sequencing: A
follows B, in that order. They are good primitives because they
don’t mix concepts: a while node terminates without having to
worry about what comes next.103

Simplicity and orthogonality help make title trees modu-
lar.104 The node types can be freely combined. 𝑡1 and 𝑡2 in
𝑡1→𝑡2 can be anything; there are no hidden restrictions on what
kinds of nodes can appear in them. This means that title trees
are loosely coupled; there are no confusing or hard-to-model in-
teractions between remote parts of one. Functions like 𝛿() can
treat subtrees as black boxes, without needing to look inside at
their details.

102 See SEBESTA, supra note 16, at 9 (“Orthogonality in a programming lan-
guage means that a relatively small set of primitive constructs can be com-
bined in a relatively small number of ways to build the control and data struc-
tures of the language.”).
103 An influential article on building languages out of orthogonal primitives
is Peter J. Landin,TheNext 700 ProgrammingLanguages, 9 COMM.ACM157
(1966). See alsoGuy L. Steele, Jr„ Growing a Language (1998) (unpublished
manuscript), http://www.cs.virginia.edu/~evans/cs655/readings/steele.pdf.
104 Some authors treat modularity as a part of orthogonality. See SEBESTA,
supra note 16, at 9 (“Furthermore, every possible combination of primitives
is legal and meaningful.”).

http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf
http://www.cs.virginia.edu/protect unhbox voidb@x protect penalty @M {}evans/cs655/readings/steele.pdf

Vol. 24 Yale Journal of Law & Technology 129

Despite this, title trees are expressive: they suffice tomodel
a wide variety of estates and future interests. A complicated
property concept like “fee simple subject to condition subse-
quent” can be broken down into a suitable combination of title
tree nodes. Expressivity is a design constraint; orthogonality
and modularity are ways of achieving it despite minimality and
simplicity.

And finally—and this is necessarily more subjective—title
trees are faithful to the property-law concepts they model. A
title tree bears a close resemblance to the conveyance it comes
from—not perfect, but close. The translation rules are also min-
imal, simple, orthogonal, and modular. The translation of con-
veyances into title trees respects their structure.

Taken all together, these properties describe an elusive no-
tion of elegance in programming-language design. An elegant
language is mathematically clean but also easy to use; it en-
ables a programmer to see at a glance how their code will work
and what it will do.105 The theoretical core of programming-
language theory—the “lambda calculus” invented by logician
Alonzo Church in the 1930s—has just three primitive opera-
tions and its semantics has only one rule, but it is expressive
enough to model any program in any programming language,
and clean enough that computer scientists use it to explain con-
cepts to each other.106 Orlando’s title trees aren’t on that level
of exquisite elegance, but we have tried tomake them as elegant
as we could.

105 On elegance in software, see generally BEAUTIFUL CODE (Andrew Oram
& Greg Wilson eds., 2007), and in particular Yukihiro Matsumoto, Treating
Code as an Essay (Nevin Thompson trans.), in id. at 477.
106 See generally H.P. BARENDREGT, THE LAMBDA CALCULUS (rev. ed.
1985) (encyclopedic reference); Raul Rojas, A Tutorial Introduction to
the Lambda Calculus (2015) (unpublished manuscript), https://arxiv.org/
abs/1503.09060 (gentle technical introduction); RAYMOND SMULLYAN, TO
MOCK A MOCKINGBIRD (1985) (non-technical introduction via puzzles about
songbirds); Alligator Eggs!, WORRYDREAM, http: / /worrydream.com/
AlligatorEggs/ (non-technical introduction via cute drawings of alligators).

https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
https://arxiv.org/abs/1503.09060
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/

130 A Programming Language for Future Interests 2022

2. Littleton

Littleton is primarily implemented in about 3,000 lines of
code in the OCaml programming language.107 It is designed as
a web app; the user interface is a mixture of HTML, CSS, and
JavaScript. The back-endOCaml code is compiled to JavaScript,
which means that it runs entirely in the user’s browser. The of-
ficial site at https://conveyanc.es includes include three versions
of Littleton: (1) a live online version that anyone can use, (2)
the complete source code for anyone to copy and modify, and
(3) a prebuilt version that anyone can copy to their own server
and run.

Compared with more familiar languages such as C, Python,
and Java, OCaml may seem like an unusual choice. Three fea-
tures of OCaml, however, make it particularly well-suited for
writing DSL interpreters like Littleton.

