Computing Precise Control Interface Specifications

ERIC HAYDEN CAMPBELL, Cornell University, USA
HOSSEIN HOJJAT, Tehran Institute for Advanced Studies, Iran
NATE FOSTER, Cornell University, USA

Verifying network programs is challenging because of how they divide labor: the control plane computes
high level routes through the network and compiles them to device configurations, while the data plane
uses these configurations to realize the desired forwarding behavior. In practice, the correctness of the data
plane often assumes that the configurations generated by the control plane will satisfy complex specifications.
Consequently, validation tools such as program verifiers, runtime monitors, fuzzers, and test-case generators
must be aware of these control interface specifications (ci-specs) to avoid raising false alarms.

In this paper, we propose the first algorithm for computing precise ci-specs for network data planes. Our
specifications are designed to be efficiently monitorable—concretely, checking that a fixed configuration
satisfies a ci-spec can be done in polynomial time. Our algorithm, based on modular program instrumentation,
quantifier elimination, and a path-based analysis, is more expressive than prior work, and is applicable to
practical network programs. We describe an implementation and show that ci-specs computed by our tool are
useful for finding real bugs in real-world data plane programs.

CCS Concepts: « Theory of computation — Program specifications; Logic and verification; Networks
— Programming interfaces.

Additional Key Words and Phrases: deductive synthesis, quantifier elimination, programmable networks

ACM Reference Format:

Eric Hayden Campbell, Hossein Hojjat, and Nate Foster. 2024. Computing Precise Control Interface Specifica-
tions. Proc. ACM Program. Lang. 8, OOPSLAZ2, Article 303 (October 2024), 30 pages. https://doi.org/10.1145/
3689743

1 Introduction

Modern networks are increasingly programmable [8, 24, 26, 35]. Abstractly, network architectures
can be modeled in terms of two cooperating programs: the data plane and the control plane. The
control plane is a general-purpose program that computes forwarding paths through the network
topology and generates configurations (configs) for data plane devices such as routers, switches,
firewalls, etc. The data plane is a collection of restricted (e.g., loop-free and finite-state) programs
that process packets efficiently, typically using a pipeline of configurable forwarding tables. This
relationship is characterized in the schematic below:

Control Plane Config Data Plane
General-purpose program that | 8enerates | Degcribes (parts of) processing | install | Specialized hardware/software
computes network-wide paths done by individual devices; pipelines that uses configs to
encoded as per-device configs may or may not introduce bugs forward and transform packets

Authors’ Contact Information: Eric Hayden Campbell, Cornell University, Ithaca, USA, ehc86@cornell.edu; Hossein Hojjat,
Tehran Institute for Advanced Studies, Tehran, Iran, h.hojjat@teias.institute; Nate Foster, Cornell University, Ithaca, USA,
jnfoster@cs.cornell.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART303

https://doi.org/10.1145/3689743

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0001-5954-2136
HTTPS://ORCID.ORG/0000-0002-4743-8750
HTTPS://ORCID.ORG/0000-0002-6557-684X
https://doi.org/10.1145/3689743
https://doi.org/10.1145/3689743
https://orcid.org/0000-0001-5954-2136
https://orcid.org/0000-0002-4743-8750
https://orcid.org/0000-0002-6557-684X
https://doi.org/10.1145/3689743
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

303:2 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

In an ideal world, data plane programs would be written to exhibit correct behavior under any
possible config that might be generated by the control plane. However, due to pragmatic hardware-
level concerns, programmers make simplifying assumptions about which configs its controller
will generate. Unfortunately, existing data plane verification tools take an adversarial perspective,
assuming that anything the control plane can do it will do. Consequently, these tools are subject to
false alarms—i.e., configs that violate a given property but will never be generated [2, 32].

To address this problem, the research community has proposed several solutions. VERA uses a
runtime monitor that inlines the config and re-verifies the configured data plane program every
time the control plane generates a new config [40]. Intel’s p4v tool and Google’s p4-constraints
library use first-order formulae to specify assumptions about the control plane-generated configs.
These constraints are then used to rule out false alarms during verification [2, 32, 37], and to monitor
the configs generated by the control plane [39]. However, re-verifying the data plane every time
the config changes is expensive, and writing assumptions by hand is complicated and error-prone.
How can programmers be certain the control plane will satisfy complex requirements on configs?

Computing Interface Specifications. A different approach is to compute a precise specification for
the interface between the control plane and data plane. We call these descriptions control interface
specifications (ci-specs). Rather than declaring that a data plane program is “verified” or “unverified”,
a ci-spec characterizes the conditions that configs must satisfy for the data plane program to satisfy
its correctness properties. Hence, it shifts the onus for establishing correctness to the control
plane—provided its configs satisfy the ci-spec, the data plane will behave as expected; conversely, if
its configs violate the ci-spec, the data plane will be buggy. The ci-specs can be used to monitor the
control plane—configs that violate the ci-spec can be logged for offline analysis or rejected outright.

Precise and Efficient Control Interface Specifications. In this paper, we propose Capisce, the first
inference engine capable of computing precise and efficiently control-monitorable ci-specs. Informally,
a precise ci-spec is both safe, meaning that satisfying configs trigger no bugs, and tight, meaning
that violating configs have at least one packet that triggers a bug. Note that computing a precise
ci-spec has a well-studied solution—we can compute the weakest precondition for the data plane
and universally quantify over the variables that describe the packet state (Section 3, also VERA [40],
p4v [32]). However, checking that a config satisfies an arbitrary universally-quantified formula is
expensive [30]. Instead, Capisce produces ci-specs that the control plane can monitor efficiently.
We define a class of efficiently control-monitorable sentences (ECMS) and show that every ECMS
has polynomial complexity. Importantly, Capisce infers precise ci-specs in ECMS.

To characterize the complexity of ci-spec inference, we show that it is equivalent to quantifier
elimination (QE) in the quantified theory of bitvectors (QBV). In one direction, we describe a
compiler pipeline from a high-level model of pipeline programs called the guarded pipeline language
(GPL) to the theory of bitvectors with uninterpreted functions (UFBV), and we show how to use
QE on specific variables to produce a precise ci-spec in ECMS. In the other direction, we show how
to reduce QE to the problem of computing ci-specs—i.e., we produce a simple GPL program whose
ci-spec requires eliminating a universal quantifier.

A Practical Implementation Based on Path-Based Heuristics. The correspondence between ci-spec
inference and QE provides a daunting complexity challenge for the practical tractability of ci-spec
inference. In particular, while QE can be solved in a finite domain by enumerating the possible
instantiations for the quantified variable, a strategy affectionately known as bit-blasting, this
strategy isn’t tractable for real-world data plane programs that manipulate thousands of bits.

For practical programs, however, it is often possible to side-step the worst-case complexity. We
draw inspiration from two software engineering folk theorems: (1) “programs are usually correct”

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:3

and (2) “bugs have simple causes” We interpret (1) to mean that most program paths are correct,
and the remaining paths are “buggy”” Similarly, we interpret (2) to mean that among those relatively
few buggy paths, it suffices to compute ci-specs for only a few of those.

Capisce leverages these path-based insights in its core algorithm CEGQE: a counterexample-
guided inductive inference (CEGIS) loop that uses counterexample paths to iteratively strengthen a
candidate ci-spec until it is strong enough to prove the data plane program correct. The precision
comes from ensuring that the strengthening step never “overshoots”—i.e., the candidate ci-spec i/
never becomes strictly stronger than the weakest ci-spec.

We have implemented our approach in a tool called Capisce (Section 8), and used it to check a
standard safety property on a collection of practical programs. Our experiments show that Capisce
is able to handle real-world programs, and effectively finds bugs, while only exploring a tiny fraction
of these programs’ paths (e.g., for our repaired version of fabric.p4, only .00000000049%).

Contributions. Overall, this paper makes the following contributions:

o a formal model of data plane pipelines in our new language GPL, and a compiler from GPL
to the quantifier-free theory of bitvectors and uninterpreted functions (QFUFBV);

o the class of efficiently control-monitorable sentences (ECMS) and a proof that inferring precise
ci-specs in this class is equivalent to quantifier elimination (QE) in the theory of bitvectors;

e an iterative-strengthening algorithm (CEGQE) for computing precise ci-specs in ECMS that
exploits software engineering insights;

e an implementation of Capisce in OCaml, leveraging Princess and Z3 as black-box QE engines;

e an evaluation of Capisce on a benchmark suite of real-world data plane programs, which
shows that Capisce can compute precise ci-specs for real-world P4 programs.

2 Background and Motivation

In a data plane program, the programmer declares a set of match-action tables, and then specifies a
conditional pipeline that determines the order in which the tables are executed, or applied.

A table declaration comprises two components: a key and a set of actions. The key is a list of
expressions ey, . .., e, whose runtime values are used to determine which action is executed. An
action is simply a function whose arguments are determined by the table itself—these arguments
are called action data. As an example, consider the table below:

2232: rs‘zg_;gc))rg}(p) { port = p 3} ipvd.dst Action

table fwd { 192.0.2.47 set_port(47)
ey = { Epvaiet S 192.0.2.42 set_port(42)

3 actions = { set_port; nop } otherwise set_port (DROP)

The table fwd, defined in the pseudocode on the left, has a single expression as its key: the vari-
able ipv4.dst that holds the IPv4 destination address. It also has two possible actions: nop and
set_port. At runtime, the table’s configuration (shown on the right above) will read the value of
ipv4.dst and run either the set_port action, or nop.

As defined above, the nop action has no action data parameters and executes no operations, while
the set_port action assigns its single action data parameter p to the port variable. Whenever a
config indicates that the set_port action should be run, it must provide an argument, called action
data, to the set_port function.

At runtime, a match action table is a kind of lookup table whose entries are configured by the
control plane. To apply or run a table means evaluating its key expressions, finding the matching
table entry, and executing the indicated action with the indicated action data. For example, the table
below is to the control plane’s config. This table has three entries, or rows. The first two execute

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:4 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

Bu Configuration
e S —— - Data Plane
Group Agg 1 n
|
1 ipv4.dst Action grp Action : SWItCh Program
1 192.0.2.47 set_grp(1) 1 set_port(47) 1 Action Definitions
. o sesonown) || action mp) 0
I otherwise set_grp(@) otherwise nop() 1 action set_grp(g) { grp =g }
GC-) 1 action set_port(p) { port :=p }
o o o o o e - -
T)
@ } Table Declarations
o Precise . X talk)le IrEuE {4 p
- Control Interface Group(ipv4.dst, set_grp, grp) ey = { ipv4.dst }
(@) o = Agg(grp, set_port,p) action = { set_grp }
bt Specification 99%97p, set_port,p — }
[y
C . . table agg {
(@) Safe Configuration key = { grp }
O G 4 action = { set_port; nop }
roup gg }
ipv4.dst Action grp Action . .
192.0.2.47 set_grp(1l) 1 set_port(47) Plpelme
otherwise set_grp(0) 2] set_port(DROP) apply { .
group.apply();
otherwise nop() agg.apply();
assert (port != NONE);
}

Fig. 1. An example data plane pipeline program (right) and with an asserted ci-spec (bottom right). Capisce
computes a precise ci-spec (center), which ensures that the pipeline satisfies the spec. If the control plane
(left) installs a bad config (top), it is rejected. Safe configs, like the one shown on the bottom, are accepted
and can be safely installed into the pipeline program.

the set_port action with action data n whenever the IPv4 destination address is 192.0.2.n for
n € {42,47}. The final row executes set_port with action data DROP for every other packet.
These table configs are fundamental to determining the functionality of the switch. To see this,
let’s look at another example, shown in Figure 1. This pipeline exhibits a common pattern known
as link aggregation [23, 42]. In this program, packet forwarding is divided into two tables: group,
which computes a forwarding group ID for each packet; and agg, which maps each group ID to
its forwarding port. In more detail, group looks up the IPv4 destination address (ipv4.dst) in the
controller-provided config, which determines the action to be run. The group table only has a single
allowed action, set_group, which assigns its action data to the grp field. For example, first row of
the example config shown in Figure 1 for group assigns the grp field to 1 whenever ipv4.dst is
192.0.2.47. Then, agg looks up the new grp in its config and either runs nop, which does nothing,
or set_port, which assigns its action data p to the port field. Continuing the example, the first
row of the config for group sets the port to 47 when grp is 1. Running these configured tables in
sequence has the effect of forwarding packets with ipv4.dst equal to 192.0.2.47 on port 47.
The layer of indirection provided by group and agg is extremely valuable to network operators.
Networks must react rapidly to hardware failures or changing service demands by forwarding
packets on new routes. Unfortunately, modifying the contents of tables can incur high costs in
hardware: due to the way that ternary content addressable memories (TCAMs) work, it can take
minutes to process modifications that update thousands of entries [44]. The link-aggregation
pattern avoids having to routinely execute minutes-long transactions by rerouting link aggregation
groups. If many IP addresses map to the same link aggregation group and the adjacent link goes
down, the control plane can reroute traffic for all of those IP addresses by updating a single rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:5

The price for efficient reconfigurability is correctness—it is possible for the controller to introduce
bugs in this program. Concretely, it can violate the so-called determined forwarding safety property,
which asserts that every packet has a defined port value at the end of the pipeline. This is required
because on certain hardware devices [27, 45], failing to assign a port value causes the packet
to be forwarded on an undefined port. In building large systems of critical infrastructure (like
networks), we want to avoid undefined behavior, so we classify such behavior “buggy.” One config
that produces undefined behavior is shown at the top of Figure 1. The group table maps address
192.0.2.42 to group 42, which triggers the catch-all rule in agg and executes nop. Hence, in this
config, the forwarding behavior for packets with destination 192.0.2.42 is undefined.

