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Abstract

We present a verification tool for the functional hardware description lan-
guage SAFL. Model checking [JGP99] is a popular verification technique.
Given a model of a finite state transition system, and a temporal logic spec-
ification, a model checker determines if the model satisfies the specification.
Advantages of model checking over other verification techniques are that it
is fully automatic, and can produce counter examples for false specifications.

We have developed a model checker which uses the SAFL language as
the modelling language. SAFL [MS00] is a functional hardware description
language. As a result of this project, the same SAFL description can be
used to describe a circuit and as a model for model checking. No separate
model of the system is needed. It is hoped that this will make verification
a regular part of the development process for SAFL programs. Just as a
static type checker enforces safety properties for a programming language,
we would like to see our model checker used to verify user-defined temporal
properties before compiling SAFL programs to silicon. While limitations in
model checking technology, (i.e., the state explosion problem), make achiev-
ing this goal unlikely for larger programs, techniques such as abstraction
and a translation to an industrial-grade symbolic model checker, SMV, can
be used to overcome them in many cases.
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Original Aims of the Project

The original goal of this project was to produce a tool for verifying prop-
erties of SAFL programs. More specifically, we aimed to build a model
checker which uses SAFL, a functional hardware description language, as
the modelling language.

Work Completed

We present a complete explicit state model checker for SAFL. First, we use a
modified version of Sharp’s SAFL front-end to produce parse trees annotated
with temporal logic specifications. We then compile this language to an
intermediate language, SAFLasm. From this intermediate representation,
we infer the behaviour of the system, producing a finite-state transition
system. Finally, a model checker verifies the temporal logic specification,
producing an execution path as a counter-example if the property is not
true of the system.

Additionally, we have implemented a translator from SAFLasm to the
input language of SMV, an industrial grade symbolic model checker. This
allows the space limitations typically associated with explicit state model
checking to be avoided.
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Chapter 1

Introduction

Ordinary language is totally unsuited for expressing what physics
really asserts, since the words of everyday life are not sufficiently

abstract. Only mathematics and mathematical logic can say as little
as the physicist means to say.

– Bertrand Russell

T he correct design and implementation of digital systems is a hard
task. As systems become more complicated, it becomes increasingly
difficult to engineer them to have their desired behaviours. Software

engineering offers techniques for coping with these challenges. However, they
do not solve the problem completely; informal declarative specifications are
unable to express the intricacies of complex systems precisely. As Russell
puts it, “the words of everyday life are not sufficiently abstract”. Formal
logic is needed to establish safety properties for critical applications. While
an error in a airline ticketing system may be undesirable, its ill effects are
correctable. A similar error in an air traffic control system is unacceptable.
As digital systems are now prevalent in many parts of everyday life (e.g., in
cars, microwaves, mobile phones), it is imperative that we have confidence
they are safe. Thus, verification techniques based on formal logic are an
increasingly necessary part of the systems development process.

Formal techniques provide a rigid and disciplined way to reason about
systems. The techniques that are together called “formal methods” vary
greatly. At a basic level, computer scientists often provide pencil and paper
proofs of important properties of systems. For example, program language
designers usually give a proof of type soundness that states that certain kinds
of errors will not occur in the execution of well-typed programs. These proofs
are very useful, and have been used to establish important safety properties
for many systems. However, they rely on an expert to model the important

1



2 CHAPTER 1. INTRODUCTION

characteristics of the system and to produce the correctness proof (usually
entirely by hand!). These proofs are both costly and error-prone, as they
are generated by humans. As a result, computer scientists have developed
verification systems that can produce (at least partial) correctness proofs
automatically.

There are three key advantages to automatic verification. First, because
the deductions are performed mechanically, there is less room for error than
in hand-produced proofs. Second, many of the tedious cases of a proof
can be handled automatically. Thus, the expensive expert is only needed
for a reduced set of cases. Third, automatic techniques can sometimes be
used to produce proofs directly from a specification of the system itself.
This makes it possible to perform the verification on a description of the
system itself, rather than on a simplified model. Or at the very least, the
abstraction needed to produce the model can be automated, and performed
in a principled rather than ad hoc fashion. Indeed, a key result of this project
is in producing a verification mechanism where the description language for
the system is the modelling language.

In this project, we explore a particular automatic verification technique
known as model checking. This dissertation describes our work building a
tool to verify temporal logic specifications of hardware circuits described in
a functional hardware description language, SAFL.

1.1 Model Checking

Model checking is an automatic technique for proving properties about finite
state systems. Given a model of a system, and a specification, a model
checker automatically determines if the system satisfies the specification.
Thus, in order to verify the behaviour of a system, it is only necessary to
produce a model of the system M , and to express the desired property p in
a suitable specification logic; the model checker does the rest.

Modelling

Most model checkers work on a kind of model known as a Kripke structure,
a description of a finite-state transition system. Clarke et. al [JGP99] give
a formal definition as follows. A Kripke structure is a quadruple M =
(S, S0, R, L) and a set of atomic propositions AP (simple facts that are true
of states in S):

S a set of states
S0 ⊆ S a set of initial states
R ⊆ S × S the transition relation
L : S 7→ P(AP ) maps states to sets of atomic propositions
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Figure 1.1: Graphical Representation of a Kripke Structure

Kripke structures provide a general way for expressing the transitional
behaviour of systems. Consider the following Kripke structure over the set
of atomic propositions {p, q}:

S = {s1, s2, s3, s4}
S0 = {s1}
R = {(s1, s2), (s1, s3), (s2, s3), (s3, s2), (s3, s4), (s4, s4)}
L = L(s1) = {p} L(s2) = {q} L(s3) = {p, q} L(s4) = {}

As well as representing the atomic propositions that are true in each state,
this Kripke structure captures the transition behaviour of the system. Thus,
it is well suited to providing a model for reasoning about temporal properties
of systems.

Kripke structures are often represented graphically; a sketch of the sys-
tem above in shown in Figure 1.1. Each state is a node in the directed graph
and is labelled with the atomic propositions true in it. Transitions in R are
shown as edges between nodes. The start states in S0 are be shown as nodes
with an incoming edge.

These structures are very general, and can be used to represent a wide
variety of systems. However, it is not always obvious which features of
the actual system should be included the formal model. The relevance of
the verification results only apply to the formal model. Thus, deciding
the features to include or abstract away is an important decision in the
verification process.

Specification

Specification logics give a syntax and semantics for expressing properties
about systems. In the traditional approach to specification for programs,
Floyd-Hoare logic [Hoa69], programs are annotated with predicates that are
then be proved using some axioms and rules. So-called Hoare triples have
the general form

{P} cmd {Q}
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Figure 1.2: A system satisfying AF p

and informal semantics that if P holds and the execution of cmd termi-
nates, then Q holds after the execution. Hoare logic is generally useful for
reasoning about output values from programs. However, in many applica-
tions, particularly in the hardware domain, temporal properties are just as
important. For example, one might want to ensure that a value is never
zero during a computation. Using Hoare-style logics, it would be difficult to
formulate a specification of this property.

Temporal logics provide operators that make specifying properties which
involve time components easy. A logic that is often used in model checking is
Computation Tree Logic (CTL). Familiar first order logics, have connectives
(&,∨,=,⇒, ...) and quantifiers (∀,∃) for expressing symbolically the truth
values of propositions or predicates. CTL includes additional forms such as
AF φ, which is true of states s where φ is true in some future state along
all possible computation paths starting with s (a system whose root state
satisfies AF p is shown in Figure 1.2)

CTL properties are generally interpreted as applying to infinite compu-
tation trees. We can obtain an infinite tree by unwinding a Kripke structure,
following each possible transition in R beginning with the start states. A
partial unwinding for the Kripke structure shown in Figure 1.1 is given in
Figure 1.3.

The syntax of CTL forms φ is given by the following grammar:

φ ::= > | ⊥ | p | EX φ | AX φ | EF φ | AF φ | EG φ | AG φ
| E φ U φ | A φ U φ | φ & φ | φ ∨ φ | ¬φ

Informally, A is analogous to a ∀ quantifier for path properties. Similarly, E
is analogous to ∃ for path properties. The modality X is true of states where
a properties that hold in a “next” state, F for states where the property is
true in some “future” state, and G for states with a properties that is true
“globally”. Finally, U is true of states where one property is true “until”
another property holds.
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Figure 1.3: Partial unwinding of Kripke structure

CTL can be used to express many useful properties of finite state tran-
sition systems. The following CTL formulas are all true of the system, M ,
modelled in Figure 1.1 (we write M, s |= φ if p is true of s):

M, s1 |= AF ¬p: On all paths from s1, there is a future state where p is not
true.

M, s1 |= EX p & q: From state s1 there is a next state where p and q both
hold.

M, s1 |= ¬AGp: It is not the case that in all states on all computation paths
from s1, p holds. (Counter-example: the path s1, s3, s4, ...).

We briefly define satisfaction for CTL formulas inductively on the struc-
ture of formulas.

s |= >: true for any state s.

s |= ⊥: true for no states.

s |= EX φ: true if for some directly reachable state s′, s′ |= φ.

s |= AX φ: true if for all directly reachable state s′, s′ |= φ.

s |= EF φ: true if for some computation path π = s0, s1, s2, ... with s0 = s,
some si |= φ.

s |= AF φ: true if for all computation paths π = s0, s1, s2, ... with s0 = s,
some si |= φ.

s |= EG φ: true if there exists a computation path π = s0, s1, s2, ... with
s0 = s and each si |= φ.

s |= AG φ: true if s |= φ and for all computation paths π = s0, s1, s2, ... with
s0 = s, each si |= φ. (One can think of AG expressing an invariant).
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s |= E φ1 U φ2: true if for some computation path π = s0, s1, s2, ..., s = s0

and for some k ≥ 0 each sj with j < k sj |= φ1 and sk |= φ2.

s |= A φ1 U φ2: true if for all computation paths π = s0, s1, s2, ..., s = s0

and for some k ≥ 0 each sj with j < k sj |= φ1 and sk |= φ2.

s |= φ1 & φ2: true if s |= φ1 and s |= φ2.

s |= φ1 ∨ φ2: true if s |= φ1 or s |= φ2.

s |= ¬φ: true if s 6|= φ.

We’ve seen that temporal logics can be useful for expressing properties
about the transitional behaviour of systems that would be difficult to formu-
late using standard Hoare-style specification logics. Next we describe how a
model checker can verify CTL properties of Kripke structures automatically.

Verification

The automatic part of model checking comes in the verification step. The
model checker takes as input a model M = (S, S0, R, L), and a specification
φ and determines if the specification is true of the model.

There are several different techniques for solving the model checking
problem. Rather than solving the problem directly, it is often easiest to
determine the set of states T that satisfy a CTL specification. Then the
model checking question for the whole system reduces to determining if:
T ⊆ S0.

