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We are at the start of a revolution!





Networks have been opened up… 

…giving programmers the freedom to  
write software that tailors their 

behavior to suit specific applications!



Open Networking Successes
Data Center Virtualization 
• Write programs against virtual topologies 
• Controller maps virtual programs to physical network 

Traffic Monitoring 
• Declare continuous traffic queries 
• Controller polls counters and aggregates results 

Verification and Debugging 
• Specify behavior using high-level properties 
• Controller generates code to enforce key invariants 

Traffic Engineering 
• Optimize bandwidth according to natural criteria 
• Controller provisions paths using constraint solver



Open Networking Architecture

Southbound Controller

Application

Northbound Controller

ApplicationApplication
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Southbound Interfaces

There are now many ways to manage network device 
configurations programmatically 
• NetConf 
• OpenFlow 
• OVS 
• P4 
• SNMP 
• YANG 
• etc. 

These interfaces, which are rapidly maturing, provide a 
solid foundation for network programming
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But on the northbound side… the situation is bleak 
Current controllers provide a variety of abstractions: 
• Device abstraction layers 
• Isolated slices 
• Virtual networks 
• QoS provisioning 
• NFV service chaining 
• Custom services (discovery, firewall, etc.) 

But the development of these abstractions has been ad 
hoc, driven more by the needs of particular applications 
than by fundamental principles

Northbound Interfaces



High-level abstractions

Northbound Interface Design

Good performance

Modularity

Resource allocation



Modular Composition

Southbound Controller

Northbound Controller

(Route + Monitor) ; Firewall



Modular Composition

Southbound Controller

Northbound Controller

Monolithic application

(Route + Monitor) ; Firewall



Modular Composition

This style of programming complicates: 
•Writing, testing, and debugging programs 
•Reusing code across applications 
•Porting applications to new platforms

Southbound Controller

Northbound Controller

Monolithic application

(Route + Monitor) ; Firewall



Pattern Actions
dstip=10.0.0.1 Forward/1

dstip=10.0.0.2 Forward/2

Pattern Actions
srcip=1.2.3.4 Count

Monitor
+

Route
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Pattern Actions
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;

Pattern Actions
srcip=1.2.3.4,/dstip=10.0.0.1 Forward/1,/Count

srcip=1.2.3.4,/dstip=10.0.0.2 Forward/2,/Count

srcip=1.2.3.4 Count

dstip=10.0.0.1 Forward/1
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Route + Monitor

Pattern Actions
tcpdst/=/22 Drop

* Fwd/?

Firewall



;

Pattern Actions
srcip=1.2.3.4,/dstip=10.0.0.1 Forward/1,/Count

srcip=1.2.3.4,/dstip=10.0.0.2 Forward/2,/Count

srcip=1.2.3.4 Count

dstip=10.0.0.1 Forward/1

dstip=10.0.0.2 Forward/2

Route + Monitor

Pattern Actions
tcpdst/=/22 Drop

* Fwd/?

Firewall

Pattern Actions
srcip=1.2.3.4,/tcpdst/=/22 Count,/Drop

srcip=1.2.3.4,/dstip=10.0.0.1 Forward/1,/Count

srcip=1.2.3.4,/dstip=10.0.0.2 Forward/2,/Count

srcip=1.2.3.4 Count

tcpdst/=/22 Drop

dstip=10.0.0.1 Forward/1

dstip=10.0.0.2 Forward/2

(Route + Monitor) 
; 

Firewall



Machine Languages
Current APIs are derived from the 
underlying machine languages 

Programmers must work in terms 
of low-level concepts such as: 
• Flow tables 
•Matches 
•Priorities 
• Timeouts 
• Events 

This approach complicates 
programs and reasoning

switch_connected/

packet_in/

barrier_reply

flow_mod//

packet_out/

barrier_request

South

North

Application



Programming Languages
Better would be to have APIs 
based on higher-level, more 
intuitive abstractions  

Then, programmers could work in 
terms of natural concepts such as: 
• Logical predicates 
•Mathematical functions 
•Network-wide paths 
•Policy combinators 
•Atomic transactions 

which would streamline many 
programs and simplify reasoning 

f
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f

South

North

Packet-
processing 
function

pk pk’



Our Vision 
• Write network programs in a high-level language 
• Generate efficient low-level code using a compiler 
• Reason about network properties automatically 