2.1 Inference of Control Interface Specifications

Rather than rejecting programs for which the control configs may introduce buggy behavior, such
as the one in Figure 1, we propose computing an interface specification ¢ that describes the set of
configs that ensure the data plane program p satisfies a given specification ¢.

For instance, for the example in Figure 1, we want all configs for which the group table sets
the group field to a value for which agg runs set_port. We call these restrictions control interface
specifications (ci-specs). Mathematically, we can specify these specifications using first-order logic.

We can represent each table using a function symbol, Group for group and Agg for agg. Each
function symbol has an argument for each key, and returns both an identifier that indicates which
action will run, and the action’s data. For notational elegance, when writing ci-specs, we notate
these functions as relations, with the implicit understanding that they also adhere to the requisite
functional dependencies and totality constraints. For instance, if we write Agg(g, a, p), the variable d
corresponds to an input IPv4 address, then a is the output action identifier (either nop or set_port),
and p is the output port value. Formally, a ci-spec for a pipeline program p is a first-order logic
formula over the functions induced by their tables.

Our goal is to compute precise ci-specs. A ci-spec i is safe for a program p and spec ¢, if p is
guaranteed to satisfy ¢ for all configs that satisfy . Dually, a ci-spec ¢ is tight for p and ¢, if it
is satisfied by every config for which p satisfies ¢. To define these notions formally, we stipulate
some semantics function [p] : Config — Packet — Packet (see Section 3) that takes in a config
o € Config and produces a function on packets (pkt € Packet).

Definition 2.1 (Safe ci-spec). Given a pipeline p and specification ¢, we say that a ci-spec ¥/ is safe
if for every config o, we have: o |= ¢y = Vpkt. [p]° pkt = ¢

Definition 2.2 (Tight ci-spec). Given a pipeline p and specification ¢, we say that a ci-spec ¢/ is
tight if for every config o, we have: (Ypkt. [p]” pkt E @) = o E

Finally, we say that a ci-spec is precise if it is both safe and tight. For example, the ci-spec shown
in the center of Figure 1 is precise. Note that a precise ci-spec has the property that for each config
that does not satisfy it, there is at least one input that causes the data plane program to violate its
spec. Hence, precise ci-specs can also be seen as the weakest—i.e., the most-permissive ci-spec.

The overall goal of this paper is to solve the following problem:

Definition 2.3 (Problem Statement). For a program p and a spec ¢, compute a precise ci-spec .

In what follows, we will show how to produce precise ci-specs; but first, we describe previous
work in this area, and elucidate why it doesn’t suffice in our domain.

2.2 Previous Work

The general problem of synthesizing ci-specs has been studied both in and out of the networking
community. The bf4 tool uses program synthesis to infer single-table necessary ci-specs [14, 19],

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:6 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

o w/¥Y w/oV
w= false Assurp ¢ = [olw LITERALS
4 | Vix]w. ¢ QUANTIFY [x]w VARIABLES w/ F UFBV QBV
| ¢ =¢ IMPLICATION eoe Bivary Ops wioF QFUFBV QFBY
|

|
|
e~e COMPARE | ello: hi] SiiciNG
' o - _
x € Var,w,f € N, F € Func : ;w,[(e) Efﬁ?;lgg
~€e{=<s<w <o <y} Oe{hs)+ &],...} o:Func —» 2" — 2*
pkt : Var — 2°

Fig. 2. Bitvector Theories. The syntax of UFBV formulae (left) and expressions (middle). The classification
of bitvector theories (above right), depending on whether they allow quantifiers (V) and/or uninterpreted
functions (F). The semantics of bitvector expressions are standard. We stipulate the existence of expression
semantics functions and boolean satisfaction relations (bottom right).

which prohibit no good runs. Formally, a ci-spec ¢ is necessary for a program p and spec ¢, if for
every config o s.t. o £ ¢, every input packet causes p to violate ¢, that is [p]” pkt £ ¢. If bf4
cannot infer a necessary constraint that is also sufficient, it reports the program as having true
bugs. In Section 8.6, we compare our approach against bf4 and find that we infer many more safe
ci-specs. As an example, when provided with the example from Figure 1, bf4 computes no ci-spec,
because there is no necessary single-table ci-spec.

The problem of inferring interface specs (i-specs) has also been studied for general-purpose
programs. The MAXSAFESPEC algorithm synthesizes the weakest i-spec that is a conjunction of
formulae over single function symbols [3]. In our context, this syntactic constraint is analogous
to bf4’s single-table constraint. The difference here is that MAXSAFESPEC computes sufficient (or
safe) i-specs. However, the single-function restriction leads to false alarms when used with data
plane programs. Returning to the example, MAXSAFESPEC would compute Agg(grp, a, port) =
a = set_port, which would reject the sound config at the bottom of Figure 1.

So, using current approaches, a data plane engineer seeking to compute ci-specs would need
to decide between a potentially-unsafe under-approximation, and an over-approximation, which
can lead to false alarms. Capisce threads the needle by computing efficient and precise ci-specs, to
provide a safety guarantee while minimizing false alarms.

3 Modeling

The remainder of this paper describes Capisce, which computes precise and efficient ci-specs.
The first step is to obtain a symbolic model of the data plane. To do this, we describe a symbolic
compilation pipeline from an abstract model of data planes (Section 3.2) to the theory of bitvectors
and uninterpreted functions (Section 3.1). Our abstract pipeline language (Section 3.2) is called the
guarded pipeline language (GPL), which lets us reason about branching pipelines of tables. We show
we can model pipelines as programs in the assume-variant [25] of Dijkstra’s guarded command
language [16] by leveraging uninterpreted functions (Section 3.2). This modeling lets us employ
fairly standard symbolic compilation techniques (Section 3.4) to develop a symbolic model. We use
this symbolic model to compute precise and efficiently monitorable ci-specs.

3.1 Theories of Fixed-Width Bitvectors

Since data plane programs perform careful, bit-precise reasoning, we use the theory of bitvectors
as our symbolic pipeline model, using the syntax shown in Figure 2. Semantically, let 2* be the set

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:7

p € GPL(T) [p]° : Packet — P (Packet)

p u= x:=e ASSIGNMENT [x = e]° pkt = {pkt[x — E[e]° pkt]}
| asm¢ AssuMPTION [asm @] pkt 2 {pkt | o ks 0}
| t(e) TABLE APPLICATION [t(e)] pkt £ [ai(d)]° pkt
| psp SEQUENCE wheret : 2" — {ay,...,ai,...,an}
| pllp Cuoice and (i,d) = o(t)(& [e]? pkt)
x € Var t € Table [p1; pa]l® pkt = Uk e[p1]7pkt [p2]° pkt

e € Expr(7T) ¢ € Form(T) [p1 O p2l” pkt = [p1]” pkt U [p2]” pkt

Fig. 3. Syntax (left) and semantics (right) of Guarded Pipeline Language GPL(7") over a bitvector theory 7.
Highlighted variants only occur in GPL(7); the other variants are Guarded Command Language GCL(7").

of all bitvectors, and let 2% be the set of bitvectors of width w, that is, bitvectors with precisely w
bits. We let u, v € 2" range over bitvector literals. We use bracket notation, that is [u],,, [v],, € 2%
to precisely indicate a bitvector’s width. Lower case variables x, y, z C Var range over first-order
(bitvector) variables. In the theory of fixed-width bitvectors, each variable is equipped with a
bitwidth, which we write [x],,, indicating that values of x must be drawn from 2". The expression
language defined in the theory of bitvectors could feasibly be any finite function on bitvectors,
but typically we take a familiar set of core operations: addition (+), subtraction (—), multiplication
(%), division (div), shifting ({,)q, }1), concatenation (+), slicing (:[lo : hi]), and bitwise operators
(&, |, ®, ...). We also permit all signed and unsigned comparison operators (=, <s, <y, >y, >s, .-).
The quantifier-free theory of bitvectors with these defined function symbols is called QFBV and
the quantified variant is called QBV. When we allow expressions (which are sometimes called
terms) to contain uninterpreted functions ¢, F € Func, our theory is UFBV or QFUFBV (with and
without quantifiers respectively). Our function symbols also have types 2% — 2 for w, £ € N, in
the grammar, we write this as F w! but in practice, as with bitwidths elsewhere, we omit these
annotations. Lower case greek symbols ¢, i/, y range over bitvector formulae in UFBV.

Notice that our theories differs along two dimensions, the language of formulae (¢), and the
language of expressions (e). To indicate that a formula ¢ is syntactically valid in theory 7, we write
¢ € Form(7"). We also write e € Expr(7°), when e is in 7’s language of expressions.

The semantics is largely standard, except for its use of configs ¢ € Config. The set of configs
(Config) is the set of functions with type Func — 2* — 2*. For convenience, we restrict (wlog')
the co-domain of ¢ to be functions from 2* to 2*. However, because each F*! has type 2% — 20 it
must be that o(F) : 2% — 2¢. Intuitively, for a function symbol F € Func, we have that ¢(F) is a
function definition for F. In this sense, configs o can be viewed as finite sets modeling first-order
logic formulae. In addition to configs, we need to define the runtime packet pkt € Packet. A packet
is a valuation function pkt : Var — 2* on variables. We stipulate a standard evaluation function for
expressions & [e]? pkt = v and a satisfaction relation for formulae o |=p; ¢.

3.2 Syntax and Semantics of the Guarded Pipeline Language (GPL)

This section presents our modeling language for tables, GPL(7"). The language is parametric over
the bitvector theory used in expressions and assumptions. By default, we will assume 7~ is QFBV
(i.e., no quantifiers or uninterpreted functions), and will write GPL to denote GPL(QFBV).

The syntax and semantics of GPL(7") are presented in Figure 3. A GPL(7") program is mostly
standard comprising: assignment [x],, := e which assigns e € Expr(7) to the w-bit variable x;

1F(x,y) = {[plm> [q]n) can be seen as syntactic sugar for F(x++y) [0 : m] = [p]m AF(x++y) [m+1: m+n+1] = [q].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:8 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

assumption (asm @) which assumes the truth of ¢ € Form(7"); sequential composition (c; c); and
finally nondeterministic choice (¢ [] ¢).

The main non-standard constructs found in GPL(7") are table declarations and table applications.
A table declaration T = (t,n,a) is a tuple comprising a table name variable ¢t € Table C Func, a
natural bitwidth indicating the size of its key domain, n € N, and a set of possible actions a C Action.
An action a = Ad : w. p is a function parameterized on a variable d of bitwidth w and runs a
straight-line program p that may read d (a straight-line program never uses nondeterministic choice).
For an argument [v],,, we write a(v) to mean the substitution p[d +— v]. When w = 0 we use
the syntactic sugar A(). p. We use 2" to refer to the set of bitvectors of width n. To evoke tables’
functionality, we stylize their declarations as follows: ¢ : 2" — a.