The task of associating a set of states with temporal logic specifications
can be performed by a simple syntax-directed recursive algorithm. For ex-
ample, every state satisfies >. Similarly, the set of states satisfying φ1 ∨ φ2

is just the union of the sets of states satisfying φ1 and φ2. The states satis-
fying forms containing temporal operators are more difficult to implement,
but can be built up using fixed-point computations. An algorithm using this
general technique is described in Chapter 3.

Thus, the verification step of model checking can be performed automat-
ically by computing the set of states that satisfy a CTL specification.

Efficiency and Limitations

Efficient algorithms for local model checking, linear in the size of the model
and specification, have been developed using similar techniques. However,
they suffer from a key limitation: the algorithm requires an explicit rep-
resentation of the model. For complex systems, an explicit representation
can be too large to store using current resource limitations. In practice,
this limits local model checking to fairly small systems and is known as the
“state explosion” problem.
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A key breakthrough in efficient model checking was made by Ken McMil-
lan [McM93]. His PhD thesis describes a technique for symbolic model
checking where the model M is represented implicitly using Bryant’s ROB-
DDs [Bry86]. BDDs can be used to avoid the state explosion problem and
in practice, often allows far larger systems to be verified. Most recent model
checkers have been built using McMillan’s technique (or indeed, based on
his SMV system). However in this project, we focus on building a tool with
an expressive modelling language rather than on efficient model checking
algorithms.

1.2 SAFL

SAFL [MS00] is a functional hardware description language (HDL). Descrip-
tions in SAFL are quite different than other description languages such as
structural Verilog or VHDL. Instead of specifying the structural properties
of hardware circuits, a SAFL programmer only describes the behaviour of
the program. An optimising compiler then translates a behavioural SAFL
specification to structural Verilog. A complete description of the language
is given in [MS00].

The syntax of SAFL programs resembles other functional languages such
as ML or Haskell. SAFL expressions have the following abstract syntax (the
full SAFL syntax is given in Appendix A):

e ::= c | x | if e1 then e2 else e3 | let ~x = ~e in e0

case e of e1 => m1 ... default => m
a(e1, ...earity(a)) | f(e1, . . . earity(f)) |

SAFL functions are defined like this:

fun f(~x) = e

And programs as a list of function definitions followed by a main function:

fun f1 ( ~x1) = e1

...
fun fn ( ~xn) = en

do main ( ~xn) = e

The following SAFL program (due to Sharp) implements a 16-bit add-
shift multiplier, and serves as a concrete example of SAFL syntax.

fun mult(x:16,y:16,acc:16):16 =
if (x=16’0 | y=16’0) then acc
else mult(x << 16’1,y >> 16’1,if y[0] then acc+x else acc)

do
main(x:16,y:16):16 = mult(x,y,16’0)
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The syntax w’v denotes the constant v with width w and y[0] is a 1-bit
slice containing the 0th bit of y.

The key feature of SAFL programs is that they can be statically allo-
cated. That is, the storage required to implement a SAFL description can
be determined from the program’s structure. Several restrictions are needed
to realise this property. First, unlike other functional languages, SAFL is
not higher-order; functions may not be used as values. Second, recursive
calls are only allowed in tail-call contexts.

In this project, we use SAFL as a modelling language for a model checker.
Thus, from a SAFL description of a hardware circuit, we extract a transition
system that captures the program’s behaviour. This process is described in
detail in Chapter 2.

1.3 Project Goals

As hinted above, the discrepancy between the actual system and the model
of the system can be a practical limitation in verifying systems. Often,
features must be omitted in the model – thus the property verified by a
model checker is only as correct modulo the assumption that the model
correctly captures the behaviour of the system.

The goal of this work is to shrink or eliminate this discrepancy. By using
SAFL as a modelling language for a model checker, it is hoped that the
process of designing and implementing a hardware system can be integrated
with the verification process. Just as programmers in a high-level language
annotate programs with types, which are checked at compile time by a
static analyser, SAFL hardware designers will be able to annotate their
descriptions with CTL specifications that are verified as they are compiled
to Verilog. Thus, formal verification becomes more accessible for hardware
designers.

1.4 Dissertation Organisation

Chapter 2 describes the early, background work that was used to design
the SAFL model checker. Chapter 3 describes the implementation of the
project. Chapter 4 describes in detail the verification of several smaller
SAFL programs, as well some measurements of the performance of our model
checker on different sized programs. Chapter 5 evaluates the results lists
some ideas for future research.



Chapter 2

Preparation

Perhaps believing in good design is like
believing in God, it makes you an optimist.

– Conran Terence

O
ur project proposal (reproduced in Appendix E) articulates the fol-
lowing basic goal for this project: “implementing a model checker
with SAFL as the modelling language”. While the requirements to

complete this project are fairly unambiguous, several refinements about how
to proceed were added to this goal before implementation work began. This
chapter describes the preparatory work.

2.1 Requirements

One of the most important stages of the software development cycle is the
requirements analysis stage. Here we examine the broad features that are
required of the project, without worrying about implementation details.

2.1.1 Core Behaviour

The desired behaviour of the SAFL model checker is to take as input a SAFL
program and a CTL specification and indicate if the program satisfies the
specification.

Achieving this goal involves four distinct phases:

Parsing: produce a parse tree from a CTL-annotated SAFL source file.

Static Analysis: check that a program syntax tree is legal under a sim-
ple type system (width checking for values) and that they satisfy the
restrictions for static allocation.

9
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Extract Kripke structure: produce a transition system from the syntax
tree.

Model Check: implement a local model checking algorithm to verify the
CTL specifications for the transition system; output result of verifica-
tion.

2.1.2 Code Reuse

The project should reuse front-end code from the SAFL compiler. This is an
important requirement because it ensures that the language accepted by the
SAFL compiler is same language that is accepted by the model checker. If
we were to write a SAFL front-end by hand, we might introduce differences
between our version of SAFL and the official version. Further, the SAFL
code should be interfaced in a clean fashion so that future bug fixes or
SAFL extensions can be handled easily. Thus, the model checker should be
practically extensible as the SAFL language matures.

This suggests that the project be written in SML/NJ, the same imple-
mentation language of the SAFL compiler.

2.1.3 Practical Expressibility

Expressing useful specifications for model checking is already a challenging
task because the temporal operators can be difficult to reason about. The
SAFL model checker elevates the source language from a simple transition
system description language to a functional language. In McMillan’s SMV
model checker, the coupling between the modelling language and CTL is
close. In contrast, in the SAFL model checker, the connection between the
source language and CTL formulas is somewhat vague. Thus, some practical
indication about how to write SAFL specifications, perhaps by supplying the
user with information about the translation, is required.

2.1.4 Efficiency

This project does not aim to advance the state-of-the-art in efficient model
checking. However, a model checker that cannot cope with non-trivial cases
is not particularly useful. Thus, we require a local model checker that can
verify systems up to the limitations imposed by state explosion. If efficiency
becomes a major factor, we will interface our SAFL-based front-end with a
symbolic model checker back-end to allow the verification of larger systems.

2.1.5 Extensions

Some of the extensions listed in the project proposal are, upon further con-
sideration, not practical. Here we list a revised set of possible extensions:
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Symbolic model checking: implement a model checking algorithm that
uses an implicit representation of Kripke structures, using OBBDs. Al-
ternatively, implement a translator to another symbolic model checker.

Counter-examples: implement an extended model checking algorithm that
produces counter-examples when a specification fails.

Granularity of transition systems: There are many ways to extract a
transition system from a high-level language. We will implement at
least one of these techniques for the project. However, it might be
useful to compare different approaches.

Verify SAFL transformations: The optimising SAFL compiler includes
optional transformations to produce more efficient hardware specifi-
cations from SAFL programs. Typically these involve a space/time
tradeoff. An interesting extension would be to verify that the trans-
formed versions satisfy the same specifications as the original sources.

Our analysis clarifies what is required of a successful project. We will
revisit this analysis in Chapter 5.

2.2 Further Design

The previous section gives a clear set of requirements for this project. How-
ever, the phase that extracts a Kripke structure from a SAFL program is
still under-specified. We expand the design of that phase so that its imple-
mentation is more easily realisable.

2.2.1 Transition Systems

Traditional model checkers verify CTL properties of systems represented
by Kripke structures. Accordingly, the modelling language of most model
checkers is fairly primitive (i.e., closely resembling Kripke structures). For
example, in the SMV system’s input language one describes a model by
giving the initial values of and a next value relation for states in the system.
While many systems can be modelled effectively using SMV, it is often
desirable to use a more expressive modelling language in order to simplify
the modelling stage of verification. However the transition system implicit
in a description written in such a language is not always obvious. Here,
we describe a general strategy for inferring a transition relation, and thus a
Kripke structure, from a high-level language.

An operational semantics defines the precise meaning of expressions and
programs in a language. An operational semantics is usually given as a
set of syntax-directed rules that define when a more complicated language
expression can be reduced into a simpler one. For example the rules in a
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small-step semantics for a call-by-name version of the λ-calculus that allow
one to reduce a function application to a value (typically an integer or a
function closure) go like this:

〈e1, s〉 ⇓ 〈e′
1, s

′〉
〈e1e2, s〉 ⇓ 〈e′

1e2, s
′〉

(App-Congruence1)

〈e2, s〉 ⇓ 〈e′
2, s

′〉
〈e1e2, s〉 ⇓ 〈e1e

′
2, s

′〉
(App-Congruence2)

〈(λx.e)v, s〉 ⇓ 〈e[v/x], s〉 (App)

The notation 〈e, s〉 ⇓ 〈v, s′〉 means that expression e, with state s (which
maps identifiers to their values), can be simplified to value v with state s′.

An operational semantics, by providing a model of the execution of pro-
grams, gives a straightforward way to extract a Kripke structure from a
high level language. Each transition 〈e, s0〉 ⇓ 〈v, s1〉 in the semantics is a
transition between states q0 (corresponding to e) and q1 (corresponding to
v) in the Kripke structure. Each state qi is labelled with the values of the
variables in the state si. The initial state is the state resulting from the first
rule applied.

2.2.2 Choosing a Semantics

The previous section showed how a transition system can be extracted from
the operational semantics of a high-level description language. If a high-level
language is to be used as the modelling language in a model checker, then
the choice of semantics for that language becomes critical. The semantics
chosen should reflect the granularity of the transitions that are of concern in
the system. If the transitions in the semantics are too coarse, then the model
will fail to capture important aspects of the system. On the other hand, a
model that includes too much detail may be too large to verify efficiently.
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MOV   r0 #6
ADD   r0 r1
JMP   f
MOV   r4 r7
JSR   l g
MOV   r4 r2
AND   r2 #7
LSR   r2 #2
OR    r7 r2
...