First, OCaml is functional.108 AnOCaml program is not a
sequence of steps to execute—do this, then do that. Instead, it
consists almost entirely of functions to be evaluated. All of the
important parts of Littleton are described and implemented as
functions. This leads to a close correspondence between the the
functional definitions of Orlando and their implementation in
Littleton. The translation function and the update function are
both functions in Littleton’s source code. So are the functions
that compute reachability and vesting along paths, the function
that derives a human-readable name from an interest, andmany
more. Adding a new feature is generally a matter of defining a

107 See generallyANDREWW. APPEL, MODERN COMPILER IMPLEMENTATION IN
ML (1998) (describing the implementation of compilers and interpreters in
the ML language, form which OCaml is derived).
108 For introductions to functional programming languages and a functional
approach to programming, see generally HAROLD ABELSON & GERALD JAY
SUSSMANWITH JULIE SUSSMAN, STRUCTURE AND INTERPRETATION OF COMPUTER
PROGRAMS (2d ed. 1996) (canonical); FRIEDMAN, DANIEL P & FELLEISEN,
MATTHIAS, THE LITTLE SCHEMER (4th ed. 1995) (gentle); MIRAN LIPOVACA,
LEARN YOU A HASKELL FOR GREAT GOOD!: A BEGINNER’S GUIDE (2011)
(quirky); ALVIN ALEXANDER, FUNCTIONAL PROGRAMMING, SIMPLIFIED (2017)
(verbose). A classic manifesto in favor of functional languages is John
Backus, Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs, 21 COMM. ACM 613 (1978).
McCarty’s TAXMAN was written partly in the functional language LISP,
from which OCaml derives. TAXMAN, supra note 20, at 850 n.54.

https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es
https://conveyanc.es

Vol. 24 Yale Journal of Law & Technology 131

let rec delta (t : term) : term =
match t with
| Bottom -> Bottom
| Atom i -> Atom i
| Seq (t1 , t2) ->

if delta t1 = Bottom then delta t2
else Seq (delta t1 , t2)

| If (c , t1 , t2) ->
if (C . eval c) then delta t1
else delta t2

| While (s ,c , expr1) ->
if (not (C . eval c)) || delta expr1

= Bottom then Bottom
else While (s , C . delta c , delta
expr1)

Figure 25: Definition of 𝛿() in Littleton source code

new mathematical function and then translating that function
into OCaml code. This has helped immensely with rapid proto-
typing of different possible approaches.

Second, OCaml is strongly typed. Data comes in many dif-
ferent types. In Orlando, types include conditions, title trees,
and conveyances. In other programming languages, types of-
ten include integers, strings, and lists. Some languages allow
programmers to store any kind of data in any variables and ma-
nipulate it freely. Sometimes, this leads to type conflicts, where
the programmer tries to combine incompatible types of data,
like trying to add the number 5 and the string hello good sir,
which can cause bugs and crashes. OCaml checks the type of
every variable and every piece of data when a program is com-
piled, and produces an error then, rather than later when the
program is run. This means that many kinds of bugs are caught
and prevented early. Strong typing helped us be careful, for
example, to keep conveyances and title trees distinct. For pro-
grams (like Littleton) that interpret other programs (like con-
veyances), this strict separation between different types of data
is quite helpful in preventing subtle design mistakes.

132 A Programming Language for Future Interests 2022

Third, OCaml uses a powerful formof pattern-matching.109

For a kind of data—like a title tree—that comes only in one of
a finite number of forms, OCaml lets programmers define func-
tions by cases on those forms. For example, the Orlando func-
tion 𝛿() is defined by cases on a title tree. Compare its definition
with the OCaml code implementing it in Figure 25. This simply
is the definition of 𝛿(), transposed into slightly different nota-
tion. Other core parts of Littleton, like the translation and sim-
plification code, are similarly transparent. Again, this is partic-
ularly useful when writing programming-language interpreters.
It is easy to implement mathematical semantic definitions and
to confirm that the implementation matches the definition. We
took advantage of this simplicity to experiment with dozens of
different definitions on our way to the final version of Orlando.

B. Insights into Property Doctrine

Formalization has a disciplining effect; it forces implemen-
tors to be precise about the meaning and behavior of construc-
tions, and this in turn helps users to be precise about what they
intend. This subsection discusses three ways in which a formal-
ized approach helps clarify specific doctrinal rules.

1. Defaults

There are several linguistic subtleties associated with pars-
ing life estates. One of them is that a conveyance can create an
interest with no explicitly specified quantum. The words to A
by themselves are sufficient to give A an interest. So Orlando
includes the grammar rule:

quantum → 𝜖
which says that a quantum can consist of 𝜖, a standard computer-
science notation for the “empty string,” i.e. no characters, not
even a space. (𝜖 is to conveyances as ⊥ is to title trees.) The
grammar uses it as a placeholder to represent the default quan-
tum that an interest has when none is given.

But this begs the question: what is the default quantum?
This is one of the classic doctrinal gotchas taught to Property

109 See Minsky & Weeks, supra note 36 (explaining pattern-matching); see
also TAXMAN, supra note 20, at 855 (discussing use of pattern-matching in
TAXMAN).