For instance, below we declare the Agg and Group tables from Figure 1, first defining the actions,
and then declaring the tables. The key width for the Group table is 32 as it reads the IPv4 destination
address, a 32-bit field. The Agg table reads the grp field, which is also 32 bits.

set_groupg =2 grp:=g set_port p = port :=p nop() = asmtrue
Group : 2** — {set_group} Agg : 2°* — {set_port, nop}

A table application is written ¢ (e) for some declared table ¢ : 2" — a and expression e € QFUFBV
of width n. This variant is highlighted in Figure 3. To indicate that a program p may reference a set
of declarations T, we write the stylized pair p[T]. With the above definitions, the link aggregation
example from Figure 1 is written as follows:

Group(ipvé.dst); Agg(grp)

Semantically, a GPL(7") program p takes in a config o € Config and returns a function from
packets (Packet) to sets of packets (P (Packet)). Formally, we have a function [p] : Packet —
P (Packet), whose semantics are provided in Figure 3. Assignment x := e uses the pkt and o to
evaluate e to a bitvector v, returning a singleton set containing the packet pkt[x + v]. The notation
pkt[x > v] indicates the packet that is identical to pkt except on variable x, which is mapped to v.
Next, assumptions (asm ¢) evaluate whether pkt satisfies ¢ in o: if so, it returns the singleton packet
set {pkt}, otherwise it returns the empty set 0. Sequential composition (p;; p;) is the composition of
the denotation of ¢; composed with the denotation of p; lifted to sets in the natural way. Similarly,
the semantics of nondeterministic choice (p; [| p2) is the union of the denotations of the disjuncts.
Again, GPL(7)’s most novel construct is table application, #(x), which, semantically, looks up
t in the config o. Then, o(t) returns a pair (i, d) of an action identifier i and action data d. The
semantics then select the ith action a;, and run it with its argument.

From this model, we can also define syntactic sugar for trivial and conditional statements.
The trivial statement skip does nothing. Conditionals are encoded in the standard way using a
combination of assumes and nondeterministic choice:

skip £ asmtrue if (b){c:}{cr} = asmb;c; [| asm —b;cy

For a formula ¢ € Form(7), construing [p]° to be a relation lets us write [p]° [¢ to indicate
that p satisfies ¢ under config 0. We find it more evocative to write this as p[o] |= ¢. We also define

p E ¢ tobeVo. plo] E ¢.

An aside on types. GPL requires a type system to keep track of bitwidths and ensure they are
used consistently throughout a program. However, we will elide this detail as it is standard and
unsurprising. We will also omit bitwidths in examples when they are obvious or irrelevant.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:9

3.3 Modeling Tables as Uninterpreted Functions

In this section, we show how we can model GPL(7)’s tables using uninterpreted functions. We do
so by defining a restriction of GPL(7") that corresponds to Dijkstra’s guarded command language
(GCL(7")), and then defining a mapping from GPL(7") to GCL(7"), and proving equivalence.

Formally, GCL(7") is the subset of GPL(7") that excludes table application. Just as we’ve been
letting p range over GPL(7") programs, let ¢ range over GCL(7") programs. For GCL(7), the
default theory is QFUFBV, so we take the convention that GCL indicates GCL(QFUFBV).

We can define model : GPL — GCL for an application of table t : 2 — a. Intuitively,
model(t(x)) treats t as an uninterpreted function, and applies it to the key x to produce an action
and argument and then runs that action with its argument.

model(t(x)) £ (i,d) := t(x);run,(i, d)
where run, (i, d) selects the ith action from the set a = {ay, ..., a,} and runs it with argument d:
rung, .a,(i,d) =asmi=0;a0(d) [| --- [| asmi = n;a,(d)

As an example, consider the pipeline from Figure 1. We recapitulate its definition in GPL below
and show its translation into GCL:
Action Definitions

set_group = Ag. grp =g
set_port = Ap. port :=p

GCL Model
(a, g) = Group(ipv4.dst);

nop = A().asmtrue grp == g;

Table Definitions model .<b’P> = Agg(grp);
Group : 2% — {set_group} = if (b = set_port){
Agg : 232 — {set_port, nop} port :=p

gg, . P b H// else b = nop

GPL pipeline skip
Group(ipv4.dst); }

Agg(grp)

Observe that both tables Group and Agg have been replaced by function calls that compute
output variables a and d. After Group is called, we can ignore a since Group only has one action,
and simply assign d to grp. Then we run the Agg function to compute b and p. We then inspect b
to determine which action should be run. If b indicates the set_port action, then port is assigned
the action data value p, otherwise, b is nop and nothing happens.

We prove that this translation is semantics-preserving.

THEOREM 3.1 (ADEQUACY). [p]° = [model(p)]°

Proor. By induction on p. Let p = t(x), as the remaining cases are immediate or by IHs. Let
a={ap,...,an},and (j,d) = o(t).

[model(t(x))]” [¢i, d) == t(x);run,(i,d)]°

[runa(j, d)]°

[asmi=0;a0(d) [] --- [] asmi = n; a,(d)]°

[a;(D)]°

= [t(x)]° =

Our model is the first to precisely characterize the semantics of tables in a logical formalism [32,
40, 43]. We will use it to generate precise symbolic representations of GPL programs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:10 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

3.4 Symbolic Compilation

By Theorem 3.1, to generate a symbolic model of p € GPL, we need only compile its GCL model
¢ = model(p). We rely heavily on previous work [16, 25] to produce our symbolic compiler. Our
first step is to normalize programs into the passive form [25]. A program is passive if it does
not have any assignments. We can passify a program c by replacing assignments with assumes.
Doing so requires minting a new variable index each time a variable is written, and doing some
careful bookkeeping to ensure that indices are synchronized across join points. The function
passify : GCL(7") x NV3" — GCL(7) x NV&", takes in two arguments, a GCL program c and a map
7 from variables to indices. It returns a passive ¢’ and a map 7’ holding the maximum index for
each variable. We define passify below:

1>

let y =7[x+— I(x)+1]in
(asmxq(x) = subst(Z,e),)
(asm 1 (¢), 1)

let ¢{, I; = passify(cy,J) in
let ¢}, I, = passify(cs, 11) in
(¢}) Iy)

let], I; = passify(cy, 7) in
let c;, I, = passify(cy, I) in
let ry, 1y, J = merge(Z1, ;) in
(csr ey 72,)

passify(x :=e,I)

passify(asm ¢, I)
passify(cy;c2, 1)

1> 11>

1>

passify(cy [] ¢2, 1)

where 7 : Var — N is a map from variables to natural indices. We define Z to be the map that
indexes each variable with 0. We always initialize passify with Z. In the above function, each
time we see an assignment x := e, we rename e according to the current set of indices using a
substitution function subst(e, 1), which returns an expression e whose variables have been indexed
according to 7. We then increment the index for x. Translating assumptions (asm ¢) is similar, we
annotate all the variables in ¢ with their current indices, written subst(¢, 7). The sequence case is
homomorphic: after passifying c; we passify c; with the updated indices from c;.

The hard case is passifying choice (c; [] cz), where we add so-called residuals r; and r, to each
passified program disjunct (c] and ¢} above). These residuals are computed by merge : N2 xNYar —
GCL x GCL x NV2" which takes in the indexing functions 7; and 7, that result from passifying c;
and c, and returns so-called residuals ry and r,. The residuals synchronize the indices between c;
and c;. The residual r; finds the variables that have a lower maximum index in ¢] than they do in
¢, and assumes a chain of equalities x; = x;4; that “catch up” to the max indices of c. The residual
ry is symmetric. We define merge formally below

merge(l1,1;) = letr; =asm (A{x; = x141 | L1(x) <i < Ih(x),x € Var}) in
let ry = asm (A{x; = xi41 | L2(x) < i < I1(x),x € Var}) in
let 7 = {x — max{[;(x),>(x)} | x € Var} in
(rls r2, j)

Note that the size of the added residuals is quadratic in the size of the input program [25]. Of course
the translation is semantics-preserving, after some bookkeeping to relate the lowest and highest
indices with the inputs and outputs of the original program [25].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:11

To understand passify by example, let’s return to Figure 1, for which we compute the following:

GCL Model Passive Form GCL Model
(a,g) := Group(ipv4.dst); asm (a1, 1) = Group(ipv4.dst,)
&P =9 asmgrp, = gi;
(b, p) = Agg(grp); mopassify (-, Z) asm (b1, p1) = Agg(grp,)
if (b = set_port){ — if (b1 = set_port){
port:=p asmport; = p;
H// else b is nop H// else by is nop
skip asm port, = port,
} }

Notice the residual that was added to the nop branch of the choice operator. Because the set_port
branch in the original program (above left) updated port to d, the passive equivalent incremented
port’s index to 1. Now, to synchronize the indices across branches, and capture that the value
remained unchanged, passify adds the residual asm port; = port, to the nop branch.

Assuming that a program is in passive form, we can generate a linear-size symbolic represen-
tation®. The following symbolic compilation function N : GCL(7") — 7, precisely captures the
executions of a passive program c:

N(asmg) = ¢
N(p1;p2) = N(p1) AN(p2)
N(pi [l p2) = N(p1)V N(p2)

The following shows the result of running N on the passified example program:

Passive Form GCL Model
asm (a1, g1) = Group(ipv4.dst,)

asmgrp; = g1; Symbolic Model
1= 91 _ .
ai, = Group(ipv4.dst,) A
asm (b1, p1) = Agg(grp;) N ; r;)l.‘h:>g1 ¢ p(ipvd.dst)
]f(génj ;z:t_lpzr;)l{ (b1, p1) = Agg(grpy) A
H// else by is nop (b1 = set_port A port; = p;

V = /\ =
asm port, = port, by = nop A port; = port,)

}
With a symbolic pipeline in hand, we can check whether it satisfies a spec ¢ via implication.
However, we must be sure to update ¢ with respect to passify’s output index mapping 7, that is
subst(¢, 7). In our example, since J (port) = 1, we check the following:

(a1, g1) = Group(ipva.dsty) A
grpr =91 A
(b1, p1) = Agg(grp,) A = port, # NONE
(b1 = set_port A port; = p;
V by = nop A port, = port,)
We define symbolic compilation using VCGEN : GPL(7) X 7~ — 7, as shown below:

VCGEN(p,) =2 let c = model(p) in
let ¢/, I = passify(c, Z) in
N(c") = subst(p, 1)

2The standard presentation of compact symbolic compilation [25] also uses an additional wrong execution function W which
captures when programs violate assert statements. But GCL(7) has no assertions, so it can never “go wrong.”

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:12 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

We prove that VCGEN is a precise ci-spec:
THEOREM 3.2 (SymBoLic COMPILATION). VCGEN(p, @) is a precise ci-spec for p and ¢.
Proor. By Theorem 3.1 and [25]. O

Hence, the sentence VCGEN(p,) is a valid formula for validating configs. However, this formula,
being almost a line-for-line translation of the initial problem p |= ¢, with the added complexity
of indexed variables, is not a significant improvement on the original program. Further, finding
counterexamples for a concrete o (i.e., satisfying N(c) A =subst(¢, 7)) is NExpTIME-complete [30].
Checking such a formula on every control-plane update could incur significant latency.

4 Efficiently Control-Monitorable Sentences and Their Inference

Rather than repeatedly running NExpTiME-complete checks, we propose a class (ECMS) of first-
order sentences that can be checked efficiently—i.e., with polynomial complexity for a fixed set
of typed functions F. Specifically, we will characterize the complexity of monitoring an ECMS in
terms of its expression complexity, a concept from database theory [1]. We then define an algorithm
that computes a precise ci-spec, by leveraging quantifier elimination (QE), making sure to show
that this precise ci-spec is an ECMS. Finally, we show that any algorithm that computes a ci-spec
in ECMS can solve the QE for UFBV. This equivalence means that computing an ECMS may still
incur a combinatorial blowup—i.e., the formula we generate will have exponential size in cases
where bit-blasting is required. However, as shown in our experiments, we avoid bit-blasting in the
common case. So working with formulae in ECMS is useful in practice.

First, we define a syntactic set of sentences that are efficiently monitorable by the control plane:

Definition 4.1 (Efficiently Control-Monitorable). A sentence i of UFBV over a fixed set of functions
F = {F,...,F,} is said to be efficiently control-monitorable (y € ECMS) if, for variable sets z =
{z1,.- s zZu},y ={y1, ..., yn} and x C zUy, y can be written z; = Fi(y1) A+ - - Azp, = Fu(y,) = ¢0(x)
where ¢ € QFBV. For brevity, we write as z = F(y) = ¢(x).