Parse Tree Intermediate
Language

Kripke structure

Figure 2.2: Design diagram for extracting Kripke structure from SAFL de-
scriptions

2.2.3 Extracting Kripke Structures from SAFL Programs

The SAFL language is implemented by a compiler that translates behavioural
specifications to structural Verilog. The compiler has the phases of a tra-
ditional compiler: lexical analysis, type checking, optimisations, and code
generation, as shown in Figure 2.1

Given this existing implementation, there are several options for extract-
ing a transition system from SAFL programs. We could use the source lan-
guage directly, with a semantics extended from the standard call-by-value
λ-calculus semantics. Alternatively, we could define a semantics for the
Verilog subset that the SAFL compiler targets, and extract the transition
system from the output of the compiler. Thirdly, we could translate the
source language to an intermediate language, and use the semantics of the
intermediate language to get our transition relation. Neither of these choices
is clearly superior to the others. The first option gives the most flexibility
in the granularity of the semantics (because we reuse almost no code from
the SAFL implementation). The second allows us to use the actual output
of the SAFL compiler. However, it leaves us susceptible to possible bugs (a
concern in a compiler built as part of an uncompleted PhD!). In the end, we
chose the final option that gives us some control over the granularity of the
transition system while still allowing us to reuse the front-end of the SAFL
compiler.

The intermediate language, SAFLasm, is extended from a similar lan-
guage by Mycroft and Sharp given in [MS00]. It closely resembles the fea-
tures available on modern instruction set architectures. Because the inter-
mediate language is very primitive (unlike the high-level SAFL description),
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its semantics is straight-forward and fairly unambiguous. In particular, we
have little choice over the granularity of transitions in the semantics. Each
instruction is processed in a single step – the variables changed at each step
can be statically determined directly from the syntax. The final step going
from the intermediate language to a transition system can be achieved by
a simple interpreter that steps through the instruction sequence for each
possible set of values of the free variables at the start of the sequence.

Thus, the design for the front-end of the model checker reuses the lexical
and static analysis of the SAFL compiler (with minor modifications to han-
dle the input of CTL specifications). This yields a parse tree that is then
translated to the intermediate language using an extension of the translation
of Mycroft and Sharp. Finally, an interpreter is run over the instructions to
build the explicitly represented Kripke structure. Finally, the local model
checker can be run on this structure to complete the verification. Figure 2.2
shows a diagram of the extraction process.

The verification stage of the model checker itself uses standard local
model checking algorithms, as discussed in Chapter 1. Thus, no further
refinements to that portion of the design are needed.

2.3 Programming Practices

The project is implemented in SML/NJ, the same language that is used to
implement the SAFL compiler. SML is well-suited to language and symbolic
manipulation projects with features including user-defined data types and
pattern matching. Additionally, it is strongly typed; its expressive type
system catches many errors at compile time without being too restrictive.

The design of the project naturally divides into several distinct phases:
lexing, parsing, static analysis, extraction of a Kripke structure, and veri-
fication. SML’s module system is used to encapsulate the implementation
details each of the phases of the model checker. Only the public signature of
certain values are allowed to escape from modules. Additionally, type defi-
nitions are separated from functions that operate on them. For example, the
Static module includes routines to check properties of AbSyn parse trees.
Similarly, the Compile module translates LblSyn (labelled syntax trees) into
SAFLasmSyn.

The development environment used is emacs with sml-mode. CVS1 is
used for revision control, and unison2 for regular remote backup.

1http://www.cvshome.org
2http://www.cis.upenn.edu/~bcpierce/unison/



Chapter 3

Implementation

Many things difficult to design prove easy to performance.

– Samuel Johnson

T he SAFL model checker is implemented as a series of passes over a
syntax tree. First, the SAFL compiler front-end is used to produce
a parse tree. Then the tree is translated to the SAFLasm interme-

diate language (closely resembling RISC assembly code). Next, a Kripke
structure is extracted from this intermediate language by an interpreter.
Finally, the verification step is performed by a local model checker. This
chapter describes the implementation of each of these steps in detail. We
also describe two extensions: a function to produce counter examples for
failed specifications, and a translation from SAFLasm to SMV.

3.1 Front End

The front end of the SAFL model checker is adapted from the SAFL com-
piler. There are three phases that together produce a legal SAFL parse tree
from a source file: the lexer, the parser, and the static analyser. All three
of these are modified so that CTL specifications can be included in SAFL
programs. A SAFL program for model checking (a full grammar is given in
Appendix A) is a list of function definitions, followed by the do keyword,
and a main function that specifies the input and output variables for the
system. CTL specifications are enclosed in a special comment, as in the fol-
lowing program (if a program does not include a specification, the trivially
true CTL formula true is inserted automatically):

fun f() : 1 = ...
fun g(x:5) : 3 = ...

15
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do
(** spec: AG ! c **)
main(x:5) : 3 = (f(); g(x))

The addition of CTL annotations to SAFL programs requires a few small
changes to the front-end. The lexer is extended to recognise CTL tokens
(EX, AX, AF, ...). A ctl datatype is added to the data structures used
to represent syntax trees. The parser is extended with rules to parse CTL
specifications for programs, as described above. Finally, the static analyser,
is modified to ignore the CTL components of programs during its analysis.

Two other modifications were made to the SAFL front-end. First, the
parsing of case statements was changed so that a default case is always
required. Without a default, the behaviour of case is not always well-
defined. Consider the following program:

fun odd(x:2) : 1 =
case x of

2’1 => 1’1
2’2 => 1’0
2’3 => 1’1

do
odd(2’0)

It takes a 2-bit value and returns 1 if the value is odd. However, it omits the
case for 0. Thus, even though the program is well formed according to the
static rules, the behaviour of the expression odd(2’0) is undefined.1 Rather
than having a special case for NoCaseMatch in the Kripke structure extracted
from programs like this, we chose to insist that all case statements have a
default case. (This also allows us to treat case statements as syntactic sugar
that can be encoded using conditionals).

Second, SAFL allows external function definitions. These are useful
for interfacing other hardware devices with SAFL programs. For example,
a 32-bit CPU written in SAFL might include the following definition for
memory I/O:2

external mem_acc (address:16,data:16,write:1):16

For the standard SAFL compiler, such definitions pose no special problems.
The compiler simply leaves wires that can be connected to other hardware
devices with the same interface. However, for model checking, we require
that the behaviour of the system be well defined. Thus, we do not allow
external declarations.

1Sharp’s SAFL interpreter raises a NoCaseMatch exception.
2This example from a SAFL description of a stack processor by Sharp
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3.1.1 Translate Equivalent Forms

Before performing the translation to the intermediate language, we translate
some more complicated forms to other semantically equivalent forms. Most
meta-language tools (translators, type checkers, verifiers) have a case to
handle each form in the language. It is often desirable to translate away
forms that can be derived from more primitive ones to reduce the number
and complexity of cases which must be handled.

Case Statements

case statements have the form:

case expr of
match_1 => e_1
...
match_n => e_n
default => e_default

Informally, the semantics of case statements is as follows. First, expr is
evaluated. If any match i is equal to its value (checked in order of decla-
ration; that is, if two match i are equal to the value of expr, the first one
in the match list is used), then the value of the entire expression is e i.
Otherwise, if no cases are matched, the value is e default.

We translate case statements into a let declaration and nested condi-
tionals as follows:

let new_var = expr in
if (new_var = match_1) then e_1

...
else if (new_var = match_n) then e_n

else e_default

In this translation, new var is a fresh variable name generated by the com-
piler.

Joins

Two expressions e1 and e2 with widths w1 and w2 can be joined using join
operator. This results in an expression whose length is w1+w2 and whose
bits are the concatenation of the value of e1 with that of e2. Joins can be
eliminated by a translation using the primitive operations of shifting left and
binary OR. The simple translation goes like this (note that w2 is a constant
computed by compiler):

(e1 << w2) | e2
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Slices

Bit slices are also translated into other more primitive operations on binary
numbers. A bit slice has the form:

expr[from,to]

and the value of the from through to bits of expr (inclusive). For example,
if expr has the value 10001110 the expression expr[5,1] has value 00111.

Bit slices can be eliminated by masking out the desired bits, then shifting
them right. Translation of expr[from,to] goes like this. First, compute
the following constants:

Pre-compute slice width sw = (from - to + 1)

Pre-compute mask m = (2^(sw) - 1)

Pre-compute shifted mask:

sm = if (to = 0) then m else m << (to - 1)

Then produce the translation (if to = 0, can omit the final shift):

((expr & sm) >> to)

These translations eliminate complicated, specialised syntactic forms in
favour of ones that can be evaluated more easily in the intermediate lan-
guage.

3.2 Translation to Intermediate Language

In this section, we present the translation from SAFL to an intermediate
language, SAFLasm. The translation is adapted from Mycroft and Sharp’s
translation given in [MS00].

This portion of the project implementation is very similar to the code
generation phase of most compilers. However, unlike most languages SAFL
programs can be statically allocated. Thus, the translator does not use
any dynamically allocated storage space (stack or heap). Instead, it uses a
(potentially large) finite set of registers.

SAFLasm Syntax

SAFLasm closely resembles the primitive operations that are available on
most modern instruction set architectures. Notable omissions are any in-
structions for accessing memory (all storage is statically allocated). The
syntax and informal semantics are as follows:



3.2. TRANSLATION TO INTERMEDIATE LANGUAGE 19

label: MOV op1 <- op2 Copy op2 to op1
label: JMP lbl Jump to instruction with label lbl
label: JSR lbl1 lbl2 Jump to subroutine at lbl1;

save return label in lbl2
label: RET lbl Return to label stored in lbl
label: BEQZ op lbl If op is zero, jump to lbl
label: PRIMOP op1 <- op2 op3 Assign op1 <- op2 OP op3
label: PRIMOP op1 <- op2 Assign op1 <- OP op2

Primitive operations include arithmetic operations ADD, SUB, MULT, etc.,
bit operations AND, OR, XOR, NOT, etc. logical operations that take operands
of width 1: LAND, LOR, LNOT, etc. Appendix B contains the full language
syntax and operational semantics.

Labelling

While SAFL programs can be statically allocated, the static storage lo-
cations are not always immediately obvious from the syntax. In order to
provide hints to the compiler about storage locations for expressions, it is
helpful to label declarations and expressions with locations.

In the labelling phase, the compiler recurses through the syntax tree,
annotating each expression, let-bound variable declaration, and function
formal parameter, with a label – a string denoting the location that the
expression’s value will be stored in when compiled. For example, the ex-
pression (e1; e2) might be labelled with locations r31 and r32 like this:

(<r31>e1; <r32>e2})

The labels used, as long as they are distinct, do not affect the correct-
ness of the code generation. The labelling used simply increments by one
at each expression or variable declaration that it encounters in a recursive
descent. Thus, sub-expressions are not necessarily related in any mathemat-
ically meaningful way.3

Translation

Our translation to SAFLasm is adapted from a translation given in [MS00].
However, Mycroft and Sharp’s version included a PAR command, imple-
menting fork-join parallelism, and instructions to manipulate semaphores
for mutual exclusion. With these additional instructions, their translation
evaluates non-conflicting arguments to function calls, and let declarations in
parallel (expressions do not conflict if the functions called in evaluating them

3A more clever labelling algorithm might produce labels such that the labels for sub-
expressions are related by some mathematical formula. However, the labels tend to be
generated by techniques similar to Gödel numberings – and thus, can get quite long.
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are distinct). Conflicting calls have to wait for the semaphore to become
free to access to the shared resource (in this case, access to a function).