Main Results 
• Designed language based on an elegant and 

compositional foundation: packet-processing functions 
• Built compilers and run-time systems that implement 

these languages efficiently on OpenFlow hardware 
• Showed how to encode other high-level abstractions 

using functions (e.g., slicing, virtualization, QoS, etc.)
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NetKAT Language

Run-Time System

Application



Frenetic Architecture

NetKAT Language

Run-Time System

Application

High-level application logic 

Often expressed as a finite-
state machine on network 
events (topology changes, 
new connections, etc.)

q1 q2



Frenetic Architecture

NetKAT Language

Run-Time System

Application

Programs describe packet-
processing functions 

Compile to a collection of 
forwarding tables, one per 
switch in the network

Pattern Actions

srcip=1.2.3.4,/tcpdst/=/22 Count,/Drop

srcip=1.2.3.4,/

dstip=10.0.0.1

Forward/1,/Count

srcip=1.2.3.4,/

dstip=10.0.0.2

Forward/2,/Count

srcip=1.2.3.4 Count
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Pattern Actions
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Forward/1,/Count
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dstip=10.0.0.2

Forward/2,/Count

srcip=1.2.3.4 Count

tcpdst/=/22 Drop



Frenetic Architecture

NetKAT Language

Run-Time System

Application

Code that manages the 
rules installed on switches 

Translate configuration 
updates into sequences of 
OpenFlow instructions

let/swap_update_for/(t/:/t)/sw_id/c_id/new_table/:/unit/Deferred.t/=/

///let/max_priority/=/65535/in/

///let/old_table/=/match/SwitchMap.find/t.edge/sw_id/with/|/Some/ft/O>/ft/|/None/O>/[]/in/

///let/(new_table,/_)/=/List.fold/new_table/~init:([],/max_priority)/

////////~f:(fun/(acc,pri)/x/O>/((x,pri)/::/acc,/pri/O/1))/in/

////let/new_table/=/List.rev/new_table/in/

////let/del_table/=/List.rev/(flowtable_diff/old_table/new_table)/in/

////let/to_flow_mod/prio/flow/=/

//////M.FlowModMsg/(SDN_OpenFlow0x01.from_flow/prio/flow)/in/

////let/to_flow_del/prio/flow/=/

//////M.FlowModMsg/({SDN_OpenFlow0x01.from_flow/prio/flow/with/command/=/DeleteStrictFlow})/in/

///Deferred.List.iter/new_table/~f:(fun/(flow,/prio)/O>/

//////send/t.ctl/c_id/(0l,/to_flow_mod/prio/flow))/

////>>=/fun/()/O>/Deferred.List.iter/del_table/~f:(fun/(flow,/prio)/O>/

//////send/t.ctl/c_id/(0l,/to_flow_del/prio/flow))/

////>>|/fun/()/O>/t.edge/<O/SwitchMap.add/t.edge/sw_id/new_table



Frenetic Architecture

NetKAT Language

Run-Time System

Application

Forwarding elements that 
implement packet-
processing functionality 
efficiently in hardware



NetKAT Language



Semantic Design

f
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North
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Semantic Design
Packets

A record comprising the location of the 
packet and a collection of header values 
  {switch=n1,/port=n2,/ethSrc=n3,…}

Policies
Denotes total functions on packets (really 
packet histories)

Predicates
Restrict the behavior of a program to a 
particular set of packets using predicates

Combinators
Combine smaller programs into bigger 
ones via natural mathematical operations

f

South

North`Functional “see every packet” abstraction



Primitive Design
What constructs should an SDN language provide?
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Primitive Design
What constructs should an SDN language provide?
• Packet predicates
• Packet transformations
• Path construction
• Path concatenation
• Path union
• Path iteration



NetKAT Language

  pol ::=   false 
              | true 
              | field = val 
              | field := val 
              | pol1 + pol2 
              | pol1 ; pol2 
              | !pol 
              | pol* 

              | dup

Syntax

Semantics 
Functions from packet histories 
to sets of packet histories

Syntactic Sugar 
if pol then pol1 else pol2 ≜  
  (pol; pol1) + (!pol; pol2) 



NetKAT Language

  pol ::=   false 
              | true 
              | field = val 
              | field := val 
              | pol1 + pol2 
              | pol1 ; pol2 
              | !pol 
              | pol* 

              | dup

Syntax

Semantics 
Functions from packet histories 
to sets of packet histories

Syntactic Sugar 
if pol then pol1 else pol2 ≜  
  (pol; pol1) + (!pol; pol2) 