To calculate the expression complexity,” one fixes the database, and expresses complexity in
terms of the size of the query. In contrast, to calculate the data complexity, one fixes the query,
and expresses complexity in terms of the size of the database. The combined complexity expresses
complexity in terms of the sizes of both the query and the database [1]. In our setting, we focus on
expression complexity. First, we fix the control plane interface to be a set F = {Fy, ..., F,,} and their
associated types, e.g. F; : 2 — 2%, With a fixed F, the number of functions n, and every w; and ¢;
are also fixed, which means a config o comprises finite functions between fixed-size domains. We
show the expression complexity is polynomial.

THEOREM 4.2. For a fixed config o, and y € ECMS, checking o |= ¢ is polynomial.

Proor. Let y € ECMS. This means there is ¢ € QFBV, and variable sets x, y and z such
that ¥ = z = F(y) = ¢(x) and x C y U z. First, observe that given a valuation p : x — 2%,
checking |, ¢(x) is polynomial in the size of ¢p—simply evaluate the formula. Since o is fixed,
M = o(F;) X -+ X 0(Fy,) has a fixed size. Each element y; € M corresponds to a valuation
ui:zUy — 2%, and since x C z Uy, we can write y; : x — 2*. It suffices to perform the fixed
number of polynomial checks |, ¢(x) fori=1,...,|M]|. o

The analysis above also shows that the data complexity, and hence the combined complexity,
is exponential in the size of 0. However, this only captures the uninteresting observation that in

3 Also called query complexity

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:13

the worst case, a monitor must inspect every combination of elements in a pipeline’s tables. The
expression complexity captures the complexity of each validation.

We show, in the remainder of this section, that rather than computing general first-order-logic
formulae, it suffices to compute formulae in ECMS. We do this by showing that inferring a precise
ECMS is formally equivalent to quantifier elimination (QE). While quantifier elimination algorithms
normally define QE using an existential quantifier variable and use structural recursion to define it
over the full grammar, it’s more convenient to use the universal variant of QE as below:

Definition 4.3 (Quantifier Elimination). Given a formula ¢(x, x) € QFBV, with x; € Var, x C Var
and x, ¢ X, a solution to the quantifier elimination problem is a formula 1/(x) on only the variables
x such that ¢/ (x) © Vxg.¢(xp, x). We write ¥/(x) = QE(Vx.¢(x0, X)).

A corollary of our construction in the following sections will be that restricting ci-specs to
ECMS does not affect the expressiveness. That is, computing the weakest ECMS is equivalent to
computing the weakest first-order sentence.

4.1 Qe Computes Precise ci-specs

To infer a precise ECMS constraining configs o such that p[o] = ¢, we compile p to a GCL program
¢, and then lift out the functions. We define a lift function that, loosely speaking, separates out
the control plane (i.e. the tables) from the data plane (the forwarding behavior). To do this, we
introduce ghost variables z and y that capture the inputs and outputs of the tables t. Then we write
z = t(y) to nondeterministically capture all potential table rows—this space is collapsed to the
runtime key x in the data plane program. We use x to indicate the remaining variables that occur
in c. Formally we write lift(c) = (z = t(y), d) to indicate the following, lifted in the expected way:

lift (@, d) = t(x);runa(a,d)) = ((za, za) = t(yx), asmyx = x;runa(Ya, ya))

Notice that the output program d has no uninterpreted functions, that is ¢’ € GCL(QFBV). The
relationship between d and c can be captured below:

(asm (z=t(y));d) =x c (1)

where =, C GCL X GCL relates programs that are equivalent on the variables x. We can see this
relationship by running lift on our example from Figure 1 as below:

asmy; = ipv4.dst;

grp = zy;

asmy, = grp;

if (zp = set_port){port := z, }{skip}

(2a: 2g) = Group(ys)
A

(zp,2p) = Agg(y2)

The formula on the left “queries” the pipeline’s interface with the Group and Agg tables, using the
ghost variables y and z to capture the results. Then, the program on the right uses these variables to
capture the forwarding behavior. Below, we recombine these components according to Equation (1):

(Zas Zg) = Group(y:)A

. asm

(a,g) = Group(ipv4.dst); (zp, 2p) = Agg(yz)
grp ==g; asmy; = ipv4.dst
(b, p) = Agg(grp); _ grp = zg;
if (b = set_port){ ~ipvd.dst.grp.port asmy, = grp;

port := p; if (zp = set_port){
Hskip} port := z,

}{skip)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:14 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

Notice that in the lifted program on the right we’ve lifted all function calls to the start of the
program. We then use the assumptions like asm y; = ipv4.dst to collapse the space of lookups to
precisely those where we looked up the value of ipv4.dst in the function Group.

Because the lifting stage preserves equivalence on the relevant variables (Equation (1)), it will
intercede after the modeling stage. To evoke the fact that lift separates the control plane from the
data plane, we will define a control plane symbolic compilation function C : GPL — UFBV and a
data plane symbolic compilation function D : GPL X QFBV — QFBV. We define these below:

C(p) = letc=model(p) in D(p,p) = letc = model(p) in
let 3,d = lift(c) in let 9,d = lift(c) in
9 let d’, I = passify(d,Z) in
let ¢’ = subst(¢,) in
Nd) = ¢’

Both of these functions start the same, by modeling p € GPL as a GCL program ¢ and then lifting
the control plane & out of the data plane d. The control plane function C, stops here and returns J.
The data plane function continues its symbolic compilation, by computing a passive version d” of
d by calling passify(d, Z) (recall that Z zero-initializes all passivization indices). Then, the data
plane function normalizes the spec ¢ corresponding to the output indices 7, which produces ¢’.
Finally, D returns the formula N(d") = ¢'.

The following lemma shows that C and D precisely characterize pipelines:

LemMa 4.4 (LirTING). VCGEN(p, 9) & C(p) = D(p, ¢)
Proor. By Equation (1) O

The final step is to use QE to eliminate the packet variables x from D(p, ¢). Since D(p, ¢) is
a formula over the original data plane variables x as well as on the ghost variables y and z, the
result of using QE to eliminate x, will be a formula /(y, z) over just the variables y and z. In fact, a
key result in the domain of logical abduction [17, 18] is that /(y, z) is the weakest formula on the
variables y and z such that ¥(y, z) = D(p, ¢). Combining this weakness with the fact that QE is
equivalence-preserving, we can see that QE suffices to solve the ci-spec inference problem.
Formally, we define a procedure PRECSPEC(p, ¢) as follows:

PrECSPEC(p, ¢) £ C(p) = Qe(Vx.D(p, ¢))

where x = Var \ y where y is the set of all ghost variables that occur in C(p). Said another way, x
is the set of indexed data plane variables.

Now, based on the observations we’ve made so far, we can prove that PRECSPEC(p, ¢) precisely
captures the control plane configs o that make p satisfy its spec ¢:

THEOREM 4.5. PRECSPEC(p, @) is a precise ci-spec.

Proor. By Lemma 4.4, [17, 18], and Definition 4.3.]

Finally, by examining its syntax, we’ll see that PRECSPEC(p, ¢) € ECMS! Here’s how: since C(p)
can be written as z = F(y), and since ¢ € QFBV, then Qe(Vx.D(p, ¢)) is QFBV. Further, since
PRECSPEC(p, ¢) is indeed precise, the fact that it is also in ECMS means that we have not given up
any precision in restricting our ci-specs to be efficiently monitorable.

At first blush, it seemed that ci-spec inference would require us to learn arbitrary first-order
logic formulae. We’ve shown here that it suffices to learn formulae in ECMS, and specifically, that
we need only eliminate quantifiers in the theory of bitvectors.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:15

4.2 Precise ci-spec Inference in ECMS Solves QE

Unfortunately, we can show that precise ci-spec inference in ECMS solves QE in the theory of
bitvectors—whose best known algorithms [5, 15] require bit-blasting the finite domain of quantifi-
cation. Hence, for ci-spec inference, we also resort to bit-blasting in the worst case.

Consider a formula ¢ € QFBV. We want to compute QE(Vxg. ¢(x, X)). To do this, we will use
the GPL program t(x) where t : 2%t[++lxl _ {2() skip}, and compute its ci-spec w.r.t. ¢(xo, X).
Now, PRECSPEC(£(x), ¢ (xo, X)) gives us the following formula:*

(2a:2a) = t(y) = QE(YX0, X.y = x = ¢(Xo, X)))
Notice that the call to run,(z,, z4) has disappeared. This is because the choice to run one of the
actions in the singleton set {skip} will deterministically run that single action. As a result, z, and
z4 do not occur except for in the leftmost assumption. So, we can use the so-called “one-point rule”
(also known as destructive equality resolution), to rewrite Equation (2) into the following:

QE(Vxp, X.y = x = ¢(x0,X)) (3)

Next, we apply the one-point rule again and swap y for x, which then lets us eliminate the innermost
Vx, since the variables in x no longer occur. We that the following formula:

QE(Vx0.¢(x0, X)) 4)

which is equivalent to our original sentence. Having just proved it, we state the theorem below.
THEOREM 4.6. PRECSPEC(L(Y), ¢(X,¥)) = Vy.QE(VX.0(x,y)) wheret : 21v11++lual 5 (3 () skip}.
Proor. As above. O

The downside of having shown the equivalence of QE and ci-spec inference in ECMS is that
the best-known algorithms resort to bit-blasting in the worst case. However, in what follows, we
exploit domain insights to develop an algorithm that can eliminate quantifiers effectively.

5 Programmatic QE

Since inferring ci-specs is intractable in general, we pursue heuristic techniques that work well
in practice. A standard maneuver when dealing with large, intractable problems is to decompose
the problem into smaller, easier-to-solve, sub-problems. We exploit the fact that ci-spec inference
commutes with choice (i.e., []). That is, given a GPL program p; [] p, and a spec ¢, it is the case that
PRECSPEC(p; [] p2, ¢) & PRECSPEC(p1,) A PRECSPEC(p2,). By reasoning inductively, this rela-
tionship can be generalized over all paths: PRECSPEC(p, ¢) & C(p) = A repaths(p) PRECSPEC(7, @).
We define paths : GCL — P (GCL) below:

paths : GCL — #(GCL)
paths(x :=e) {x =e}
paths(asm @) {asm ¢}
paths(cy;c2) = {my; w2 | m; € paths(c;), i = 1,2}
paths(c; [] ¢2) £ paths(c;) U paths(cz)

Notice that we have defined paths on the GCL level. That is for a program ¢ € GCL, paths(c) €
GCL(T) is the set of straight-line programs (aka paths) through c. We then define paths(p) for
a program p € GPL by first compiling p to its data plane-only representation using model and
lift. That is paths(p) = paths o 7, o lift o model(p). Further, we have defined = € GCL(UFBV). We
define PRECSPEC(7, @) to be QE(Vx.D (7, ¢)), where x is the set of non-ghost variables in D (7, ¢).

A
A
A

4Technically, PRECSPEC computes a formula where each variable has a passive index of 0, that is xy, Xo, yo, but by erasing
the indices, we get the formula shown in Equation (2)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:16 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

5.1 Paths Produce Smaller QE Problems

Computing the ci-spec for a single path is much more tractable than doing so for a whole program.
Aside from being much smaller programs, aggressive compiler optimizations are much more
powerful on paths. For instance, we use standard compiler transformations for dead code elimination
(dce : GCL x Var — GCL X Var) and expression propagation (prop : GCL X GCL — GCL), as
defined below:

dee(x = e(y).R) {(asmtrue, R) x ¢R

) (x = e,yU(R \ {x})) x€R prop(x =ec) £ c[x o e]
dce(asm(y),R) = (asm¢(y),y UR) prop(asmg,c) £ asmg;c
dce(cy; 2, R) = =

let ¢, Ry = dce(cy, R) in
let ¢}, Ry = dce(cy, Rp) in
(cisca,Ry)

The function dce, at every step, removes assignments x := e when x is not in the set of read
variables R. Similarly, prop propagates x := e by substituting e for x in the rest of the path.
This substitution must be done carefully to avoid “capture”. For an imperative path like this one,
substitution stops once x appears on the left-hand side of an assignment. This definition differs
from typical definitions of constant or expression propagation, which need to merge sets of facts at
join points. Because we’re reasoning about straight-line code, the set of facts never diverges.