Vol. 24 Yale Journal of Law & Technology 133

Jand… heirsK𝑝 = trueJ𝜖K𝑝 = 𝑝 is aliveJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is alive
(a) Default quantum (older rule)

Jand… heirsK𝑝 = trueJ𝜖K𝑝 = trueJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is alive
(b) Default quantum (modern rule)

Figure 26: Two different translation rules

students. Well into the 20th century, some courts held that a
bare grant of the form to A with no words explicitly describing
the quantum of interest being granted was held to effectively
create a life estate.110 But over time that default flipped, and
the modern rule is that it creates a fee simple. 111

Orlando models this shift by using two different translation
rules. Compare the two sets of translation rules in Figure 26. In
the former, which corresponds to the earlier doctrine, the lan-
guage to A creates a life estate, just like to A for life does. In
the latter, which corresponds to the modern doctrine, the lan-
guage to A creates a fee simple, just like to A and their heirs
does. Neither definition is correct or incorrect in the abstract;
each of them is useful for modeling a different set of legal rules.
Formalizationmakes this doctrinal change over time easy to see
and easy to describe. Note that the two sets of rules differ in ex-
actly one line; this change is a nice example of modularity in
that it does not affect the rest of Orlando or of property law.

110 See, e.g., Cole v. Steinlauf, 144 Conn. 629, 631-32 (1957). See generally
THOMAS F. BERGIN & PAUL G. HASKELL, PREFACE TO ESTATES IN LAND AND
FUTURE INTERESTS at 24-27 (2nd ed. 1984) (discussing origin and construction
of ”and his heirs” language).
111 See, e.g., Dennen v. Searle, 149 Conn. 126, 135-39 (1961) (discussing the
history of the default and overruling Cole).

134 A Programming Language for Future Interests 2022

while C does not marry to C

while A is alive to B

to A

(a) (to A for life, then to B), but if C marries to C

while A is alive while C does not marry to C

to A to B

(b) to A for life, then (to B, but if C marries to C)

Figure 27: Two alternative title trees

Concretely, Littleton implements both sets of translation
rules for a default quantum. The modern rule is enabled by de-
fault. But a configuration setting in Littleton allows the user to
toggle between the earlier preference for a life estate and the
modern preference for a fee simple.

2. Syntactic Ambiguity

For another kind of ambiguity lurking beneath the surface
of the usual informal presentation of future interests, consider
the grant

to A for life, then to B, but if C marries to C

If A dies and then C marries, it is clear that C’s interest should
divest B’s. But what if C marries while A is still alive? Is A
or C entitled to possession? Is A’s interest also subject to this
executory limitation in favor of C? This is a scope problem. The
limitation could have broad scope and apply to bothA’s interest
and B’s, i.e.:

(to A for life, then to B), but if C marries to C

or it could have narrow scope and apply only to B’s, i.e:
to A for life, then (to B, but if C marries to C)

The two diagrams in Figure 27 depict the two possibilities.

Vol. 24 Yale Journal of Law & Technology 135

grant ⇒ grant then grant
grant ⇒ grant then (grant)
grant ⇒ grant then (grant but if condition grant)

(a) Narrow scope

grant ⇒ grant but if condition grant
grant ⇒ (grant) but if condition grant
grant ⇒ (grant then grant) but if condition grant

(b) Broad scope

Figure 28: Derivations with different scope

It is not the case that one of these diagrams is right and the
other is wrong. There are conveyances in which a broad scope
is appropriate and intended; there are conveyances in which a
narrow scope is appropriate and intended. A language for mod-
eling conveyances should not force once choice or the other. It
should support both, just as it supports both fees simple and life
estates.

Thus, the grammatical rule for executory limitations makes
explicit which clauses are subject to them.

grant ⇒ grant1 but if condition grant2
This rule looks like the then rule, and it seems like it adopts
broad scope: every interest before the executory limitation is
subject to it. But that is not quite what it says. Instead, what-
ever granting clauses are generated by grant1 are subject to the
executory limitation condition. Consider the two derivations in
Figures 28, in which parentheses have been added between the
two steps in the derivation. The parentheses, like the parenthe-
ses in (10 ∗ 2) + 3 and 10 ∗ (2 + 3), clarify which of two possible
interpretations is correct. Note that in the first derivation, with
narrow scope, only one of the two interests before the but if
was generated from grant1 in this rule.

From a formal perspective, the scope ambiguity matters
because the semantics of but if are not associative. Compare
the semantics of then, which are associative. Consider the con-
veyance

to A for life, then to B for life, then to C

136 A Programming Language for Future Interests 2022

which can be understood as
to A for life, then (to B for life, then to C)

or as
(to A for life, then to B for life), then to C

In this case, the syntactic ambiguity does not matter and the re-
sulting title trees will be semantically equivalent. The keyword
then and its translation, operator→, are associative in the same
way that addition is: 2 + (3 + 4) = (2 + 3) + 4. It does not matter
where the parentheses go. This is not an accident. The rela-
tionship “𝑥 comes before 𝑦” is naturally captured by an associa-
tive operator, and the definition of 𝛿() has been carefully cho-
sen so that it is associative: 𝑥 → (𝑦 → 𝑧) behaves identically to
(𝑥 → 𝑦)→ 𝑧. But the relationship of one interest divesting a pre-
vious one is not naturally associative, which produces a recur-
ring scope ambiguity, which Orlando deals with using explicit
parentheses.

3. “Theorems” of Property Law

Orlando’s definitions are mathematical. The are written us-
ing the dialect of mathematical notation used by programming-
language theorists, and they describe Orlando’s syntax and se-
mantics in terms of abstract mathematical structures. This isn’t
just a notational convenience; it opens up new ways to reason
about Orlando programs, and thus about property law.