However, evaluating expressions sequentially makes no semantic differ-
ence to the underlying transition system. The SAFL source language does
not include explicit parallelism. Thus, the programmer has no guarantee
that a particular expression will be evaluated in parallel or sequentially
with another. As long as our model captures the semantics of SAFL source
programs accurately, the specific modelling approach doesn’t matter much.
Thus, we eliminate the instructions that support concurrency in our transla-
tion. Where the Mycroft translation evaluates expressions in parallel, we do
them sequentially. This simplification makes no difference to the SAFL pro-
grammer because there are no parallel constructs in the language. If SAFL
supported explicit, programmer specified parallelism, then it would be im-
portant for the extracted transition system to model concurrency. However,
as the concurrency in SAFL is automatically inserted by the compiler, mod-
elling the concurrency would only be useful to verify that the SAFL compiler
is implemented correctly. Assuming that the analysis implemented in the
SAFL compiler is correct, there is no need to model concurrency until the
language supports explicit parallel constructs.

The translation, [[·]] from SAFL to SAFLasm is given inductively on
the structure of language forms in SAFL. The complete translation is de-
scribed in Appendix B. Here we give some of the illustrative cases. The
translation uses the labelled locations of expressions as storage for compiled
sub-expressions. Thus, in the translation of an expression, we are given a
location to store the value of that expression. For example, compiling a
constant c to storage location l goes like this:

[[c]] l = MOV l <− c

Similarly, a variable expression x is compiled to l with the following code:

[[x]] l = MOV l <− Mx

The notation Mx denotes the current location that holds the value of x.
The variable x might be a λ or let-bound variable. Thus, we maintain a
variable environment that maps variables to labelled locations to keep track
of variable locations.

Conditionals require a slightly more complicated translation.

[[if(<l1>: e1) then e2 else e3]] l = [[e1]] l1
BEQZ l1 lfalse
[[e2]] l
JMP lnext

lfalse : [[e3]] l
lnext : ...
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First, we recursively compile the guard of the conditional to its labelled
location, l1. Then we test if its value is equal to zero and branch accordingly.
The true branches e2 is compiled to a list of instructions. Following these,
we insert a JMP statement to skip the instructions implementing the false
branch.

Recursive function calls are easy to compile because of the restriction
to tail-calls. Thus, we can use a common tail-call optimisation, updating
the registers holding the arguments for the function call and jumping to the
function’s entry point:

[[f(<l1>e1, ...<ln>en)]] l = [[e1]] l1
...
[[en]] ln
MOV Mfformals1<− l1
...
MOV Mfformalsn <− ln
JMP Entryf

Function definitions are compiled by compiling their bodies to the storage
location Resf:

[[f(x1 : w1, ...xn : wn) : w = e]] = Entryf : [[e]] Resf
RET Lf

Finally, programs are compiled by compiling each function definition and
the body of main. Finally, an instruction of the form:

lbl: JMP lbl

is emitted (trapped during interpretation as halting).
The remaining cases in the translation are contained in the appendix.

Here we give a brief example of the compilation to SAFLasm of a simple
expression:

if (f(x)) then 3’0 else g(y[3,1])

In this example, variable names are unique, so we use them as their own
storage locations (i.e., Mx = x). Assume that the storage location of f’s
variable is fvar and gvar for g’s. Then the code generated by compiling
this expression to a 3-bit register res is:

line_2: MOV fvar <- x
line_3: JSR L_f, Entry_f !f(x)
line_4: MOV r4 <- Res_f
line_5: BEQZ r4 line_8 !guard
line_6: MOV res <- 3’000 !true branch
line_7: JMP line_16
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line_8: MOV r6 <- y !false branch
line_9: MOV r7 <- 6’001110
line_10: AND.6 r9 <- r6, r7
line_11: MOV r8 <- 6’000001
line_12: RSHIFT r10 <- r9, r8 !y[0]
line_13: MOV gvar <- r10
line_14: JSR L_g, Entry_g !g(x)
line_15: MOV res <- Res_g
line_16: JMP line_16

3.2.1 Optimisation

The above translation is näıve in its use of resources. Specifically, it uses far
more registers than are needed. We could perform liveness analysis on the
näıve compiled code and then register allocation by colouring to reduce the
number of registers needed. However, while this would improve the space
efficiency of compiled SAFL programs, it makes specification much more
difficult. In the näıve implementation, it is easy to identify registers with
the values that they hold. If registers are reused, this easy to understand
connection between the source language and the compiled version would
be lost. Finally, the size of Kripke structure is determined mostly by the
number and width of the inputs to main (as is explained in detail in the next
section); the large number of registers doesn’t affect the size of the structure
much.

3.3 Building the Kripke Structure

Section 2.2.1 described a method for extracting a transition system from a
high-level language. Using the steps in an operational semantics, a notion of
state (S) and transitions between states (R) can be inferred. The values of
the variables at each state are the atoms that are true in that state (L). From
this, it is easy to see how to construct a Kripke structure M = (S, S0, R, L)
from a semantics.

Our implementation uses an interpreter that implements the semantics
in Section B.2 to produce execution traces of SAFLasm programs. First,
we augment the SAFLasm code with two special registers: pc which tracks
the interpreter’s current location in the program, and c to indicate arith-
metic overflow. Then we create execution traces of the program for different
input values to main. Each instruction modifies pc, and possibly some other
registers. For example, if the current variable environment is env, executing
the instruction

lbl: JMP lbl_n
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results in a new environment env′ updates pc’s value to lbl n. Similarly,
executing

lbl_n: ADD r_i r_j 3’7
lbl_n+1: ...

results in a new environment where r i is assigned the value r j + 3’7,
and pc is assigned lbl n+1. Additionally, if r i does not have enough bits
to store the value r j + 3’7, c is updated to 1’1. Other instructions are
handled similarly, according to the semantics given in Section B.2.

The interpreter detects when it has reaches an instruction that it has
already processed with the same variable environment and halts. Because
of the translation used, all synthesised SAFLasm programs have infinite
looping: either by non-terminating recursion or else by the

lbl: JMP lbl

instruction that follows the compilation of the body of main.
Once the execution traces are complete (resulting in a list of environ-

ments mapping registers to values in their order of execution), building a
Kripke structure is trivial. Each unique environment (mapping of regis-
ters to values) results in a state in S. R(s, s′) holds if the environment
represented by s is followed in the execution trace by the environment rep-
resented by s′. The labelling function, L(s) is determined by the values of
each register in the environment for s. The single start state corresponds to
a pre-environment where pc equals the first instruction in the program, and
the values of the other registers are undetermined, denoted by ?.

3.3.1 Non-Determinism and Branching

The simple semantics of SAFLasm programs results in completely determin-
istic execution traces. For a particular valuation the registers, the execution
trace can be unwound to a single chain of states. Generally, branching in
a model occurs when the system being models exhibits non-deterministic
behaviour. However, the only non-determinism in SAFL programs is in the
inputs supplied to the main function. Thus, the only branching in synthe-
sised Kripke structures is from the initial state, corresponding to possible
input values to main. When building Kripke structures from SAFLasm pro-
grams, the interpreter automatically produces an execution trace for each
input value. For example, the Kripke structure created from the following
simple program:

fun loop(x:2):1 =
loop(x)

do
main(x:2):1 = loop(x)
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has four possible execution traces from the initial state: one for each of the
possible values of the 2-bit input x. The interpreter simulates the execution
of each possible input to main. Thus, the synthesised Kripke structures
typically have a form similar to the one shown in Figure 3.1.

In this section, we’ve shown how the SAFL model checker extracts Kripke
structures from SAFL source programs by compilation to SAFLasm, then
interpreting the low-level code. Now we consider the verification algorithm.

3.4 Verification

The final phase in the model checker performs the actual verification. There
are many different model checking algorithms that can be used to verify
that a Kripke structure satisfies a CTL specification. One simple approach
is to computes the set of states that satisfy the formula directly. The states
satisfied by a CTL form φ can be characterised by a predicate sat that
computes the set {s|s,M |= φ}. Rather than give a full description of
the algorithm, we highlight a few of the interesting cases. The complete
definition of sat is given in Appendix C. The algorithm here is adapted
from ones in [JGP99, HR00]:

Many of the cases can be handled by building the set directly, using
simple set operations.

sat(>) = S
sat(⊥) = ∅
sat(p) = {s|s ∈ S & s ∈ L(p)}
sat(¬φ) = S − sat(φ)
sat(φ1 ∨ φ2) = sat(φ1) ∪ sat(φ2)
sat(φ1 & φ2) = sat(φ1 ∩ sat(φ2)
sat(EX φ) = {s|s ∈ S & ∃s′.(R(s, s′) & s′ ∈ sat(φ))}

Each state in S satisfies>, while no states (∅) satisfy⊥. The states satisfying
an atomic proposition p are those that are labelled by p. The set of states
satisfying ¬φ is the complement of the states in S that satisfy φ. The cases
for & and ∨ are implemented by set intersection and union respectively. The
states satisfying EX φ are the ones that have a transition in R to a state
satisfying φ.

Other cases can be handled by translation to other CTL forms. For
example,

sat(EF φ) = sat(E > U φ)
sat(AX φ) = sat(¬EX ¬φ)

The translation of EF makes sense according to informal CTL semantics:
there exists a future state where φ holds if there exists a state where >
holds until φ holds. > is true of all states. Thus, the two expressions are
both precisely true of states where φ holds in the future (or possibly the
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Figure 3.1: Typical Kripke structure for a SAFLasm program
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present – recall that the future includes the present in the standard CTL
interpretation). Similarly, AX can be encoded using EX: a state is in AX φ
if there are no successor states in ¬φ.

The solutions for other cases of sat are computed by fixed-point compu-
tations. For example, E φ1 U φ2 is the solution to this fixed-point equation:

sat(E φ1 U φ2) = µZ.φ2 ∨ (φ1 & EX Z)

Again, stepping through this formula, we see that the set of states that
satisfies E φ1 U φ2 – states in a computation path where φ1 holds until φ2

– are the ones where either φ2 holds or φ1 and Z holds in a successor state.
A simple least-fixed point computation can be used to compute these sets.
We start with Z = ∅, and repeatedly assign Z = (φ2 ∨ (φ1 & EX Z)) on
each iteration until Z stabilises.

The core of a local model checker is an algorithm is an inductive algo-
rithm that computes the states which satisfy a CTL specification. The cases
are handled by set operations, translation to other CTL forms, or fixed point
computations.