These compiler optimizations are actually doing heuristic quantifier elimination at the program
level. Notice that after the lifting stage, control plane variables will never occur in assignments,
only the data plane variables will. So, using dce and prop to eliminate as many assignments as
possible before running QE is a clear advantage of path decomposition.

However, the ability to generate smaller and more-optimizable QE instances doesn’t mean much
if there are exponentially many of them to solve. Since paths(p) is exponential® in the size of p, it
remains intractable to compute PRECSPEC(7, @) for every 7 € paths(p).

Luckily, we don’t always need to examine every program path. In fact, we only need to explore
paths that violate ¢. Since the ci-spec for a path that doesn’t violate ¢ is T, then PRECSPEC(c, ¢) is
equivalent to the ci-spec for only the paths that violate ¢. Let’s call this set of buggy paths B. In
our experience (Section 8.1), we've seen that the number of these “buggy” paths can be orders of
magnitude smaller than the size of paths(p).

Furthermore, we don’t even need to analyze every buggy path in B. In fact, our experience has
shown (Section 8.4) that the ci-spec for a single path generalizes to solve many paths. For instance,
if we added a parser to our example from Figure 1 that either validated one of the main Layer 4
protocols, TCP or UDP, then the ci-spec for either parser path would generalize to the other.

prop(ci;cz,¢3) = prop(cy, prop(cz, ¢3))

5.2 A Path-Based Iterative Strengthening Algorithm

Our algorithm, CEGQE, iteratively strengthens a candidate ci-spec using counterexamples. The
procedure STRENGTHEN takes in a spec ¢, a candidate ci-spec ¢;, and a spec-violating path 7 =
Vi A =@, and computes a new candidate ci-spec ;41 such that ;4,1 = ¥, and 7 | 541 = ¢. We
define STRENGTHEN as follows:

STRENGTHEN, ({/,) = ¢y A PRECSPEC(7, @)

By definition, STRENGTHEN, (¢, ¢) = . Similarly, since 7 | PRECSPEC(p,9) = ¢, then 7 |
STRENGTHEN, (¥,) = ¢, indicating that the strengthened ci-spec prohibits 7 from violating ¢.

The well-known path explosion problem.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:17

The algorithm iteratively strengthens ¢ until an SMT solver proves i is stronger than D (p, ¢). To
maintain precision, STRENGTHEN; will never “overshoot” D (p, ¢). That is, as long as 7 € paths(p),
the invariant D(p, ¢) = STRENGTHEN, (1, ¢) holds. This formula is similar to bf4’s necessity
constraint (which they write OK | ¢, where ¢ is a new candidate ci-spec). While bf4 checks this
constraint using an SMT solver after each operation, Capisce maintains this as invariant, which
holds because the conjunction of path-based ci-specs is equivalent to the full program ci-spec.

We define the following set BADPATH,, to capture all paths 7 that witness the insufficiency of ¢/
to prove D(p,). In practice, we use an SMT solver to produce one such path, when it exists.

BADPATHS, (, ¢) = {7 € paths(p) | 1 E ¢y A ~D(p,)}

Now, the algorithm can be stated formally. For a program p, a spec ¢, and a candidate /, define:

CEGQE(p, ¢) =
YT
while 7 € BADPATHS, (¥, @) :
¥ < STRENGTHEN,(, ¢);
return ¢

For any program p and spec ¢, the algorithm CEGQE(p, ¢) terminates, because the set of paths
through p is finite. By initializing i to be T we ensure that we will never overshoot the correct
ci-spec. Similarly, the ¢ produced by CEGQE is the most precise ci-spec. Correctness of CEGQE
comes from the fact that the final path is equivalent to /\ ,cg PRECSPEC(, ¢) for some set of bad
paths B C paths(p). We sketch the proof of this algorithm below:

THEOREM 5.1 (CORRECTNESS). PRECSPEC(p, ¢) < C(p) = CEGQEP’(p(T)

Proor SKeTcH. CEGQE terminates because it explores a finite set of paths—the continued strength-
ening of the candidate solution ensures that it never explores the same path twice. The forwards
direction follows from the fact that CEGQE(p, ¢) can be written as A ,cg(PRECSPEC(7, ¢)), for some
set of bad paths B C paths(p). Since PRECSPEC commutes with choice, the implication holds. The re-
verse direction follows by the emptiness of BADPATHS which implies CEGQE(p,) = D(p,¢). O

Finally, we have C(p) = CEGQE(p, ¢) € ECMS since CEGQE(p, ¢) € QFBV.

All told, we’ve been able to reduce the size of each expensive QE sub-problem, by decomposing
the program into its component paths, and using aggressive compiler optimizations to eliminate
variables at the program level.

6 Specifications for Data Planes

The standard specification mechanism in data plane verification is assume-assert style specifica-
tion [32]. Indeed, architectures [27, 45] for the P4 programming language have built-in functions
called assume and assert. Even though they have no semantic effect on the program, programmers
use these constructs with verification tools [2, 32] that reason about intermediate states of the
system. Since GPL already has assumptions, we need only add assertions.

Unfortunately, adding assertions to GPL incurs a quadratic cost in the size of the formula [25],
even along single paths. Assertions, written ast ¢, characterize when programs “go wrong” by vio-
lating ¢. The function W : GCL(7") — 7, originally defined by Flanagan & Saxe [25], symbolically
characterizes these executions for a passive program ¢ € GCL(7). It is defined below:

W(astp) = —¢
W(asme) = 1L

Wi(eise2) = W(er) V N(er) AW(ez)
Wiep [l e2) = Wier) AW(ez)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:18 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

The quadratic size comes from the sequence rule. A program c;; ¢, can either go wrong because c;
goes wrong (W (cy)), or because c; goes right (N(c1)), and then c; goes wrong (W (c3)).

Consequently, checking whether a candidate i suffices for a passive program c, with asserts,
means checking y = =W (c), which asks if ¢ is sufficient to prove that the program never goes
wrong. Because the spec ¢ has become part of the program (e.g. via a terminal ast statement), we
don’t have an explicit spec ¢ to reason about.

In the case that there is some 7 = =y A W(c), we know that 7 that contains at least one violated
assertion. Now we generate the following quantifier elimination problem, which eliminates the
data plane variables x from the wrong executions (W) of the path 7:

QE (Vx. =W (1))

Unfortunately, W(r) is quadratic in size [25]. In Section 5.2 we were checking the linear-size
N () = ¢.Now, we much larger QE instances. To sidestep this growth, and maintain the compact-
ness of the QE sub-problems, we decompose the problem even further.

Let’s proceed by example. For a path ¢ = c¢y; ast ¢1; c2; ast ¢z, where ¢; and c; are ast-free, we
would generate the following QE problem:

QE (Vx. (N(c1) = ¢1) A (N(e1) A AN(cz2) = ¢2))
Observing DeMorgan’s laws and the distributivity of QE and V over conjunction, this becomes:
QE(VX.N(c1) = ¢1) A QE(VX.N(c1) A @1 AN(c2) = ¢2)

Projecting this reasoning back up into the program, each of these subproblems corresponds the
following conjunction of assert-free ci-spec inference problems:

PReCSPEC(c1, 1) A PRECSPEC(ci;asm @5; ¢, 02)

In general, exploiting this distributivity lets us consider assert-final path prefixes. Given a coun-
terexample packet pkt, our path generation scheme produces the path prefix that terminates in the
first assertion that is violated. At the end, we find that even in the presence of assertions we will
only ever produce linear-size QE sub-problems (although there can be many such sub-problems).

7 Implementation

We have implemented a ci-spec inference library in OCaml called Capisce. Our library exposes
a GPL AST, which makes heavy use of smart constructors. Our algorithm largely follows the
structure outlined in the previous section. We discuss here the implementation of path selection
and quantifier elimination. We also discuss how GPL can model real world pipeline programs.

Path Selection. The BADPATHS function in CEGQE(p, ¢) checks whether there exist any buggy
paths. To compute this check in practice, we use both an SMT solver, and a tracing execution of the
program. First, we use an SMT solver to check SAT (¢ A =D (p)), which returns a valuation of the
input variables—that is, a packet pkt. We then define a tracing execution that runs pkt through the
program p, accumulating its execution trace 7 as it goes. We then use r to strengthen ¢.

Quantifier elimination. To eliminate quantifiers, we rely on an ensemble of state-of-the-art
solvers: Z3 [15] and Princess [5]. In our experience, it seems that Z3 is more efficient at bit-blasting,
while Princess is better at eliminating formulae with arithmetic operations (+, —, etc). We find that
combining the respective strengths of these two solvers is highly effective. Rather than racing the
solvers, as is common, we rely on the fact that both solvers produce partial results when they time
out. We can then pass these partially-eliminated formulae between the two solvers. We have found
that Z3;Princess;Z3 generally suffices.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:19

7.1 Modeling P4 in GPL

GPL provides a concise model of the core interface between the data plane and the control plane,
namely tables. However, industry standard data plane programming languages, like P4, have a
great deal more complexity, including headers, parsing, hash functions, and stateful operations. We
discuss how we have modeled these features below:

Headers: Headers are similar to structs in the C language, with typed fields fi, ..., f,, which
can be accessed using standard dot notation, e.g. h.f;. Headers are also equipped with a validity bit
h.isValid() that can be manually manipulated using the setValid() and setInvalid() methods.
We explode headers a list of variables h_fy,..., h_f,, one for each field. We also add an explicit
validity bit to each header, e.g. h_isValid. Then h.setValid() and h.setInvalid() can be modeled
as assignment of 0 or 1 to h_isValid. The validity bit for all headers is initialized to 0.

Metadata: Metadata is another struct-like data representation. They differ from headers only
in that they have no validity bit.

Parsers: Parsers are often expressed using a finite state machine abstraction [8], however, because
of limitations in programmable data plane hardware [9], these finite state machines are required to
terminate within a given bound [13]. In practice, it is straightforward to unroll parser loops.

Hash Functions: Hash functions are often used for network functions like heavy-hitter detec-
tion [38], or load balancing via equal-cost multipath routing (ECMP). We could model hash functions
using uninterpreted functions and concolic execution [37]. However, because they typically occur
only once in a pipeline, we can usually get away with modeling them using nondeterminism.

Stateful Operations: Stateful operations are also used to support a variety of applications in-
cluding in-network telemetry [38], and in-network caching [29], among others. The challenge in
programming with state is that stateful externs in P4 programs are subject to data races,® except
when surrounded by the @atomic annotation. For simplicity, we treat non-atomic register reads as
producing nondeterministic values, while treating registers in @atomic blocks like fields in headers.

8 Experience
To assess the usefulness of Capisce, we investigate the following five research questions:

RQ1: Can CEGQE to infer real safety properties?

RQ2: Are most program paths correct?

RQ3: Do ci-specs for individual paths generalize over many paths?
RQ4: Can ci-specs help programmers find bugs?

RQ5: How does Capisce compare to bf4?

In Section 8.1 we use Capisce to infer ci-specs for a suite of P4 programs collected from previous
work [19], answering RQ1 in the affirmative. Most ci-specs are inferrable in a few seconds, with
several taking hours. Two programs, fabric and linearroad, reached our timeout of 24 hours,
without having terminated. However, with simple fixes to each program, we can infer their ci-specs.
We discuss these examples in Section 8.5.

To answer RQ2 and RQ3, which refer to the guiding assumptions about the prevalence of bugs,
we measure the proportion of paths that are covered after each strengthening step of CEGQE. Our
analysis in Section 8.4 shows that for the programs we analyzed, 40-96% of paths were initially
correct. We also can see that the ci-spec for individual paths can generalize very well—in some
cases over thousands of other paths.