`
NetKAT can encode switch configurations,  

network-wide paths, and even topologies



false⟨pk,..⟩

false drops its input

pol ::=   false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

  pol ::=  false



pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

true⟨pk,..⟩

true copies its input

⟨pk,..⟩

             | true



field = val⟨pk,..⟩

field = val copies its input if pk.field = val or drops it if not

when pk.field = val

⟨pk,…⟩

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | field = val



field = val⟨pk,..⟩

field = val copies its input if pk.field = val or drops it if not

when pk.field = val

⟨pk,…⟩

when pk.field ≠ val

field = val⟨pk,..⟩

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | field = val



field := val⟨pk,..⟩

field := val sets the input’s field component to val

⟨pk[field := val],..⟩

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | field := val



pol1

pol1 + pol1 duplicates the input, sends one copy to 
each sub-policy, and takes the union of their outputs

⟨pk,..⟩

pol2

⟨pk1,..⟩,⟨pk2,..⟩

+

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | pol1 + pol2



⟨pk,..⟩

pol1 ; pol2 runs the input through pol1 and then 
runs every output produced by pol1 through pol2

;

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | pol1 ; pol2

pol1

pol2

⟨pk1,..⟩,⟨pk2,..⟩



!pol drops the input if pol produces 
any output and copies it otherwise

⟨pk,..⟩ ⟨pk,..⟩pol

!

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup

             | !pol



pol* repeatedly runs packets through pol to a fixpoint

⟨pk,..⟩

*
⟨pk1,..⟩,⟨pk2,..⟩

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup
             | pol*

pol



dup⟨pk,..⟩

dup duplicates the head packet of the input

⟨pk,pk,..⟩

pol ::=  false 
           | true 
           | field = val 
           | field := val 
           | pol1 + pol2 
           | pol1 ; pol2 
           | !pol 
           | pol* 

           | dup             | dup



Example
Topology



Example
Specification 
• Forward packets to hosts 1-4 
• Monitor traffic to unknown hosts  
• Flood broadcast traffic to all hosts 
• Disallow SSH traffic from hosts 1-2

Topology

{pattern={ethSrc=00:00:00:00:00:01,ethTyp=0x800,ipProto=0x06,/tcpDstPort=22},action=[]}/

{pattern={ethSrc=00:00:00:00:00:02,ethTyp=0x800,ipProto=0x06,/tcpDstPort=22},action=[]}/

{pattern={ethDst=00:00:00:00:00:01},action=[Output(1)]}/

{pattern={ethDst=00:00:00:00:00:02},action=[Output(2)]}/

{pattern={ethDst=00:00:00:00:00:03},action=[Output(3)]}/

{pattern={ethDst=00:00:00:00:00:04},action=[Output(4)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=1},action=[Output(4),/Output(3),/Output(2)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=2},action=[Output(4),/Output(3),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=3},action=[Output(4),/Output(2),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=4},action=[Output(3),/Output(2),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff},action=[]}/

{pattern={},action=[Controller]}

Flow Table



Example: Forward

let/forward/=//
//if/ethDst/=/00:00:00:00:00:01/then/
////port/:=/1/
//else/if/ethDst/=/00:00:00:00:00:02/then/
////port/:=/2/
//else/if/ethDst/=/00:00:00:00:00:03/then/
////port/:=/3/

//else/if/ethDst/=/00:00:00:00:00:04/then/
////port/:=/4/
//else//
////false



Example: Broadcast
let/flood/=//
//if/port/=/1/then/
////port/:=/2/+/port/:=/3/+/port/:=/4/
//else/if/port/=/2/then/
////port/:=/1/+/port/:=/3/+/port/:=/4/
//else/if/port/=/3/then/
////port/:=/1/+/port/:=/2/+/port/:=/4/
//else/if/port/=/4/then/
////port/:=/1/+/port/:=/2/+/port/:=/3/
//else//
////false/

let/broadcast/=//
//if/ethDst/=/ff:ff:ff:ff:ff:ff/then//
////flood/
//else//
////false