3.5 Producing Counter Examples

One important feature of most model checkers is that they are able to auto-
matically produce a path illustrating a counter example when a specification
is false. As an extension to the basic project, we implemented a function to
generate counter examples for CTL specifications.

Any path in the Kripke structure where the specification fails to hold
can serve as a counter example. For example, if the specification is of the
form AG φ, then finding a counter example just means finding a single com-
putation path in the system where ¬φ holds. However, if the specification is
of the form EFφ, then it must be true that on all paths, ¬φ holds. Thus, we
cannot produce a single counter example for false specifications that contain
a E path quantifier – the set of all paths serves as a collective counter ex-
ample. The fact that the counter example for a specification with a A path
quantifier is the witness for a specification with a E is noticed by Clarke et
al. [JGP99].

Thus, we can reduce the problem of finding computation paths to serve
as counter examples to some trivial cases (¬φ, atomic propositions, etc.)
and to finding witnesses for EX, EG, and EU. The easiest, finding a witness
for EXφ from state s is any path s→ s′ where R(s, s′) and s′ ∈ φ.

A witness for EG φ involves several iterations. We start with the singleton
path, s, and repeatedly add successors s′ to the last processed state where
s′ |= φ. We halt when we reach a state already in the witness path. If we
fail to find a complete path satisfying EG φ (by reaching a state where no
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successors satisfy φ), then we backtrack to the last state in the path where
we had a choice of successors satisfying φ, and restart the algorithm.

Similarly, witnesses for E φ1 U φ2 can be found by repeatedly adding
successors in R of states that satisfy φ1. If a successor satisfies φ2, then the
path is complete.

Because we cache the results of model checking CTL specifications, and
counter examples are only generated after the model checker fails to verify
a formula, the states satisfying all of the formulas and sub-formulas in a
specification are already be computed and stored in the cache.

3.6 Translation to SMV

The local model checking algorithm described above requires an explicitly
defined model in order to verify specifications. Other model checkers, such
as SMV operate on symbolically defined models. Thus, the model can be
implicitly defined in a high level language, avoiding the state explosion prob-
lem in some cases. Here we describe a translation of SAFLasm to the SMV
input language. This allows SAFL to be used as the modelling language for
an industrial-grade model checker.

3.6.1 SMV Syntax

The SMV input language is a robust language with many features. However,
our translation only uses a few forms. An SMV module definition has three
sections: VAR, ASSIGN, and SPEC. The VAR section contains variable declara-
tions. The ASSIGN section describes the transition behaviour of the system.
It includes init declarations, that describe the initial values of variables in
the system and next declarations that define the next values of variables.
For example, the transition behaviour of the following system:

s1

s2

s3

can be encoded in SMV using a single variable v with enumerated type

{s1, s2, s3}

whose corresponding ASSIGN declarations are:

init(v) := s1
next(v) :=

case
(v = s1) : s2
(v = s2) : s3
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(v = s3) : s1
esac;

Finally, the SPEC section lists a CTL property to be verified.
The translation from SAFLasm to SMV’s input language is quite simple.

First, VAR declarations are generated for each register. These have type
array w..0 of boolean where w is the width of the register. Registers
that are used to hold labels rather than numerical values have an enumerated
type composed of all each instruction label in the program. A single init
declaration assigns the first label in the program to pc.

The trickiest part of the translation is in producing the next(reg) dec-
larations for each register. Each instruction modifies at least one register.
The registers modified at each instruction can be determined by analysing
the SAFLasm syntax tree. For example if the only instruction to modify a
3-bit register r1 is

lbl : MOV r1, 3’7

then we can define next(r1) as

next(r1) =
case

(pc = lbl) : [1, 1, 1];
(1) : r1;

esac;

Using this technique, it’s easy to see how we build up the set of instructions
that modify each register and produce the correct next declaration. Finally,
CTL specifications are output in syntax used by SMV. Appendix D contains
an example of a translation to SMV for a SAFL program.

3.7 Modules

We close this chapter by listing the modules produced for the project. Note
that Parse and Static are largely due to Sharp.

Parse.parse : string -> AbSyn.prog
Static.check : AbSyn.prog -> AbSyn.prog
Label.label_prog : AbSyn.prog -> LblSyn.prog
Compile.compile_prog : LblSyn.prog -> SAFLasmSyn.code
Kripke.code2kripke : SAFLasmSyn.code

-> KripkeSyn.kripke
ModelChecker.sat : KripkeSyn.kripke -> CtlSyn.ctl

-> KripkeSyn.StringSet
SMVTrans : SAFLasmSyn.code -> CtlSyn.ctl

-> SMVSyn.smv
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MOV   r0 #6
ADD   r0 r1
JMP   f
MOV   r4 r7
JSR   l g
MOV   r4 r2
AND   r2 #7
LSR   r2 #2
OR    r7 r2
...

Parse Tree Intermediate
Language

Kripke structure

SMV Model Checker

Figure 3.2: Final design for SAFL Model Checker

Additionally, two modules were built for debugging and output:

PrettyPrint
Graph

The first can be used to print any of the data structures above. The second
takes a KripkeSyn.kripke and produces a graph description file suitable for
use with the graph drawing tools of graphviz4 project (Figure 3.1 was pro-
duced using this module). The final design diagram for our implementation
is shown in Figure 3.2.

4http://www.research.att.com/sw/tools/graphviz/
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Chapter 4

Evaluation

Does it contain any abstract reasoning concerning
quantity or number? No. Does it contain any experimental

reasoning, concerning matter of fact and existence? No.
Commit it then to the flames: for it can contain nothing

but sophistry and illusion.

–David Hume

I
n this chapter, we describe the results of our project with empirical
analysis of its efficiency, and with some test runs on sample programs.
These results give a sense of the capabilities and limits of the project in

practice.

4.1 State Explosion

Most explicit state model checkers are limited by the state explosion prob-
lem. Each bit whose value is free in the system doubles the state space of
the underlying Kripke structure. Thus, the size of Kripke structures grows
exponentially. In SAFLasm programs, though the number of registers can
be large (because of the unoptimised compilation algorithm) the number
of unconstrained input bits is limited to the inputs to main. Still, state
explosion limits the size of SAFL programs that can be verified using our
tool.

In order to quantify the effects of state explosion on verification in prac-
tice, we used our implementation to build Kripke structures for an n-bit
add-shift multiplier for several values of n. The multiplier is again due to
Sharp:

fun mult(x:n,y:n,acc:n):n =

31
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bits time (ms) states
1 13 65
2 15 77
4 76 305
8 4548 4865
9 8570 9729
10 100371 19457
11 318824 38913
12 750329 77825

Figure 4.1: Data for n-bit multiplier Kripke structure

if (x=n’0 | y=n’0) then acc
else mult(x << n’1, y >> n’1, if y[0] then acc+x else acc)

do main(input:n):n = mult(input, input,n’0)

By increasing n, the number of possible values of input increases. Thus,
the interpreter that builds Kripke structures from SAFLasm programs must
produce more execution traces, and the size of the resulting Kripke structure
grows. The results of our test,1 shown in Figures 4.1 and 4.2 show that the
state explosion problem is indeed a limitation for our model checker. The
actual limit on the number of free bits in a SAFL program depends on the
program in question. However, at approximately 300,000 states (correspond-
ing to about 16 free bits) the resources of our test setup were exhausted.

This limitation can be overcome by tweaking the size and number of
inputs to main. Limiting the number of input bits to a SAFL program
usually does not affect the transition behaviour of the system. Thus, in a
large system, the main interface can be used to control the size of the Kripke
structure model of the system and possibly avoid the limitations imposed by
the state explosion problem. The technique of eliminating unnecessary fea-
tures from the model of a system is known in the model checking literature
as abstraction. It is convenient that abstraction can be applied to SAFL
programs simply by modifying the inputs and expression in main. As an
example of abstraction, in the multiplier above, the single formal parameter
to main, x, is passed twice as the argument to mult. Thus, while every pos-
sible input to mult is not modelled in the Kripke structure, a large number
of inputs are included. Alternatively, if the model is too large to be verified
using explicit state representations and algorithms, the translation to SMV
can be used. As SMV does not build an explicit Kripke structure, the state
explosion can be avoided in many cases (though not all boolean functions
can be represented efficiently using BDDs – some models will still explode).

1performed on an AMD Athlon 1.0GHz PC with 256MB of RAM and 128MB of virtual
memory, running Debian Linux and using SML/NJ 110.0.3.
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4.2 Verifying Programs

In this section we give some examples of SAFL programs and correctness
specifications in CTL. We also give the output of running our model checker
on these examples.

4.2.1 Simple Addition

We start with a simple program to add two integers and a simple correctness
specification.

fun add(x:3,y:3):3 =
x+y

do
(** spec: AG c <> 1’1 **)
main(x:3,y:3):3 = add(x,y)

In plain English, this specification reads: “On all computation paths, it is
globally true (AG) that register c does not equal the single-bit value 1”. The
c register is set by the interpreter whenever a primitive operation overflows.
Thus, this specification is true of programs where overflow does not occur.
However, running this program through our model checker,

- Main.go2 "add1.lang";
[parsing started add1.lang]
[parsing completed 53ms]
[doing static checks checking add1.lang]
[labelling parse tree add1.lang]



34 CHAPTER 4. EVALUATION

[compiling labelled tree add1.lang]
[generating Kripke structure add1.lang ... states: 641]
[elapsed time: 212ms]
[verifying specification...]
CTL cache hit rate: 0.0%
AG (c <> 1’1): no
[finished add1.lang in 798ms]

we see that the model does not meet the specification (we delay demon-
strating counter examples for failed specifications until the conclusion of
this chapter). In particular, if the values of x and y add up to an integer
greater than 7, then their sum cannot be stored in a three bit register. The
problem with this implementation is that the SAFL primitive + takes an
n-bit by n-bit binary number and returns an n-bit binary number. However,
if the sum of the two inputs is greater than 2n−1, then the result cannot be
stored in n-bits, and overflow occurs. We can fix this, by adding an extra
bit to the body of add to store the carry out bit of the addition. Our second
attempt at an implementation goes like this:

fun add(x:3, y:3):4 =
join (1’0, x) + join (1’0, y)

do
(** spec: AG c <> 1’1 **)
main(x:3, y:3):4 = add(x,y)

Here we pad the inputs x and y to add with an extra bit. Thus, the +
primitive operation works on 4-bit inputs even though the actual inputs will
always be expressible in three bits. Thus, overflow is avoided for all inputs.
Now our model checker verifies the specification:

...
[generating Kripke structure add2.lang ... states: 1665]
[elapsed time: 1140ms]
[verifying specification...]
CTL cache hit rate: 0.0%
AG (c <> 1’1): yes
[finished add2.lang in 1779ms]

4.2.2 Counter

Next we consider an n-bit counter. It repeatedly calls itself, incrementing
an internal register at each iteration. The source for a 3-bit counter goes
like this:

fun counter(x:3):3 =
if (x = 3’7) then counter(3’0) else counter(x + 3’1)
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do
(** spec: (AG (c <> 1’1))

& (AG (AF pc = Entry_counter))
& (AG (AF x-r4 = 3’0) & (AF x-r4 = 3’1)

& (AF x-r4 = 3’2) & (AF x-r4 = 3’3)
& (AF x-r4 = 3’4) & (AF x-r4 = 3’5)
& (AF x-r4 = 3’6) & (AF x-r4 = 3’7)

)
**)
main(x:3):3 = counter(x)

The complicated CTL formula specifies several desired properties of the
system. First, as before we require that the system not overflow when ex-
ecuting a primitive operation. Second, we require that are infinitely many
entry points to the counter function. That is, the program never halts.
Reading off this part of the specification in English, “It is globally true on
all computation paths (AG) that on all computation paths there is some
future state (AF) where pc = Entry counter”. The third part of the con-
junction establishes an invariant property (AG) that every possible 3-bit
value will be stored internally in counter’s formal parameter x infinitely
often.