To answer RQ4, we qualitatively analyzed the ci-specs Capisce computed. In Section 8.2, we
discuss the programs that had absurd (L) ci-specs, that is, there was some buggy packet for every

%Section 18.4.1 of the P4 language specification[13]

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:20 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster
Program Program Paths Result Time (s) Explored Paths Spec AST Size Explored Ratio
ABSURD PROGRAMS
ts-switching 21 1 0.160 2 1 0.095
mc-nat 39 1 0.089 1 1 0.026
FixeEs To ABSURD PROGRAMS
ts-switching-fixed 21 T 0.030 0 1 0.0
mc-nat-fixed 39 T 0.027 0 1 0.0
TriviAL PROGRAMS
resubmit 9 T 0.028 0 1 0.0
netpaxos-acceptor 0.116 T 30.0 0 1 0.0
ecmp 102 T 0.030 0 1 0.0
hula 3629 T 0.068 0 1 0.0
ndp-router 3843 T 2.9 0 1 0.0
NONTRIVIAL PROGRAMS
arp 95 17 5.0 0.016 349 0.17
heavy-hitter-2 267 @ 0.29 3 26 0.011
heavy-hitter-1 327 @ 0.60 7 90 0.021
flowlet 649 @ 1.8 9 127 0.014
simple_nat 66531 17 5.2 54 1421 0.00081
07-multiprotocol 54459] 16 143 3138 0.0026
netchain 26726780 ¢ 2.9x10° 264 11658 9.9x107°
linearroad 54477696 timeout
fabric 133365047559893 timeout
SPEC SMELL PROGRAM FIXES
heavy-hitter-1-fixed 327] 0.63 7 107 0.021
linearroad-fixed 54477696 [5.9%x 10 3236 179885 5.9 x 1072
fabric-fixed 133365047559893 ¢ 1.2x10° 653 41140 4.9% 10712

Fig. 4. Experience with using Capisce to check Header Validity on a broad range of P4 programs.

possible config. We were able to analyze these programs and fix their errors. We also analyzed the
nontrivial specifications (Section 8.3), which revealed several hitherto-unknown bugs in the source
programs. Further, a local analysis of fabric, on which Capisce timed out, directed us to fix bugs
in its access control logic (Section 8.5.1).

To answer RQ5, we compared Capisce with bf4 on our suite of programs (Section 8.6), and
found that while Capisce is often much slower than bf4, its computed ci-specs are much safer.

We ran our experiments on a 64-core machine, with Intel Xeon Silver 4216 CPUs @ 2.10GHz,
running Ubuntu 22.04. Each experiment was single-threaded.

8.1 Capisce in Practice

To understand the effectiveness of Capisce on real-world programs, we inferred ci-specs for the
programs used as benchmarks in previous work [19]. These benchmark programs comprise both
research and industrial programs that are publicly available on Github.

First, we ran Capisce’s inference with respect to two well-studied [19, 20, 32] properties in data
plane programming. The first, called Header Validity, asserts that every header h is valid every
time h.f is read. The second, called Determined Forwarding, every packet is assigned forwarding
behavior. In V1Model P4, which we use for our examples, we can check determined forwarding
by ensuring that the variable std_metadata.egress_spec is assigned a value. As previous work

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:21

Program Program Paths Result Time (s) Explored Paths ci-spec Size Explored Ratio
ABSURD PROGRAMS

ecmp 102 1 0.320 4 1 0.039

fabric 133365047559893 L 7.3 5 1 3.7x1071

netchain 26726780 1 27 7 1 2.6 %1077

TriviAL PROGRAMS

arp 95 T 0.027 0 1 0.0
linearroad 54477696 T 0.054 0 1 0.0
simple-nat 5548 T 0.034 0 1 0.0
NONTRIVIAL PROGRAMS
resubmit 9 @ 0.016 2 17 0.22
ts-switching 21 Q@ 0.10 1 4 0.048
mc-nat 39 @ 0.27 3 21 0.077
netpaxos-acceptor 116 @ 0.12 1 4 0.0086
heavy-hitter-2 267 @ 88 15 233 0.056
heavy-hitter-1 327 @ 0.10 11 187 0.034
flowlet 649 @ 79 15 490 0.023
hula 3629 @ 0.39 1 9 0.00028
ndp-router 3843 1] 40 36 824 0.0094
07-multiprotocol 54459 @ 30 232 5034 0.0043

SPEC SMELLS & FIXES
ecmp-fixed 102 Q@ 0.28 3 34 0.029
mc-nat-fixed 27 T 0.029 0 1 0.0

Fig. 5. Experience with using Capisce to check Determined Forwarding on a broad range of P4 programs.

has shown [20, 32], satisfying these properties requires complicated invariants on the control
plane configs that potentially involve multiple tables, which makes them excellent benchmarking
properties. The results can be seen in Figures 4 and 5. The “Result” column categorizes the result
of running CEGQE on the program: T indicates that CEGQE returned true; L means that CEGQE
returned false, and ¢ captures everything in between. The “Time” column presents the number of
seconds to 2 significant figures. We also report the number of paths through the original program,
as well as the number of concrete paths that CEGQE explored.

Observe first, that most of our programs have non-trivial and non-absurd specifications. These
are programs that would have been rejected by standard verifiers [21, 32, 40, 43]. Second, observe
that most of these programs have reasonable solve times—a few seconds to a few minutes. Even for
the larger programs that have hundreds of millions to quadrillions of paths, we are only exploring
a minute fraction of those paths.

8.2 True Data-Plane Bugs

For programs that produced empty control plane properties (L), we inspected the programs to
understand the errors. For Header Validity, many of these programs with true data plane bugs
had made implicit assumptions about the packets that would successfully pass the parser, which
is a well-documented pattern [20]. We describe how we incorporated these assumptions in the
Section 8.2. Conversely, for programs with determined forwarding bugs, the fix is to specify that by
default the packet should be dropped at the start of egress processing, which trivializes all ci-specs.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:22 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

8.2.1 Header Validity. In this section, we discuss the true data-plane bugs that we found in the
mc-nat program. The mc-nat program is an industrial R&D program. The parser for this program
performs standard Ethernet and IPv4 parsing, which means that at the start of the pipeline, Ethernet
is known to be valid, but IPv4 may or may not be. The error occurs in the first table set_mcg shown
below. Its key is ipv4.dstAddr, and therefore to instrument it for Header Validity, we have asserted
the validity of ipv4 (top right), which is not guaranteed by the parser (below left).

// Table Definitions

set_mcg : bit<32> -> { ... } // Buggy Pipeline
// Parser assert(ipv4.isvValid = 1); // error!
eth.isvalid = 1; set_mcg(ipv4.dstAddr);
if (eth.type == 0x0800){
ipv4.isValid := 1; . // Fixed Pipeline
} else { assume (ipv4.isValid = 1); // fix!
ipv4.isValid := @; ... assert(ipv4.isvValid = 1);

} set_mcg(ipv4.dstAddr);

After inspecting the program, we concluded that the engineers only intended for this program to
run on IPv4 packets. We realize this apparent assumption by adding an assume statement (shown
above on the right). With this assumption, the assertion follows immediately, and Capisce returns
the ci-spec true. The results for the fixed program are reported in Figure 4 under mc-nat-fixed.
The bug in ts-switching has a similar character and similar fix.

8.2.2 Determined Forwarding. We also found true violations of Determined Forwarding. One such
example can be found in the ecmp program. Improving on the previous example, the ecmp program
does guard the accesses to the optionally-valid ipv4 header with an if statement. The problem is
that when the ipv4 header is invalid, no code is run, which means that the forwarding behavior is
not determined. The following presents an outline of the ecmp program.

// Table Definition

table ecmp_group : bit<32> -> { ... }
// Pipeline
determined := 0;
if (ipv4.isValid == 1 && ipv4.ttl > 8w0) {
ecmp_group (ipv4.dst); // may or may not determine forwarding
} else {
// does NOT determine forwarding!
3
assert (determined == 1); // violated when the else branch is run

This bug has several fixes. We could set all packets to be dropped at the start of the pipeline, or
we could manually determine the forwarding behavior in the else branch. After applying the latter
fix, to produce ecmp-fixed, Capisce computes a sensible ci-spec in 280ms.

8.3 Bugs Found by Inspecting ci-specs

For most programs, Capisce computes non-trivial and non-absurd ci-specs (indicated by ¢ in
Figures 4 and 5). We manually analyzed these specs, which gave us new insights about the programs.
Concretely, we were able to discover real bugs in the programs. Borrowing the idea of code smells,
we identify some simple “spec smells” that we have used to find bugs.

The first spec smell, called prohibited action, occurs when the inferred ci-spec prohibits one of
the tables actions from ever occurring. It would be unusual for a programmer to implement an
action that must never be used. The most likely explanation is that the program has a bug. The
second smell, called obligatory wildcard, occurs when the inferred ci-spec requires a table to always
wildcard one of its keys. Again, it would be unusual to declare a table with a useless key.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:23

We return to mc-nat, which exemplifies the prohibited action code smell when analyzed w.r.t.
the Determined Forwarding property. We then analyze heavy-hitter-1 which exemplifies the
obligatory wildcard code smell.

8.3.1 Prohibited Action. Returning to the mc-nat program, we will set_mcg, more closely. It has
the following three actions: set_output_mcg, drop, and nop shown below.

// Definitions

action set_output_mcg (mcast_group : 16) = meta.mcast_group := mcast_group
action drop () = std_meta.egress_spec := 511
action nop () = skip

table set_mcg : bit<32> -> { set_output_mcg, drop, nop }

// Pipeline

set_mcg(ipv4.dst);
Of set_mcg’s actions, only one that sets the egress specification: drop. Further, set_output_mcg
setsmeta.mcast_group, which triggers an assignment to the egress_spec field later in the pipeline.
Finally, nop does neither, and the egress_spec remains undefined. As a result, Capisce computes a
spec that prohibits set_output_mcg from running the nop action. This is a prohibited action smell,
and a true bug. To fix it bug, we can simply remove nop from the actions list. After doing this,
Capisce computes the trivial ci-spec—that is, T—in 29ms.

8.3.2 Obligatory Wildcard. In the heavy-hitter-1 program, we find an example of the obligatory
wildcard spec smell when analyzing it w.r.t. Header Validity. The ci-spec computed by Capisce forces
the ipv4.dst address to be wild-carded. We can examine the pipeline below to see why:

// Table Definitions

table count_table : bit<32> -> { ... }

table ipv4_lpm : bit<32> -> { ... }

table forward : bit<32> -> { ... }

// Pipeline --- ipv4 may or may not be valid
// To fix, assume ipv4.isValid = 1

count_table(ipv4.dst); ipv4_lpm(ipv4.dst); forward(nhop_ipv4);

After running a parser that optionally parses the IPv4 header (similar to the one shown in Sec-
tion 8.2.1 for mc-nat), the heavy-hitter-1 program immediately reads the ipv4.dst address.
Since the ipv4 header may be invalid, count_table must not read from it. Capisce recognizes this
and forces count_table to wild-card its key. It seems strange that a single-key table should not be
allowed to use any of its packet-classification power. This is likely not intended by the programmer,
so we declare it a bug. We can fix it by assuming ipv4’s validity. After doing so, Capisce computes
a sensible spec in 630ms.

8.4 Analyzing Path Decomposition

The majority of our programs had non-trivial ci-specs. Even for programs with quadrillions of
paths, Capisce explores only a small fraction of them. In the extreme, for fabric-fixed, while
we do explore nearly 41k paths, this is 12 orders of magnitude smaller than the number of paths
through the program itself. While this fraction is extreme for our dataset, the rightmost columns of
Figures 4 and 5 show that Capisce explores a small fraction of paths.

While Figure 4 shows that it suffices to explore relatively few of a program’s paths, we want a
more fine-grained answer to our guiding assumptions (RQ2 & RQ3). How many paths are actually
buggy? How many paths are covered by each strengthening step?

To answer these questions, we measure how path coverage evolves as the candidate ci-spec
gets stronger for a few of our small programs with nontrivial ci-specs. After the run finished, we
measured the proportion of paths that satisfied the specification after assuming the new candidate

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:24 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

arp heavy_hitter_2 heavy_hitter_1
1.00 ° 1.0 ° 1.0
S o I
© @© @©
I o °
Q ors Q o9 2
) o o
o O (@] 09
- < c
2 050 & 08 ®
o o (=%
0 2000 4000 0 100 200 0 200 400
Inference Time (ms) Inference Time (ms) Inference Time (ms)
flowlet) simple_nat
07-multiprotocol ple
1.0 1.000 1.0
& w &
© =} ©
— E E
g O 0975 S o9
<) 3 <)
o S o
£ 08 =
“‘a' :C-: 0.950 ‘E’
S & S os
0 500 1000 0 10000 [5000 10000
Inference Time (ms) Inference Time (ms) Inference Time (ms)

Fig. 6. Path coverage over time for Header Validity analysis of programs with fewer than 100k paths.

spec—we call this proportion path coverage. We restricted ourselves to programs with fewer than
100k paths to make this analysis tractable.