Example: Routing

let/route/=/forward/+/broadcast



Example: Monitor

let/monitor/=//
//if/!(ethDst/=/00:00:00:00:00:01/+/
///////ethDst/=/00:00:00:00:00:02/+/
///////ethDst/=/00:00:00:00:00:03/+/
///////ethDst/=/00:00:00:00:00:04/+/
///////ethDst/=/ff:ff:ff:ff:ff:ff)/then//
////port/:=/unknown/
//else/
////false



Example: Firewall

let/firewall/=//
//if/(ethSrc/=/00:00:00:00:00:01/+//
//////ethSrc/=/00:00:00:00:00:02)/;/
/////ethTyp/=/0x800/;//
/////ipProto/=/0x06/;//
/////tcpDstPort/=/22/then//
/////false/
///else//
/////true



Example: Main Policy

let/main/=/(route/+/monitor);/firewall

compiles to…

{pattern={ethSrc=00:00:00:00:00:01,ethTyp=0x800,ipProto=0x06,/tcpDstPort=22},action=[]}/

{pattern={ethSrc=00:00:00:00:00:02,ethTyp=0x800,ipProto=0x06,/tcpDstPort=22},action=[]}/

{pattern={ethDst=00:00:00:00:00:01},action=[Output(1)]}/

{pattern={ethDst=00:00:00:00:00:02},action=[Output(2)]}/

{pattern={ethDst=00:00:00:00:00:03},action=[Output(3)]}/

{pattern={ethDst=00:00:00:00:00:04},action=[Output(4)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=1},action=[Output(4),/Output(3),/Output(2)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=2},action=[Output(4),/Output(3),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=3},action=[Output(4),/Output(2),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff,port=4},action=[Output(3),/Output(2),/Output(1)]}/

{pattern={ethDst=ff:ff:ff:ff:ff:ff},action=[]}/

{pattern={},action=[Controller]}



Demo



Demo Application

Run-Time System

NetKAT Language

Discovery + (Whitelist ;  Learning)



Dynamic 
Applications



NetKAT Policy 

Run-Time System

Application

NetKAT Language

Dynamic Applications
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Host 
change

Topology 
change

NetKAT Policy 
NetKAT Policy 
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Dynamic Applications



NetKAT Policy 

Run-Time System

…

Application

Host 
change

Topology 
change

Traffic 
statistics

NetKAT Policy 
NetKAT Policy 

NetKAT Policy 

NetKAT Language

Dynamic Applications



Composing Applications

NetKAT Language

Run-Time System

Monitor Route Load BalanceFirewall

One module  
for each task

Benefits: 
• Easier to write, test, and debug programs 
• Can reuse modules across applications 
• Possible to port applications to new platforms



Supports dynamic, stateful applications

Application Interface

Concurrency via Jane Street’s async library

type/app//

type/event/=/

//|/PacketIn/of/string/*/switchId/*/portId/*/payload/*/int/

//|/SwitchUp/of/switchId/

//|/SwitchDown/of/switchId//

//|/.../

type/handler/=//event/O>/policy/option/

val/create:/policy/O>/handler/O>/app/

val/par:/app/O>/app/O>/app/

val/seq:/app/O>/app/O>/app

RESTful interface: write NetKAT applications in Python!



Python Learning Switch
#/switch/state/

table/=/{}/

#/helper/functions/

def/learn(sw,pkt,pt):/

////table[sw][get_ethernet(pkt).src]/=/pt/

def/switch_policy(sw):/

////def/f((known,unknown),mac):/

///////src/=/test("ethSrc",/mac)/

///////dst/=/test("ethDst",/mac)/

///////return/(known/|/filter(dst)/>>/output(table[sw][mac]),/unknown/&/~src)/////////

////(known_pol,/unknown_pred)/=/reduce(f,/table[sw].keys(),/(drop(),/true()))/

////return/known_pol/|/filter(unknown_pred)/>>/(controller()/|/flood(sw))/

def/policy():/

////return/union(switch_policy(sw)/for/sw/in/table.keys())/

#/event/handler/

def/handler(_,/event):/

////print/event/

////typ/=/event['type']/

////if/typ/==/'packet_in':/

///////pkt/=/packet.Packet(base64.decode(event[‘payload’]['buffer']))/

///////learn(event[‘switch_id'],/pkt,/event[‘port_id'])/

////else:/

///////pass/

////return/PolicyResult(policy())