For example, consider the proposition that a fee simple is
perpetual. More precisely, after any possible sequence of events,
the owner of a fee simple will still hold a fee simple. Let us
write this out formally in mathematical notation. Let ℎ refer to
a history: a sequence of events. And let Δℎ(𝑡) be the result of
using 𝛿() to update the title tree 𝑡 with the events in the history
ℎ, one at a time.112 Then the proposition that a fee simple is
perpetual is the proposition that the following equation holds
for all possible histories ℎ:

Δℎ(to 𝑝) = to 𝑝
The proof is by mathematical induction: if the equation holds
for the history with no events and it holds on a history with 𝑛+1

112 Δ() is the “capitalized” version of 𝛿(): it is 𝛿() applied to multiple events.
For the details of howΔℎ() is defined, see PropertyConveyances, supranote 7.

Vol. 24 Yale Journal of Law & Technology 137

events whenever it holds on a history with 𝑛 events, then it holds
for all histories, regardless of how many events they contain.113

Start with the case where ℎ contains no events. Then it is
trivially true that Δℎ(to 𝑝) = to 𝑝 because the title tree does not
need to be updated when there are no events to update it with.

Now consider the case where ℎ contains 𝑛 + 1 events. Then
we can rewrite Δℎ(to 𝑝) as Δ𝑒(Δℎ′(to 𝑝)), where ℎ′ is the first 𝑛
events in ℎ and 𝑒 is the most recent event. I.e., first update the
title tree with ℎ′ and then update it with 𝑒. But we are allowed
to assume that Δℎ′(to 𝑝)) = to 𝑝, because ℎ′ has only 𝑛 events
in it. So Δ𝑒(Δℎ′(to 𝑝)) = Δ𝑒(to 𝑝). To update a title tree by a
single event 𝑒, we evaluate 𝛿() on the tree after the event takes
place. But by the definition of 𝛿() for to nodes, 𝛿(to 𝑝) = to 𝑝
regardless of what 𝑒 is. Thus we have established

Δℎ(to 𝑝) = Δ𝑒(Δℎ′(to 𝑝)) = Δ𝑒(to 𝑝) = to 𝑝
which completes the proof that the equation holds where ℎ con-
tains 𝑛 + 1 events.

This is a comparatively simple proof. Other proofs about
programming languages use more sophisticated forms of induc-
tion, other types of semantics, and even computer assistance.
In previous work directed at computer scientists, we formalized
four other “theorems” of property law: that ownership is unam-
biguous; first in time, nemo dat quod non habet; first in right;
and conservation of estates.114

This is a novel way of thinking about familiar heuristics,
which gives old claims about property law a new kind of theoret-
ical content. These proofs do not mean that judges would find
that a particular person has a right to possession. Mathematical
proofs do not establish legal propositions.115 But they can help
to show thatOrlando is a faithful model of property law. A legal
proposition—a fee simple is perpetual—can be given a precise
formulation as a claim about the behavior of an Orlando pro-
gram, and that formulation can be proven true given Orlando’s
definitions. So we have rigorous assurance that Orlando satis-
fies important desiderata of a model of property law.

More ambitiously, restating claims about doctrine in terms
of claims about formal programming-linguistic models can help

113 See SIPSER, supra note 82, at 23 (explaining mathematical induction).
114 See Property Conveyances, supra note 7.
115 See TAXMAN, supra note 20, at 841.

138 A Programming Language for Future Interests 2022

clarify the content of those claims and make the points of dis-
agreement among scholars more evident. The leading future-
interests scholars of the first half of the twentieth century con-
ducted a lengthy and arid debate over how to classify the inter-
est held by the residuary devisee of a will to A for life, then
to those of A's children who survive A.116 The issue might have
been joinedmore clearly and conclusively if they hadmade their
arguments with dueling semantics that reduced their various po-
sitions to a common (programming) language.

C. Insights into Property Theory

Orlando holds a mirror up to the common-law system of
estates and future interests. Some things are easier to see from
another angle. Modeling conveyances as a programming lan-
guage helps to explain property law. In particular, three fea-
tures of property law noted by ThomasW. Merrill and Henry E.
Smith are thrown into sharp relief.

1. The Numerus Clausus

First, property law is subject to the numerus clausus (Latin
for “closed number”): interests in property can exist only in a
finite number of forms.117 Property lawyers and their clients
must work within the existing forms. Consider the case of John-
son v. Whiton, where Royal Whiton’s will purported to create
an estate “to . . . Sarah A. Whiton and her heirs on her father’s
side.” As Oliver Wendell Holmes, Jr. put it, “A man cannot cre-
ate a new kind of inheritance. . . . [I]f the words ‘on her father’s

116 SeeWythe Holt, The Testator Who Gave Away Less Than All He or She
Had: Perversions in the Law of Future Interests, 32 ALA. L. REV. 69, 84 (1980)
(reviewing and criticizing their answers, and proposing that it be called a
“perversion”).
117 ThomasW.Merrill &Henry E. Smith,Optimal Standarization in the Law
of Property: the Numerus Clausus Principle, 110 YALE L.J. 1, 3 (2000) [here-
inafter Optimal Standardization]; see also Henry E. Smith, Standardization
in Property Law [hereinafter Standardization], in RESEARCH HANDBOOK ON
THE ECONOMICS OF PROPERTY LAW 148 (Kenneth Ayotte & Henry E. Smith
eds., 2011); ChristinaMulligan,ANumerus Clausus Principle for Intellectual
Property, 80 TENN. L. REV. 235, 237-42 (2012).