The results of this analysis are shown in Figure 6. Notice the high proportion of safe paths when
the inference time is 0. At the start the candidate ci-spec is T, so the path coverage metric at this
point is measuring the proportion of safe paths. The proportion of safe paths is very high, the lowest
being 40% and the highest being nearly 95%. This empirical evidence supports our first guiding
assumption: programs are usually correct. Second, notice the steep inclines early towards the left of
the figures. These indicate that strengthening is highly effective—many other paths were covered
by PRECSPEC(7, ¢). For instance, in the simple-nat run, the ci-spec i/, that was computed by the
second bad path, 7, covered approximately 10% of the remaining buggy paths. This empirical
evidence supports our second guiding assumption: the ci-spec for a single path suffices to cover
many other paths.

8.5 Limitations

So far, we’ve seen that despite the theoretical difficulty of ci-spec, Capisce computes useful ci-spec
for real-world programs. Unfortunately, because ci-spec inference is theoretically difficult, it is
unsurprising that Capisce hits the 24h timeout on 2 programs: linearroad and fabric. However,
these timeouts can be considered their own “spec smells” In diagnosing why these programs
reached the timeout, we found issues in the code. After fixing them, Capisce produced ci-specs.

8.5.1 Fabric. ONOS’s fabric.p4 is a production-grade L2/L3 data plane program. Originally used
as a target for an internal APJ, it has evolved to be a mid-level abstraction layer [12], as well as
support higher-level user plane functionality [33].

We were unable to compute a ci-spec for fabric in 24 hours (in fact, it took 16 days). In
analyzing the ci-spec for subprograms, we detected the obligatory wildcard code smell in the acl
table. Concretely, the ci-spec forces the acl table to always wild card icmp.type and icmp. code.
This is because there is no way to for the controller to ensure that hdr. icmp is always valid.

The issue arises in fabric’s treatment of tunneling. After running the metadata initialization
below on the left, 1kp metadata holds the innermost valid IPv4 protocol and ICMP header data, as
shown in the type and code below:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:25

// Metadata Initialization

if (inner_ipv4.isValid = 1){ // Buggy Table Keys
lkp.ip_proto := inner_ipv4.proto; acl(eth_type,
if (inner_icmp.isValid = 1){ lkp.ip_proto, ...,
lkp.icmp_type := inner_icmp. type; icmp.type, // buggy!
lkp.icmp_code := inner_icmp.code; icmp.code, // buggy!
} else {3} L)

} elif (ipv4.isValid = 1) {
// Fixed Table Keys

lkp.ip_proto := ipv4.proto; acl (eth_type,
if (icmp.isValid = 1) { lkp.ip_proto, .,
lkp.icmp_type := icmp.type; lkp.icmp_type, // fix!
lkp.icmp_code := icmp.code; lkp.icmp_code, // fix!
} else {...})
} else {...}

Now, in the acl table on the right, even though both eth_type.value and 1kp.ip_proto appear
in the keys, they are not sufficient to determine the validity of icmp. Together, these two keys can
only determine that either icmp or inner_icmp is valid, but not which. Consequently, reads to the
icmp header reads must be wild-carded. In the fixed version of the program, fabric-fixed, we
replaced icmp and icmp_code with their respective 1kp counterparts. With these fixes, Capisce
computes its ci-spec in about 20 minutes.

8.5.2 Linearroad. Despite our best efforts to minimize QE problem instances, linearroad’s use
of complex machine arithmetic causes our ensemble of QE solvers to resort to bit-blasting. This
kind of computation is not typical in data plane programs. In fact, linearroad is an experimental
program that was written to evaluate use of P4 for implementing streaming database queries [28].
The complex machine arithmetic arises in the update_ewma_spd table, which computes an
estimated weighted moving average (EWMA). The relevant pieces of it are shown below:

seg_meta.ewma_spd := seg_meta.ewma_spd x 96 + pos_report.spd *x 16 >> 7
check_toll (..., seg_meta.ewma_spd, ...)

Since the value of the complicated machine arithmetic expression on the left flows into the key of
the CheckToll table, we will need to reason about the possible values of seg_meta.ewma_spd. For
instance, there are certain values, like 0xFEQQ, that will never be assigned to seg_meta.ewma_spd,
this causes solvers to bit-blast to compute these values. However, in our inspection of the source
code and the test cases, it’s clear that the programmers did not intend for there to be any correctness
requirements on this key. Capisce provides an annotation mechanism for keys that allows us to
avoid bit-blasting and generate possibly less precise ci-specs. Programmers can annotate specific
table keys as unconstrainable, which means that the ci-spec cannot reject configs based on the value
of these keys. After marking seg_meta.ewma_spd unconstrainable, Capisce produces a ci-spec in
under 17 hours, after exploring nearly 180k paths.

8.6 Comparison to bf4

We compared Capisce to the most relevant tool in previous work, bf4. To do this, we serialized the
programs in our benchmarks as P4 programs and passed them into bf4.

To showcase Capisce’s improvement over bf4, we analyzed Header Validity and Determined
Forwarding over the benchmark suite programs that both tools agreed had bugs.” We used bf4
to report the number of “bugs” (a.k.a. violable assertion points) that were reachable both before
assuming the inferred ci-spec. Then, each tool computed its ci-spec and reported the number of

"For instance, fabric is omitted because bf4 incorrectly marks it bug-free. Similarly, hula is excluded because bf4
incorrectly detects bugs. We manually verified these analyses by inspecting the P4 code.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

303:26 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

Header Validity Determined Forwarding

mm bf4 Uncontrolled Hm bf4 Controlled

bf4 Uncontrolled bf4 Controlled I Capisce Uncontrolled B Capisce Controlled

Il Capisce Uncontrolled B Capisce Controlled

el
o 2
5 2
- o
° =]
= 5
§ O
®
oS B
O L. & & RS
S & e ,c QMNP SRS e} e, . o">
¢° & & N ,&’} . & o‘* &0 <<°® & €L «°@<\\év{\‘é ° Q\e' “’ 7"‘
& ¢ TS & IEL & AR TN E© T
5 NP & N\ <& 1© S ELL
<& & F & & AT YK
At e &
N
102
Il bf4 . bf4
10 mmm Capisce B Capisce
Il Capisce Timeout
a O
() [
E 0 £
= 10 s 100 I
& O O R & & & & AR
S EE S c§'° T S & & & z° s & 8
<& §' SRS L & &L ISR &L ¢S
PR e $ & T S 40 & T &
G BB & G 2 S 3
NS % & g A ¥
N 8 N
g

Fig. 7. Comparing analysis capabilities of bf4 and Capisce w.r.t time (bottom) and bugs controlled (top). Note
the logarithmic y-axes on the time charts.

reachable bugs that remained. If a bug was not reachable after inferring the ci-spec, we say it was
controlled. The results can be seen in Figure 7.

First, observe that for larger programs, bf4 is orders of magnitude faster than Capisce. Note that
the bar graphs at the bottom of Figure 7 have logarithmic y-axes. However, bf4 can only control a
fraction of the bugs that Capisce can. For Header Validity, while Capisce can control 96% of bugs,
bf4 can only control 40% of bugs. The only bugs that Capisce cannot control are the bugs for which
it times out. For Determined Forwarding, Capisce controls 100% of bugs, while bf4 controls only 1
out of 13 bugs for the programs in our benchmark suite.

In comparing Capisce with bf4, we have seen that with its extended runtimes, Capisce can
control many more bugs than can bf4. This is unsurprising, as tools have different goals: bf4
quickly computes necessary ci-specs that maximize the number of controlled bugs, while Capisce
produces safe (and indeed precise) ci-specs—that is, Capisce’s ci-specs control all bugs.

9 Related Work

We survey some of the most relevant related work on data plane verification and spec inference.

Logical Abduction. QE-driven maximal spec inference has been well-studied in the formal meth-
ods literature [3, 17, 18]. In particular, the MAXSAFESPEC algorithm can be used to produce “maximal”
conjunctions of single-table specs.® Here, maximal does not mean “weakest,” rather, it means that
none of the single-table conjuncts can be safely weakened. This notion is indeed stronger than
weakness: “maximal” specs are often non-trivially more restrictive than the weakest specs.

8The MAXSAFESPEC algorithm uses general functions as its core model. In our domain we would specialize their general
functions to table calls

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 303. Publication date: October 2024.

Computing Precise Control Interface Specifications 303:27

P4 Verification. Our symbolic compilation is informed by previous work [19, 21, 32, 40, 43],
though we are the first to prove our modeling approach correct. The p4v paper informally posed
the problem of ci-spec inference [32]. The I14 paper presents a dependent refinement type system
for modular verification in the style of p4v [21]. The p4-constraints library offers a language
for specifying ci-specs [39], but the language is semantically restricted and does not provide an
inference mechanism. The p4testgen tool generates test cases for P4 programs, and can reason
about ci-specs expressed in p4-constraints to reduce false alarms [37].

Specification Inference. The spYro tool [36] provides a general-purpose framework for spec
synthesis which summarizes arbitrary queries from given DSL. In contrast, while our work is
specialized to the domain of data planes, Capisce infers a precise ci-spec, without requiring a
specific DSL. Further, while spYrRO’s algorithm uses a syntactic CEGIS algorithm, our approach is
more semantic—we compute ci-specs using deductive tools: symbolic analyses and QE.

The SafeP4 paper presents a type system for checking that a switch program has no invalid
header reads, and is equipped with a limited inference procedure for single tables [20]. Our work
improves upon SafeP4 in its expressiveness: Capisce protects against any assert-specifiable bug,
while SafeP4 is limited to Header Validity.

Finally, Config2Spec [7], infers control properties of traditional networks using a refinement loop
that uses both emulation and verification to generate high quality properties. Config2Spec focuses
on network-wide control properties, while Capisce focuses on safe configs for individual switches.

Control Plane Verification & Synthesis. NetkaT takes a (co-)algebraic approach to specifying,
verifying and compiling network-wide control planes [4]. Work on synthesizing consistent updates
shows how to synthesize network updates so that each packet views a consistent snapshot of the
network [34]. GENEs1s [41], NetComplete [22], and Propane/AT [6] all synthesize legacy network
configs from high-level specifications. Recent work on P4R-Type [31] develops a typed variant of
P4Runtime, the generic control-plane API used by P4 programs. While P4Runtime enforces some
type constraints dynamically, P4R-Type guarantees that type errors will not arise at runtime.

Availability Statement
Capisce is available on Github [11] and Zenodo [10].

Acknowledgments

We would like to thank Minseok Kwon, who contributed to early discussions on this project; Dragos
Dumitrescu for his insights about bf4; Steffen Smolka for his insights about industrial ci-specs;
Haobin Ni, Ryan Doenges, Oliver Richardson, and Mark Moeller for close-reading numerous
introductions; the members of Cornell Netlab for countless insightful discussions; and the EPFL
DCSL group for providing a welcoming and supportive environment. We would also like to thank
the anonymous OOPSLA reviewers, whose feedback greatly improved Capisce. Our work has
been supported in part by the National Science Foundation under grant FMiTF-1918396, the
Defense Advanced Research Projects Agency (DARPA) under Contracts HR001120C0107 and
HR001124C0429, and gifts from Fujitsu, Google, Keysight, and Juniper.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases. Vol. 8. Addison-Wesley Reading.

[2] Kinan Dak Albab, Jonathan DiLorenzo, Stefan Heule, Ali Kheradmand, Steffen Smolka, Konstantin Weitz, Muhammad
Timarzi, Jiaqi Gao, and Minlan Yu. 2022. SwitchV: Automated SDN Switch Validation with P4 Models. In Proceedings of
the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIGCOMM ’22). Association for Computing Machinery,
New York, NY, USA, 365-379. https://doi.org/10.1145/3544216.3544220

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

https://doi.org/10.1145/3544216.3544220

303:28 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

[3] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal Specification Synthesis. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL
’16). Association for Computing Machinery, New York, NY, USA, 789-801. https://doi.org/10.1145/2837614.2837628

[4] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and David
Walker. 2014. NetKAT: semantic foundations for networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Diego, California, USA) (POPL °14). Association for Computing Machinery,
New York, NY, USA, 113-126. https://doi.org/10.1145/2535838.2535862

[5] Peter Backeman, Philipp Rummer, and Aleksandar Zeljic. 2018. Bit-Vector Interpolation and Quantifier Elimination by
Lazy Reduction. In 2018 Formal Methods in Computer Aided Design (FMCAD). 1-10. https://doi.org/10.23919/FMCAD.
2018.8603023

[6] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. 2017. Network configuration
synthesis with abstract topologies. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
437-451. https://doi.org/10.1145/3062341.3062367

[7] Rudiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin Vechev. 2020. Config2Spec: Mining net-
work specifications from network configurations. In 17th { USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20). 969-984.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4: programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87-95. https://doi.org/10.1145/2656877.2656890

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and

Mark Horowitz. 2013. Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN.