In order to determine the register used for x in counter, we examined
the SAFLasm code implementing it:

Entry_counter: MOV r5 <- x-r4
line_7: MOV r6 <- 3’111
line_8: EQ.1 r7 <- r5, r6
line_9: BEQZ r7 line_14
...

By inspection, it is clear that x-r4 is x because there is only one input
to counter (also, the compiler prefixes register names with their declared
names in the SAFL source). Note that the un-optimised compilation of
SAFL programs to SAFLasm makes it easy to determine the registers that
are used for certain values because the instruction sequence is produced in
a deterministic, reliable fashion).

Our model checker has no trouble establishing these properties:

...
[generating Kripke structure counter.lang ... states: 878]
[elapsed time: 406ms]
[verifying specification...]
CTL cache hit rate: 0.0434782608696%
((AG (c <> 1’1) & AG (AF (pc = Entry_counter))) & ...: yes
[finished counter.lang in 38357ms]
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However, while this specification captures a some of the desired be-
haviour of the program, we can do better using the temporal until operator.
The specification above does not ensure that the counter increases by one at
each iteration. An implementation that counted by 3’s (mod 8) would also
satisfy the specification. Recall that a CTL specification A φ1 U φ2 is true
of a system where on all paths, φ1 holds until some unspecified state when
φ2 holds. We can use this CTL form to specify that the counter increases by
1 at each iteration. The revised specification is as follows (we don’t bother
to reverify the specifications involving pc and c):

fun counter(x:3):3 =
if (x = 3’7) then counter(3’0) else counter(x + 3’1)

do
(** spec:

AG (AF (
(x-r4 = 3’0) -> A (x-r4 = 3’0) U (x-r4 = 3’1) &
(x-r4 = 3’1) -> A (x-r4 = 3’1) U (x-r4 = 3’2) &
(x-r4 = 3’2) -> A (x-r4 = 3’2) U (x-r4 = 3’3) &
(x-r4 = 3’3) -> A (x-r4 = 3’3) U (x-r4 = 3’4) &
(x-r4 = 3’4) -> A (x-r4 = 3’4) U (x-r4 = 3’5) &
(x-r4 = 3’5) -> A (x-r4 = 3’5) U (x-r4 = 3’6) &
(x-r4 = 3’6) -> A (x-r4 = 3’6) U (x-r4 = 3’7) &
(x-r4 = 3’7) -> A (x-r4 = 3’7) U (x-r4 = 3’0)

))
**)
main(x:3):3 = counter(x)

The specification ensures that whenever the register has a 3-bit value, it
holds that value until some state where it changes to a value that is precisely
one greater than the previous value, mod 8. Again, the model checker
successfully verifies the property for this system:

[generating Kripke structure counter2.lang ... states: 878]
[elapsed time: 443ms]
[verifying specification...]
CTL cache hit rate: 0.213333333333%
AG (AF (((((((((x-r4 = 3’000 -> (A x-r4 = 3’000 U x... :yes
[finished counter2.lang in 38011ms]

Thus, the counter implementation has the desired properties.

4.3 Extensions

In addition to the basic system described above, we implemented two ex-
tensions. The state explosion problem limits explicit state model checking
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to fairly small examples. We have implemented a translation to the input
language for the SMV model checker. Additionally, we have extended our
model checker to produce counter examples when a specification is proved
false.

4.4 Verification by translation to SMV

Similar programs can be verified using the translation to SMV. An example
this translation for the counter program is given in Appendix D. Also,
programs that would be too large to verify using explicit state model check-
ing can be translated to SMV and verified. We have used our translator
successfully on examples as large as a complete stack machine processor
design.

4.5 Counter Examples

Recall our first (failed) attempt to verify that a simple SAFL program for
addition does not overflow. With the counter example feature turned on,
our model checker can produce a sequence of states as a counter example.
That is, it produces a computation path where ! (c <> 1’1). Here we
demonstrate counter example generation in the model checker:

[verifying specification...]
CTL cache hit rate: 0.0%
AG (c <> 1’1): no

[producing counterexample...]
s0 : [c = 1’0, pc = line_1]
s481 : [c = 1’0, pc = line_2, r3 = 3’1, x-r1 = 3’1,

y-r2 = 3’7]
s482 : [c = 1’0, pc = line_3, r3 = 3’1, r4 = 3’7,

x-r1 = 3’1, y-r2 = 3’7]
s483 : [c = 1’0, pc = line_4, r3 = 3’1, r4 = 3’7,

x-r1 = 3’1, x-r6 = 3’1, y-r2 = 3’7]
s484 : [c = 1’0, pc = line_5, r3 = 3’1, r4 = 3’7,

x-r1 = 3’1, x-r6 = 3’1, y-r2 = 3’7, y-r7 = 3’7]
s485 : [L_add = line_6, c = 1’0, pc = Entry_add,

r3 = 3’1, r4 = 3’7, x-r1 = 3’1, x-r6 = 3’1,
y-r2 = 3’7, y-r7 = 3’7]

s486 : [L_add = line_6, c = 1’0, pc = line_9, r3 = 3’1,
r4 = 3’7, r8 = 3’1, x-r1 = 3’1, x-r6 = 3’1,
y-r2 = 3’7, y-r7 = 3’7]

s487 : [L_add = line_6, c = 1’0, pc = line_10, r3 = 3’1,
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r4 = 3’7, r8 = 3’1, r9 = 3’7, x-r1 = 3’1,
x-r6 = 3’1, y-r2 = 3’7, y-r7 = 3’7]

s488 : [L_add = line_6, Res_add = 3’0, c = 1’1,
pc = line_11, r3 = 3’1, r4 = 3’7, r8 = 3’1,
r9 = 3’7, x-r1 = 3’1, x-r6 = 3’1, y-r2 = 3’7,
y-r7 = 3’7]

[finished add1.lang in 693ms]

In some model checkers it is often unclear how the states produced in a
counter example correspond to the original system. However in our model
checker, the states correspond to particular SAFLasm instructions. Thus, it
is easy to make the connection between a counter example and a SAFLasm
program, to identify the bug. Here we see that when x-r1 has initial value
3’1 and y-r2 has initial value 3’7, the instruction at line 10:

ADD.3 Res_add <- r8, r9

causes overflow. Thus, we can adjust the SAFL program as in our second
attempt that pads the inputs before performing addition.
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Conclusions

Given the present moment, there are several possibilities
for what the next moment may be like – and for each possible

next moment, there are several possibilities for the moment
after that. Thus the situation takes the form, not of a

linear sequence, but of a tree.

– Saul Kripke1

T he main result of this project is the implementation of a CTL model
checker for hardware descriptions written in SAFL. In particular, the
following tasks were completed:

• Design and implement an algorithm to extract Kripke structures from
SAFL programs. This task includes:

– Translate SAFL programs to SAFLasm.

– Implement interpreter to produce Kripke structures from SAFLasm.

• Implement a CTL model checking algorithm.

• Implement an algorithm to produce counter-examples (when possible)
for failed specifications.

• Implement a translator that transforms SAFL programs to SMV de-
scriptions.

We showed how temporal properties of SAFL programs can be verified using
our tools, and performed some tests to estimate the limit of the size of
systems that can be handled with our system. In many cases where an

1writing to A. N. Prior on tense logics

39
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full explicitly defined Kripke structure would be too large (because of the
state explosion problem), the translator to SMV can be used as a model
checking back-end to perform the verification. Alternatively, the model can
be simplified so that unimportant features are abstracted away.

5.1 Future Work

There is a tree of possible directions for future research on verification for
SAFL. First, the verification phase of the could be re-written to use a sym-
bolic model checking algorithm. This would circumvent, in many cases, the
limitation imposed by the state explosion problem. However, the current
implementation’s translation to SMV can be used to avoid this limitation
when needed. Thus, no new functionality would be gained from this ad-
dition. Further, the SMV program is a mature, industrial strength model
checker. It is unlikely that a new implementation would improve on its ef-
ficiency. Still, it would be beneficial, to integrate a symbolic model checker
more tightly with our implementation.

A second possibility for future work is in combining model checking with
theorem proving. While model checking is a popular automatic verification
technique, the size of systems that can be verified compared is limited when
compared to the theorem provers (the tradeoff is that theorem provers re-
quire human guidance while model checkers are fully automatic). A current
research topic is to combine model checking with theorem proving – sim-
ple sub-systems are verified using automatic model checkers and theorem
provers are used to combine those results and prove a larger correctness
result. This work would involve embedding a temporal logic in a suitable
logic and proof environment (e.g. the HOL system [Gor85]) and designing
a logic to support the kind of compositional reasoning described above.

A related third future direction for the project is the design of a custom
specification logic for SAFL programs. While CTL is a very expressive logic,
and can handle many temporal properties of programs, it is not able to ele-
gantly handle Hoare-style reasoning about the result of program execution.
It would be beneficial to develop a hybrid logic to support both of these
paradigms simultaneously. For example, we might wish to prove that a mul-
tiplier circuit has some Hoare-style properties (i.e. the result is the product
of the inputs) and some temporal properties (i.e. certain internal values
are stable during the computation). Unlike traditional modelling languages
(such as the SMV input language) which are little more than descriptions of
Kripke structures, SAFL programs look more like programs in a high-level
language. Thus, it may be useful to apply techniques developed in verifying
programs to SAFL. It will be useful to close the gap between Hoare-style and
temporal logics in a logic that supports reasoning about values and about
temporal properties of systems.
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A final future research direction is in evolving the model checker as
SAFL matures. Mycroft and Sharp have already proposed extensions to
the original SAFL language to support π-calculus-style channel passing and
communication primitives. As SAFL incorporates forms to support explicit
(rather than compiler inserted) concurrency, it will be interesting to extend
our work in extracting transition systems to support the new forms. We hope
that this work is rather easy: as the SAFL code is used almost unmodified,
it should be easy to plug in new SAFL front ends and update the necessary
syntax tree processors with extra cases for the new forms. In particular,
explicit parallelism can be handled by adding a program counter for each
parallel process. With concurrency in the language, temporal properties of
programs become even more important. Thus a model checker that verifies
specifications of SAFL extended thus, would be a very useful tool.