Vol. 24 Yale Journal of Law & Technology 139

side’ do not effect the purpose intended, they are to be rejected,
leaving the estate a fee simple”118

Orlando embraces the numerus clausus with a vengeance.
The acceptable forms of conveyances are limited to those gen-
erated by Orlando’s conveyance grammar. Unless the language
of a conveyance can be fit into one of the allowable patterns, it is
not valid Orlando syntax, and Littleton will not attempt to inter-
pret it. Similarly, the acceptable forms of interests are limited
to those that can exist in a title tree generated by its title-tree
grammar. Here is the code in Littleton that defines title trees:

type t =
| Bottom
| Atom of interest
| Seq of t * t
| While of source * c o ndition * t
| If of condition * t * t

In programming-language terms, this code defines the type of ti-
tle trees; it says that a title tree can have one of these five forms,
and no others. The numerus clausus, in other words, is a state-
ment about the types of property law.119

The restriction on allowable wording is a feature of pro-
gramming languages, not a feature of property law. A perfectly
plausible English-language conveyance like “I hereby convey to
my beloved nephew Geoffrey forever and ever, and to his heirs
successors and assigns, to have and to hold, free and clear, as
their own property” is not part of the fragment of conveyancing
Orlando and Littleton attempt to model. To be clear, lawyers
and judges might recognize this as creating a fee simple in Ge-
offrey, and computer scientists might attempt to write a natural-
language-processing system that could infer that this language
creates a fee simple. But that is not part of this project; we have
focused on the underlying legal structure, rather than all possi-
ble nuances of natural language.

In contrast, the restriction on allowable interests verymuch
is a feature of property law.120 Littleton never reports that a ti-
tle tree corresponds to a new or unknown kind of interest; it can

118 Johnson v. Whiton, 159 Mass. 424, 426 (1893).
119 See generally PIERCE, supra note 85 (discussing type theory).
120 The reason for the numerus clausus principle is more disputed than its
existence. Compare Optimal Standardization, supra note 117 (information

140 A Programming Language for Future Interests 2022

fit any possible title tree into the finite framework of property
law. There is no node or combination of nodes that corresponds
to Royal Whiton’s desire to restrict Sarah Whiton’s interest to
her heirs “on her father’s side.” That Orlando and Littleton
shoehorn every interest into the few forms of title trees they
recognizes is a feature, not a bug, because that is how property
law works.

Orlando also shows that the numerus clausus is far less re-
strictive than it seems. The forms of title trees are extraordinar-
ily general. An interest can be subjected to arbitrary conditions
on how it starts and ends, and interests can be combined in ar-
bitrarily long chains. The common-law catalog of allowable in-
terests (herein of “remainder in fee simple subject to executory
limitation”) is misleading because it is a catalog of names. By
modeling the functional behavior of interests, rather than start-
ing from their familiar names, Orlando shows how it is possible
to work with great flexibility using only the basic elements pro-
vided by property law. Some kinds of ownership—like Royal
Whiton’s patriarchal folly—are still unrepresentable. But more
is possible within the common-law system than it seems at first.

2. Recursivity

Merrill and Smith observe that the system of future inter-
ests is recursive:

These rules can feed into themselves. For example,
a fee simple can be physically divided and divided
yet again, or a lessee can create a sublease and the
sublessee a (sub)sublease, etc.121

They note that recursivity is a feature of natural languages,122

and in their casebook they observe that it is a feature of pro-
gramming languages as well.123 So it is with Orlando. The con-
veyance grammar is recursive: a granting clause be expanded

costs), with Chad J. Pomeroy, The Shape of Property, 44 SETON HALL L. REV.
797 (2014) (historical evolution).
121 Optimal Standardization, supra note 117, at 36-37; see also Henry E.
Smith, Property as the Law of Things, 125 HARV. L. REV. 1691, 1707-08 (2012)
[hereinafter Law of Things].
122 Optimal Standardization, supra note 117, at 36-37.
123 THOMAS W. MERRILL & HENRY E. SMITH, PROPERTY: PRINCIPLES AND POLI-
CIES 529 (3rd ed. 2017).

Vol. 24 Yale Journal of Law & Technology 141

into pair of granting clauses joined by then, and these granting
clauses can be expanded again, and so on an indefinitely large
number of times. And the title tree grammar is recursive, too:
every while, if, and → can be expanded into any title tree. Cor-
rectly capturing the recursivity of future interests was a key de-
sign principle for Orlando.