Run-Time System



Run-Time System

NetKAT Language

Run-Time System

Application

Code that manages the 
rules installed on switches 

Translate configuration 
updates into sequences of 
OpenFlow instructions

let/swap_update_for/(t/:/t)/sw_id/c_id/new_table/:/unit/Deferred.t/=/

///let/max_priority/=/65535/in/

///let/old_table/=/match/SwitchMap.find/t.edge/sw_id/with/|/Some/ft/O>/ft/|/None/O>/[]/in/

///let/(new_table,/_)/=/List.fold/new_table/~init:([],/max_priority)/

////////~f:(fun/(acc,pri)/x/O>/((x,pri)/::/acc,/pri/O/1))/in/

////let/new_table/=/List.rev/new_table/in/

////let/del_table/=/List.rev/(flowtable_diff/old_table/new_table)/in/

////let/to_flow_mod/prio/flow/=/

//////M.FlowModMsg/(SDN_OpenFlow0x01.from_flow/prio/flow)/in/

////let/to_flow_del/prio/flow/=/

//////M.FlowModMsg/({SDN_OpenFlow0x01.from_flow/prio/flow/with/command/=/DeleteStrictFlow})/in/

///Deferred.List.iter/new_table/~f:(fun/(flow,/prio)/O>/

//////send/t.ctl/c_id/(0l,/to_flow_mod/prio/flow))/

////>>=/fun/()/O>/Deferred.List.iter/del_table/~f:(fun/(flow,/prio)/O>/

//////send/t.ctl/c_id/(0l,/to_flow_del/prio/flow))/

////>>|/fun/()/O>/t.edge/<O/SwitchMap.add/t.edge/sw_id/new_table



Network Updates

Initial Policy 

Target Policy

Question: how can we 
gracefully transition the 
network from one 
configuration to another?
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Network Updates

Initial Policy 

Target Policy

Question: how can we 
gracefully transition the 
network from one 
configuration to another?

`Must reason about all possible packet interleavings!



Approach: develop abstractions 
that appear to update all of the 
switches in the network at once 

Consistency Property: every 
packet (or flow) in the network 
“sees” a single policy version 

Implementations: 
• Order updates 
• Unobservable updates 
• One-touch updates 
• Compositions of consistent 
• Two-phase update

Consistent Updates



Two-Phase Updates
Versioning: instrument the 
compiler so that all forwarding 
rules match on a policy version 

Unobservable Update: install 
the rules for the new policy in 
the interior of the network 

One-Touch Updates: install 
rules at the edge that stamp 
packets with new version 

Garbage Collect: delete the 
rules for the old policy



Two-Phase Updates
Versioning: instrument the 
compiler so that all forwarding 
rules match on a policy version 

Unobservable Update: install 
the rules for the new policy in 
the interior of the network 

One-Touch Updates: install 
rules at the edge that stamp 
packets with new version 

Garbage Collect: delete the 
rules for the old policy

`Theorem: Unobservable + One-Touch = Consistent



Applications



Rich Applications with NetKAT
• Isolated Slices 

• Virtual Networks 

• Network Debugging 

• Fault Tolerance 

• Quality of Service Provisioning 

• Network Function Virtualization
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In many situations, multiple tenants must share the network… 
…but we don’t want their traffic to interfere with each other!
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Isolated Slices
In many situations, multiple tenants must share the network… 
…but we don’t want their traffic to interfere with each other!

{ in } x : pol { out } 

Ingress EgressTag Policy

let pre = (tag = none; in; tag := x + tag = x) in  
let post = (out; tag := none + !out) in  
(pre; pol; post)



Virtualization

Virtual topologyPhysical topology

Often useful to programs against a simplified network topology

Benefits: 
• Information hiding: limit what modules see 
• Protection: limit what modules can do 
• Code reuse: limit what dependencies modules have



Example: Gateway

• Left: learning switch on MAC addresses 
• Middle: ARP on gateway, plus simple repeater 
• Right: shortest-path forwarding on IP prefixes

IP Core
Ethernet

IP CoreGatewayEthernet
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Virtual Network
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Implementing Virtualization

Virtual Network

Physical Network

This idiom can be implemented in NetKAT!

ingress;/

(raise;/application;/lower;/fabric)*;//

egress



Network Debugging



Network Debugging

Often want to answer questions like: 
• Does the network forward packets from A to B? 
• Does the network block packets of type X? 
• Does the network contain forwarding loops?