5.2 Summary

This project successfully implements a model checker for SAFL. Thus, the
basic requirements outlined in Section 2.1 are met. Additionally, we’ve
demonstrated the verification of some properties for simple SAFL programs
and described how larger programs can be handled by translation to SMV.
Importantly, even though SAFL is a high-level language (and thus the con-
nection between source and transition system is somewhat unclear), using
information about the translation to SAFLasm, it is possible to write useful
specifications. Finally, we’ve given some exciting ideas for future research.
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Appendix A

SAFL

This appendix contains the grammar for CTL-annotated SAFL. The fol-
lowing conventions are used: id generates a string, const an integer with
specified width (e.g., 3’7 is the three bit binary expression 111), int any
integer, and form list a (possibly empty) list of forms.

A SAFL program for model checking has a syntax tree generated by the
prog production.

prog ::= fdef list do spec main( varlist ) : int exp

spec ::=
| (** spec: ctl **)

ctl ::= True
| False
| atom
| EX ctl
| AX ctl
| EF ctl
| AF ctl
| EG ctl
| AG ctl
| E ctl U ctl
| A ctl U ctl
| ctl & ctl
| ctl || ctl
| ! ctl
| ctl -> ctl
| ctl <-> ctl
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atom ::= id = atomval
| id <> atomval
| id < const
| id > const
| id <= const
| id >= const

atomval ::= id
| const
| ?

fdef ::= fun id ( varlist ) : int = exp

varlist ::=
| id : int varlist

exp ::= if exp then exp else exp
| case exp of match list default => exp
| iexp
| aexp

iexp ::= iexp binary op iexp
| unary op iexp
| iexp [ int : int ]
| iexp [ int ]
| aexp

binary op ::= = | <> | < | > | <= | >=
| + | * | / | >> | >>
| | | || | && | &

unary op ::= ~ | ~~

aexp ::= id
| const
| ( sexp )
| id ( exp list )
| join( exp list )
| let dec list in sexp end

sexp ::= exp
| exp ; exp
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dec ::= id : int = iexp

match ::= exp => exp nc

exp nc ::= iexp
| if exp nc then exp nc else exp nc
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Appendix B

SAFLasm

Here we give the full syntax and semantics for SAFLasm programs. We
also give the complete translation of SAFL into SAFLasm.

B.1 Syntax

code ::=
| inst ; code

inst ::= label : MOV op <−op
| label : JMP label
| label : JSR op label
| label : RET op
| label : BEQZ op label
| label : binary op op <−op op
| label : unary op op <−op

binary op ::= ADD | SUB | MULT | DIV
| RSHIFT | LSHIFT | AND | OR
| XOR | EQ | NEQ | LT
| GT | LEQ | GEQ | LOR
| LAND | LXOR

unary op ::= NOT | LNOT

op ::= id
| const

label ::= id
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B.2 Operational Semantics

As the instructions in SAFLasm are simple, the operational semantics for
the language is correspondingly straight-forward. Here we give a semantics
for processing SAFLasm code. The rules assume a static list of instruction
code, C, and make use of an environment E which maps registers to values:
?, labels, and integers. The notation E[x ← v] specifies an environment
that maps x to v and otherwise behaves like E. E(x) looks up the value of
x stored in the environment if x is the name of a register. If x is a constant,
then E(x) simply gives the value of the constant. Similarly, E(?) is ?.

First we define an auxiliary predicate for looking up the instructions
starting with a label l (we use but do not define label(I) which gives the
label of instruction I).

label(I) = l

nextInstr(l, I) = I

label(I) 6= l

nextInstr(l, I; I ′) = nextInstr(l, I ′)

Thus, we can lookup the list of instructions starting with an instruction
labelled lbl like this:

nextInstr(lbl, C)

The operational semantics is defined for each form in SAFLasm:

〈l : MOV op1 <− op2 ; I ′, E〉 ⇓ 〈I ′, E[op1 ← E(op2)]〉
〈l : JMP label1; I ′, E〉 ⇓ 〈nextInstr(label1, C), E〉

〈l : JSR op1 label2; I ′, E〉 ⇓ 〈nextInstr(label2, C),
E[op1 ← nextInstr(l, C)]〉

〈l : RET op1; I ′, E〉 ⇓ 〈nextInstr(E(op1), C), E〉
〈l : BEQZ op1 label1; I ′, E〉 ⇓ 〈I ′, E〉 if E(op1) 6= 0
〈l : BEQZ op1 label1; I ′, E〉 ⇓ 〈nextInstr(label1, C), E〉 if E(op1) = 0

〈l : PRIMOP op1 <−op2 op3; I ′, E〉 ⇓ 〈I ′, E[op1 ← op2 primop op3]〉
〈l : PRIMOP op1 <−op2; I ′, E〉 ⇓ 〈I ′, E[op1 ← primop op2]〉
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B.3 Translation of SAFL to SAFLasm

[[c]] l = MOV l <− c
[[x]] l = MOV l <− Mx

[[if(<l1>: e1) then e2 else e3]] l = [[e1]] l1
BEQZ l1 lfalse
[[e2]] l
JMP lnext

lfalse : [[e3]] l
lnext : ...

[[f(<l1>e1, ...<ln>en)]] l = [[e1]] l1
...
[[en]] ln
MOV Mfformals1<− l1
...
MOV Mfformalsn <− ln
JSR Lf Entryf
MOV l <− Resultf

[[f(<l1>e1, ...<ln>en)]] l = [[e1]] l1
...
[[en]] ln
MOV Mfformals1<− l1
...
MOV Mfformalsn <− ln
JMP Entryf

[[a(<l1>e1, ...<ln>en)]] l = [[e1]] l1
...
[[en]] ln
PRIMOPa l <− e1 ...en

[[<l1>e1; e2]] l = [[e1]] l1
[[e1]] l

[[let var <l1> x1 : w1 = e1...
var <ln> xn : wn = en in e end]] l = [[e1]] l1

...
[[en]] ln
[[e]] l

[[fun f(x1 : w1, ...xn : wn) : w =e]] = Entryf : [[e]] Resf
RET Lf
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Appendix C

Model Checking Algorithm

This appendix contains the predicate that is the basis for our implementation
of the verification phase in our project. It determines the set of states in a
model satisfying a CTL formula by either simple set operations, rewriting to
another CTL formula, or a least fixed point computation. It is linear in the
size of the proposition and quadratic in the size of the model and is adopted
from [HR00].

Assume that the model is an explicitly defined Kripke structure M =
(S, S0, R, L) and that φ is a CTL formula. The sat predicate returns the
following set: {s ∈ S|M, s |= φ}. It is defined inductively on the structure
of φ.

sat(>) = S
sat(⊥) = ∅
sat(p) = {s|s ∈ S & s ∈ L(p)}

sat(¬φ) = S − sat(φ)
sat(φ1 ∨ φ2) = sat(φ1) ∪ sat(φ2)
sat(φ1 & φ2) = sat(φ1 ∩ sat(φ2)

sat(φ1 ⇒ φ2) = sat(¬φ1 ∨ φ2)
sat(φ1 ≡ φ2) = sat((¬φ1 ∨ φ2) & (¬φ2 ∨ φ1))

sat(EX φ) = {s|s ∈ S & ∃s′.R(s, s′) & s′ ∈ φ}
sat(AX φ) = sat(¬EX ¬φ)
sat(EF φ) = sat(E > U φ)
sat(AF φ) = µZ.φ ∨ AX Z
sat(EG φ) = sat(¬AF ¬φ)
sat(AG φ) = sat(¬EF ¬φ)

sat(E φ1 U φ2) = µZ.φ2 ∨ (φ1 & EX Z)
sat(A φ1 U φ2) = sat(¬(E[¬φ1 U (¬φ1 & ¬φ2)] ∨ EG ¬φ2))
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Appendix D

Example: SMV Translation

Here we give a sample translation of a simple SAFL program to SMV. We
keep the example short, while illustrating the general technique. This simple
program:

fun counter(x:3):3 =
if (x = 3’7) then counter(3’0) else counter(x + 3’1)

do
(** spec: AG (AF (

(x-r4 = 3’0) -> A (x-r4 = 3’0) U (x-r4 = 3’1) &
(x-r4 = 3’1) -> A (x-r4 = 3’1) U (x-r4 = 3’2) &
(x-r4 = 3’2) -> A (x-r4 = 3’2) U (x-r4 = 3’3) &
(x-r4 = 3’3) -> A (x-r4 = 3’3) U (x-r4 = 3’4) &
(x-r4 = 3’4) -> A (x-r4 = 3’4) U (x-r4 = 3’5) &
(x-r4 = 3’5) -> A (x-r4 = 3’5) U (x-r4 = 3’6) &
(x-r4 = 3’6) -> A (x-r4 = 3’6) U (x-r4 = 3’7) &
(x-r4 = 3’7) -> A (x-r4 = 3’7) U (x-r4 = 3’0)
)) **)

main(x:3):3 = counter(x)

is compiled SAFLasm instructions:

line_1: MOV r2 <- x-r1
line_2: MOV x-r4 <- r2
line_3: JSR L_counter, Entry_counter
line_4: MOV r3 <- Res_counter
line_5: JMP line_5

Entry_counter: MOV r5 <- x-r4
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line_7: MOV r6 <- 3’111
line_8: EQ.1 r7 <- r5, r6
line_9: BEQZ r7 line_14
line_10: MOV r8 <- 3’000
line_11: MOV x-r4 <- r8
line_12: JMP Entry_counter
line_13: JMP line_19
line_14: MOV r10 <- x-r4
line_15: MOV r11 <- 3’001
line_16: ADD.3 r12 <- r10, r11
line_17: MOV x-r4 <- r12
line_18: JMP Entry_counter
line_19: RET L_counter

The SMV description is easily generated from this syntax.