More than that, Orlando sheds light on how property law
is recursive. The legal language of conveyances is recursive in
the same way way that Orlando’s conveyance grammar is recur-
sive: arbitrarily long sequences of granting clauses can be strung
together. And the legal relations of future interests are recur-
sive in the same way that Orlando’s title trees are: title can be
carved up into arbitrarily large numbers of successive interests.
Orlando shows that these two kinds of recursivity are closely
related, because its syntax-directed translation of conveyances
into title trees maps recursive rules of the one into recursive
rules of the other. Property law can accommodate recursively
divided ownership, but the actual work of division is done by
property language, which partakes of natural language’s recur-
sivity. Orlando foregrounds and formalizes that relationship.

As Merrill and Smith point out, the analogy to natural lan-
guage breaks down because natural language is far more flexi-
ble.124 But this is precisely where a formal treatment based in
programming language theory can be more faithful to the do-
main being modeled than the usual linguistic characterizations
lawyers trade in. Students who have spent months learning to
look for ambiguities in the language of a legal test and to chal-
lenge the application of every rule are often frustrated to en-
counter a legal domain with bright-line rules that leave little
room for argument. In this respect, the notorious inflexibility
of computer programming may be an accurate reflection of the
law of future interests.

3. Modularity

Smith has argued at length that private law in general and
property law in particular make extensive use of modularity to
economize on information costs.125 By decomposing legal re-

124 Optimal Standardization, supra note 117, at 37-38.
125 See Law of Things, supra note 121; Standardization, supra note 117;
Optimal Standardization, supra note 117; Henry E. Smith, ModularIty in

142 A Programming Language for Future Interests 2022

lationships into weakly coupled units, modularity makes it pos-
sible for actors to focus on the small number of modules that
directly affect them, without having to worry about the legal
consequences of other more remote modules.126 Where the
numerus clausus emphasizes the standardization of individual
modules, modularity emphasizes the separability of modules
from each other. In property law, Smith focuses on the way in
which discrete and distinguishable “ legal things” mediate prop-
erty rights. Some of these things are pre-legal, socially defined
things like chairs, cars, and plots of land. Some of them are
legally distinguishable interests in the same thing, like a life es-
tate and remainder in the same plot of land.

Orlando emphasizes the existing modularity of property
law by demonstrating how loosely coupled the multiple inter-
ests in the same piece of property truly are. The statement
that a life estate must be followed by a remainder or reversion
expresses a non-modularity of future interests: distinct mod-
ules can interact only in certain ways. But Orlando’s title-tree
node types are fully modular and orthogonal; they are not so
restricted. The rule about life estates and remainders is a rule
of how we talk about property interests, not a rule about how
property interests function.

The same is true of the conveyance grammar. If one starts
from the cumbersome common-law names, then tries to cre-
ate them using appropriate granting language while respecting
the rules about what can follow what, the result is a linguistic
dumpster fire. But Orlando’s conveyance grammar rules are
simple and orthogonal; there are no long-distance dependen-
cies between different parts of a conveyance. The only informa-

Contracts: Boilerplate and Information Flow, 104 MICH. L. REV. 1175 (2006).
See generally Christopher S. Yoo, Modularity Theory and Internet Regula-
tion, 2016 U. ILL. L. REV. 1 (detailed analytical breakdown of concept of
modularity); BARBARA VAN SCHEWICK, INTERNET ARCHITECTURE AND INNOVA-
TION (2012) (precise discussion of modularity); CARLISS Y. BALDWIN & KIM
B. CLARK, DESIGN RULES: THE PWER OF MODULARITY (2000) (locus classicus
of modularity theory).
126 A related literature analyzes the modularity of the constituent elements
of contracts. See Smith, supra note 125; Gerding, supra note 30; Cathy
Hwang, Unbundled Bargains: Multi-Agreement Dealmaking in Complex
Mergers and Acquisitions, 164 U. PA. L. REV. 1403 (2015); Cathy Hwang &
Matthew Jennejohn,Deal Structure, 113 NW. U. L. REV. 279 (2018).

Vol. 24 Yale Journal of Law & Technology 143

while B has not graduated to O

to A

(a) to A until B graduates college, then to O gives A a fee simple
determinable

while B has not graduated to B

to A

(b) to A until B graduates college, then to B gives A a fee simple
with executory limitation

while B has not graduated to B

to A

(c) to A, but if B graduates college to B gives A a fee simple
subject to executory limitation

Figure 29: One interest with three different names.

tion that must be remembered during translation is the iden-
tity of the grantor, for classifying interests as being retained
or non-retained, and for inserting implied reversions. The le-
gal rules for parsing conveyances are about as modular as any-
thing expressed by natural language can be; they have merely
been obscured under accumulated layers of overly fussy descrip-
tion. Much of the confusion about the workings of the system
of estates and future interests arises not because the substan-
tive rules are complicated and arbitrary, but because the nam-
ing rules are complicated and arbitrary.