Network Debugging

Often want to answer questions like: 
• Does the network forward packets from A to B? 
• Does the network block packets of type X? 
• Does the network contain forwarding loops?

`
We can encode entire networks as NetKAT policies and 

check these properties (and others) automatically



Encoding Tables

Encoding switch forwarding tables is 
straightforward using NetKAT’s conditionals

Pattern Actions
dstport=22 Drop

srcip=10.0.0.0/8 Forward/1

* Forward/2

if dstport=22 then 
  false 
else if srcip=10.0.0.0/8 then 
  port := 1 
else  
  port := 2



Encoding Topologies

Encoding topologies is also straightforward 
using NetKAT’s tests, modifications, and union

21 21

A B C

switch=A; port=1; switch:=B; port:=2 + 
switch=B; port=2; switch:=A; port:=1 + 
switch=B; port=1; switch:=C; port:=2 + 
switch=C; port=2; switch:=B; port:=1



Encoding Networks
policy

topo

A network can be encoded by 
alternating between policy and 
topology packet-processing steps
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(policy; topo; policy; topo; policy; topo)

+
(policy; topo)*

Encoding Networks
policy

topo

A network can be encoded by 
alternating between policy and 
topology packet-processing steps
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true
+

(policy; topo)
+

(policy; topo; policy; topo)
+

(policy; topo; policy; topo; policy; topo)

+
(policy; topo)*

Encoding Networks
policy

topo

A network can be encoded by 
alternating between policy and 
topology packet-processing steps

...

`
To check whether the network drops packets of type X,  

check if type=X; (policy; topo)* is equivalent to false



Fault Tolerance

Run-Time System

Link 
down

Switch 
down

NetKAT Language
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Fault Tolerance

Run-Time System

“Fast Failover” 
(OpenFlow 1.3+)

Link 
down

Switch 
down

NetKAT Language

Red path Blue pathor

Path abstraction 
hides low-level faults

`
NetKAT’s path abstraction can also be used  

to build fault-tolerant network applications



Quality of Service and NFV

RoutingQoS (OVSDB) Firewall

Run-Time System

Policy Constraint Solver

• Give priority to VoIP over Web 
• DPI on Web traffic  
• Reserve bandwidth for Hadoop 
• Block traffic from evil.com

NetKAT Language



Quality of Service and NFV

RoutingQoS (OVSDB) Firewall

Run-Time System

Policy Constraint Solver

• Give priority to VoIP over Web 
• DPI on Web traffic  
• Reserve bandwidth for Hadoop 
• Block traffic from evil.com

NetKAT Language
`

Place middlebox functions, provision bandwidth,  

and select paths using a constraint solver

Regular expressions. Merlin allows programmers to specify
the set of allowed forwarding paths through the network using regu-
lar expressions—a natural and well-studied formalism for describ-
ing paths through a graph (such as a finite state automaton or a
network topology). However, rather than matching strings of char-
acters, as with ordinary regular expressions, Merlin regular expres-
sions match sequences of network locations, including names of
packet-processing functions, as described below. The compiler is
free to select any matching path for forwarding traffic as long as the
other constraints expressed by the policy are satisfied. We assume
that the set of network locations is finite. As with POSIX regular
expressions, the dot symbol (.) matches any single location.

Packet-processing functions. Merlin regular expressions may
also contain names of packet-processing functions that may trans-
form the headers and contents of packets. Such functions can be
used to implement a variety of useful operations including deep
packet inspection, network address translation, wide-area optimiz-
ers, caches, proxies, traffic shapers, and others. The compiler deter-
mines the location where each function is enforced, using a map-
ping from function names to possible locations supplied as a pa-
rameter. The only requirements on these functions are that they
must take a single packet as input and generate zero or more pack-
ets as output, and they must only access local state. In particular,
the restriction to local state allows the compiler to freely place func-
tions without having to worry about maintaining global state.

Bandwidth constraints. Merlin policies use logical formulas
to specify constraints that either limit (max) or guarantee (min)
bandwidth. In addition to conjunction (and), disjunction (or), and
negation (!), Merlin supports an addition operator. The addition
operator can be used to specify an aggregate cap on traffic, such
as in the max(x + y, 50MB/s) term from the running example.
By convention, policies without a rate clause are unconstrained—
policies that lack a minimum rate are not guaranteed any band-
width, and policies that lack a maximum rate may send traffic at
rates up to line speed. Bandwidth constraints are expressed for-
mally using first-order logic with addition—a system known as
Presburger arithmetic. Note that other operators such as subtraction
and division do not make as much sense in the context of bandwidth
and that excluding multiplication ensures decidability.