MODULE main

VAR
pc : {line_1, line_2, line_3, line_4, line_5,

Entry_counter, line_7, line_8, line_9, line_10,
line_11, line_12, line_13, line_14, line_15,
line_16, line_17, line_18, line_19};

L_counter : {line_1, line_2, line_3, line_4, line_5,
Entry_counter, line_7, line_8, line_9, line_10,
line_11, line_12, line_13, line_14, line_15,
line_16, line_17, line_18, line_19};

Res_counter : array 2..0 of boolean;
r3 : array 2..0 of boolean;
r2 : array 2..0 of boolean;
r5 : array 2..0 of boolean;
r6 : array 2..0 of boolean;
r7 : array 0..0 of boolean;
r8 : array 2..0 of boolean;
r10 : array 2..0 of boolean;
r11 : array 2..0 of boolean;
r12 : array 2..0 of boolean;
x-r1 : array 2..0 of boolean;
x-r4 : array 2..0 of boolean;

ASSIGN
init(pc) := line_1;

next(pc) :=
case
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(pc = line_1) : line_2;
(pc = line_2) : line_3;
(pc = line_3) : Entry_counter;
(pc = line_4) : line_5;
(pc = line_5) : line_5;
(pc = Entry_counter) : line_7;
(pc = line_7) : line_8;
(pc = line_8) : line_9;
(pc = line_9) :
case

(r7 = [0]) : line_14;
(!r7 = [0]) : line_10;

esac;
(pc = line_10) : line_11;
(pc = line_11) : line_12;
(pc = line_12) : Entry_counter;
(pc = line_13) : line_19;
(pc = line_14) : line_15;
(pc = line_15) : line_16;
(pc = line_16) : line_17;
(pc = line_17) : line_18;
(pc = line_18) : Entry_counter;
(pc = line_19) : L_counter;
(1) : pc;

esac;

next(r3) :=
case
(pc = line_4) : Res_counter;
(1) : r3;

esac;

next(L_counter) :=
case
(pc = line_3) : line_4;
(1) : L_counter;

esac;

next(Res_counter) :=
case
(1) : Res_counter;

esac;

next(r10) :=
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case
(pc = line_14) : x-r4;
(1) : r10;

esac;

next(r11) :=
case

(pc = line_15) : [0, 0, 1];
(1) : r11;

esac;

next(r12) :=
case

(pc = line_16) : r10 + r11;
(1) : r12;

esac;

next(r2) :=
case
(pc = line_1) : x-r1;
(1) : r2;

esac;

next(r5) :=
case
(pc = Entry_counter) : x-r4;
(1) : r5;

esac;

next(r6) :=
case
(pc = line_7) : [1, 1, 1];
(1) : r6;

esac;

next(r7) :=
case
(pc = line_8) : r5 = r6;
(1) : r7;

esac;

next(r8) :=
case
(pc = line_10) : [0, 0, 0];
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(1) : r8;
esac;

next(x-r1) :=
case
(1) : x-r1;

esac;

next(x-r4) :=
case
(pc = line_2) : r2;
(pc = line_11) : r8;
(pc = line_17) : r12;
(1) : x-r4;

esac;

SPEC
AG (AF ((((((((

(x-r4 = [0,0,0] -> (E x-r4 = [0,0,0] U x-r4 = [0,0,1]))
& (x-r4 = [0,0,1] -> (E x-r4 = [0,0,1] U x-r4 = [0,1,0])))
& (x-r4 = [0,1,0] -> (E x-r4 = [0,1,0] U x-r4 = [0,1,1])))
& (x-r4 = [0,1,1] -> (E x-r4 = [0,1,1] U x-r4 = [1,0,0])))
& (x-r4 = [1,0,0] -> (E x-r4 = [1,0,0] U x-r4 = [1,0,1])))
& (x-r4 = [1,0,1] -> (E x-r4 = [1,0,1] U x-r4 = [1,1,0])))
& (x-r4 = [1,1,0] -> (E x-r4 = [1,1,0] U x-r4 = [1,1,1])))
& (x-r4 = [1,1,1] -> (E x-r4 = [1,1,1] U x-r4 = [0,0,0])))

))



60 APPENDIX D. EXAMPLE: SMV TRANSLATION



Appendix E

Project Proposal

Project Supervisors: Dr M. Gordon [and Dr A. Mycroft]

Director of Studies: Dr N. Dodgson

Project Overseer: Dr M. Gordon

Introduction

Formal verification has become an important area of research as embedded,
real-time, and information systems in general, increasingly play important
roles in everyday life. There are many situations where verifying that a sys-
tem correctly conforms to a formal specification is a desirable practical and
theoretical result. Unfortunately traditional formal methods are often un-
wieldy. For modern systems such as large integrated circuits, the complexity
of proving formal properties can be prohibitive for even a clever software or
hardware engineer. However, work in verification has made it possible to
prove formal properties of a growing number of systems automatically. The
goal of this project is to explore one such technique, model checking, and
implement a model checker by integrating results from the FLaSH project
at the Computer Laboratory.

Model checking [McM93, JGP99] is a technique for proving properties
about concurrent finite state systems automatically. A model checker op-
erates in the following way. First, the device, program, or protocol being
checked is modelled as a finite automaton (typically a particular kind of
automaton known as a Kripke structure). Then the property to be proved
is expressed in a temporal logic – a family of logics that can express rela-
tionships involving time, though without an explicit representation of time.
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Model checking then, simply involves determining for which states in the
automaton the formal property holds. If the initial configurations of the
system are in this set, then the property is proved for the system. The
major advantage of model checking when compared with other reasoning
techniques such as mechanised theorem proving is that all of the actual
checking can be done completely automatically. This technique has been
very successful at verifying a large class of systems, typically hardware cir-
cuits. However, while the specific algorithms and representations used in
model checking have improved the complexity of circuits have grown even
faster. A problem known as state explosion limits the state-of-the-art in
model checking – for complex parallel systems, the number of states in the
model checking structures become prohibitively large.

SAFL [MS00] is a concurrent, statically allocated, functional language
developed by Sharp and Mycroft as part of the FLaSH project at the Com-
puter Laboratory and AT&T Labs. The primary goal of the project is to
explore using a high-level functional language to describe hardware systems.
Accordingly, the SAFL optimising compiler emits a description of a design
description in Verilog, not a binary executable. This close connection be-
tween high-level SAFL programs and hardware makes it ideal as a modelling
language for model checking.

While model checking itself is not new, using a high-level functional
language to describe the finite state system presents some interesting possi-
bilities for extensions of the basic technique.

Proposal

The broad goal of this project is to research hardware verification using
SAFL. The completion of a basic-level project entails implementing a model
checker with SAFL as the modelling language. I will implement the project
using a language from the ML family on UNIX. The following steps describe
the work needed to complete this goal:

1. Parse SAFL programs (might use an existing parser).

2. Implement an algorithm to build a Kripke structure from a SAFL parse
tree. This involves coming up with a way to identify the starting states
and the relation that allows the system to transition between states
from the SAFL program. From these, a Kripke structure can be easily
constructed.

3. Implement a simple model checker for verifying properties of SAFL
programs encoded in the temporal logic CTL. In this step I will have
to write code to check each syntactic form in CTL.
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4. Perform some empirical tests of properties in CTL against SAFL pro-
grams. As model checking has historically been quite limited in the
complexity of systems that can be checked (because of state explosion),
it will be interesting to evaluate how my implementation compares to
previous work.

Extensions

I have defined a fairly basic project above. However, I hope that I will have
time to extend the project with some extra features. Some of these follow
directly from the project and should be fairly straight forward. Others take
the project in a different, interesting direction. Here I present a list of
possible extensions.

Symbolic model checker: McMillan’s thesis [McM93] describes a tech-
nique for model checking that can be used to verify much more complex
systems than was traditionally feasible. The key contribution of his
thesis was the observation that the explicit representation of circuits
using Kripke structures is a major bottleneck for model checking. As
an alternative, he proposes a symbolic representation based on Binary
Decision Diagrams. Because a symbolic model checker does not have
to simultaneously keep a representation of each state, the effects of
the state explosion problem can be reduced. Implementing a symbolic
model checker would be a major improvement over the naive version,
at the cost of re-writing the core of my implementation.

Semantics for SAFL transformations: As part of the existing SAFL
implementation, the compiler performs several optimisations that trans-
form SAFL programs. Currently these transformations have not been
incorporated into any formal semantics. An interesting theoretical ex-
tension is to define such a semantics, and verify the correctness of
the transformation stage itself by proving that properties checked on
source SAFL programs are preserved by the transformations. A sim-
ilar extension would be to compare the results proving properties on
SAFL source programs using my model checker with those proved by
an industrial-grade model checker (such as SMV, the result of McMil-
lan’s thesis work) on the Verilog description produced by the SAFL
compiler.

Integrate theorem proving with model checking: One branch of re-
cent research uses model checking in conjunction with theorem proving
to extend the range of circuits that can be reasoned about. The idea
is to check the the relatively simple components of a complex system
using model checking and the entire ensemble using more powerful
techniques such as theorem proving. Using this technique, properties
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of the entire system can be verified. Unlike pure model checking, the
entire verification process may not be completely automatic. Still,
enough of the work is automated so it is hoped that more systems
could be verified in practice using this technique. This extension is
an active area of research in several different laboratories around the
world. Thus, an integrated model checker/theorem prover is probably
beyond the scope of a CST project. However, some interesting work
could be done to build a prototype of how such a system, and comment
on the challenges involved.

Starting Point

Having never done any work in formal verification before, I have a large
amount of reading to do to get familiar with the field. My only relevant
background is a general interest in logic, theory, and semantics including
several undergraduate courses taken at Williams College and Trinity Col-
lege Dublin as well as an undergraduate dissertation completed at Williams.
However, as model checking is a fairly self-contained, well known technique,
I hope to keep the amount of background needed to get started, to a man-
ageable level.

Work Plan

Project work commences on 19th Oct 2001.

Michaelmas Term

The first two weeks of the project will be spent continuing to read about
model checking and SAFL as well as getting familiar with the details of
existing implementations of those systems. By the end of this exploratory
period I will identify exactly which algorithms and structures I wish to use to
implement my project. I will also know which tools (parsers, data structures,
etc) have already been built by the FLaSH groups and might be useful.

In the second two week period I will spend some time carefully designing
the algorithms and data structures as they would work starting from SAFL
programs represented in ML.

Towards the end of Michaelmas term, the beginnings of the project im-
plementation will start to take shape. At the very least, a front-end includ-
ing parsing and the solid steps towards extraction of Kripke structures from
SAFL programs should completed by the end of term.
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Lent Term

Some time over the Christmas vacation and the first two weeks of Lent term
will be spent completing and testing a basic implementation of a model
checker including coding the steps to actually perform the checks for CTL
predicates. Depending on my progress by this point, this could either be a
naive implementation, or a more sophisticated one (perhaps beginning the
implementation of a symbolic model checker).

By the project report deadline on February 1, 2002 I will be able to
present results from model checking simple SAFL programs. The next four
weeks will be spent testing, gathering any empirical results, and extend-
ing the model checker as described previously. Towards the end of this
testing/extension period I will start writing the dissertation. The last two
weeks of Lent will be entirely devoted to writing, with the goal of having
something near a final draft by the start of Easter vacation.

Easter Term

Easter term is reserved for responding to comments from readers and pos-
sibly writing up any further extensions or empirical results obtained over
the Easter vacation. This leaves plenty of time for editing, proof reading,
and practical matters such as printing and binding before the dissertation
deadline on 17th May 2002.
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