For example, compare the conveyances (1) to A until B
graduates college, then to O, (2) to A until B graduates college,
then to B, and (3) to A, but if B graduates college to B. As
depicted in Figure 29, they generate structurally identical title
trees. The only thing that varies is who takes possession after
B graduates, and the specific language of the grant. And yet
A’s fee simple is ”determinable” in (1) because it is followed by

144 A Programming Language for Future Interests 2022

an interest in the grantor, and ”subject to an executory limita-
tion” in (3) because it is followed by an interest in a transferee.
The Restatement complicates things even further by insisting
that A’s fee simple in (2) is ”with” an executory limitation be-
cause the limitation is stated in the grant creating A’s interest,
while it is ”subject to” an executory limitation in (3) because
the limitation is stated in a subsequent grant.127 There is a use-
ful terminological distinction between O’s reversion in (1) and
B’s executory interest in (2) and (3), as executory interests are
subject to the Rule Against Perpetuities and reversions are not.
But there is nothing useful to be gained by describing A’s func-
tionally identical interest three different ways depending on the
context.

Conclusion

We have turned future interests into a programming lan-
guage. Or perhaps they were one already. One interpretation
of the notorious driness of the subject is that generations of
courts and scholars had distilled its doctrines into a nearly pure
form, one closer to logic than to experience. Since before the
Restatement (First) was published, reformers have been calling
for a dramatic simplification of the system of estates and future
interests.128 Maybe the task is smaller than it seems.

127 CompareRESTATEMENT (FIRST) OF PROP. § 46 (1936) [hereinafter RESTATE-
MENT (FIRST)] (”subject to”),withRESTATEMENT (FIRST), supra, § 47 (”with”).
128 Myres S. McDougal, Future Interests Restated: Tradition Versus Clarifi-
cation and Reform, 55 HARV. L. REV. 1077, 1115 (1941) (“To make a superb
inventory of Augean stables is not to cleanse them.”); J.J. Duleminier, Con-
tingent Remainders and Executory Interests: A Requiem for the Distinction,
43MINN. L. REV. 13 (1958); William F. Fratcher,AModest Proposal for Trim-
ming the Claws of Legal Future Interests, 21 DUKE L.J. 517 (1972); Lawrence
W. Waggoner, Reformulating the Structure of Estates: A Proposal for Leg-
islative Action, 85 HARV. L. REV. 729 (1972); Gerald Korngold, For Unifying
Servitudes and Defeasible Fees: Property Law’s Functional Equivalents, 66
TEX. L. REV. 533 (1987); Thomas P. Gallanis, The Future of Future Interests,
60 WASH. & LEE L. REV. 513 (2003); D. Benjamin Barros, Toward a Model
Law of Estates and Future Interests, 66 WASH. & LEE L. REV. 3 (2009). In
fairness, the Restatement (Third) made a start. See Lawrence W. Waggoner,
What’s in the Third and Final Volume of the NewRestatement of Property that
Estate Planners Should KnowAbout, 38 ACTECL.J. 23 (2012). And the Re-
statement (Fourth) is underway. See Thomas W. Merrill & Henry E. Smith,

Vol. 24 Yale Journal of Law & Technology 145

Future interests are just the start. Formalizing legal rules as
a programming language can clarify their conceptual structure
in a way that other approaches do not. Elegant algorithms are
often not just correct, but self-evidently correct, and the process
of finding them “adds a strong dose of precision and rigor” to
legal analysis.129 Fresh insights await as more parts of law are
subjected to this new type of scholarly scrutiny.

We believe that Orlando offers a firm theoretical founda-
tion for future research in formalizing property law. Orlando’s
title trees can easily be extended with new node types—for ex-
ample, perhaps with a common node to indicate concurrent own-
ership in a tenancy in common—without requiring any changes
to existing node types. And Orlando’s conveyance grammar
can easily be extended with new rules to allow conveyances to
create these new nodes. The following is just a partial list of
topics that strike us as ripe for formalization in an extension of
Orlando:
• The feudal system that preceded the one Orlando currently
formalizes, with moving parts like seisin, subinfeudation and
substitution, homage, and feudal incidents.

• Equitable interests, such as historical uses and modern trusts.

• Nonpossesory interests, such as easements, servitudes, and
liens.

• Dower, curtesy, and spousal shares.

• Modern RAP reforms, such as wait-and-see.

• Priority among conflicting transfers and the effects of record-
ing acts.

• Involuntary transfers, such as adverse possession.
And formalizing property law is just one small corner of

what programming languages have to offer. Legal scholars Paul
Ohm and Houman Shadab have argued that writing programs
can be a form of legal scholarship.130 Sometimes the best pro-
gram for the job will be an interpreter for a new legal program-
ming language. Just as legal scholars use the tools of critical

Why Restate the Bundle? The Disintegration of the Restatement of Property,
78 BROOK. L. REV. 681 (2014).
129 TAXMAN, supra note 20, at 839.
130 Ohm, supra note 49; Shadab, supra note 49.

146 A Programming Language for Future Interests 2022

race theory and economic theory to illuminate law, they can use
the tools of programming-language theory too. Law and linguis-
tics is an established subfield;131 law and programming linguis-
tics could be one, too. Most legal scholars will not work with
programming languages, but some of them should. If they can
learn to perform regressions and run collocation queries, they
can write context-free grammars and operational semantics.