Intuitively, a formula specifies the rate at which sources of vari-
ous types of traffic may emit packets. Assume the universe of rates
is [0, MAX] where MAX is given by physical constraints. Then
max(x, 100Mbps) says the rate of x traffic must be in the inter-
val [0, 100Mbps), whereas min(x, 100Mbps) says the rate of
x traffic must be in [100Mbps, MAX], assuming the source is at-
tempting to push that much data. Negation inverts the set of rates
allowed, so that !max(x,100Mbps) is in fact min(x, 100Mbps).

Bandwidth constraints differ from packet-processing functions
in one important aspect: they represent an explicit allocation of
global network resources. Hence, additional care is needed in com-
piling them.

Syntactic sugar. Merlin also supports several forms of syntac-
tic sugar that simplify the expression of complex policies including
set literals and several functions on sets. For example, the follow-
ing policy,

srcs := {192.168.1.1}

dsts := {192.168.1.2}

foreach (s,d) in cross(srcs,dsts):

tcp.dst = 80 ->

( .

*

dpi .

*

nat .

*

) at min(100MB/s)

s1

h1 m1

s2

h2

Physical topology
with vertices V

=×

Statement NFA
with states Qi

LP Graph
Gi

m1, h1, h2, s1

h1

h2

q0

q1

q2

qacc

m1, h1, h2, s1

m1, h1, h2, s1

m1, h1, h2

q4

ti

q3

m1

s1h1 m1 s2 h2si

s1h1 m1 s2 h2

s1h1 m1 s2 h2

s1h1 m1 s2 h2

s1h1 m1 s2 h2ti

s1h1 m1 s2 h2

Figure 2: Logical topology for the example policy. The thick,
red path illustrates a solution.

is equivalent to statement z from the example. The sets srcs and
dsts refer to singleton sets of hosts. The cross operator takes the
cross product of these sets. The foreach statement iterates over
the resulting set, creating a predicate from the source s, destination
d, and term tcp.dst = 80.

Summary. Overall, Merlin’s policy language enables direct ex-
pression of high-level network policies. Programmers write poli-
cies as though they were centralized programs executed on a single
network device. In reality, each policy consists of several compo-
nents that run on a variety of devices distributed throughout the net-
work. Collectively, these component constructs enforce the global
policy. The subsequent sections present these distribution and en-
forcement mechanisms in detail.

3. COMPILER
The Merlin compiler performs three essential tasks: (i) it trans-

lates global policies into locally-enforceable policies; (ii) it deter-
mines the paths used to carry traffic across the network, places
packet-processing functions on middleboxes and end hosts, and al-
locates bandwidth to individual flows; and (iii) it generates low-
level configuration instructions for network devices and end hosts.

To do this, the compiler takes as inputs the Merlin policy, a rep-
resentation of the physical topology, and a mapping from process-
ing functions to possible placements, and builds a logical topology
that incorporates the structure of the physical topology as well as
the constraints encoded in the policy. It then analyzes the logical
topology to determine allocations of resources and emits low-level
configurations for switches, middleboxes, and end hosts.

3.1 Localization
Merlin’s Presburger arithmetic formulas are an expressive way

to declare bandwidth constraints, but actually implementing them
leads to several challenges: aggregate guarantees can be enforced
using shared quality-of-service queues on switches, but aggregate
bandwidth limits are more difficult, since they require distributed
state in general. To solve this problem, Merlin adopts a pragmatic
approach. The compiler first rewrites the formula so that the band-
width constraints apply to packets at a single location. Given a
formula with one term over n identifiers, the compiler produces a
new formula of n local terms that collectively imply the original.
By default, the compiler divides bandwidth equally among the lo-



Conclusion
• Programming languages have important role to play in the 

evolution of SDN programming interfaces 

• NetKAT policy language provides a solid foundation for 
expressing and reasoning about packet-processing functions 

• Many higher-level abstractions can be built on top of NetKAT 

- Isolated Slices 

- Virtual Networks 

- Network Debugging 

- Fault Tolerance 

- Quality of Service Provisioning 

- Network Function Virtualization
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