SIGCOMM Comput. Commun. Rev. 43, 4 (aug 2013), 99-110. https://doi.org/10.1145/2534169.2486011

Eric Hayden Campbell. 2024. cornell-netlab/capisce. https://doi.org/10.5281/zenodo.12785373

Eric Hayden Campbell. 2024. cornell-netlab/capisce: Control interface specifications for Dataplane Pipelines. https:

//github.com/cornell-netlab/capisce

Eric Hayden Campbell, William T. Hallahan, Priya Srikumar, Carmelo Cascone, Jed Liu, Vignesh Ramamurthy, Hossein

Hojjat, Ruzica Piskac, Robert Soulé, and Nate Foster. 2021. Avenir: Managing Data Plane Diversity with Control

Plane Synthesis. In 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX

Association, 133-153. https://www.usenix.org/conference/nsdi21/presentation/campbell

P4 Language Consortium. 2021. P4 16 Language Specification v.1.2.2. https://p4.org/p4-spec/docs/P4-16-v1.2.2.html.

Patrick Cousot, Radhia Cousot, Manuel Fahndrich, and Francesco Logozzo. 2013. Automatic inference of necessary

preconditions. In International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 128-148.

https://doi.org/10.1007/978-3-642-35873-9_10

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337-340.

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM

18, 8 (aug 1975), 453-457. https://doi.org/10.1145/360933.360975

Isil Dillig and Thomas Dillig. 2013. Explain: a tool for performing abductive inference. In International Conference on

Computer Aided Verification. Springer, 684-689. https://doi.org/10.1007/978-3-642-39799-8_46

Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. 2013. Inductive invariant generation via abductive inference.

SIGPLAN Not. 48, 10 (oct 2013), 443-456. https://doi.org/10.1145/2544173.2509511

Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. 2020. Bf4: Towards Bug-Free P4 Programs.

In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications,

Technologies, Architectures, and Protocols for Computer Communication (Virtual Event, USA) (SIGCOMM °20). Association

for Computing Machinery, New York, NY, USA, 571-585. https://doi.org/10.1145/3387514.3405888

Matthias Eichholz, Eric Hayden Campbell, Nate Foster, Guido Salvaneschi, and Mira Mezini. 2019. How to Avoid

Making a Billion-Dollar Mistake: Type-Safe Data Plane Programming with SafeP4. In 33rd European Conference

on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 134),

Alastair F. Donaldson (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 12:1-12:28.

https://doi.org/10.4230/LIPIcs ECOOP.2019.12

Matthias Eichholz, Eric Hayden Campbell, Matthias Krebs, Nate Foster, and Mira Mezini. 2022. Dependently-Typed Data

Plane Programming. Proc. ACM Program. Lang. 6, POPL, Article 40 (jan 2022), 28 pages. https://doi.org/10.1145/3498701

Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev. 2018. NetComplete: Practical Network-

Wide Configuration Synthesis with Autocompletion. In 15th USENLX Symposium on Networked Systems Design and

Implementation (NSDI 18). USENIX Association, Renton, WA, 579-594. https://www.usenix.org/conference/nsdi18/

presentation/el-hassany

[10
[11

—

(12

—

[13
[14

[lami bt

(15

—

[16

—

(17

—

(18

[t

[19

—

[20

[t

[21

—

[22

—

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

https://doi.org/10.1145/2837614.2837628
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.23919/FMCAD.2018.8603023
https://doi.org/10.1145/3062341.3062367
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.5281/zenodo.12785373
https://github.com/cornell-netlab/capisce
https://github.com/cornell-netlab/capisce
https://www.usenix.org/conference/nsdi21/presentation/campbell
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://doi.org/10.1007/978-3-642-35873-9_10
https://doi.org/10.1145/360933.360975
https://doi.org/10.1007/978-3-642-39799-8_46
https://doi.org/10.1145/2544173.2509511
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://doi.org/10.1145/3498701
https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany

Computing Precise Control Interface Specifications 303:29

[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

fabric.p4 source code 2022. fabric.p4 source code. https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/
fabric/impl/src/main/resources/fabric.p4. Accessed 2022.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road to SDN: an intellectual history of programmable
networks. SIGCOMM Comput. Commun. Rev. 44, 2 (apr 2014), 87-98. https://doi.org/10.1145/2602204.2602219
Cormac Flanagan and James B. Saxe. 2001. Avoiding exponential explosion: generating compact verification conditions.
SIGPLAN Not. 36, 3, 193-205. https://doi.org/10.1145/373243.360220

Nate Foster, Nick McKeown, Jennifer Rexford, Guru Parulkar, Larry Peterson, and Oguz Sunay. 2020. Using deep
programmability to put network owners in control. SIGCOMM Comput. Commun. Rev. 50, 4 (oct 2020), 82-88.
https://doi.org/10.1145/3431832.3431842

P4.org Architecture Working Group. 2021. P4 16 Portable Switch Architecture (PSA). https://p4.org/p4-spec/docs/PSA.
html.

Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert Soulé. 2018. Life in the Fast Lane: A
Line-Rate Linear Road. In Proceedings of the Symposium on SDN Research (Los Angeles, CA, USA) (SOSR ’18). Association
for Computing Machinery, New York, NY, USA, Article 10, 7 pages. https://doi.org/10.1145/3185467.3185494

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion Stoica.
2017. NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
121-136. https://doi.org/10.1145/3132747.3132764

Gergely Kovasznai, Andreas Frohlich, and Armin Biere. 2016. Complexity of Fixed-Size Bit-Vector Logics. Theor. Comp.
Sys. 59, 2 (aug 2016), 323-376. https://doi.org/10.1007/s00224-015-9653-1

Jens Kanstrup Larsen, Roberto Guanciale, Philipp Haller, and Alceste Scalas. 2023. P4R-Type: A Verified API for P4
Control Plane Programs. Proc. ACM Program. Lang. 7, OOPSLA2, Article 290 (oct 2023), 29 pages. https://doi.org/10.
1145/3622866

Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Calin Cagscaval,
Nick McKeown, and Nate Foster. 2018. P4v: Practical Verification for Programmable Data Planes. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication (Budapest, Hungary) (SIGCOMM ’18).
Association for Computing Machinery, New York, NY, USA, 490-503. https://doi.org/10.1145/3230543.3230582
Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan, Ajay ThakuR, Larry Peterson, Jennifer
Rexford, and Oguz Sunay. 2021. A P4-Based 5G User Plane Function. In Proceedings of the ACM SIGCOMM Symposium
on SDN Research (SOSR) (Virtual Event, USA) (SOSR °21). Association for Computing Machinery, New York, NY, USA,
162-168. https://doi.org/10.1145/3482898.3483358

Jedidiah McClurg, Hossein Hojjat, Pavol Cerny, and Nate Foster. 2015. Efficient synthesis of network updates. SIGPLAN
Not. 50, 6, 196-207. https://doi.org/10.1145/2813885.2737980

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. 2008. OpenFlow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev.
38, 2 (mar 2008), 69-74. https://doi.org/10.1145/1355734.1355746

Kanghee Park, Loris D’Antoni, and Thomas Reps. 2023. Synthesizing Specifications. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 285 (oct 2023), 30 pages. https://doi.org/10.1145/3622861

Fabian Rufty, Jed Liu, Prathima Kotikalapudi, Vojtech Havel, Hanneli Tavante, Rob Sherwood, Vladyslav Dubina,
Volodymyr Peschanenko, Anirudh Sivaraman, and Nate Foster. 2023. P4Testgen: An Extensible Test Oracle For P4-16.
In Proceedings of the ACM SIGCOMM 2023 Conference (, New York, NY, USA,) (ACM SIGCOMM ’23). Association for
Computing Machinery, New York, NY, USA, 136-151. https://doi.org/10.1145/3603269.3604834

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrishnan, and Jennifer Rexford. 2017. Heavy-
Hitter Detection Entirely in the Data Plane. In Proceedings of the Symposium on SDN Research (Santa Clara, CA, USA)
(SOSR ’17). Association for Computing Machinery, New York, NY, USA, 164-176. https://doi.org/10.1145/3050220.
3063772

Smolka Steffen, Ali Kheradmand, and Antonin Bas. [n. d.]. p4lang/p4-constraints: Constraints on P4 objects enforced
at runtime. https://github.com/p4lang/p4-constraints

Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2018. Debugging P4
Programs with Vera. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
(Budapest, Hungary) (SIGCOMM ’18). Association for Computing Machinery, New York, NY, USA, 518-532. https:
//doi.org/10.1145/3230543.3230548

Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017. Genesis: synthesizing forwarding tables in multi-tenant
networks. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France)
(POPL ’17). Association for Computing Machinery, New York, NY, USA, 572-585. https://doi.org/10.1145/3009837.
3009845

switch.p4 source code 2020. switch.p4 source code. https://github.com/p4lang/switch. Accessed Feb, 2022.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/fabric/impl/src/main/resources/fabric.p4
https://github.com/opennetworkinglab/onos/blob/2.2.2/pipelines/fabric/impl/src/main/resources/fabric.p4
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/373243.360220
https://doi.org/10.1145/3431832.3431842
https://p4.org/p4-spec/docs/PSA.html
https://p4.org/p4-spec/docs/PSA.html
https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1145/3622866
https://doi.org/10.1145/3622866
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3482898.3483358
https://doi.org/10.1145/2813885.2737980
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/3622861
https://doi.org/10.1145/3603269.3604834
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://github.com/p4lang/p4-constraints
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3009837.3009845
https://doi.org/10.1145/3009837.3009845
https://github.com/p4lang/switch

303:30 Eric Hayden Campbell, Hossein Hojjat, and Nate Foster

[43] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan Zhai, Yanqging Chen, Yu Zhou, Li Dai, Feng Yan, Mengjing Ma, Ming
Tang, Jie Lu, Xionglie Wei, Hongqiang Harry Liu, Ming Zhang, Chen Tian, and Minlan Yu. 2021. Aquila: A Practically
Usable Verification System for Production-Scale Programmable Data Planes. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (Virtual Event, USA) (SIGCOMM °21). Association for Computing Machinery, New York, NY, USA,
17-32. https://doi.org/10.1145/3452296.3472937

[44] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sherwood. 2012. On Controller
Performance in Software-Defined Networks. In 2nd USENLX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services (Hot-ICE 12). USENIX Association, San Jose, CA. https://www.usenix.org/
conference/hot-ice12/workshop-program/presentation/tootoonchian

[45] 2021. vimodel.p4 source code. https://github.com/p4lang/p4c/blob/main/p4include/vimodel.p4. (2021). Accessed Feb,
2022.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLAZ2, Article 303. Publication date: October 2024.

https://doi.org/10.1145/3452296.3472937
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/tootoonchian
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Inference of Control Interface Specifications
	2.2 Previous Work

	3 Modeling
	3.1 Theories of Fixed-Width Bitvectors
	3.2 Syntax and Semantics of the Guarded Pipeline Language (GPL)
	3.3 Modeling Tables as Uninterpreted Functions
	3.4 Symbolic Compilation

	4 Efficiently Control-Monitorable Sentences and Their Inference
	4.1 Qe Computes Precise ci-specs
	4.2 Precise ci-spec Inference in ECMS Solves Qe

	5 Programmatic Qe
	5.1 Paths Produce Smaller QE Problems
	5.2 A Path-Based Iterative Strengthening Algorithm

	6 Specifications for Data Planes
	7 Implementation
	7.1 Modeling P4 in GPL

	8 Experience
	8.1 Capisce in Practice
	8.2 True Data-Plane Bugs
	8.3 Bugs Found by Inspecting ci-specs
	8.4 Analyzing Path Decomposition
	8.5 Limitations
	8.6 Comparison to bf4

	9 Related Work
	Acknowledgments
	References