To quote the computer scientist Donald Knuth, “Science is
what we understand well enough to explain to a computer. Art
is everything else we do.”132 For centuries, future interests have
been an arcane art. Now they are a science.

131 See, e.g., Jill C. Anderson, Just Semantics: The Lost Readings of the Amer-
icans with Disabilities Act, 117 YALE L.J. 992 (2007); Thomas R. Lee &
Stephen C. Mouritsen, Judging Ordinary Meaning, 127 YALE L.J. 788 (2017);
BRIAN G. SLOCUM, ORDINARY MEANING: A THEORY OF THE MOST FUNDAMEN-
TAL PRINCIPLE OF LEGAL INTERPRETATION (2015).
132 MARKO PETKOVSEK, HERBERT S. WILF & DORON ZEILBERGER, A=B vii
(1997).

Vol. 24 Yale Journal of Law & Technology 147

Orlando Reference

conveyance ⇒ owner conveys grant

grant ⇒ to person quantum
grant ⇒ grant limitation
grant ⇒ if condition grant
grant ⇒ if condition grant otherwise grant
grant ⇒ grant but if condition grant
grant ⇒ grant but if condition … reenter
grant ⇒ grant then grant
grant ⇒ (grant)

quantum ⇒ 𝜖
quantum ⇒ and pronoun heirs
quantum ⇒ and the heirs of pronoun body
quantum ⇒ for life
quantum ⇒ for the life of person
quantum ⇒ for 𝑛 years

limitation ⇒ while condition
limitation ⇒ until condition

person ⇒ O | A | B | C | … | Alice | Bob | …
pronoun ⇒ her | his | hir | their | zir | …

Figure 30: Conveyance grammar

148 A Programming Language for Future Interests 2022

Jowner conveys grantK(𝑡) =
𝑡[(JgrantKowner→ to owner) / to owner]

Jto person trueK𝑜 = to personJto person quantumK𝑜 = to person while JquantumKpersonJgrant limitationK𝑜 = JgrantK𝑜 while JlimitationKJif condition grantK𝑜 = if JconditionK then JgrantK𝑜 else⊥Jif condition grant1 otherwise grant2K𝑜 =
if JconditionK then Jgrant1K𝑜 else Jgrant2K𝑜Jgrant1 but if condition grant2K𝑜 =
((Jgrant1K𝑜 → to 𝑝) while JconditionK)→ Jgrant2K𝑜Jgrant but if condition … reenterK𝑜 =
(Jgrant1K𝑜 while JconditionK and 𝑜 does not reenter)→ to 𝑜Jgrant then grant2K𝑜 = Jgrant1K𝑜 → Jgrant2K𝑜J(grant)K𝑜 = JgrantK𝑜

J𝜖K𝑝 = trueJand … heirsK𝑝 = trueJand the heirs … bodyK𝑝 = 𝑝 has issueJfor lifeK𝑝 = 𝑝 is aliveJfor the life of 𝑞K𝑝 = 𝑞 is aliveJfor 𝑛 yearsK𝑝 = 𝑛 years have not yet passed

Jwhile conditionK = JconditionKJuntil conditionK = ¬JconditionK
Figure 31: Translation function

Vol. 24 Yale Journal of Law & Technology 149

𝑡 ⇒ to 𝑝
𝑡 ⇒ ⊥
𝑡 ⇒ 𝑡1 while 𝑐
𝑡 ⇒ if 𝑐 then 𝑡1 else 𝑡2
𝑡 ⇒ 𝑡1→𝑡2

Figure 32: Title tree grammar

𝛿(to 𝑝) = to 𝑝
𝛿(⊥) = ⊥

𝛿(𝑡 while 𝑐) =
⎧
⎨
⎩

𝛿(𝑡) while 𝑐 if ⊧ 𝑐 and 𝛿(𝑡) ≠ ⊥
⊥ if ⊭ 𝑐
⊥ if 𝛿(𝑡) = ⊥

𝛿(if 𝑐 then 𝑡1 else 𝑡2) = {𝛿(𝑡1) if ⊧ 𝑐
𝛿(𝑡2) if ⊭ 𝑐

𝛿(𝑡1→𝑡2) = {𝛿(𝑡1)→ 𝑡2 if 𝛿(𝑡1) ≠ ⊥
𝛿(𝑡2) if 𝛿(𝑡1) = ⊥

Figure 33: Update function

	Introduction
	Programming Languages and Law
	Contract
	Tax
	Legal Drafting
	Visualization

	An Informal Overview
	Previous Work
	Orlando and Littleton
	An Example

	The Formal Details
	Title Trees
	Semantics
	Conveyances
	Translation
	Conclusion

	Lessons for Property Law
	Design Principles
	Orlando
	Littleton

	Insights into Property Doctrine
	Defaults
	Syntactic Ambiguity
	``Theorems'' of Property Law

	Insights into Property Theory
	The Numerus Clausus
	Recursivity
	Modularity

	Conclusion
	Appendix: Orlando Reference

